STRONG UNIFORM DISTRIBUTION — THE CASE OF
INFINITELY MANY PRIMES

GADY KOZMA

ABSTRACT. We show that for any infinite set of primes P, the

series of all multiples of powers of primes from P is not L*°-good.

1. INTRODUCTION

One of the starting points for this topic is the following result of

Marstrand, [M70], answering a question of Khinchin [K23]:

Marstrand’s theorem. There exists a function f € L>*(]0,1]) such

that the limit

lim =5 £((ra) (1)

n—oo 1
does not exist almost everywhere, where (y) is the fractional part of y
ie.y— |yl
While the formulation is very elegant, it really hides the fact that

in a certain sense this is an infinite dimensional ergodic theorem. To

[{P9%3]

see this, replace “r” in (1) with “p™ and you will get an ergodic ques-

tion (for the transformation x — (px)), and in effect, in this case the
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sum converges for every f € L™ to [ f(t)dt [R36]. This one dimen-
sional case has been researched extensively. See e.g. [B88, B89, H92|.
Marstrand concludes from Raikov’s result [R36] that the same is true
in the finite dimensional case, i.e. for the sequence a(P) (defined below)

where P is finite set of primes.

Definition. For P a set of primes we define the sequence
a(P):={a>1:pla=peP}

Here, and everywhere, since all the sequences will be increasing we
shall not distinguish between a sequence a, and the set {a,} -, and
will freely use set notations such as n € a(P)and a(Py) \ a(P2).

This last result of Marstrand has been generalized by R. Nair [N90|

from L> to L'. Thus it became easier to use the following language:

Definition. For an increasing sequence of integers a, and a class of
functions A we say that a, is an A-good sequence (called an A* se-

quence in [N90, NO1]) if for every f € A we have

1< !
lim — a,x)) = t)dt
Jim 3 () | s
almost everywhere with respect to the Lebesgue measure.
With this formulation, Marstrand’s result is that a, = r is not L°°-

good while a(P) is L>®-good for every finite P. Nair’s result is that

a(P) is L'-good, and in the same paper [N90| he asks: is the condition
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that P is finite necessary? The main result of this paper is the answer!

to that question:

Theorem 1. For every infinite set of primes P, the sequence a(P) is

not L*°-good.

Note that a false proof of the opposite of theorem 1 was published in
[L98]|. You do not have to take my word for it, though. For example,
[NO1] mentions in passing that the proof in [L98§] is false.

This paper is organized as follows: the proof of theorem 1 can be
found in chapter 2, relying heavily on techniques from [M70|. Chapter
3 sketches a generalization to infinitely generated multiplicative semi-

groups of integers.

2. INFINITELY MANY PRIMES

We shall require the following lemmas from [M70]:

Lemma 1. Suppose that for every q, v > 1 one can find sets of positive
integers G, H with the properties
(1) |G| > v|H]

(2) for every g € G there exists n > 1 such that

Yen Vn <r <mnq
Ay

then the sequence a, is not L*°-good.

This is corollary 3.3 from [M70].

Indeed, a generalized answer, since not being L>-good is obviously stronger than
not being L'-good.
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Lemma 2. For every positive integer s and any primes p1, ..., Ps,

#(a(pr, .. .,ps) N1, a]) ~ <_.

where f(x) ~ g(x) is short for

im L9 _
S gl

This is lemma 4.1 from [M70|. Marstrand proves it only for {p1, ..., ps}
being the first s primes, but the proof carries over to the general case
without any change. Roughly, Marstrand’s proof consists of taking log
and then estimating the intersection of a lattice with a simplex by the

volume of the simplex.
Lemma 3. Let s be a positive integer s > 2; let py,...,ps be the first

s primes; and let ¢ > 1 be any real number. Than

1 7 1
(s —1)! Pl log p;

#(a(p, ..., ps) N[z, qz]) ~ ( ) log q(log z)*~*

as r — 0OQ.

This is lemma 4.2 from [M70]. It is not difficult to see that here
too the set of primes need not be limited, but we shall have no use for
this fact (despite their similarity, these two lemmas are used in rather

different ways).

Definition. For a sequence a = {a,} -, and integers ¢ and h we shall

denote by Ay ,(a) the number

a
A = = . 2
mal@) = max - (2)
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If @ = a(P) we shall write for short Ay, ,(P) := Apq(a(P)).

Lemma 4. If P, C P, then
Apg(P1) 2 Apg(P2)

Proof. For i = 1,2 denote {a.},~, := a(P;) and A} , = Ap4(P;). We
note that for any particular h the question involves only a finite set
of primes, therefore without loss of generality we may assume P, =

P U {p}. Let r satisfy a> < h. The lemma will be proved once we

show that
2
a
qr 1
L <A
a% — “Thygq
Define s using
ai < af < ai+1 (3)

Examining (a®\ @) N [1, a?] we find that it is a union of n disjoint sets

S1,...,S, each of which is a copy of (a part of) a' multiplied by p* i.e.

