

## Bases and decomposition numbers of finite groups

By

GADY KOZMA and ARIEH LEV\*)

**I. Introduction.** In this paper  $G$  denotes a finite group. For two subsets  $A, B \subseteq G$  the product  $AB$  is defined by  $AB = \{ab \mid a \in A, b \in B\}$ . In case  $A = B$  denote:  $A^2 = AA$ .

A subset  $A$  of  $G$  is called a *basis* of  $G$  if  $A^2 = G$ . The minimal cardinality of a basis of  $G$  is denoted by  $r(G)$ . A family of finite groups  $\mathfrak{I}$  is *well-based* if there exists a constant  $c$  such that  $r(G) \leq c |G|^{1/2}$  for each  $G \in \mathfrak{I}$ . The problem of estimating  $r(G)$  for cyclic groups was first proposed by I. Schur and various bounds were obtained by Rohrbach [7], Moser [5], Stöhr [9], Klotz [3] and others.

Bases for arbitrary groups were dealt by Rohrbach [8] and lately by Bertram and Herzog [1] and Nathanson [6]. In [8] Rohrbach showed that the class of abelian groups with a bounded number of generators is well-based. He also mentioned that the class of solvable groups which possess a series of a bounded length with cyclic factors is well-based. In [1] Bertram and Herzog showed that the families of the nilpotent groups, as well as the families of the alternating and symmetric groups, are well-based. In [6] Nathanson showed that  $r(G) < 2(|G| \log |G|)^{1/2} + 2$  for every finite group  $G$  of order  $n$ .

In this paper we prove that the family of all finite groups is well-based, with  $r(G) \leq \frac{4}{\sqrt{3}} |G|^{1/2}$  for any finite group  $G$ . A generalization of this result is also proved: If  $G$  is a finite group then for every  $0 \leq \alpha \leq 1$  there are constants  $c_1, c_2$  and subsets  $A, B$  of  $G$  such that  $AB = G$ ,  $|A| \leq c_1 |G|^\alpha$ ,  $|B| \leq c_2 |G|^{1-\alpha}$  and  $c_1 + c_2 \leq \frac{4}{\sqrt{3}}$ .

We first introduce the definitions used in this paper:

**Definitions.** Let  $G$  be a finite group.

- (1) A subset  $A$  of  $G$  is called a *basis* of  $G$  if  $A^2 = G$ . The minimal cardinality of a basis of  $G$  will be denoted by  $r(G)$ . Denote:  $r_b(G) = r(G)/|G|^{1/2}$ .
- (2) A family  $\mathfrak{I}$  of finite groups is *well-based*, if a constant  $c$  exists such that for each  $G \in \mathfrak{I}$ ,  $r_b(G) \leq c$  (i.e.  $r(G) \leq c |G|^{1/2}$ ).
- (3) A family  $\mathfrak{I}$  of finite groups is *well-decomposed* if a constant  $c$  exists such that for every  $0 \leq \alpha \leq 1$  and each  $G \in \mathfrak{I}$  there exist subsets  $A, B \subseteq G$  such that:  $|A| \leq c |G|^\alpha$ ,  $|B| \leq c |G|^{1-\alpha}$  and  $G = AB$ .

\*) The second author carried this work as part of his Ph.D. thesis research in Tel-Aviv University under the supervision of Professor Marcel Herzog.

(4) For  $0 \leq \alpha \leq 1$  define  $r_d(G, \alpha)$  by:

$$r_d(G, \alpha) = \min \{c_1 + c_2 \mid \exists A, B \subseteq G, |A| = c_1 |G|^\alpha, |B| = c_2 |G|^{1-\alpha}, G = AB\}.$$

Define  $r_d(G)$ , the decomposition number of  $G$ , by:

$$r_d(G) = \sup \{r_d(G, \alpha) \mid 0 \leq \alpha \leq 1\}.$$

The following theorem is proved:

**Theorem 1.** *If  $G$  is a finite group, then  $r_d(G) \leq \frac{4}{\sqrt{3}}$ . In particular: the family of all finite groups is well-decomposed.*

We note that the result of Theorem 1 is best possible, for if  $G$  is a group of order 3 then  $r_d(G) = \frac{4}{\sqrt{3}}$ .

