
Acquaintance Time of a Graph

Itai Benjamini∗ Igor Shinkar∗ Gilad Tsur∗

March 20, 2013

Abstract

We define the following parameter of connected graphs. For a given graph

G = (V,E) we place one agent in each vertex v ∈ V . Every pair of agents sharing

a common edge are declared to be acquainted. In each round we choose some

matching of G (not necessarily a maximal matching), and for each edge in the

matching the agents on this edge swap places. After the swap, again, every pair

of agents sharing a common edge are acquainted, and the process continues. We

define the acquaintance time of a graph G, denoted by AC(G), to be the minimal

number of rounds required until every two agents are acquainted.

We first study the acquaintance time for some natural families of graphs includ-

ing the path, expanders, the binary tree, and the complete bipartite graph. We

also show that for all functions f : N → N satisfying 1 ≤ f(n) ≤ n1.5 there is a

family of graphs {Gn = (Vn, En)}n∈N with |Vn| = n such that AC(Gn) = Θ(f(n)).

We also prove that for all n-vertex graphs G we have AC(G) = O
(

n2

log(n)/ log log(n)

)
,

thus improving the trivial upper bound of O(n2) achieved by sequentially letting

each agent perform depth-first search along some spanning tree of G.

Studying the computational complexity of this problem, we prove that for any

constant t ≥ 1 the problem of deciding that a given graph G has AC(G) ≤ t or

AC(G) ≥ 2t is NP-complete. That is, AC(G) is NP-hard to approximate within

multiplicative factor of 2, as well as within any additive constant factor.

On the algorithmic side, we give a deterministic polynomial time algorithm

that given an n-vertex graph G distinguishes between the cases AC(G) = 1 and

AC(G) ≥ n − O(1). We also give a randomized polynomial time algorithm that

distinguishes between the cases AC(G) = 1 and AC(G) = Ω(log(n)) with high

probability.

∗{itai.benjamini,igor.shinkar,gilad.tsur}@weizmann.ac.il Faculty of Mathematics and

Computer Science, Weizmann Institute of Science, Rehovot, Israel.

Contents

1 Introduction 1

1.1 Our results . 2

2 Definitions and Notations 3

3 Some Concrete Examples 5

4 Separating AC(G) From Other Parameters 8

5 The Range of AC(G) 9

6 NP-Hardness Results 13

6.1 Towards stronger hardness results . 17

7 Graphs with AC(G) = 1 18

7.1 Algorithmic results . 20

8 Other Variants and Open Problems 24

2

1 Introduction

In this work we deal with a problem where agents walk on a graph meeting each other,

and our goal is to make every pair of agents meet as fast as possible. Specifically, we

introduce the following parameter of connected graphs. For a given graph G = (V,E)

we place one agent in each vertex of the graph. Every pair of agents sharing a common

edge are declared to be acquainted. In each round we choose some matching of G (not

necessarily a maximal matching), and for each edge in the matching the agents on this

edge swap places. After the swap, again, every pair of agents sharing a common edge are

acquainted, and the process continues. We define the acquaintance time of a graph G,

denoted by AC(G), to be the minimal number of rounds required until every two agents

are acquainted with each other.

Several problems of similar flavor have been studies in the past. One such problem is

the Routing Permutation on Graphs via Matchings studied by Alon, Chung, and Graham

in [ACG94], where the input is a graph G = (V,E) and a permutation of the vertices

σ : V → V , and the goal is to route all agents to their respective destinations according

to σ; that is the agent sitting originally in the vertex v should be routed to the vertex

σ(v) for all v ∈ V . In our setting we encounter a similar routing problem, where we

route the agents from some set of vertices S ⊆ V to some T ⊆ V without specifying the

target location in T of each of the agents. More related problems include the well studied

problems of Gossiping and Broadcasting (see the survey of Hedetniemi, Hedetniemi, and

Liestman [HHL88] for details), and the Target Set Selection Problem (see, e.g., [KKT03,

Che09, Rei12]).

In order to get some feeling regarding this parameter note that if for a given graph G

a list of matchings (M1, . . . ,Mt) is a witness-strategy for the assertion that AC(G) ≤ t,

then the inverse list (Mt, . . . ,M1) is also a witness-strategy for this assertion. We remark

that in general a witness-strategy is not commutative in the order of the matchings.1 For

a trivial bound of AC(G) we have AC(G) ≥ diam(G)/2, where diam(G) is the maximal

distance between two vertices of G. It is also easy to see that for every graph G = (V,E)

with n vertices it holds that AC(G) ≥ (n
2)
|E| − 1. Indeed, before the first round exactly

|E| pairs of agents are acquainted. Similarly, in each round at most |E| new pairs get

acquainted. This implies that |E| + AC(G) · |E| ≥
(
n
2

)
, since in any solution the total

number of pairs that met up to time AC(G) is
(
n
2

)
.

1For example, let G = (V = {1, 2, 3, 4}, E = {(1, 2), (2, 3), (3, 4} be the path of length 4. Then, the

sequence (M1 = {(1, 2)},M2 = {(3, 4)},M3 = {(1, 2)}) is a strategy for acquaintance in G, whereas, the

sequence (M1 = {(1, 2)},M3 = {(1, 2)},M2 = {(3, 4)}) is not.

1

For an upper bound, note that for every graph G with n vertices AC(G) ≤ 2n2, as

every agent can meet all others by traversing the graph along some spanning tree in at

most 2n rounds.

We also consider the corresponding computational problem. Obviously, for t ∈ N the

problem of deciding whether a given graph G has AC(G) ≤ t is in NP , and the natural

NP-witness is a sequence of t matchings that allows every two agents to get acquainted.

We prove that the acquaintance time problem is NP-complete, by showing a reduction

from the coloring problem. We show that AC(G) is NP-hard to approximate within

multiplicative factor of 2, as well as any additive constant factor. In fact, it is NP-hard

to decide whether AC(G) = 1 for a given input graph G. On a higher level, this problem

seems to differ from the classical NP-complete problems, such as graph coloring or vertex

cover in the sense that AC(G) is a “dynamic” parameter that studies some evolution in

time.

