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Bases and decomposition numbers of finite groups 

By 

GADY KOZMA and ARIEn LEV*) 

I. Introduction. In this paper G denotes a finite group. For  two subsets A, B __ G the 
product AB is defined by AB = {ab[a ~ A, b E B}. In case A = B denote: A z = AA. 

A subset A of G is called a basis of G if A 2 = G. The minimal cardinality of a basis of 
G is denoted by r(G). A family of finite groups ,3 is well-based if there exists a constant 
c such that r(G) < c [GI 1/z for each G ~ .3. The problem of estimating r(G) for cyclic 
groups was first proposed by I. Schur and various bounds were obtained by Rohrbach 
[7], Moser [5], St6hr [9], Klotz [3] and others. 

Bases for arbitrary groups were dealt by Rohrbach [8] and lately by Bertram and 
Herzog [1] and Nathanson [6]. In [8] Rohrbach showed that the class of abelian groups 
with a bounded number of generators is well-based. He also mentioned that the class of 
solvable groups which possess a series of a bounded length with cyclic factors is well- 
based. In [1] Bertram and Herzog showed that the families of the nilpotent groups, as well 
as the families of the alternating and symmetric groups, are well-based. In [6] Nathanson 
showed that r(G) < 2(IGI loglG[) 1/2 + 2 for every finite group G of order n. 

In this paper we prove that the family of all finite groups is well-based, with 

4 I ' 2  r (G) < ~ I G I  / for any finite group G. A generalization of this result is also proved: If 

G is a finite group then for every 0 < c~ _< i there are constants c a, c 2 and subsets A, B 
4 

of G such that AB = G, IAI < cl LGI ~, [B[ < c 2 IGI 1-~ and c 1 + c 2 < ~ .  
V ~  

We first introduce the definitions used in this paper: 

D e f i n  i t i o n s. Let G be a finite group. 

(1) A subset A of G is called a basis of G if A 2 = G. The minimal cardinality of a basis 
of G will be denoted by r(G). Denote:  rb(G ) = r(G)/IG] 1/2. 

(2) A family ,~ of finite groups is well-based, if a constant c exists such that for each 
G~ `3, rb(G ) < c (i.e. r(G) < c 1G]1/2). 

(3) A family `3 of finite groups is welt-decomposed if a constant c exists such that for 
every 0 _< e _< 1 and each G e .3 there exist subsets A, B ~ G such that: 
[AI =< c ]GI ~, [B[ =< c [G] 1-~ and G = AB. 

*) The second author carried this work as part of his Ph.D. thesis research in Tel-Aviv University 
under the supervision of Professor Marcel Herzog. 
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(4) For  0 _< ~ _< 1 define re(G , ~) by: 

re(G, z) = min {c 1 + c~[3A, B ~ G, IA] = c 1 ]G[ ~, IB} = C 2 IGi 1-~, G = AB}.  

Define rd(G), the decomposition number of G, by: 

re(G) = sup {rd(G, ~)10 _< ~ _< 1}. 

The following theorem is proved: 

4 
Theorem 1. I f  G is a finite group, then rd(G ) < - - .  In particular: the jamily of  all 

finite groups is well-decomposed. 

We note that the result of Theorem 1 is best possible, for if G is a group of order 3 then 
4 

re(6 ) - ,/x 
A corollary of Theorem 1 is the following: 

4 
Theorem 2. I f  G is a finite group, then r b (G) ~ - - .  In particular: ~he family of  all finite 

groups is well-based, x /5  

The following proposition shows that Theorem 2 results from Theorem 4: 

Proposition. Let G a .finite group. Then r b (G) < r d (G, 1/2). In particular: r b (G) < r d (G). 

P r o o f. There are constants cl, ca and subsets A, B =c G, such that: I At = cl [G! ~/2, 
fBl = cz lGI ~/2, cl + cz = ra(G, 1/2 ) and AB = G. Let D = A u B. Then we have: 
ID] < rd(G, 1/2)IGI ~/2, D 2 ~ A B =  G. Hence rb(G ) < rd(G, 1/2) < rd(G). D 

Note that the proposition shows that if a family .~ of finite groups is well-decomposed, 
then .~ is also well-based. 

In the proof of Theorem 1 the following theorem from [4] is used: 

Theorem 3. Let G be a group which is not cyclic of prime order. Then G has a proper 
subgroup H such that IH] > IGI 1/2. 

Since the proof of Theorem 3 is based on the classification of the finite simple groups, 
so is the proof of Theorem 1. 

4 
In Section II we prove that if G is a cyclic group of prime order, then r e (G) <- . 

�9 - , / ~  

Theorem I is proved in Section IlL We note that the proof of Theorem 1 for solvable 
groups does not depend on the classification of the finite simple groups. 

There are some questions that remain open. For  example: 

(1) What is the least number c such that rb(G) < c for every finite group G? (As noted 
before, this problem is solved for ra (G).) 