A corollary of Theorem 1 is the following:

**Theorem 2.** *If  $G$  is a finite group, then  $r_b(G) \leq \frac{4}{\sqrt{3}}$ . In particular: the family of all finite groups is well-based.*

The following proposition shows that Theorem 2 results from Theorem 1:

**Proposition.** *Let  $G$  a finite group. Then  $r_b(G) \leq r_d(G, 1/2)$ . In particular:  $r_b(G) \leq r_d(G)$ .*

**P r o o f.** There are constants  $c_1, c_2$  and subsets  $A, B \subseteq G$ , such that:  $|A| = c_1 |G|^{1/2}$ ,  $|B| = c_2 |G|^{1/2}$ ,  $c_1 + c_2 = r_d(G, 1/2)$  and  $AB = G$ . Let  $D = A \cup B$ . Then we have:  $|D| \leq r_d(G, 1/2) |G|^{1/2}$ ,  $D^2 \supseteq AB = G$ . Hence  $r_b(G) \leq r_d(G, 1/2) \leq r_d(G)$ .  $\square$

Note that the proposition shows that if a family  $\mathfrak{I}$  of finite groups is well-decomposed, then  $\mathfrak{I}$  is also well-based.

In the proof of Theorem 1 the following theorem from [4] is used:

**Theorem 3.** *Let  $G$  be a group which is not cyclic of prime order. Then  $G$  has a proper subgroup  $H$  such that  $|H| \geq |G|^{1/2}$ .*

Since the proof of Theorem 3 is based on the classification of the finite simple groups, so is the proof of Theorem 1.

In Section II we prove that if  $G$  is a cyclic group of prime order, then  $r_d(G) \leq \frac{4}{\sqrt{3}}$ .

Theorem 1 is proved in Section III. We note that the proof of Theorem 1 for solvable groups does not depend on the classification of the finite simple groups.

There are some questions that remain open. For example:

- (1) What is the least number  $c$  such that  $r_b(G) \leq c$  for every finite group  $G$ ? (As noted before, this problem is solved for  $r_d(G)$ .)
- (2) Given a family  $\mathfrak{I}$  of finite groups, what is the least number  $c$  such that  $r_b(G) \leq c$ ? The same question may be asked about  $r_d(G)$ . Bertram and Herzog showed in [1] that for the family of the alternating groups,  $r_b(A_n) < 2.13$ .

The notation is standard. For a group  $G$ ,  $|G|$  is the order of  $G$ ,  $K \leq G$  means  $K$  is a subgroup of  $G$ , and  $K < G$  means  $K$  is a proper subgroup of  $G$ . If  $\alpha$  is a real number, then  $\lceil \alpha \rceil$  denotes the least integer  $n$  satisfying  $\alpha \leq n$  and  $\lfloor \alpha \rfloor$  denotes the largest integer  $m$  satisfying  $m \leq \alpha$ .

**II. The decomposition number of cyclic groups of prime order.** In this section we prove that the decomposition number of a cyclic group of prime order is bounded by  $\frac{4}{\sqrt{3}}$ . As will be shown in Section III, this result holds for all finite groups.

**Lemma 1.** *Let  $G$  be a finite cyclic group of prime order. Then  $r_d(G) \leq \frac{4}{\sqrt{3}}$ .*

**P r o o f.** We may assume  $G = \mathbb{Z}_p^+$ , the additive group of integers modulo  $p$ , where  $p = |G|$  is a prime. The proof is broken up into a sequence of short steps:

(1) *Let  $k, l$  be two integers satisfying  $1 \leq k, l \leq p$  and  $kl \geq p$ . Then there exist two subsets  $K, L$  of  $G$  such that  $|K| = k, |L| = l$  and  $K + L = G$ .*

**P r o o f.** Define:

$$K = \{0, 1, \dots, k-1\}$$

$$L = \{0, k, \dots, (l-1)k\}.$$

Then  $|K| = k, |L| = l$  and  $K + L = G$ .

