JOURNAL OF NUMBER THEORY 49, 385-391 (1994)

On H-Bases and H-Decompositions of the
Finite Solvable and Alternating Groups

GAaDY KOZMA AND ARIEH LEV*

School of Mathematical Sciences,
Raymond and Beverly Sackler Faculty of Exact Sciences,
Tel Aviv University, Tel Aviv, Israel

Communicated by R. L. Graham

Received August 6, 1992

Let G be a finite group such that every composition factor of G is either cyclic
or isomorphic to the alternating group on n letters for some integer n. Then for
every positive integer 4 there is a subset 4 =G such that |4] < (24— 1) |G|"* and
A" = G. The following generalization for the group G also holds: For every positive
integer A and any nonnegative real numbers «,, o, .., &, so that ¢, +o,+ --- +
a, =1 there are subsets 4,, 4,, .., 4,< G such that |4,| <|G|*, [4,| <2|G|* for
2<i<h and 4,4, ---4,=0G. In particular, the above conclusions hold if G is a
finite group and either G is an alternating group or G is solvable. 2 1994 Academic

Press, Inc.

I. INTRODUCTION

Let G be a finite group. For h subsets A,, A,, .., A, of G, the product
AjA,--- A, is defined by A4,4,---A,={a,a,---a,|a,e 4;, 1 <i<h}. In
case A;=A,= ---=A,=A denote A*=A,4,---A,. A subset 4 of G is
called an h-basis of G if A"=G. A seuence A4,, A,, ..., A, of subsets of G is
called an h-decomposition of G if 4|4,---A4,=0G.

In 1937, Rohrbach [R1, R2] asked if, for every # > 2, there exists a con-
stant ¢ = c(h) such that for every finite group G there exists an A-basis A4
of G such that |B) < ¢ |G|V Jia [J1, J2] showed that every finite abelian
group G has an h-basis A4 such that |4|<c, |G|, where c,=
h(1 +2~1"y"=1"and every finite nilpotent group G has an A-basis 4 such
that |A4]| <c, |G|, where c,=h2""! Nathanson [N] showed that for
every h23 and 6>0 there exists an integer M = M(h, 6) such that
every finite group G of order n>M has an h-basis A such that
|| < (h+8)(n-logn)'*

* The second author carried this work as part of his Ph.D. thesis resecarch at Tel Aviv
University under the supervision of Professor Marcel Herzog.
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Following Rohrbach’s question, we extend the definitions given in [BH]
and [KL] as follows

DEerFINITIONS. Let & be a positive integer.

(1) A family 3 of finite groups is well h-based if a constant ¢ exists so
that every Ge 3 has an h-basis A such that |A4| <c |G| The family J is
well based if a constant ¢ exists so that for every positive integer A, every
G e 3 has an h-basis A such that |4} < ch |G}V,

(2) A family 3 of finite groups is well h-decomposed if a constant ¢
exists such that for every Ge3J and any nonnegative real numbers
®ys Qyy ey &y, SO that a,+o,+ -+ +a,=1, there is an h-decomposition
A, A,, .., A, of G such that |A4;| <c |G|* for 1 <i< h. The family 3 is well
decomposed if a constant ¢ exists so that for every positive integer » and
any nonnegative real numbers o, o,, ..., o, such that o, + o, + --- +a,=1,
every G €3 has an h-decomposition 4,, A,, ..., 4, such that |4;| < ¢ |G|™
for 1<i<h

As one can see from the proof of Theorem 2 in Section II, every well
decomposed (well A-decomposed, respectively) family 3 of finite groups is
also well based (well h-based, respectively).

Finkelstein etal. [FKL] and Kozma and Lev [KL] showed inde-
pendently that the family of all finite groups is well 2-decomposed and well
2-based. It was shown in [KL] that for any 0 <« <1, every finite group
has a decomposition 4,, 4, such that |4,| =c¢, |G|, |4,] =¢, |G|’ * and
¢; +c;<4/ /3, and that every finite group G has a 2-basis 4 such that
14| <4/\/31G)'"2

In this paper we show that the family of all finite groups whose composi-
tion factors are either cyclic or isomorphic to an alternating group are well
decomposed and well based. The results are the following

THEOREM 1. Let G be a finite group such that every composition factor
of G is either cyclic or isomorphic to the alternating group on n letters for
some integer n. Then for every positive integer h and any nonnegative real
numbers o, 0, ..., 0y SO that o, + o, + - + 0, =1 there is a decomposition
A, Ayy oy Ay of G such that |A|| <|G|™ and |A;| <2 |G|™ for 2<i<h In
particular, the above conclusion holds if either G is an alternating group or
G is solvable.

