
STRONG UNIFORM DISTRIBUTION � THE CASE OFINFINITELY MANY PRIMESGADY KOZMAAbstra
t. We show that for any in�nite set of primes P , theseries of all multiples of powers of primes from P is not L∞-good.1. Introdu
tionOne of the starting points for this topi
 is the following result ofMarstrand, [M70℄, answering a question of Khin
hin [K23℄:Marstrand's theorem. There exists a fun
tion f ∈ L∞([0, 1]) su
hthat the limit
lim
n→∞

1

n

n
∑

r=1

f(〈rx〉) (1)does not exist almost everywhere, where 〈y〉 is the fra
tional part of yi.e. y − ⌊y⌋.While the formulation is very elegant, it really hides the fa
t thatin a 
ertain sense this is an in�nite dimensional ergodi
 theorem. Tosee this, repla
e �r� in (1) with �pr� and you will get an ergodi
 ques-tion (for the transformation x 7→ 〈px〉), and in e�e
t, in this 
ase the2000 Mathemati
s Subje
t Classi�
ation. 11K06, 37A45.Key words and phrases. Strong uniform distribution, In�nitely many primes, L∞-good series.This work is part of the resear
h program of the European Network �Analysis andOperators�, 
ontra
t HPRN-CT-00116-2000 supported by the European Commis-sion. 1



2 GADY KOZMAsum 
onverges for every f ∈ L∞ to ∫ f(t) dt [R36℄. This one dimen-sional 
ase has been resear
hed extensively. See e.g. [B88, B89, H92℄.Marstrand 
on
ludes from Raikov's result [R36℄ that the same is truein the �nite dimensional 
ase, i.e. for the sequen
e a(P) (de�ned below)where P is �nite set of primes.De�nition. For P a set of primes we de�ne the sequen
e
a(P) := {a ≥ 1 : p|a ⇒ p ∈ P} .Here, and everywhere, sin
e all the sequen
es will be in
reasing weshall not distinguish between a sequen
e ar and the set {ar}

∞
r=1, andwill freely use set notations su
h as n ∈ a(P)and a(P1) \ a(P2).This last result of Marstrand has been generalized by R. Nair [N90℄from L∞ to L1. Thus it be
ame easier to use the following language:De�nition. For an in
reasing sequen
e of integers ar and a 
lass offun
tions A we say that ar is an A-good sequen
e (
alled an A∗ se-quen
e in [N90, N01℄) if for every f ∈ A we have

lim
n→∞

1

n

n
∑

r=1

f(〈arx〉) =

∫ 1

0

f(t) dtalmost everywhere with respe
t to the Lebesgue measure.With this formulation, Marstrand's result is that ar = r is not L∞-good while a(P) is L∞-good for every �nite P. Nair's result is that
a(P) is L1-good, and in the same paper [N90℄ he asks: is the 
ondition



In�nitely many primes 3that P is �nite ne
essary? The main result of this paper is the answer1to that question:Theorem 1. For every in�nite set of primes P, the sequen
e a(P) isnot L∞-good.Note that a false proof of the opposite of theorem 1 was published in[L98℄. You do not have to take my word for it, though. For example,[N01℄ mentions in passing that the proof in [L98℄ is false.This paper is organized as follows: the proof of theorem 1 
an befound in 
hapter 2, relying heavily on te
hniques from [M70℄. Chapter3 sket
hes a generalization to in�nitely generated multipli
ative semi-groups of integers. 2. Infinitely many primesWe shall require the following lemmas from [M70℄:Lemma 1. Suppose that for every q, v ≥ 1 one 
an �nd sets of positiveintegers G, H with the properties(1) |G| > v|H|(2) for every g ∈ G there exists η ≥ 1 su
h that
g

ar
∈ H ∀η ≤ r ≤ ηqthen the sequen
e ar is not L∞-good.This is 
orollary 3.3 from [M70℄.1Indeed, a generalized answer, sin
e not being L

∞-good is obviously stronger thannot being L
1-good.