(2)  $r_d(G) = \inf \{r_d(G, \alpha) \mid 0 \leq \alpha \leq 1/2\}$ .

**P r o o f.** Since  $G$  is abelian,  $AB = BA$  for any two subsets  $A, B$  of  $G$ . Hence  $r_d(G, \alpha) = r_d(G, 1 - \alpha)$  for any  $1 \leq \alpha \leq 1/2$  and the result follows.

(3) *Suppose  $p \geq 17$ ,  $0 \leq \alpha \leq 1/2$  and  $p^\alpha \geq 4$ . Then  $r_d(G, \alpha) < \frac{4}{\sqrt{3}}$ .*

**P r o o f.** Let  $k = \lfloor p^\alpha \rfloor$ . Then  $k \geq 4$ . By step (1) there are subsets  $A, B$  of  $G$  such that

$$|A| = k+1, \quad |B| = \left\lceil \frac{p}{k+1} \right\rceil, \quad A + B = G.$$

Let

$$c_1 = \frac{|A|}{p^\alpha}, \quad c_2 = \frac{|B|}{p^{1-\alpha}}.$$

There is  $0 \leq \varepsilon < 1$  such that  $p^\alpha = k + \varepsilon$ . Then we have:

$$c_1 = \frac{k+1}{k+\varepsilon}, \quad c_2 = |B| \frac{p^\alpha}{p} \leq \left( \frac{p}{k+1} + 1 \right) \left( \frac{k+\varepsilon}{p} \right),$$

and

$$r_d(G, \alpha) \leq c_1 + c_2.$$

Define:

$$f(\varepsilon) = \frac{k+1}{k+\varepsilon} + \left( \frac{p}{k+1} + 1 \right) \left( \frac{k+\varepsilon}{p} \right).$$

Then we have:

$$r_d(G, \alpha) \leq f(\varepsilon), \quad 0 \leq \varepsilon < 1.$$

Differentiating with respect to  $\varepsilon$  we have:

$$f'(\varepsilon) = -\frac{k+1}{(k+\varepsilon)^2} + \left( \frac{p}{k+1} + 1 \right) \frac{1}{p},$$

$$f''(\varepsilon) = \frac{k+1}{2(k+\varepsilon)^3} > 0.$$

Hence  $f(\varepsilon)$  has no local maximum in the interval  $[0, 1]$  and we have:

$$\max_{\varepsilon \in [0, 1]} f(\varepsilon) = \max(f(0), f(1)),$$

where

$$f(0) = \frac{k+1}{k} + \left( \frac{p}{k+1} + 1 \right) \frac{k}{p} = 2 + \frac{k}{p} + \frac{1}{k(k+1)},$$

$$f(1) = 1 + \left( \frac{p}{k+1} + 1 \right) \frac{k+1}{p} = 2 + \frac{k+1}{p}.$$

Since  $k \geq 4$ ,  $p \geq 17$  and  $k \leq p^{1/2}$  we have:

$$\begin{aligned} f(0) &= 2 + \frac{k}{p} + \frac{1}{k(k+1)} \leq 2 + \frac{1}{\sqrt{p}} + \frac{1}{20} \\ &\leq 2 + \frac{1}{\sqrt{17}} + 0.05 = 2.2925\dots < \frac{4}{\sqrt{3}}, \\ f(1) &= 2 + \frac{k+1}{p} \leq 2 + \frac{p^{1/2} + 1}{p} = 2 + \frac{1}{\sqrt{p}} + \frac{1}{p} \\ &\leq 2 + \frac{1}{\sqrt{17}} + \frac{1}{17} = 2.301\dots < \frac{4}{\sqrt{3}}. \end{aligned}$$

Hence

$$r_d(G, \alpha) \leq \max_{\varepsilon \in [0, 1]} (f(0), f(1)) < \frac{4}{\sqrt{3}}$$

as required.

