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Bases and decomposition numbers of finite groups

By

Gany Kozma and ARIEH LEV*)

I. Introduction. In this paper G denotes a finite group. For two subsets 4, B < G the
product AB is defined by AB = {ab|a€ 4, be B}. In case A = B denote: A*> = AA.

A subset 4 of G is called a basis of G if A* = G. The minimal cardinality of a basis of
G is denoted by r(G). A family of finite groups 3 is well-based if there exists a constant
¢ such that 7(G) £ ¢ |G|Y* for each G € 3. The problem of estimating r (G) for cyclic
groups was first proposed by I. Schur and various bounds were obtained by Rohrbach
{71, Moser [5], Stohr [9], Klotz [3] and others.

Bases for arbitrary groups were dealt by Rohrbach [8] and lately by Bertram and
Herzog [1] and Nathanson [6]. In [8] Rohrbach showed that the class of abelian groups
with a bounded number of generators is well-based. He also mentioned that the class of
solvable groups which possess a series of a bounded length with cyclic factors is well-
based. In [1] Bertram and Herzog showed that the families of the nilpotent groups, as well
as the families of the alternating and symmetric groups, are well-based. In [6] Nathanson
showed that r(G) < 2(|G|log|G|)'/* + 2 for every finite group G of order n.

In this paper we prove that the family of all finite groups is well-based, with

4
r{G) £ —1G|** for any finite group G. A generalization of this result is also proved: If
3

G is a finite group then for every 0 < « < 1 there are constants ¢, ¢, and subsets 4, B
of G such that AB= G, |A] S ¢ |G]% |B|£¢,|G]' "and ¢; + ¢, £ i
We first introduce the definitions used in this paper: 3
Definitions. Let G be a finite group.

(1) A subset 4 of G is called a basis of G if A> = G. The minimal cardinality of a basis
of G will be denoted by r(G). Denote: r,(G) = r(G)/|G|*2.

(2) A family 3 of finite groups is well-based, if a constant ¢ exists such that for each
Ge3, 1, (G) S c (e 7(G) £ ¢ |G|

(3) A family 3 of finite groups is well-decomposed if a constant ¢ exists such that for
every 0 < o £ 1 and each G € T there exist subsets 4, B = G such that:
[A| £¢|Gl% |Bl < ¢|G)**and G = 4B.

*) The second author carried this work as part of his Ph.D. thesis research in Tel-Aviv University
under the supervision of Professor Marcel Herzog.
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(4) For 0 < x <1 define ,(G, o) by:
ra(G, oy =min{c, + ¢;|3A, B< G, |4| =¢, |G |Bl =¢, |G|'"*% G = 4B}.
Define r,(G), the decomposition number of G, by:
r4(G) = sup {r, (G, )| 0 S a < 1}.

The following theorem is proved:
4
Theorem 1. If G is a finite group, then r,(G) £ —. In particular: the family of all
finite groups is well-decomposed. 3

We note that the result of Theorem 1 is best possible, for if G is a group of order 3 then

4
rdG) = —.

/3

A corollary of Theorem 1 is the following:

, 4
Theorem 2. If G is a finite group, thenr,(G) = ——. In particular: the family of all finite
groups is well-based. 3

The following proposition shows that Theorem 2 results from Theorem 1:

Proposition. Let G a finite group. Then r,(G) < r,(G, 1/2). In particular: r,{G) < r,(G).

Proof. There are constants ¢;, ¢, and subsets 4, B < G, such that: {4| = ¢, |G|V%
(Bl =c¢, |G|'"? ¢, + ¢, =1r4(G,1/2) and AB=G. Let D= AUB. Then we have:
|D| £74(G,1/2)|G]'?, D* 2 AB.= G. Hence r,(G) £7,(G, 1/2) £ r,(G). [T

Note that the proposition shows that if a family 3 of finite groups is well-decomposed,

then 3 is also well-based.
In the proof of Theorem 1 the following theorem from [4] is used:

Theorem 3. Let G be a group which is not cyclic of prime order. Then G has a proper
subgroup H such that |H| = |G|"%.

Since the proof of Theorem 3 is based on the classification of the finite simple groups,
so is the proof of Theorem 1.
In Section IT we prove that if G is a cyclic group of prime order, then 7,(G) £

ol

o

Theorem 1 is proved in Section III. We note that the proof of Theorem 1 for solvabie

groups does not depend on the classification of the finite simple groups.
There are some questions that remain open. For example:

(1) What is the least number ¢ such that r, (G) = ¢ for every finite group G7 (As noted
before, this problem is solved for r,(G).)

(2) Given a family 3 of finite groups, what is the least number ¢ such that 7, (G) = ¢?
The same question may be asked about r,(G). Bertram and Herzog showed in [1]
that for the family of the alternating groups, r,(4,) < 2.13.
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The notation is standard. For a group G, |G| is the order of G, K < G means K is a
subgroup of G, and K < G means K is a proper subgroup of G. If o is a real number, then
[o} denotes the least integer n satisfying o < n and {a] denotes the largest integer m
satisfying m < a.