THEOREM 2. Let G be a finite group such that every composition factor
of G is either cyclic or isomorphic to the alternating group on n letters for
some integer n. Then for every positive integer h there is a basis A of G such
that {A| < (2h— 1) |G\ . In particular, the above conclusion holds if either
G is an alternating group or G is solvable.
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Applications of the above results to problems in computer science and to
Cayley graphs are described in [FKL] and [J2].

The notation is standard. For a set A4, |4| denotes the cardinality of A.
Given a group G, K< G means K is a subgroup of G. A permutation group
G on the set {1,2, ., n} acts on the right, but we denote the image of i
under o € G by a(i). In particular, if ¢,, 0,€ G, then g,0,(i)=(g,0,)(i)=

o,(0, (1))

II. PROOF OF THE THEOREMS

LEMMA 1. Let h be a positive integer, let o, o,, ..., a, be nonnegative real
numbers such that a, +o,+ -+ +a,=1, and let G be a finite cyclic group.
Then there is a decomposition A, A, .., A, of G such that |A,| <|G|* and
if h>1 there are 2< j, j, < h, such that |A,| <2|G|™, |A,| <2|G|*: and
(4| <IGIP+ 1 for 2<j<h, j# )1, Ja-

Proof. Denote g=|G|. If h=1 or g<2 the result is trivial. Hence we
may assume that 2>2 and g>3. Without loss of generality we may
assume that G = Z,, the additive group of integers modulus g.

We assume first that a, > a;2 --- 2a,. For 1 <i<#h denote a,=| g* |,
where | g™ | is the largest integer not greater than g*. Fori=2,3let¢;=0
if g#>a;+(1/2) and let ¢;,=1 otherwise. Let b, =a,— 1, b, = (2a, —¢,)a;,
by=(2a;—&;)2a,+1—¢&y)a,, by=a,(2a,+1—¢,)2a,+1—¢e,)a,, b,=
a;(2a;+ 1 —&5)(2a,+ 1 —ey)a, [T)_4 (a,+ 1) for 5<i<h Denote 4, =
{0, 1,..,a, — 1}, 4, = {0,5,/(2a, — &,), 2(b,/(2a, — &3)), ., by}, A3 =
{0, 65/(2as—&5), 2(b5/(2ay— &), .. by}, and 4,= {0, b,/a;, 2(b,/a,), ... b,)
for 4<i<h Then |4, < g™, {4, =2a,—&e,+1<2g% |4;]=2a;—¢,+1
<2g% and |4;|<g¥+ 1 ford<i<h.

We will show now that 4, +4,+ --- +4,=G. One can easily see
by induction that b, =5b,/(2a,—¢,)—1, b, +b,=b;/(2a;—¢;)—1 and
by+b,+ - +b,_y=b;ja,—1 for 4<i<h. Hence, A, +A4,+ ---+ A4,
contains every integer which is not larger than min{g—1, b, + --- +
b,_1+b,}=min{g—1,b,/a,+b,—1} if h=4 and not larger than
min{g—1, b,/(2a,—¢,)+b,—1} if h=2,3. We consider now the
following cases

Case 1. h>=3, g2za,+1/2 and g®¥2a;+1/2 (and in particular
g,=¢,=0). If hz4, b,/a,+b,=2a3;+1)2a,+1)a, "}=4 {a,+1)=
(\/Ea3 + 1/\/'.5)(\/5(12 + 1/\/5) 2a, Hj?=4 (a;+1)=g"- -g*=g, and
similarly for #=3, b;/2a; + b; = g. Hence, the result follows in this case.

Case 2. h=2and g*2a,+1/2 (and in particular ¢, =0). Then 4, + 4,
contains every integer which is not larger than min{ g —1, (2a,+ )a, —1}.
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If a,22 and a,22 then (2a,+ l}a,—1=((4/3)a,+2/3)(3/2)a,— 12
g—1. If a;=1 then (2a,+1)a,—1= g—1 since a,> g/2—1/2 and if
a,=1 then, since a, = g/2—1/2, 2a,+1)a,—123(g2-1/2)—1=2g—1
as g >3 and the result follows.