(4) Suppose that  $p \geq 17$ ,  $0 \leq \alpha \leq 1/2$  and  $p^\alpha < 4$ . Then  $r_d(G, \alpha) < \frac{4}{\sqrt{3}}$ .

Proof. There are some cases to consider:

Case 1.  $p^\alpha \leq \sqrt{2}$ . Let  $A = \{0\}$ ,  $B = G$ . Then  $|A| = c_1 |G|^\alpha$ , where  $c_1 = \frac{1}{p^\alpha}$  and  $|B| = c_2 |G|^{1-\alpha}$ , where  $c_2 = p^\alpha$ . By similar arguments to those used in the preceding step one easily checks that for  $1 \leq p^\alpha \leq \sqrt{2}$ :

$$c_1 + c_2 = p^\alpha + \frac{1}{p^\alpha} \leq \sqrt{2} + \frac{1}{\sqrt{2}} < \frac{4}{\sqrt{3}}.$$

Hence  $r_d(G, \alpha) < \frac{4}{\sqrt{3}}$  in this case.

Case 2.  $\sqrt{2} < p^\alpha \leq \sqrt{6}$ . By step 1 there are subsets  $A$ ,  $B$  of  $G$  such that  $|A| = 2$ ,  $|B| = \left\lceil \frac{p}{2} \right\rceil$  and  $AB = G$ . Then  $|A| = c_1 |G|^\alpha$ , where  $c_1 = \frac{2}{p^\alpha}$  and  $|B| = c_2 |G|^{1-\alpha}$ , where  $c_2 = \frac{|B|}{p^{1-\alpha}} = \frac{p+1}{2} \frac{p^\alpha}{p} = \frac{p^\alpha}{2} + \frac{p^\alpha}{2p}$ . One easily checks that in this case

$$c_1 + c_2 \leq \max \left( \sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2p}}, \sqrt{\frac{2}{3}} + \sqrt{\frac{3}{2}} + \frac{\sqrt{\frac{3}{2}}}{p} \right),$$

and since  $p \geq 17$  we have:

$$r_d(G, \alpha) \leq c_1 + c_2 \leq 2.1629 \dots < \frac{4}{\sqrt{3}}.$$

Case 3. Suppose  $\sqrt{6} < p^\alpha \leq \sqrt{12}$ . By step 1 there are subsets  $A, B$  of  $G$  such that  $|A| = 3$ ,  $|B| = \left\lceil \frac{p}{3} \right\rceil$  and  $AB = G$ . We have:  $|A| = c_1 |G|^\alpha$ , where  $c_1 = \frac{3}{p^\alpha}$  and  $|B| = c_2 |G|^{1-\alpha}$ , where  $c_2 = |B| \frac{p^\alpha}{p} \leq \frac{p+2}{3} \frac{p^\alpha}{p} = p^\alpha \left( \frac{1}{3} + \frac{2}{3p} \right)$  and we have:

$$c_1 + c_2 \leq \max \left( \sqrt{\frac{3}{2}} + \sqrt{\frac{2}{3}} + \frac{2}{p} \sqrt{\frac{2}{3}}, \sqrt{\frac{3}{4}} + \sqrt{\frac{4}{3}} + \frac{2}{p} \sqrt{\frac{4}{3}} \right).$$