We also study the algorithmic aspect of the problem when restricted to graphs G with

AC(G) = 1. We show that there is a deterministic polynomial time algorithm that given

an n-vertex graph G distinguishes between the cases AC(G) = 1 and AC(G) ≥ n−O(1).

In addition, we give a randomized polynomial time algorithm that distinguishes with high

probability between the cases of AC(G) = 1 and AC(G) = Ω(log(n)).

1.1 Our results

We start this work by providing asymptotic computations of the acquaintance time for

some interesting families of graphs. For instance, if Pn is the path of length n, then

AC(Pn) = O(n), which is tight up to a multiplicative constant, since diam(Pn) = n.

In particular, this implies that AC(H) = O(n) for all Hamiltonian graphs H with n

vertices. We also prove that for constant degree expanders G = (V,E) on n vertices the

acquaintance time is O(n), which is tight, as |E| = O(n) and AC(G) = Ω(n
2

|E|). More

examples include the binary tree, the complete bipartite graph, and the barbell graph.

We then provide examples of graphs with different ranges of the acquaintance time.

We show in Theorem 5.1 that for every function f : N→ N that satisfies 1 ≤ f(n) ≤ n1.5

there is a family of graphs {Gn}n∈N on n vertices with AC(Gn) = Θ(f(n)). Another

interesting result says that for every graph G with n vertices the acquaintance time is,

in fact, asymptotically smaller than the trivial O(n2) bound. Specifically, we prove in

Theorem 5.5 that for every graph G with n vertices AC(G) = O
(

n2

log(n)/ log log(n)

)
. It would

be interesting to close this gap, and find the range of AC(G), when going over all graphs

G with n vertices.

2

We also study the problem of computing/approximating AC(G) for a given graph G.

As explained above, the problem of deciding whether a given graph G has acquaintance

time at most t is in NP , and the NP-solution is the sequence of at most t matchings

that allow every two agents to meet. Such sequence is called a strategy for acquaintance

in G. We prove that the acquaintance time problem is NP-complete, by showing a

reduction from the coloring problem. Specifically, Theorem 6.1 says that for every t ≥ 1

it is NP-hard to distinguish whether a given graph G has AC(G) ≤ t or AC(G) ≥ 2t.

Hence, AC(G) is NP-hard to approximate within multiplicative constant of 2, as well

as any additive constant. In fact, we conjecture that it is NP-hard to approximate AC
within any multiplicative constant.

On the algorithmic side we study graphs whose acquaintance time equals to 1. We

show there is a deterministic polynomial time algorithm that when given an n-vertex

graph G with AC(G) = 1 finds a strategy for acquaintance that consists of n − O(1)

matchings. We also design a randomized polynomial time algorithm that when given

an n-vertex graph G with AC(G) = 1 finds with high probability a O(log(n))-rounds

strategy for acquaintance.

2 Definitions and Notations

Throughout the paper all graphs are simple and undirected. We use standard notations

for the standard parameters of graphs. Given a graph G = (V,E) and two vertices

u, v ∈ V the distance between u and v, denoted by dist(u, v), is the length of a shortest

path from u to v in G. For a vertex v and a set of vertices U ⊆ V the distance of v

from U is defined to be dist(v, U) = minu∈U dist(v, u). The diameter of the graph G,

denoted by diam(G), is the maximal distance between two vertices of the graph. For a

vertex u ∈ V the set of neighbors of u is denoted by N(u) = {w ∈ V : (u,w) ∈ E}.
Similarly, for a set U ⊆ V the set of neighbors of U is denoted by N(U) = {w ∈ V :

∃u ∈ U such that (u,w) ∈ E}. The independence number of G, denoted by α(G), is

the cardinality of the largest independent set, that is, a set of vertices in the graph,

no two of which are adjacent. The chromatic number of G, denoted by χ(G), is the

minimal number c ∈ N such that there is a mapping f : V → {1, . . . , c} of the vertices

that satisfies f(v) 6= f(w) for all edges (v, w) ∈ E. The equi-chromatic number of G,

denoted by χeq(G), is the minimal number c ∈ N such that there is a balanced mapping

f : V → {1, . . . , c} that satisfies f(v) 6= f(w) for all edges (v, w) ∈ E, where a mapping

f : V → {1, . . . , c} is said to be balanced if |f−1(i)| = |f−1(j)| for all i, j ∈ {1, . . . , c}.

3

For a given graph G = (V,E) the acquaintance time is defined as follows. We place

one agent in each vertex v ∈ V . Every pair of agents sharing a common edge are declared

to be acquainted. In each round we choose some matching of G, and for each edge in

the matching the agents on this edge swap places. After the swap, again, every pair of

agents sharing a common edge are acquainted, and the process continues. A sequence of

matchings in the graph is called a strategy. A strategy that allows every pair of agents

to meet is called a strategy for acquaintance in G. The acquaintance time of G, denoted

by AC(G), is the minimal number of rounds required for such strategy.

As hinted in the introduction, this problem is related to certain routing problem

similar to the one studied in [ACG94]. Specifically, we are interested in the routing task

summarized in the following claim. For a given tree G = (V,E) the claim gives a strategy

for fast routing of the agents from some set of vertices S ⊆ V to T ⊆ V without specifying

the target location in T of each of the agents.

Claim 2.1 Let G = (V,E) be a tree. Let S, T ⊆ V be two subsets of the vertices of equal

size k = |S| = |T |, and let ` = maxv∈S,u∈T{dist(v, u)} be the maximal distance between a

vertex in S and a vertex in T . Then, there is a strategy of ` + 2(k − 1) matchings that

routes all agents from S to T .

Proof Let G = (V,E) be a tree, and let S, T ⊆ V be two subsets of the vertices of G.

The proof is by induction on k. For the case of k = 1 the statement is trivial, as ` rounds

are enough to route a single agent.

For the induction step let k ≥ 2, and assume for simplicity that the only agents in

the graph are those sitting in S, and our goal is to route them to T . Let span(S) be

the minimal subtree of G containing all vertices s ∈ S, and define span(T) analogously.