Sp = {pFal, ...,pkai(k)}

Here n is given by

pn S az < pn+1
and r(k) by
pkai(k) <al< Pka}»(k)ﬂ (4)

and these give r = s+ r(k).
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We have two cases to examine. First, assume that for some k we
have a7, < p*ay, . In this case (4) and (2) give

2 k1
P )

< Al
2 — k1
a PRy

- h‘vq

Therefore we are left with the second case, which is aZ, > pka;r(k) for all
k. Tn this case we use the obvious fact that, if M := # ((a® \ o) N [1,a3])
then

2 _ 1
a; < a;_
Our assumption a2, > pkaér(k) for all k gives M > ¢ > r(k) and then
2 1 1 1
Gy < Qgr—m < Agr—q > r(k) = qs

So with (3) we again get

2 1
a a
oleca, 0
aT’ aS ’

Lemma 5. If P is infinite and q is any integer then

) log h
lim —————— =

h—o00 10g Ah,q(lp)

Proof. We first calculate this quantity for a finite set of primes Q.

Assume |Q| = s. Then by lemma 2 we have
log h ~ Kr'* Ya, < h< Qi1
for some constant K, as h — oo. This gives

log% ~ Krl/s (ql/s -1) . (5)
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From this it is easy to get an estimate for log A; , since the fact that
the right hand side of (5) is a rising function of r allows to estimate

the maximum in (2) by the largest r such that a, < h and we get

log Apq ~ Kr/*(¢"* — 1)

SO
I log h 1
im =
oo log Apg(Q) ¢!/ =1
This, together with lemma 4 finishes the proof. O

Proof of theorem 1. Since my vehicle is lemma 1, let ¢ and v be two
integers. Take p to be some arbitrary prime in P. Let R be some

number sufficiently large satisfying

ar
log o

——>0v+1 6
logpAa,..q (6)
which is clearly possible, using lemma 5. Further, let ps be the largest
prime dividing one of ay, ..., a,g, define the sequence b = a(py, ..., ps)

(i.e. all the primes up to ps) and let m = H?fl aj and A = pA,, 4 For

an as yet unspecified x define the sets

H = [z,Az]Nb
= [a,x, Aagx] N mb
where as usual mb = {mb, : b, € b}.

We need to verify the two conditions of lemma 1, and we start with

the sizes of H and G. Lemma 3 gives for some constant K (which
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depends on s but not on z), and for x sufficiently large,

|H| ~ KlogA(logz)*™*

A s—1
|G| ~ Klog ar (logf)
m

Aq

which clearly implies (remember (6)) that

G| _ log

so for x sufficiently large condition 1 will be satisfied.

To check condition 2 of lemma 1, examine for some n < R the set

Gn::{gemb:ieH Vnﬁrﬁqn}

T

g € mb implies % € b so from the definition of H we get
G, = lagyx, a,Az] Nmb

It is for this point that we defined A, since we can now write, for
n <R,

Agnt1) < Apy1Aagq < ayA

and thus the intervals [ag,z, a,Ax] and [ag(;+1)2, a,41 Ax] intersect, which

means that their union is an interval, and that leads inductively to
R
U G, = lagz,agAz] Nmb =G
n=1

and condition 2, and the theorem, are proved. O
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Remark. In essence, this is a theorem about densities — it shows that
if a sequence is denser than e’* for all s then it is not L>-good,
and the relation between a, and a, can be thought of as some kind
of regularity condition. Thus it improves on Marstrand’s polynomial
condition. For example, the same proof shows that if a, ~ elog" T for
some k then a, is not L*°-good. In the other direction it is not possible
to get a result such as “any sequence sufficiently sparse is L*°-good”.
Indeed, Marstrand himself shows that any sequence of pairwise coprime

integers, no matter how sparse, is not L°*°-good.

3. INFINITELY GENERATED SEMIGROUPS

One might hope to strengthen theorem 1 for any infinitely generated
semigroup of integers, but this is not true. For example, the semigroup

S generated by
{2rslvl alvilgrl™
n=1

(|z] denoting the integer value of x) is infinitely generated but is almost

equivalent to a(2,3), that is

o Lalns)

=1
w0 [[L,] N a(2,3)]

and since a(2,3) is L*-good, so is S. Thus we restrict our attention to
semigroups not, contained in any a(Q), Q finite. Namely we want to

prove

Theorem 2. Any multiplicative semigroup of integers S not contained

in any a(Q) for any finite set of primes Q is not L>-good.
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The proof of theorem 2 is similar to that of theorem 1, and therefore
I shall only sketch it roughly. We start from lemma 2. The version of
lemma 2 for semigroups requires the following procedure. Let S be a
finitely generated multiplicative semigroup of integers. We denote by

P1, - -, ps all the primes participating in S and write

T := {(ozl,...,ozs) : pr‘l 63}

which is an additive semigroup C Z°*. We extend it to a group G and

call the dimension of GG the basis size related to S.

Lemma 6. Let S be a finitely generated multiplicative semigroup of
integers and let t be the related basis size. Then there exists a constant
K such that

|SN[1, ]| ~ K(logx)"

The proof of this lemma is similar to that of lemma 4.1 from [M70],
which is, as already remarked, taking logarithms and then estimating
the number of lattice point inside a simplex using its volume.

As for the rest of the proof of the theorem, the equivalent of lemma
4 is proved in a similar manner, with the sole change being that (if
S, is a semigroup spanned by S; and m) we must take only such k’s
satisfying m* ¢ S;. Lemma 5 is where we use the fact that S ¢ a(Q)
to get that S contains sub-semigroups of unbounded related basis size.

The proof of the theorem proper is unchanged. O
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