Since  $p \geq 17$  we have:

$$r_d(G, \alpha) \leq c_1 + c_2 \leq 2.1565 \dots < \frac{4}{\sqrt{3}}.$$

Case 4. The remaining case is  $\sqrt{12} < p^\alpha < 4$ . By step 1 there are subsets  $A, B$  of  $G$  such that  $|A| = 4$ ,  $|B| = \left\lceil \frac{p}{4} \right\rceil$  and  $AB = G$ . We have:  $|A| = c_1 |G|^\alpha$ , where  $c_1 = \frac{4}{p^\alpha}$  and  $|B| = c_2 |G|^{1-\alpha}$ , where  $c_2 = |B| \frac{p^\alpha}{p^{1-\alpha}} \leq \frac{p+3}{4} \frac{p^\alpha}{p}$ . Again, one easily checks that  $r_d(G, \alpha) < \frac{4}{\sqrt{3}}$  in this case.

(5) It remains to check that the lemma holds when  $p < 17$ .

One can easily determine the following:

$$r_d(Z_2) = \frac{3}{\sqrt{2}},$$

$$r_d(Z_3) = \frac{4}{\sqrt{3}},$$

$$r_d(Z_5) = \sqrt{5},$$

$$r_d(Z_7) = \frac{6}{\sqrt{7}},$$

$$r_d(Z_{11}) = 2.1574\dots,$$

$$r_d(Z_{13}) = 2.2188\dots.$$

From steps 1–5 we have: if  $G$  is a cyclic group of prime order then  $r_d(G) \leq \frac{4}{\sqrt{3}}$  (and  $r_d(G) = \frac{4}{\sqrt{3}}$  if and only if  $|G| = 3$ ). Hence the proof of the lemma is complete.  $\square$

### III. Proof of Theorem 1.

**Lemma 2.** *Let  $H$  be a subgroup of a finite group  $G$  such that  $|H| \geq |G|^{1/2}$ . Then  $r_d(G) \leq r_d(H)$ .*

**P r o o f.** We may assume  $H < G$ . Denote:  $g = |G|$ ,  $h = |H|$ ,  $n = |N|$ .

We will show that given  $0 \leq \alpha \leq 1$  there are subsets  $A, B \subseteq G$  such that  $|A| = c_1 g^\alpha$ ,  $|B| = c_2 g^{1-\alpha}$ ,  $c_1 + c_2 \leq r_d(H)$ , and  $G = AB$ .

There are two cases to consider:

**Case 1.**  $0 \leq \alpha \leq 1/2$ . Let  $T$  be a right transversal to  $H$  in  $G$ . Since  $h \geq g^\alpha$ , there is  $0 \leq \beta \leq 1$  such that  $h^\beta = g^\alpha$ .

There are subsets  $A_1, B_1 \subseteq H$ ,  $|A_1| = c_1 h^\beta$ ,  $|B_1| = c_2 h^{1-\beta}$ ,  $c_1 + c_2 \leq r_d(H)$ , and  $A_1 B_1 = H$ . Let  $A = A_1$ ,  $B = B_1 T$ . Then we have:

$$|A| = c_1 h^\beta = c_1 g^\alpha$$

$$|B| = c_2 h^{1-\beta} |T| = c_2 h^{1-\beta} g/h = c_2 h^{-\beta} g = c_2 g^{-\alpha} g = c_2 g^{1-\alpha}$$

and

$$AB = A_1 B_1 T = HT = G$$

as required.

**Case 2.**  $1/2 < \alpha \leq 1$ . Then  $0 \leq 1 - \alpha < 1/2$  and  $h > g^{1-\alpha} \geq 1$ . Hence there is  $0 \leq \beta < 1$  such that  $h^\beta = h/g^{1-\alpha}$ .

There are subsets  $A_1, B_1 \subseteq H$  such that  $|A_1| = c_1 h^\beta$ ,  $|B_1| = c_2 h^{1-\beta}$ ,  $c_1 + c_2 \leq r_d(H)$  and  $A_1 B_1 = H$ .