Let us assume without loss of generality that there is some s∗ ∈ S that is not contained

in span(T).2 Let t∗ ∈ T be a vertex such that dist(s∗, t∗) = dist(s∗, T), and let P =

(p0 = s∗, p1, . . . , pr, pr+1 = t∗) be the shortest path from s∗ to t∗ in G (note that r ≤ `

by definition of `). By induction hypothesis, there is a strategy consisting of `+ 2(k− 2)

rounds that routes the agents from S \ {s∗} to T \ {t∗}. In such a strategy after the

last step all agents are in T \ {t∗} and thus the vertices {p1, . . . , pr} contain no agents

(since pi /∈ T \ {t∗} for all i ∈ [r]). After round number (` + 2(k − 2)− 1), i.e., one step

before the last, the vertices {p1, . . . , pr−1} contain no agents, because dist(pi, T) ≥ 2 for

all i ≤ r− 1. Analogously, for all j ≤ r the vertices {p1, . . . , pr−j} contain no agent after

round number (`+ 2(k− 2)− j). Therefore, we can augment the strategy by moving the

2If this is not the case, then we can consider the problem of routing the agents from T to S, and note

that viewing this strategy in the reverse order produces a strategy for routing from S to T .

4

agent from s∗ to t∗ along the path P . Specifically, for all i = 0, . . . , r we move the agent

from pi to pi+1 in round `+ 2(k − 2)− r + i+ 2, which adds two rounds to the strategy.

The claim follows.

3 Some Concrete Examples

We start with an easy example, showing that for the graph Pn, a path of length n, the

acquaintance time is Θ(n).

Proposition 3.1 (AC of a path): Let Pn be a path of length n. Then AC(Pn) = Θ(n).

Proof Clearly AC(Pn) ≥ diam(Pn)/2 ≥ n/2. For the upper bound denote the vertices

of Pn by v1, . . . , vn, where vi is connected to vi+1 for all i ∈ {1, . . . , n− 1}, and denote by

pi the agent sitting initially in the vertex vi. Consider the following strategy that works

in O(n) rounds:

1. Apply Claim 2.1 in order to route all agents p1, . . . , pbn/2c to the vertices vdn/2e+1, . . . , vn,

and route pbn/2c+1, . . . , pn to the vertices v1, . . . , vdn/2e. This can be done in O(n)

rounds. Note that after this sequence every pair of agents (pi, pj) with 1 ≤ i ≤
bn/2c < j ≤ n have already met each other.

2. Repeat the above procedure recursively on each of the two halves (v1, . . . , vdn/2e)

and (vdn/2e+1, . . . , vn) simultaneously.

To bound the total time T (n) of the procedure, we make O(n) rounds in the first part,

and at most T (dn/2e) in the remaining parts. This gives us a bound of

T (n) = O(n) + T (dn/2e) = O(n),

as required.

The following corollary is immediate from Proposition 3.1.

Corollary 3.2 Let G be Hamiltonian graph with n vertices. Then AC(G) = O(n).

We next prove that for constant degree expanders the acquaintance time is also linear

in the size of the graph. For α > 0 a d-regular graph G = (V,E) with n vertices is

said to be (n, d, α)-expander if for every subset S ⊆ V of size |S| ≤ |V |/2 it holds that

|N(S) \ S| ≥ α · |S|.

5

Proposition 3.3 (AC of expander graphs): Let G = (V,E) be an (n, d, α)-expander

graph for some α > 0. Then AC(G) = Θ(n), where the multiplicative constant in the Θ()

notation depends only on α and d but not on n.

Proof Clearly AC(G) = Ω(n
2

|E|) = Ω(n), since the expander is of constant degree. For

the upper bound we shall need the following theorem due to Björklund, Husfeldt and

Khanna saying that expander graphs contain simple paths of linear length.

Theorem 3.4 ([BHK04, Theorem 4]) Let G be a (n, d, α)-expander graph. Then, G

contains a simple path of length Ω(α
d
· n).

Let P be a simple path of length ` in G, where ` = Ω(n) is given in Theorem 3.4.

Partition all agents into c = d2n/`e disjoint classes C1 ∪ · · · ∪Cc each of size at most `/2.

Then, for every pair i, j ∈ [c] we use the strategy from Claim 2.1 to place the agents from

the two classes Ci ∪ Cj on P , and then apply the strategy from Proposition 3.1 so that

every pair of agents from Ci ∪Cj meet. By repeating this strategy for every i, j ∈ [c], we

make sure that every pair of agents on G meet each other. In order to analyze the total

length of the strategy, we note that for a single pair i, j ∈ [c] the total time is at most

O(n) +O(`), and hence the total length of the strategy is at most

AC(G) ≤
(
c

2

)
·O(n+ `),

which is linear in n, since ` = Ω(n), and c = O(n/`) = O(1).

Next we upper bound the acquaintance time of the binary tree graph.

Proposition 3.5 (AC of binary tree): Let T be the binary tree with n vertices. Then

AC(T) = O(n log(n)).

Note that AC(T) = Ω(n) since the number of edges in T is n − 1. It would be

interesting to compute the asymptotic behavior of AC(T).

Proof Denote the vertices of T by {vs : s ∈ {0, 1}≤log(n)}, where (vs, vs′) is an edge in

the graph if and only if |s| = |s′| + 1 and s is a prefix of s′. That is vε is the root, v0, v1

are the children of vε, and so on. For s ∈ {0, 1}≤log(n) denote by Ts the subtree rooted at

vs. We also denote for by ps the agent originally located in vs, and let Ps be the set of

agents who were originally in Ts.

We claim that it is enough to find a strategy of length O(n log(n)) that allows every

agent in P0 meet every agent from P1. Indeed, suppose we have such strategy. We

describe a strategy for acquaintance in T

6

1. Let the agent pε sitting in vε meet all other agents by performing a DFS walk on the

tree, and return everyone to their original locations by applying the same strategy

in the reverse order. This step can be done in O(n) rounds.

2. Apply a strategy of length O(n log(n)) that makes all agents in P0 to meet all agents

in P1.

3. Return the agents of P0 to T0 and return the agents of P1 to T1. This can be done

in O(n) rounds using Claim 2.1.