4 GADY KOZMALemma 2. For every positive integer s and any primes p1, . . . , ps,
#(a(p1, . . . , ps) ∩ [1, x]) ∼

(

1

s!

s
∏

j=1

1

log pj

)

(log x)swhere f(x) ∼ g(x) is short for
lim
x→∞

f(x)

g(x)
= 1 .This is lemma 4.1 from [M70℄. Marstrand proves it only for {p1, . . . , ps}being the �rst s primes, but the proof 
arries over to the general 
asewithout any 
hange. Roughly, Marstrand's proof 
onsists of taking logand then estimating the interse
tion of a latti
e with a simplex by thevolume of the simplex.Lemma 3. Let s be a positive integer s ≥ 2; let p1, . . . , ps be the �rst

s primes; and let q > 1 be any real number. Than
#(a(p1, . . . , ps) ∩ [x, qx]) ∼

(

1

(s− 1)!

s
∏

j=1

1

log pj

)

log q(log x)s−1as x → ∞.This is lemma 4.2 from [M70℄. It is not di�
ult to see that heretoo the set of primes need not be limited, but we shall have no use forthis fa
t (despite their similarity, these two lemmas are used in ratherdi�erent ways).De�nition. For a sequen
e a = {ar}
∞
r=1 and integers q and h we shalldenote by Ah,q(a) the number

Ah,q(a) := max
ar≤h

aqr
ar

. (2)



In�nitely many primes 5If a = a(P) we shall write for short Ah,q(P) := Ah,q(a(P)).
Lemma 4. If P1 ⊂ P2 then

Ah,q(P1) ≥ Ah,q(P2) .Proof. For i = 1, 2 denote {air}
∞
r=1 := a(Pi) and Ai

h,q = Ah,q(Pi). Wenote that for any parti
ular h the question involves only a �nite setof primes, therefore without loss of generality we may assume P2 =

P1 ∪ {p}. Let r satisfy a2r ≤ h. The lemma will be proved on
e weshow that
a2qr
a2r

≤ A1
h,q .De�ne s using

a1s ≤ a2r < a1s+1 (3)Examining (a2 \ a1)∩ [1, a2r] we �nd that it is a union of n disjoint sets
S1, . . . , Sn ea
h of whi
h is a 
opy of (a part of) a1 multiplied by pk i.e.

Sk = {pka11, ..., p
ka1r(k)} .Here n is given by

pn ≤ a2r < pn+1and r(k) by
pka1r(k) ≤ a2r < pka1r(k)+1 (4)and these give r = s+
∑

r(k).



6 GADY KOZMAWe have two 
ases to examine. First, assume that for some k wehave a2qr ≤ pka1qr(k). In this 
ase (4) and (2) give
a2qr
a2r

≤
pka1qr(k)
pka1r(k)

≤ A1
h,q .Therefore we are left with the se
ond 
ase, whi
h is a2qr > pka1qr(k) for all

k. In this 
ase we use the obvious fa
t that, ifM := #
(

(a2 \ a1) ∩
[

1, a2j
[)then

a2j ≤ a1j−M .Our assumption a2qr > pka1qr(k) for all k gives M ≥ q
∑

r(k) and then
a2qr ≤ a1qr−M ≤ a1qr−q

∑
r(k) = a1qsSo with (3) we again get

a2qr
a2r

≤
a1qs
a1s

≤ A1
h,q . �Lemma 5. If P is in�nite and q is any integer then

lim
h→∞

log h

logAh,q(P)
= ∞ .Proof. We �rst 
al
ulate this quantity for a �nite set of primes Q.Assume |Q| = s. Then by lemma 2 we have

log h ∼ Kr1/s ∀ar ≤ h < ar+1for some 
onstant K, as h → ∞. This gives
log

aqr
ar

∼ Kr1/s
(

q1/s − 1
)

. (5)



In�nitely many primes 7From this it is easy to get an estimate for logAh,q sin
e the fa
t thatthe right hand side of (5) is a rising fun
tion of r allows to estimatethe maximum in (2) by the largest r su
h that ar ≤ h and we get
logAh,q ∼ Kr1/s(q1/s − 1)so

lim
h→∞

log h

logAh,q(Q)
=

1

q1/s − 1
.This, together with lemma 4 �nishes the proof. �

Proof of theorem 1. Sin
e my vehi
le is lemma 1, let q and v be twointegers. Take p to be some arbitrary prime in P. Let R be somenumber su�
iently large satisfying
log aR

aq

log pAaR,q
> v + 1 (6)whi
h is 
learly possible, using lemma 5. Further, let ps be the largestprime dividing one of a1, ..., aqR, de�ne the sequen
e b = a(p1, ..., ps)(i.e. all the primes up to ps) and let m =