Case 3. h=z3, g2za,+1/2, g@¥<ay+1/2 (and in particular ¢, =0,
gy =1). Then, If h 2 4, b,/a, +b, = 2a;2a, + Da [T/_,(a;+ 1) =
(3/2)as((4/3)ay +2/3)2a, [T, (a; + 1) > g*g™ --- g™ > g, and similarly,
by/(2a;—e3)+ by=2a;(2a,+ 1)a, > g, as required.

Case 4. h23, g2<a,+1/2, g¥=a,y+ 1/2. The proof is similar to that
of the previous case.

Case 5. h=3, g@<ay,+1/2, g¥<ay;+1/2 (and in particular ¢, =
e5=1). If a; =2 then 2a;2a,a,=(3/2)a5(3/2) a,(16/9)a, = g@g**¢g™ and
the result follows by the same considerations used in Case 3. If ¢, > 2 then
2a;2a,a, = (3/2) a5(5/4) a,(32/15)a, > g¥g*¢g* and the result follows.
Hence we may assume that a,=da,=a,=---a,=1, 1<g* <2, and
1<g*<3/2 for 2<i<<h (recall that we assumed g*>= --. = g™).
Then g<2(3/2)""!, A,={0}, and A4,={0,2""%} for 2<i<h Then
A;+A,+ ---+ A, contains every positive integer not larger than
min{g—1,2" '—1}. Since 2" ' > 2(3/2)" ' | for h >3 the result follows.

Case 6. h=2, g2<a,+1/2 (and in particular ¢, =1). Then 4, + A4,
contains every integer which is not larger than min{g—1, 2a,a, —1t}. If
g2=2 and g* 22 then 2a,a, = (5/4) a,(8/5)a, = g**g™ = g and the result
follows. If g*? <2 (hence g*2<3/2), then g* > (2/3)g. Hence a, > g/2 and
2a,a, =z g. The remaining possibility is g*' < 2. Then g*2> g/2 and further-
more, since we assumed g*?<a,+1/2, a,>2g/2+1/2 if g is odd and
a, > g/2 if g is even. Hence a, > g/2 and 2a,a, > g, as required.

The above shows that the lemma holds if a0, > o, > --- 2 a,,. But since G
is abelian, 4, + 4,4+ --- + 4, =G implies A, + 4,5+ --- + 4,,,=G for
any permutation ¢ of {2, .., 4} and the result of the lemma follows. §

Denote by R the family of all subsets of finite groups for which
the conclusion of Theorem 1 holds; i.e, 4eR if and only if 4G for
some finite group G and for every positive integer # and any nonnegative
real numbers o, «,, .., o, so that o, +a,+ --- +,=1 there are subsets
A, Ay, .y A, € A such that |4 <A™, |4,]<2)4|™ for 2<i<h and
A A, A=A

LEMMA 2. Let G be a finite group and let N be a normal subgroup of G.
Assume further that Ne ‘R and G/N e R. Then GeR.

Proof. Let h be any positive integer, let «,, «,, ..., a4, be any nonnegative
real numbers such that «, +a,+ --- +a,=1, and denote g=|G|. We will
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show that there is a decomposition 4,, 4,, ..., 4, of G such that |4,| < g™
and |A4,| <2g% for 2<i<h. If h=1 the result is trivial. Hence we may
assume that 4> 2. Denote n=|N| and a,=0. There is an integer 1 <t <h
such that grt®t ~+a-igy gttt +2 If > 1 then for every 1<i<
t—1 there is B,>0 such that g¥=n” and there is B,>0 such that
nfi=p' =B+ +h-0 If t=1 denote f;=f,=1and N,=N,=N. If 1> 1
then, since N € R, there are subsets N,, N,, .., N,= N such that |N,| <n”,
IN,|<2nPfor 2<i<t—1, |N|<2n? (if t>1)and N,N,---N,=N.
Assume now that r = h. Let 4 be a transversal to Nin G and denote 4, = N,

A, =N,,.,A,_,=N,_,, A,=N,A. Then A, 4,---A4,=0G, |[4,| < g",
|41 <2g for 2<i<t—1, |A]=|N||AI<2n/(g"" —*T*"))g/n)=
2gl~mr o +x-1) = 2 0% and the result holds for this case.