4. Apply steps 1-3 recursively on the subtree T0 and on the subtree T1 simultaneously.

That is, every agent from P00 meets every agent from P01, and every agent from

P10 meets every agent from P11, and so on...

Analyzing the total number of rounds, we have O(n log(n)) rounds in the first 3 steps.

Therefore, the total number of rounds is upper bounded byO(n log(n))+O(n/2 log(n/2))+

O(n/4 log(n/4)) · · · = O(n log(n)), as required.

Next, we describe a strategy that makes every agent from T0 to meet every agent from

T1 in O(n log(n)) rounds.

1. Let the agents p0 and p1 meet all other agents, and ignore them from now on. This

step can be done in O(n) rounds.

2. Route the agents in P00 to the subtree T10, and route the agents in P10 to T00. This

can be done in O(n) rounds by considering the subtree of T induced by the vertices

T00 ∪ T10 ∪ {vε, v0, v1} and applying Claim 2.1.

3. Apply induction on the depth of the tree to make all agents in P00 (who are located

in T10) to meet all agents in P11 (located in T11), and simultaneously make all agents

in P01 (who are located in T00) to meet all agents in P01 (located in T01).

4. Route the agents in P01 to the subtree T10, route the agents in P11 to T11, route the

agents in P00 to T00, and route the agents in P10 to T01. This can be done in O(n)

rounds by applying Claim 2.1 on the appropriate subgraphs.

5. Apply induction on the depth of the tree to make all agents in P01 (who are located

in T10) to meet all agents in P11 (located in T11), and simultaneously make all agents

in P00 (who are located in T00) to meet all agents in P10 (located in T01).

7

It is clear that in steps 1,3, and 5 all agents from P0 meet all agents from P1. For the

analysis of the number of rounds let us denote the total number of rounds by T (n). Then,

steps 1,2, and 4 contribute O(n) rounds to T (n), and steps 3 and 5 contribute additional

2T (n/2) rounds. Therefore, T (n) = O(n) + 2T (n/2) = O(n log(n)).

4 Separating AC(G) From Other Parameters

In this section we provide several results that separate AC(G) from other parameters of

graphs. Our first example shows a graph with low diameter, low clique cover number

(that is, G has low chromatic number), such that AC(G) is large.

Proposition 4.1 (AC of the barbell graph): Let G be the barbell graph. That is, G

consists of two cliques of size n connected by a single edge, called bridge. Then AC(G) =

Θ(n).

Proof The upper bound follows from Hamiltonicity of G (see Corollary 3.2). For the

lower lower, denote the vertices of the two cliques by A and B, and denote the bridge

by (a0, b0), where a0 ∈ A and b0 ∈ B. Then, in any strategy for acquaintance either all

agents from A visited in a0, or all agents from B visited in b0, and the proposition follows.

A more interesting example shows existence of a Ramsey graph G with AC(G) = 1.

For more details regarding graphs with AC(G) = 1 see Section 7.

Proposition 4.2 (Ramsey graph with AC(G) = 1): There is a graph G on n ver-

tices that contains neither a cliques nor an independent sets of size O(log(n)) such that

AC(G) = 1.

Proof Let H = (U = {u1, . . . , un/2}, F) be a Ramsey graph on n/2 vertices that

contains neither a cliques nor an independent sets of size O(log(n)). We construct G =

(V,E) as follows. The vertices of G are two copies of U , i.e., V = {u1, . . . , un/2} ∪
{u′1, . . . , u′n/2}. The edges of G are the following.

1. The vertices {u1, . . . , un/2} induce a copy of H. That is, (ui, uj) ∈ E if and only if

(ui, uj) ∈ F .

2. The vertices {u′1, . . . , u′n/2} induce the complement of H. That is, we set (u′i, u
′
j) ∈ E

if and only if (ui, uj) /∈ F .

8

3. Add an edge (ui, u
′
i) ∈ E for all i ∈ [n/2].

4. For each i 6= j ∈ [n/2] place one of the edges (ui, u
′
j), (uj, u

′
i) arbitrarily.

By the properties of H it follows that G is also a Ramsey graph. Now, it is straight-

forward to check that the matching M = {(ui, u′i) : i ∈ [n/2]} is a 1-round strategy for

acquaintance.

The proof of Proposition 3.3 may suggest that small routing number (as defined

by Alon et al. [ACG94]) implies fast acquaintance time. The following example shows

separation between the two parameters for the complete bipartite graph Kn,n. It was

shown in [ACG94] that for any permutation of the vertices σ : V → V the agents can

be routed routed from v ∈ V to the destination σ(v) in 4 rounds. We prove next that

AC(Kn,n) = Θ(log(n)).

Proposition 4.3 (AC of Kn,n): Let n = 2r for some r ∈ N. Let Kn,n = (A,B,E) be

complete bipartite graph with |A| = |B| = n vertices on each side. Then AC(Kn,n) =

log2(n).

Proof Assign each agent a string x = (x0, x1, . . . , xr) ∈ {0, 1}r+1 such that all agents

who started on the same side have the same first bit x0. We now describe an r-rounds

strategy for acquaintance. In the i’th round move all agents with xi = 0 to A and all

agents with xi = 1 to B. Now if two agents are assigned strings x and x′ such that

xi 6= x′i, then in the i’th round they will be on different sides of the graph, and hence will

be acquainted.

We now claim that r rounds are also necessary. Indeed, suppose we have a t-rounds

strategy for acquaintance. Assign each agent a string x = (x0, x1, . . . , xt) ∈ {0, 1}t+1,

where xi = 0 for i ≤ t if and only if in the i’th round the agent was in A. Note that

two agents met during the t rounds if and only if their strings are different. This implies

2t+1 ≥ 2n, and thus t ≥ r, as required.

5 The Range of AC(G)

In this section we provide examples of families of graphs on n vertices whose acquaintance

time ranges from constant to n1.5.

Theorem 5.1 For every function f : N→ N that satisfies f(n) ≤ n1.5 there is a family

of graphs {Gn}n∈N such that Gn has n vertices and AC(Gn) = Θ(f(n)).

9

The proof of the theorem is divided in two parts. In Proposition 5.2 we take care of

f(n) ≤ n, and Proposition 5.3 takes care of n ≤ f(n) ≤ n1.5.