∏qR
j=1 aj and A = pAaR,q. Foran as yet unspe
i�ed x de�ne the sets

H = [x,Ax] ∩ b

G = [aqx,AaRx] ∩mbwhere as usual mb = {mbr : br ∈ b}.We need to verify the two 
onditions of lemma 1, and we start withthe sizes of H and G. Lemma 3 gives for some 
onstant K (whi
h



8 GADY KOZMAdepends on s but not on x), and for x su�
iently large,
|H| ∼ K logA(log x)s−1

|G| ∼ K log
AaR
aq

(

log
x

m

)s−1whi
h 
learly implies (remember (6)) that
|G|

|H|
≥

log aR
aq

logA
(1 + o(1)) ≥ v + 1 + o(1)so for x su�
iently large 
ondition 1 will be satis�ed.To 
he
k 
ondition 2 of lemma 1, examine for some η ≤ R the set

Gη :=

{

g ∈ mb :
g

ar
∈ H ∀η ≤ r ≤ qη

}

.

g ∈ mb implies g
ar

∈ b so from the de�nition of H we get
Gη = [aqηx, aηAx] ∩mb .It is for this point that we de�ned Ah,q sin
e we 
an now write, for

η < R,
aq(η+1) ≤ aη+1AaR,q ≤ aηAand thus the intervals [aqηx, aηAx] and [aq(η+1)x, aη+1Ax] interse
t, whi
hmeans that their union is an interval, and that leads indu
tively to

R
⋃

η=1

Gη = [aqx, aRAx] ∩mb = Gand 
ondition 2, and the theorem, are proved. �



In�nitely many primes 9Remark. In essen
e, this is a theorem about densities � it shows thatif a sequen
e is denser than er
1/s for all s then it is not L∞-good,and the relation between ar and aqr 
an be thought of as some kindof regularity 
ondition. Thus it improves on Marstrand's polynomial
ondition. For example, the same proof shows that if ar ∼ elog

k r forsome k then ar is not L∞-good. In the other dire
tion it is not possibleto get a result su
h as �any sequen
e su�
iently sparse is L∞-good�.Indeed, Marstrand himself shows that any sequen
e of pairwise 
oprimeintegers, no matter how sparse, is not L∞-good.
3. Infinitely generated semigroupsOne might hope to strengthen theorem 1 for any in�nitely generatedsemigroup of integers, but this is not true. For example, the semigroup

S generated by
{

2n3⌊
√
n⌋, 2⌊

√
n⌋3n

}∞

n=1(⌊x⌋ denoting the integer value of x) is in�nitely generated but is almostequivalent to a(2, 3), that is
lim
x→∞

|[1, x] ∩ S|

|[1, x] ∩ a(2, 3)|
= 1and sin
e a(2, 3) is L∞-good, so is S. Thus we restri
t our attention tosemigroups not 
ontained in any a(Q), Q �nite. Namely we want toproveTheorem 2. Any multipli
ative semigroup of integers S not 
ontainedin any a(Q) for any �nite set of primes Q is not L∞-good.



10 GADY KOZMAThe proof of theorem 2 is similar to that of theorem 1, and thereforeI shall only sket
h it roughly. We start from lemma 2. The version oflemma 2 for semigroups requires the following pro
edure. Let S be a�nitely generated multipli
ative semigroup of integers. We denote by
p1, . . . , ps all the primes parti
ipating in S and write

T :=
{

(α1, . . . , αs) :
∏

pαi
i ∈ S

}whi
h is an additive semigroup ⊂ Z
s. We extend it to a group G and
all the dimension of G the basis size related to S.

Lemma 6. Let S be a �nitely generated multipli
ative semigroup ofintegers and let t be the related basis size. Then there exists a 
onstant
K su
h that

|S ∩ [1, x]| ∼ K(log x)t .The proof of this lemma is similar to that of lemma 4.1 from [M70℄,whi
h is, as already remarked, taking logarithms and then estimatingthe number of latti
e point inside a simplex using its volume.As for the rest of the proof of the theorem, the equivalent of lemma4 is proved in a similar manner, with the sole 
hange being that (if
S2 is a semigroup spanned by S1 and m) we must take only su
h k'ssatisfying mk /∈ S1. Lemma 5 is where we use the fa
t that S 6⊂ a(Q)to get that S 
ontains sub-semigroups of unbounded related basis size.The proof of the theorem proper is un
hanged. �
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