(2) Given a family .3 of finite groups, what is the least number c such that rb(G ) _--< c? 
The same question may be asked about r e (G). Bertram and Herzog showed in [1] 
that for the family of the alternating groups, rb(An) -< 2.13. 
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The nota t ion is s tandard.  For  a group G, Gi is the order  of G, K < G means K is a 
subgroup of G, and K < G means K is a proper  subgroup of G. If e is a real number,  then 
[el denotes the least integer n satisfying c~ __< n and [~] denotes the largest integer m 
satisfying m < c~. 

II. The decomposition number of cyclic groups of prime order. In this section we prove 

that  the decomposi t ion number  of a cyclic group of prime order  is bounded by 4 .  As 

will be shown in Section III,  this result holds for all finite groups, x /~  

4 
Lemma 1. Let  G be a f ini te  cyclic group o f  prime order�9 Then re(G ) < - -  

P r o o f. We may assume G = Z + , the additive group of integers modulo  p, where 
p = IG[ is a prime. The proof  is broken up into a sequence of short  steps: 

(1) Le t  k, I be two integers satisfying I <= k, 1 < p and kl > p. Then there exist two subsets 

K, L o f  G such that ] K I = k, I L [ = l and K + L = G. 

P r o o f. Define: 

K={0,1  ..... k - l }  

L = {0, k . . . . .  (l - 1) k}.  

Then I K] = k, I L] = 1 and K + L = G. 

(2) re(G) = inf{re(G, c~)[0 < e _< 1/2}. 

P r o o f .  Since G is abelian, A B = B A  for any two subsets A , B  of G. Hence 
re(G, c 0 = re(G, i - c~) for any 1 < c~ _< 1/2 and the result follows. 

4 
(3) Suppose p > 17, 0 < c~ _< 1/2 and p~ > 4. Then ra(G, ~) < - -  

,% 
P r o o f. Let k = [p~]. Then k > 4. By step (1) there are subsets A, B of G such that  

, A l = k + l ,  , B , = ~ ,  A + B = G .  
/ ~ c +  l /  

Let 

IAI IBI 
C l  - -  C 2  - -  p~ ' p 1 - ~ '  

There is 0 < ~ < 1 such that  p~ = k + e. Then we have: 

and 

k + l  
Cl - k + ~ , c2 = [B < P + i - -  , 

P 

rd(G, C~) <_< Cl + C 2 �9 

27* 
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Define: 

f(~) - 

Then we have: 

- - - +  + 1  . 
k + e  

re(G,~)<f(e),  O < e < l .  

Differentiating with respect to e we have: 

f ' ( E ) =  ( k + e )  2 + + 1  P-' 

k + l  
f "  (e) = > 0. 

2 (k + e) 3 

Hence f(e) has no local maximum in the interval [0, 1] and we have: 

where 

max f ( e )  = max ( f ( O ) , f ( l ) ) ,  
~[0,  1] 

k + + 1  - = 2 + - 4  p p k(k + 1)' 

p + ) k + l  k + l  
f ( l ) = l +  ~ 1 = 2 + - -  

K + I  P P 

Since k > 4, p > 17 and k < pt/2 we have: 

Hence 

as required. 

k 1 1 1 
f (0)  = 2  + - + - - < 2 + ~ p  + - -  

p k(k + 1) = 20 

1 4 
< 2 + + 0.05 = 2.2925... < . f ~  

k + 1 p~/2 + 1 1 1 
f ( 1 ) = 2 +  P < 2 + - - = 2 + ~ p + p p  

1 1 4 
< 2 + ~ / / ~ 7 + ] - ~ = 2 " 3 0 1 " " <  ~ "  

4 
rd(G, a) < max ( f (0) , f (1) )  < - -  

~--- ee[0, 1] / ' 2  

(4) Suppose that p >= 17, 0 < e -< 1/'2 and p~ < 4. Then re(G, ~) < - -  
4 
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P r o o f. There are some cases to consider: 

1 
C a s e  1. p ~ < , , / 2 .  Let A = { 0 } ,  B = G .  Then I A J = c l L G ]  ~, where c~ = - -  and p~ 

I B[ = c2 I GI 1 -=, where c 2 = p~. By similar arguments to those used in the preceding step 

one easily checks that  for ~ < p~ __< , f 2 :  

1 1 4 

4 
Hence r e (G, c 0 < ~ in this case. 

~ g  

C a s e 2. , , ~  < p~ < w/6. By step I there are subsets A, B of G such that  l a t  = 2, 

[B[ = and A B  = G. Then ]AI = cl Ia l  ~, where c 1 P~ and [B[ = c 2 IGI 1-~, where 

C 2 --  
IB[ p + l p~ p = p~ 

p l - ~  2 p 2 + ~pp" One easily checks that  in this case 

c a + c 2 < max + + , + + , 

and since p > 17 we have: 

4 
re(G, cO < cl + c2 < 2.1629.. .  < -  

C a s e  3. Suppose x / 6 < p ~ < x / i 2 .  By s tep1 there are subsets A , B  of G such 

I 3 1  3 that J A [ = 3 ,  [ B I =  and A B = G .  We have: I A l = c l l a l  =, where c 1 P~ and 

(; ;) I Bf = c21611-~, where c 2 = ]B[ p- <_ p + 2 p~ _ P~ + and we have: 
p -  3 p 

cl + c2 < max + + p ~ / ~ ,  + + . 