Proposition 5.2 For every function f : N → N that satisfies f(n) ∈ [1, n] there is a

family of graphs {Gn}n∈N such that Gn has n vertices and AC(Gn) = Θ(f(n)).

Proof Consider the graph Gr,` = (V,E) with vertices V = {vi,j : i ∈ [r], j ∈ [`]}.
where there vertices {vi,j : i ∈ [r]} from a clique for all j ∈ [`], and, in addition, for every

i, i′ ∈ [r] such that |i− i′| = 1 (mod r) we have (vi,j, vi′,j) ∈ E for all j ∈ `. That is, the

vertices are divided into r cliques each of size `, and the edges between adjacent cliques

on a cycle form a perfect matching.

We claim that AC(Gr,`) = Θ(r). For a lower bound note that diam(Gr,`) = r/2, and

hence AC(Gr,`) = Ω(r). For an upper bound consider first the case of r = 2; that is, the

graph consisting of two disjoint cliques each of size `, with ` edges between them forming

a perfect matching. Then, it is easy to see that AC(G2,`) = O(1). This is achieved by

swapping `/2 vertices in one clique with `/2 vertices in the other clique constant number

of times.

The bound AC(Gr,`) = O(r) is obtained using the strategy similar to the one for Pr

explained in Proposition 3.1, where we consider each clique as a single block, and each

swap in Pr corresponds to a swap of the blocks, rather than single vertices. The difference

is that even if two blocks of size ` are adjacent, it does not imply that all the 2` vertices

in the two blocks have met. In order to achieve that we apply the strategy above for the

G2,` graph.

Proposition 5.3 For every function f : N → N that satisfies f(n) ∈ [n, n1.5] there is a

family of graphs {Gn}n∈N such that Gn has n vertices and AC(Gn) = Θ(f(n)).

Proof Consider the graph Or,` that consists of r cliques each of size `, and another

vertex z called the center. In each each clique there is one vertex connected to the

center. We claim AC(Or,`) = Θ(min(n`, nr)). Since the total number of vertices in the

graph is n = r` + 1, by choosing either r ≈ f(n)/n and ` ≈ n2/f(n) we will get that

AC(Or,`) = Θ(f(n)), as required.

In order to prove an upper bound of O(nr) note that solving the acquaintance problem

on Or,` can be reduced to solving
(
r
2

)
problems of Hamiltonian graphs of size 2`+1, where

each problem corresponds to a pair of cliques together with the center z. By Hamiltonicity

each such problem is solved in O(`) rounds.

10

In order to prove an upper bound of O(n`) we can bring every agent to the center,

and all other agents will meet him in O(`) rounds, using the vertices connected to z.

For the lower bound let us define for every agent pi and every time t ∈ N let ϕt(pi)

be the number of agents that pi has met up to time t. Note that for h = AC(Or,`) there

is a strategy such that
∑

i∈[n] ϕh(pi) = n · (n − 1), since every agent met every other

agent up to time h. On the other hand, in each time t the sum
∑

i∈[n] ϕt(pi) increases

by at most 2r+ `, as the only agents who could potentially affect the sum are those who

moved to the center (contributing at most r to the sum), an agent who moved from the

center to one of the cliques (contributing at most ` to the sum), and the r neighbors

of the center (each contributing at most 1 to the sum). This implies a lower bound of

AC(Or,`) · (2r + `) = Ω(n2), which completes the proof of Proposition 5.3.

Building on the lower bound in the proof of Proposition 5.3 we show that bottlenecks

in graphs imply high acquaintance time.

Proposition 5.4 Let G = (V,E) be a graph with n vertices. Suppose there is a subset

of vertices S ⊆ V such that when removing S from G each connected component in the

remaining graph G[V \ S] is of size at most `. Then AC(G) = Ω(
(n
2)−|E|

|S|·`+
∑

s∈S deg(s)
).

Proof Let us define for every agent pi and every time t ∈ N the set ϕt(pi) ⊆ {pj :

j ∈ [n]} to contain all agents that pi has met up to time t, as well as all agents who

shared a connected component in G[V \ S] with pi up to time t. By definition of AC for

h = AC(G) there is a strategy such that
∑

i∈[n] |ϕh(pi)| = n · (n − 1), since every agent

met every other agent up to time h. Note that on the t’th round the increment to ϕt(pi)

compared to ϕt−1(pi) is either because pi entered S and met new agents in S and in its

connected components of G[V \ S], or because an agent left S and entered one of the

connected components. Thus, in each time t the sum
∑

i∈[n] |ϕt(pi)| increases by at most

|S| · `+
∑

s∈S deg(s), where |S| · ` upper bounds the number of meetings that were added

because of agents moving out of S, while the value
∑

s∈S deg(s) bounds the number of

meetings that are accounted for by agents that entered S in round t. This implies a lower

bound of Ω(
(n
2)−|E|

|S|·`+
∑

s∈S deg(s)
), which completes the proof of Proposition 5.4.

Next, we show that for every graph G with n vertices the acquaintance time is in fact

asymptotically smaller than the trivial bound of 2n2. Specifically, we prove the following

theorem.

Theorem 5.5 For every graph G with n vertices it holds that AC(G) = O
(

n2

log(n)/ log log(n)

)
.

11

The proof of Theorem 5.5 relies on the following two claims.

Claim 5.6 Let G be a graph with n vertices. If G contains a simple path of length `,

then AC(G) = O(n2/`).

Claim 5.7 Let G be a graph with n vertices. If G has a vertex of degree ∆, then AC(G) =

O(n2/∆).

We postpone the proofs of both claims until later and show how to deduce from them

Theorem 5.5.

Proof of Theorem 5.5 Let k = Θ
(

log(n)
log log(n)

)
be the largest integer such that kk ≤ n.

For such choice of k the graph G either contains a simple path of length k, or it contains

a vertex of degree at least k. In the former case by Claim 5.6 we have AC(G) = O(n2/k).

In the latter case we use Claim 5.7 to conclude that AC(G) = O(n2/k). The theorem

follows.

We now prove Claims 5.6 and 5.7.