I1. The decomposition number of cyclic groups of prime order. In this section we prove

. . . 4
that the decomposition number of a cyclic group of prime order is bounded by —. As
will be shown in Section I11, this result holds for all finite groups. 3

4
Lemma 1. Let G be a finite cyclic group of prime order. Then r,(G) < \—[—

3

Proof. We may assume G = Z,, the additive group of integers modulo p, where
¢ = |G| is a prime. The proof is broken up into a sequence of short steps:

(1) Let k, I be two integers satisfying 1 < k, ! < pand ki = p. Then there exist two subsets
K,Lof G such that |[K| =k, |L|=1land K + L =G.

Proof. Define:
K={01,....,k—1}
L={0k ....00—1)k}.
Then |K| =k, |L|=land K+ L=G.
(2) r,(G) = inf{ry(G, ) |0 < o < 1/2}.

Proof. Since G is abeliaﬁ, AB = BA for any two subsets 4, B of G. Hence
rg(G, ) =1,(G,1 — o) for any 1 £ o £ 1/2 and the result follows.

4
(3) Suppose p = 17,0 S a £ 1/2 and p* = 4. Then r,(G, o) < —.

/3

Proofl Let k={p*|. Then k = 4. By step (1) there are subsets 4, B of G such that

p
Al=k+1, |B|=|——|, A4+ B=0G.
|4] |B| [k+1]
Let
| 4] |B
cl: a’ 62: 1-a"
p p

There is 0 < ¢ < 1 such that p* = k + &. Then we have:
k+1 p* p k+e
= =g < £
Ty @ | Ip_<k+1+1>< p )

rg(Go) S ey +csy.

and

27
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_k+1¢ r k+e
f(8)~k+s'<k+1T1)( ) )

Then we have:

Define:

(G =S 0Le<1.

Differentiating with respect to ¢ we have:

con k+1 P }
f(g)_ﬁ(k+8)2+<k+l+1)p’

ookt
U TN

Hence f(¢) has no local maximum in the interval [0, 1] and we have:

max_f(g) = max (f(0), f (1)),

eel0, 1]

k41 k koo
£ == +( ? +1)-:2+ +

where

ko \k+1 Jp pk(k+1)
p k+1 k+1
D=l+4|——1) =24,
1@ (kH > p p
Since k >4, p = 17 and k < pY'? we have:
f(O)-2+k+ L <oy ! 42
T T kk+ 0T Jp 20
<2+ ! +0.05 =22925... < 4
$2+ w0 B2 <
k+1 Y2 11 11
fW=2+""-<2+" 24— t-
P p NI
<24+ ! +1—2301 <
BEENCTRR 3

Hence

4
(G s max (£0L1 (1) <

J3

as required.

4
(4) Suppose that p 2 17,0 < a £ 1/2 and p* < 4. Then ry(G, 1) < —.

J3

ARCH. MATH.
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Proof. There are some cases to consider:

i
Case 1. p*=<. /2. Let A={0}, B=G. Then |4]| = ¢, |G|, where ¢, = — and
p

|B] = ¢, {G{' % where ¢, = p® By similar arguments to those used in the preceding step
one easily checks that for 1 £ p* < \/5 :

1 1 4
Gt e=pi+—=S/2+—=<—
! : p* \[ ﬁ \ﬁ
4
Hence r, (G, o) < 7 in this case.
3
Case 2. /2 < p*=./6. By step 1 there are subsets 4, B of G such that |A4] = 2,

2
|B| = lrg\l and AB = G. Then |A4| = ¢, |G[", where ¢, = — and |B| = ¢, |G|* %, where
p

oo Bl _ptip® p* p”
ettt 2 p

b + ZE— One easily checks that in this case
14

2

1 1 2 3 3
c1+02§max<ﬁ+ﬁ+ﬁ,\/%+\/;+\/7;>,

and since p = 17 we have:

4

rd(G,OC)écl+C2§2.1629...<7.

3

Case 3. Suppose \/g<p“ <. /12. By step 1 there are subsets 4, B of G such
3

that |4] =3, |B|= [g—l and AB=G. We have: |4| = ¢, |G|*, where ¢, =— and
p

oc p +2 pa a<1

2
§+ 3 ) and we have:

s o e o)

Since p = 17 we have:

|Bl = ¢, |G{*™% where ¢, = {B[

4
r(G, o) < ¢, +c2§2.1565...<ﬁ.

Case 4. The remaining case is . /12 < p* < 4. By step 1 there are subsets 4, B of G

4
such that |4| =4, |B] =’V§_’ and AB = G. We have: [4]=c, |G|*, where ¢, = —
P

B 3
| B ~+—E—. Again, one easily checks that
p

and |B|=CZ|G[1_“, where Cl_pl—a= 4

4
r,(G, o) < —= in this case.

3



422 G. Kozma and A. Lev ARCH. MATH.

(5) It remains to check that the lemma holds when p < 17.