Let  $T$  be a left transversal to  $H$  in  $G$  and let  $A = TA_1$ ,  $B = B_1$ . Then:

$$|A| = c_1 \frac{g}{h} h^\beta = c_1 \frac{g}{h} \frac{h}{g^{1-\alpha}} = c_1 g^\alpha$$

$$|B| = c_2 h^{1-\beta} = c_2 h/h^\beta = c_2 h g^{1-\alpha}/h = c_2 g^{1-\alpha}$$

and

$$AB = TA_1 B_1 = TH = G$$

and we have the result for this case also.

The above shows that  $r_d(G, \alpha) \leq r_d(H)$  for any  $0 \leq \alpha \leq 1$ . Hence  $r_d(G) \leq r_d(H)$  and the proof of the lemma is complete.  $\square$

We note that a similar result holds if the subgroup  $H$  is replaced by a factor group of  $G$  in Lemma 2:

**Lemma 3.** *Let  $N$  be a normal subgroup of  $G$  such that  $|G/N| \geq |G|^{1/2}$ . Then*

$$r_d(G) \leq r_d(G/N).$$

The lemma may be proved by similar arguments to those used in the proof of Lemma 2. Theorem 1 is now proved:

**Theorem 1.** *If  $G$  is a finite group, then  $r_d(G) \leq \frac{4}{\sqrt{3}}$ . In particular: the family of all finite groups is well-decomposed.*

**P r o o f.** Let  $G$  be a counter example of minimal order. By Lemma 1  $G$  is not cyclic of prime order. Hence by Theorem 3,  $G$  possesses a proper subgroup  $H$  such that

$|H| \geq |G|^{1/2}$ . It follows from the minimality of the order of  $G$  that  $r_d(H) \leq \frac{4}{\sqrt{3}}$ . Hence, using Lemma 2 we have  $r_d(G) \leq \frac{4}{\sqrt{3}}$ , and the proof is complete.  $\square$

**A d d e d i n p r o o f.\*)** Recently, we learned that Larry Finkelstein, Daniel Kleitman and Tom Leighton, obtained a similar result in Proc. Aegean Workshop on Computing, 1988. They showed that every finite group  $G$  has a subset  $A \subseteq G$ , with  $|A| \leq 3|G|^{1/2}$ , such that  $AA^{-1} = G$ , where  $A^{-1} = \{a^{-1} \mid a \in A\}$ .

### References

- [1] E. A. BERTRAM and M. HERZOG, On medium-size subgroups and bases of finite groups. J. Combin. Theory, to appear.
- [2] J. CHERLY, On complementary sets of group elements. Arch. Math. 35, 313–318 (1980).

\*) Eingegangne am 20. 9. 1991

- [3] W. KLOTZ, Eine obere Schranke für die Reichweite einer Extremalbasis zweiter Ordnung. *J. Reine Angew. Math.* **238**, 161–168 (1969).
- [4] A. LEV, On large subgroups of finite groups. To appear.
- [5] L. MOSER, On the representation of  $1, 2, \dots, n$  by sums. *Acta Arith.* **6**, 11–13 (1960).
- [6] M. B. NATHANSON, On a problem of Rohrbach for finite groups. To appear.
- [7] H. ROHRBACH, Ein Beitrag zur additiven Zahlentheorie. *Math. Z.* **42**, 1–30 (1937).
- [8] H. ROHRBACH, Anwendung eines Satzes der additiven Zahlentheorie auf eine gruppentheoretische Frage. *Math. Z.* **42**, 538–542 (1937).
- [9] A. STÖHR, Gelöste und ungelöste Fragen über Basen der natürlichen Zahlenreihe, I. *J. Reine Angew. Math.* **194**, 40–65 (1955).

Eingegangen am 3. 1. 1991

Anschrift der Autoren:

Gady Kozma  
Arieh Lev  
School of Mathematical Sciences  
Raymond and Beverly Sackler  
Faculty of Exact Sciences  
Tel-Aviv University  
Tel-Aviv, Israel