Proof of Claim 5.6: Assume without loss of generality that ` is the length of the

longest simple path in G. We shall also assume that G is a tree that contains a path of

length ` (if not, then G has a spanning tree with this property). Then, in particular, we

have dist(u, v) ≤ ` for every two vertices u, v ∈ V .

In order to prove the claim we apply of Claim 2.1 together with Proposition 3.1

similarly to the proof of Proposition 3.3. Divide the agents into c = d2n/`e classes

C1, . . . , Cc of size b`/2c each. For every pair i, j ∈ [c] we use Claim 2.1 to route the

agents from the two classes Ci ∪ Cj to a path of length `, and then, apply the strategy

from Proposition 3.1 so that every pair of agents from Ci ∪ Cj meet. By repeating this

strategy for every i, j ∈ [c], we make sure that every pair of agents on G meet each other.

Since dist(u, v) ≤ ` for every two vertices u, v ∈ V , by Claim 2.1 the agents Ci ∪ Cj
can be routed to a path of length ` in O(`) rounds. Then, using the strategy from

Proposition 3.1 every pair of agents from Ci ∪ Cj meet in at most O(`). Therefore, the

acquaintance time of G can be upper bounded by

AC(G) ≤
(
c

2

)
·O(`) = O(n2/`),

as required.

Proof of Claim 5.7: Assume without loss of generality that G is a tree rooted at a

vertex r of degree ∆. (This can be done by considering a spanning tree of G) Denote the

12

children of r by v1, . . . , v∆, and let p1, . . . , p∆ be the agents originally located at these

vertices. We claim that there is a O(n)-rounds strategy that allows p1, . . . , p∆ to meet

all agents.

Given such strategy, we apply it onG. We then route the agents p1, . . . , p∆ to arbitrary

∆ leaves of the tree different from v1, . . . , v∆ (this can be done in O(n) rounds), and ignore

them until the end of the process. Now we need to solve the same problem on a tree with

n−∆ vertices. Repeating the process we get that AG(G) ≤
∑n/∆

i=1 O(n−i∆) = O(n2/∆),

as required.

Next, we describe a O(n)-rounds strategy that allows p1, . . . , p∆ to meet all agents.

For any 1 ≤ i ≤ ∆ consider a subtree Ti = (Vi, Ei) of G rooted at vi. It is enough to

show how the agents p1, . . . , p∆ can meet all agents from Ti in O(|Ti|) rounds. First, let

pi meet all agents in Ti in O(|Ti|) steps. This can be done by running pi along a DFS of

Ti. It is enough now to find a O(|Ti|)- rounds strategy that allows all agents of Ti to visit

in the root r. This task can be reduced to the routing problem considered in Claim 2.1.

Specifically, define a tree on 2|Vi| vertices that contains the tree Ti with additional |Vi|
vertices each connected only to vertex r. It is easy to see that a strategy that routes

all agents from the copy of Ti to the additional vertices can be turned into a strategy

that allows all agents of Ti to visit in the root r. By Claim 2.1 such strategy can be

implemented using O(|Ti|) rounds. This completes the proof of Claim 5.7.

6 NP-Hardness Results

In this section we show that the acquaintance time problem is NP-hard. Specifically, we

prove the following theorem.

Theorem 6.1 For every t ≥ 1 it is NP-hard to distinguish whether a given graph G has

AC(G) ≤ t or AC(G) ≥ 2t.

Before actually proving the theorem, let us first see the proof in the special case of

t = 1.

Special case of t = 1: We start with the following NP-hardness result, saying that for

a given graph G it is hard to distinguish between graphs with small chromatic number and

graphs with somewhat large independent set. Specifically, Lund and Yanakakis [LY94]

prove the following result.

13

Theorem 6.2 ([LY94, Theorem 2.8]) For every K ∈ N sufficiently large the follow-

ing gap problem is NP-hard. Given a graph G = (V,E) distinguish between the following

two cases:

• χeq(G) ≤ K; i.e., there is a K-coloring of G with color classes of size |V |
K

each.

• α(G) ≤ 1
2K

.

We construct a reduction from the problem above to the acquaintance time problem, that

given a graph G outputs a graph H so that (1) if χeq(G) ≤ K, then AC(H) = 1, and (2)

if α(G) ≤ 1
2K

, then AC(H) ≥ 2.

Given a graph G = (V,E) with n vertices V = {vi : i ∈ [n]}, the reduction outputs

a graph H = (V ′, E ′) as follows. The graph H contains |V ′| = 2n vertices, partitioned

into two parts V ′ = V ∪ U , where |V | = n and U = U1 ∪ · · · ∪ UK with |Uj| = n/K for

all j ∈ [K]. The vertices V induce the complement graph of G. For each j ∈ [K] the

vertices of Uj form an independent set. In addition, we set edges between every pair of

vertices (v, u) ∈ V × U as well as between every pair of vertices in (u, u′) ∈ Uj × U ′j for

all j 6= j′. This completes the description of the reduction.

Completeness: We first prove the completeness part, namely, if χeq(G) = K, then

AC(H) = 1. Suppose that the color classes of G are V = V1 ∪ · · · ∪ VK with |Vj| = n/K

for all j ∈ [K]. Note that each color-class Vj induces a clique in H. Consider the matching

that for each j ∈ [K] swaps the agents in Uj with the agents in Vj. (This is possible since

by the assumption |Vj| = n
K

, and all vertices of Uj are connected to all vertices of Vj.) In

order to verify that such matching allows every pair of agents to meet each other, let us

denote by pv the agent sitting originally in vertex v. Note that before the swap all pairs

listed below have already met.

1. For all j ∈ [K] and every v, v′ ∈ Vj the pair of agents (pv, pv′) have met.

2. For all j 6= j′ and for every u ∈ Uj, u′ ∈ Uj′ the pair of agents (pu, pu′) have met.

3. For all v ∈ V and u ∈ U the pair of agents (pv, pu) have met.

After the swap the following pairs meet.

1. For all j 6= j′ and for every v ∈ Vj, v′ ∈ Vj′ the agents pv and pv′ meet using an

edge between Uj and U ′j.