One can easily determine the following:

3
rd(Zz)=ﬁ,
r(Zs) = !
aldz) = —=,

NG
r(Zs) = /5,

6
rd(Z7)‘_‘ﬁa

1 (Z,,) =21574...
rd(Zlg,) - 22188 .

. 4
From steps 1-5 we have: if G is a cyclic group of prime order then r,{G} < —= {(and
3
4 v
r(G) = —\/t if and only if |G| = 3). Hence the proof of the lemma is complete. [
3

I11. Proof of Theorem 1.

Lemma 2. Let H be a subgroup of a finite group G such that |H| =2 G|"*. Then
r(G) = r,{H).
Proof. We may assume H < G. Denote: g = |G|, h = |H|, n = |N]|.
We will show that given 0 < o < 1 there are subsets A, B € G such that |A| =c, g%
IBl|=c,g* % ¢; + ¢, <ry(H), and G = AB.
There are two cases to consider:

Case 1. 0 Za=1/2. Let T be a right transversal to  in G. Since & = g% there is
0 < B <1 such that h¥ = g°.

There are subsets A,, B, S H, |A,|=c h*, |By|=c,h*"?, ¢, + ¢, <7,(H), and
A B, =H.Llet A=A, B= B, T. Then we have:
Al = c, = ¢, g°
|Bl=c, B P |T|=c,h* Pglh=c,h Pg=cg7"g=crg" ™"
and
as required.

Case 2. 1/2<a <1 Then 01 —a<1/2 and h>g'"* =1, Hence there is
0 < B < 1 such that h? = h/g' ™=
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There are subsets 4,, B, € H such that |4, | = ¢, I, |B,| = c,h* ¢, ¢; + ¢, Sry(H)
and 4, B; = H.
Let T be a left transversal to H in G and let A = TA,, B= B,. Then:
g g h .
!A]=C1Ehﬁ=01ﬁéﬁ=c1g
|Bl = c,h! P =c,hfh’ = c,hg' */h=c 9" "
and
AB=TA,B,=TH=G

and we have the result for this case also.
The above shows that r, (G, o) £ r,(H)for any0 £ « £ 1. Hence r,(G) = r,(H) and the
proof of the lemma is complete. [

We note that a similar result holds if the subgroup H is replaced by a factor group of
G in Lemma 2:

Lemma 3. Let N be a normal subgroup of G such that |G/N| = |G|*2. Then
ra(G) = ry(G/N).

The lemma may be proved by similar arguments to those used in the proof of Lemma 2.
Theorem 1 is now proved:

4
Theorem 1. If G is a finite group, then r,(G) < ——. In particular: the family of all
finite groups is well-decomposed. 3

Proof. Let G be a counter example of minimal order. By Lemma 1 G is not cyclic
of prime order. Hence by Theorem 3, G possesses a proper subgroup H such that

4
[H| = |G|'* Tt follows from the minimality of the order of G that r,(H) 7 Hence,
3
4
using Lemma 2 we have r,(G) £ —, and the proof is complete. [
3

Added in proof.*) Recenctly, we learned that Larry Finkelstein, Daniel Kleitman
and Tom Leighton, obtained a similar result in Proc. Aegean Workshop on Computing,
1988. They showed that every finite group G has a subset A = G, with | 4| < 3 |G| "2, such
that AA™! = G, where A™! = {a"'|ae 4}.

References

1] E. A. BErtRAM and M. HErRzoG, On medium-size subgroups and bases of finite groups. J.
Combin. Theory, to appear.
[2] J. CuerLy, On complementary sets of group elements. Arch. Math. 35, 313-318 (1980).

*} Eingegangne am 20. 9. 1991



424 G. Kozma and A. Lev ARCH. MATH.

[3] W. Krotz, Eine obere Schranke fiir die Reichweite einer Extremalbasis zweiter Ordnung. J.
Reine Angew. Math. 238, 161168 {1969).

4] A Lev, On large subgroups of finite groups. To appear.

{51 L. MosEr, On the representation of 1, 2, ..., n by sums. Acta Arith. 6, 1113 {1960).

{6] M. B. NatHaNsoN, On a problem of Rohrbach for finite groups. To appear.

[7] H. RouRBACH, Ein Beitrag zur additiven Zahlentheorie. Math. Z. 42, 1=30 (1937}

[8] H. RoHrBACH, Anwendung cines Satzes der additiven Zahlentheorie auf eine gruppentheore-
tische Frage. Math. Z. 42, 538542 (1937).

[91 A. STOHR, Geldste und ungeléste Fragen iiber Basen der natiirlichen Zahlenreihe, I I Reine
Angew. Math. 194, 4065 (1955).

Eingegangen am 3. 1. 1991

Anschrift der Autoren:

Gady Kozma

Arieh Lev

School of Mathematical Sciences
Raymond and Beverly Sackler
Faculty of Exact Sciences
Tel-Aviv University

Tel-Aviv, Israel