Since p > 17 we have: 

4 
re(G, •) < c 1 + c 2 =< 2.1565.. .  < - -  

C a s e 4. The remaining case is ~ < p~ < 4. By step I there are subsets A, B of G 
r -  7 

such that  ] A [ = 4 ,  [ B [ = / P  ] and A B = G .  We have: , A I = c l [ G [  ~, where c 1 =  4 
| ~ l  P 

_ [B[ p + 3 p  ~ 
and [B] = c 2 ] a l 1 - L  where c 2 p l_  < . Again, one easily checks that 

= 4 p 
4 

re (G, c~) < ~ in this case. 
,/3 
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(5) I t  remains to check that the lemma holds when p < 17. 

O n e  can easily de te rmine  the fol lowing:  

3 
r e ( Z 2 1  - 

4 
re (Z3) = ~ - ~ ,  

r e ( Z s )  = .fi, 
6 

r e t Z T )  - 

r a ( Z l i  ) = 2.1574 . . . .  

r e (Z13 } --- 2.2188 . . . .  

4 (and F r o m  steps 1 - 5  we have:  if G is a cyclic g roup  of  pr ime order  then re(G) <_ - ~  

4 
r a (G) = - -  if and only if I GI = 3). Hence  the p roo f  of  the l e m m a  is complete .  [ ]  ,z 

III. Proof of Theorem 1. 

L e m m a  2. Le t  H be a subgroup o f  a f ini te  group G such that ]HI ~ !GJ ~/2. Then 

re(G ) N re(H ). 

P r o o f .  We may  assume H < G. Deno t e :  g = [G], h = IHI, n = IN[. 

We will show that  given 0 -< ~ -< 1 there are subsets A, B c= G such that IAi = cl g~, 

IB] = c2g 1-~, cl + ca < re(H), and G = AB.  

There  are two cases to consider :  

C a s e i .  0 <- c~ _< I/2. Let  T be a right t ransversal  to H in G. Since h > g~, there is 

0 < f l < l s u c h t h a t h  a = 9 %  

There  are subsets A : , B  1 ~ H, [A:] = c : h  p, ]B:] = c z h  :-t~, c I + c 2 < re(H), and 

A : B :  = H. Let  A = A~, B = B1 T. T h e n  we have:  

IA[ = cl h B = cl g ~ 

I BI = c 2 h: -a  IT[ = ca h: - a  g/h = c 2 h -I1 g = c 2 g - a g  = c2 g 1 -o~ 

and 

A B  = A 1B 1 T  = H T  = G 

as required.  

C a s e  2. 1 / 2 < c ~ < i .  Then  0 < 1 - ~ < 1 / 2  

0 < f l < l  such t h a t h  p = h / 9 1 - ~ .  

and h > g l - ~  > 1. Hence  there is 
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There are subsets A 1, B 1 ~ H such that  [All = c 1 h ~, [BI[ = c z h 1-~, c 1 + c 2 <-~ re(H ) 

and A 1 B 1 = H. 
Let T be a left transversal  to H in G and let A = T A t ,  B = B~. Then: 

] A ] = c  g h P = c l g  h g~ h g 1-~ - c l  

I B I = c2 hi - ~ _= c2 h/h e = c2 h g 1 - ~/h = c2 g 1 - 

and 

A B  = TA 1B1 = T H  = G 

and we have the result for this case also. 
The above shows that  r d (G, e) < rd (H) for any 0 < c~ _< 1. Hence r d (G) < r d (H) and the 

proof  of the lemma is complete. [ ]  

We note that  a similar result holds if the subgroup H is replaced by a factor group of 
G in Lemma 2: 

Lemma 3. Let  N be a normal subgroup o f  G such that [G/N[ > ]GI 1/2. Then 

rd(G ) < rd(G/N ). 

The lemma may be proved by similar arguments to those used in the proof  of Lemma 2. 
Theorem I is now proved:  

4 
Theorem 1. I f  G is a f ini te  group, then re(G ) <_ - - .  In particular: the family  o f  all 

f ini te  groups is well-decomposed, x / ~  

P r o o f. Let G be a counter  example of minimal  order. By Lemma I G is not  cyclic 
of prime order. Hence by Theorem 3, G possesses a proper  subgroup H such that  

4 
IHI > 1611/2. It follows from the minimali ty of the order of G that  re(H ) < - - .  Hence, 

4 x f 3  
using Lemma 2 we have re(G ) < - -  and the proof  is complete. [ ]  

A d d e d i n p r o o f. *) Recenctly, we learned that  Larry  Finkelstein, Daniel  Kle i tman 
and Tom Leighton, obta ined a similar result in Proc. Aegean Workshop  on Computing,  
1988. They showed that  every finite group G has a subset A ~ G, with I AI < 3 [GI 1/2, such 
that  A A -  i = G, where A -  1 = {a-  1 [a ~ A}. 
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