2. For all j ∈ [K] and every u, u′ ∈ Vj the agents pu and pu′ meet using an edge in Vj.

This completes the completeness part.

14

Soundness: For the soundness part assume that AC(H) = 1. We claim that α(G) >

1/2K. Note first that if there is a single matching that allows all agents to meet, then

for every j ∈ [K] all but at most K agents from Uj must have moved by the matching

to V . (This holds since U does not contain K + 1 clique.) Moreover, all the agents from

Uj who moved to V must have moved to a clique induced by V . This implies that V

contains a clique of size at least n/K −K > n/2K, which implies that α(G) > 1/2K.

This completes the proof of Theorem 6.1 for the special case of t = 1. The proof

of Theorem 6.1 for general t ≥ 2 is quite similar, although it requires some additional

technical details.

Proof of Theorem 6.1: We start with the following NP-hardness result due to

Khot [Kho01], saying that for a given graph G it is hard to distinguish between graphs

with small chromatic number and graphs with small independent set. Specifically, Khot

proves the following result.

Theorem 6.3 ([Kho01, Theorem 1.6]) For every t ∈ N, and for every K ∈ N suf-

ficiently large (it is enough to take K ≥ 2O(t)) the following gap problem is NP-hard.

Given a graph G = (V,E) distinguish between the following two cases:

• χeq(G) ≤ K.

• α(G) ≤ 1
4t2t+1K2t .

We construct a reduction from the problem above to the acquaintance time problem, that

given a graph G outputs a graph H so that (1) if χeq(G) ≤ K, then AC(H) ≤ t, and (2)

if α(G) ≤ 1
4t2t+1K2t , then AC(H) ≥ 2t.

Given a graph G = (V,E) with n vertices, the reduction r(G) outputs a graph H =

(V ′, E ′) as follows. The graph H contains |V ′| = (t + 1)n vertices, partitioned into two

parts V ′ = V ∪ U , where |V | = n and U = ∪i∈[t],j∈[K]Ui,j with |Ui,j| = n/K for all

i ∈ [t], j ∈ [K]. The vertices V induce the complement graph of G. For each j ∈ [K] the

vertices of Uj form an independent set. In addition, we set edges between every pair of

vertices (v, u) ∈ V × U as well as between every pair of vertices in (u, u′) ∈ Ui,j × Ui′,j′
for all (i, j) 6= (i′, j′). This completes the description of the reduction.

Completeness: We first show that prove the completeness part, namely, if χeq(G) = K,

thenAC(H) ≤ t. Suppose that the color classes ofG are V = V1∪· · ·∪VK with |Vj| = n/K

for all j ∈ [K]. Note that in each color-class Vk induces a clique in H. We show that

AC(H) ≤ t, which can be achieved as follows: For all i ∈ [t] in the i’th round the agents

located in vertices Ui,j swap places with the agents in Vj for all j ∈ [K]. (This is possible

15

since by the assumption |Ui,j| = |Vj| = n
K

, and all vertices of Ui,j are connected to all

vertices of Vj.) It is immediate to verify that this strategy allows every pair of agents to

meet each other. Indeed, denoting by pv the agent sitting originally in vertex v the only

pairs who did not met each other before the first round are contained in the following

two classes:

1. For all j 6= j′ ∈ [K] and for every v ∈ Vj, v′ ∈ Vj′ the pair of agents (pv, pv′).

2. For each i ∈ [t] and j ∈ [K] and every u, u′ ∈ Ui,j the pair of agents (pu, pu′).

Then, when the agents move along the described matchings, the pairs from the first class

meet after the first round. And for each round i ∈ [t] the pairs from the second class

that correspond to u, u′ ∈ Ui,j for some j ∈ [K] meet after the i’th round. This proves

the completeness part of the reduction.

Soundness: For the soundness part assume that AC(H) ≤ 2t − 1, and consider the

corresponding (2t − 1)-rounds strategy for acquaintance in G. By a counting argument

there are n
2

agents who originally were located in U and visited in V at most once.

By averaging, there are n
2(2t−1)

agents who either never visited in U or visited in V

simultaneously, and this was their only visit in V . Let us denote this set of agents by P0.

The following claim completes the proof of the soundness part.

Claim 6.4 Let P0 be a set of agents of size n
2(2t−1)

. Suppose they visited in V at most

once simultaneously, and visited in U for at most 2t times. If every pair of agents from

P0 met each other during these rounds, then α(G) ≥ n
2(2t−1)(tK)2t

> 1
4t2t+1K2t .

Proof Let us assume for concreteness that P0 stayed in U until the last round, and

then moved to V . Before the first round the set of agents P0 is naturally partitioned

into at most tK clusters, each clusters corresponding to agents in some Ui,j. That is, the

agents meet each other if and only if they are in different clusters. Analogously, after t

rounds, there is a natural partition of P0 into (tK)2t, where the agents age in the same

cluster if and only if they have not met each other thus far. Thus, at least one of the

cluster is of size at least |P0|
(tK)2t

= n
2(2t−1)(tK)2t

. If we assume that every pair of agents from

P0 met each other eventually, then it must be the case that in the last round each cluster

moved to some clique in V , and in particular G contains a clique of size n
2(2t−1)(tK)2t

. The

claim follows.

We have shown a reduction from the coloring problem to the acquaintance time prob-

lem, that given a graph G outputs a graph H so that (1) if χeq(G) ≤ K, then AC(H) ≤ t,

16

and (2) if α(G) ≤ 1
4t2t+1K2t , then AC(H) ≥ 2t. This completes the proof of Theorem 6.1.

6.1 Towards stronger hardness results

We conjecture that, in fact, a stronger hardness result holds, compared to the one stated

in Theorem 6.1.

Conjecture 6.5 For every constant t ∈ N it is NP-hard to decide whether a given graph

G has AC(G) = 1 or AC(G) ≥ t.

Below we describe a gap problem similar in spirit to the hardness results of Lund

and Yanakakis and that of Khot whose NP-hardness implies Conjecture 6.5. In order to

describe the gap problem we need the following definition.