By the above considerations we may assume that t <A Then we have
g1,+|+ et gl—(11+ s tay) < g/n < g17(11+ ety g:x,+ = +an There

are fB,,, .. Br=>0 such that (g/n)’=g* for t+1<i<h and there is

7>0 such that (g/n)% = (g/n)’ %1+ *+#) Since G/NeR, there are
subsets M,, M, ,, .., M,< G/N such that |M | < (g/n)%, |M,| <2(g/n)"
for t+1<i<h and MM, ,---M,=G/N. For any ¢<i<h there
are g, &, - 8, €G, where r;=[M,|, such that M,={Ng,, .. Ngi,'}.
For t<i<h denote M/={g,,.,g,}. Denote A,=N, for 1<i<
t—1, A, =NM, and A;=M; for t+1<j<h Then |4,/<2g™
for i#t (1<i<h) and if t>1 then |A4,|=|N, |M, <2nfi(g/n)f=
2n17(ﬂ|+~-+ﬂ,-1)(g/n)lf(ﬁ,+\+---+E;.J=2ng—(a|+~~+a.~1)(g/n)g~(a,+1+««~+a»,)
=2g* and |A4,| < g*. Similarly, {4,]<g* if t=1. Since 4, 4,---4,=0G,
the result follows. §

A similar result holds if the groups G, N and G/N of Lemma 2 are
replaced by subsets G,, H, K of some finite group G such that H, Ke R,
G,=HK, and |G,| =|H| |K]|.

LEMMA 3. Let G be a finite group and let G, H, K be subsets of G such
that H Ke R, G, = HK, and |G| =|H| |K|. Then G, e R.

The lemma may be proved by similar arguments to those used in
Lemma 2. The proof is omitted.

Proof of Theorem 1. We will show first that the theorem holds for 4,
the alternating groups on the letters {1, 2, .., n}, using induction on n. If
ne {1, 2,3} the result follows by Lemma 1. Assume now that n>4 and the
result holds for all 4,, 1 <k <n. If n is odd, then A,= HC, where H< G
is the subgroup of A4, fixing the letter n, C < G is the cyclic group generated
by the permutation (1, 2,..,n) and Hn C=1. Since He R by induction
and since Ce R by Lemma 1, the result follows by Lemma 3.
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Assume now that » is even and let H be the subgroup of 4, fixing the
letter n. Then, since H is isomorphic to A4, ,, He R by induction. Note
that if ¢’ € 4, such that ¢'(n) =i for some | <i<n, then the coset Ho' con-
sists of all the permutations ¢” of A4, for which ¢”"(n)=1i. Let 0,1€ 4, be
the permutations o= (1, 2, .., #/2)(n/2+1,n/2+2, ., n), t=(n/2, n)(1,n—1)
and denote K= (1), L= (o), the cyclic subgroups generated by t and o,
respectively. Then for every 1<j<n/2 we have t0/(n)=j and 1%6¢’/(n)=
o’/(n)=n/2+j. Since |A,|=n|H|, KL={t'¢/| 1 <i<2, 1 <j<n/2} con-
sists a full set of (right) coset representatives for H in G. Hence 4, = HKL,
|HK|=|H| |K|, and |HKL]=|HK]| |L}|. Since He®R and since K€ R by
Lemma 1, HKe®R by Lemma 3. Using Lemma 3 again, we have that
A,=(HK)Le€®R, as required.

The theorem will be now proved by induction on |G|. If G is a
simple group, then either G = A4,, for some positive integer n or G is a cyclic
group of prime order. Hence the result follows either by the previous
considerations or by Lemma 1, respectively. Assume now that G is not
simple. Then there is a normal subgroup N of G such that |N| < |G|,
|G/N| < |G|, and such that the conditions of the theorem hold for N
and G/N. Hence N, G/Ne®R by induction, and the theorem follows by
Lemma 2. |

Proof of Theorem 2. By Theorem 1 there are subsets 4,, A,, .., 4,€G
such that |4, <|G|Y, |4,1<2|G]"" for 2<i<h and 4,4, ---A,=G.
Denote A=A, UA,u --- UA, Then 4| <(2h—1) |G| and G=4". |

We note that in order to prove that the family of all finite groups is well
decomposed, it is sufficient to show that the family of the finite simple
groups is well decomposed. The proof of this statement follows by similar
arguments to those used in the proof of Theorem 1.

Note added in proof. We were informed by Xing-De Jia that he also proved that the family
of solvable groups is well based and well decomposed.
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