Definition 6.6 Let t ∈ N and β > 0. A graph G = (V,E) is said to be (β, t)-intersecting

if for every t subsets of the vertices S1, . . . , St ⊆ V of size βn and for every t bijections

πi : Si → [βn] there exist j, k ∈ [βn] such that all pre-images of the pair (j, k) are edges

in E, i.e., for all i ∈ [t] it holds that (π−1
i (j), π−1

i (k)) ∈ E.

Note that a graph G is (β, 1)-intersecting if and only if G does not contain an inde-

pendent set of size βn. In addition, note that if G is (β, t)-intersecting then it is also

(β′, t′)-intersecting for β′ ≥ β and t′ ≤ t, and in particular α(G) < β.

We remark without proof that the problem of deciding whether a given graph G

is (β, t)-intersecting is coNP-complete. We make the following conjecture regarding

NP-hardness of distinguishing between graphs with small chromatic number and (β, t)-

intersecting graphs.

Conjecture 6.7 For every t ∈ N and for all K ∈ N sufficiently large it is NP-hard to

distinguish between the following two cases for a given graph G = (V,E):

• χeq(G) ≤ K.

• The graph G is (1/Kt, t)-intersecting.

Remark Conjecture 6.7 does not seem to follow immediately from the result of Khot

stated in Theorem 6.3. One reason for that is due to the fact that Khot’s hard instances

for the problem are bounded degree graphs, and we suspect that such graphs cannot be

(β, t)-intersecting for arbitrarily small β > 0 even in the case of t = 2.

17

Theorem 6.8 Conjecture 6.7 implies Conjecture 6.5.

We omit the proof of this implication, as it is analogous to the proof of Theorem 6.1.

The reduction is exactly the same as described in the proof of Theorem 6.1 for the special

case of t = 1. The analysis is similar to the proof of Theorem 6.1 for general t ≥ 1, where

instead of using the assumption that α(G) is small we use the stronger assumption in the

NO-case of Conjecture 6.7.

7 Graphs with AC(G) = 1

In this section we study the graphs whose acquaintance time equals 1. We start with the

following straightforward proposition describing a structure of such graphs.

Proposition 7.1 A graph G = (V,E) satisfies AC(G) = 1 if and only if there is a

partition of the vertices V = A ∪ B ∪ C with A = {ai}ki=1 and B = {bi}ki=1 for some

k ∈ N, and C = V \ (A ∪B) such that the following holds:

1. (ai, bi) ∈ E for all i ∈ [k].

2. Either (ai, bj) ∈ E or (aj, bi) ∈ E for all i 6= j ∈ [k].

3. Either (ai, aj) ∈ E or (bi, bj) ∈ E for all i 6= j ∈ [k].

4. The vertices of C induce a clique in G.

5. For all c ∈ C and for all i ∈ [k] we have either (c, ai) ∈ E or (c, bi) ∈ E.

Proof Suppose first that AC(G) = 1, and let M = {(a1, b1), . . . , (ak, bk)} be a matching

that witnesses the assertion AC(G) = 1. Denote A = {ai}ki=1, B = {bi}ki=1, and let

C = V \ (A∪B). The conclusion follows immediately from the fact that M is a 1-round

strategy for acquaintance.

For the other direction, if G satisfies the listed conditions, then the matching M =

{(a1, b1), . . . , (ak, bk)} is 1-round strategy for acquaintance in G.

We state several immediate implications from Proposition 7.1.

Corollary 7.2 Let G = (V,E) be an n-vertex graph that satisfies AC(G) = 1, and let

V = A ∪B ∪ C be a partition of the vertices with A = {ai}ki=1 and B = {bi}ki=1 for some

k ∈ N, and C = V \ (A ∪B) as in Proposition 7.1. Then,

18

1. The partition of the vertices V = A∪B ∪C is not unique in general. For instance,

given such a partition we can define another partition V = A′ ∪ B′ ∪ C, where

A′ = (A ∪ {bi}) \ {ai} and B′ = (B ∪ {ai}) \ {bi} for some i ∈ [k].

2. For all i ∈ [k] it holds that deg(ai) + deg(bi) ≥ 2k+ |C| = n. For all c ∈ C we have

deg(c) ≥ k + |C| − 1 ≥ bn/2c, and deg(c) < n/2 is possible only if |C| = 1.

3. If |C| = 1, then there are at least bn/2c vertices v ∈ V with deg(v) ≥ dn/2e.
Otherwise, there are at least dn/2e vertices v ∈ V with deg(v) ≥ dn/2e.

4. The number of edges in G is at least |E| = 1
2

∑
v∈V deg(v) ≥ n2+|C|2−2|C|

4
≥ n2−1

4
.

Equality holds only if |C| = 1.

5. For all J ⊆ [k] and C ′ ⊆ C the graph induced by the vertices V ′ = {ai, bi : i ∈ J}∪C ′

induces a subgraph G′ = G[V ′] with AC(G′) = 1.

6. For all J ⊆ [k] we have |{(ai, bj) ∈ E : i, j ∈ J} ≥ |J | +
(|J |

2

)
= |J |2+|J |

2
. In

particular, for every subset U ⊆ V we have
∑

u∈U deg(u) = Ω(|U |2), and hence for

every d ∈ N the number of vertices in G of degree at most d is at most O(d).

7. The graph G contains a perfect matching3, consisting of the edges {(ai, bi)}ki=1 to-

gether with a maximal matching in C.

Proposition 7.3 Let G = (V,E) be a graph with n vertices that satisfies AC(G) = 1,

and let U ⊆ V be the set of vertices v ∈ V such that deg(v) ≥ n/2. Then, for every

W ⊆ V \ U there exists a matching of size |W | − 1 between U and W .

Proof Let V = A ∪ B ∪ C be a partition of the vertices with A = {ai}ki=1 and

B = {bi}ki=1 for some k ∈ N, and C = V \ (A ∪ B) as in Proposition 7.1. We claim

first that |W ∩ (A ∪ B)| ≥ |W | − 1. Indeed, it holds trivially if |C| ≤ 1. Otherwise, by

Corollary 7.2 Item 2 all vertices in C have degree at least k + |C| − 1 ≥ n/2, and thus

belong to U .

By Corollary 7.2 Item 2 for every i ∈ [k] it holds that deg(ai) + deg(bi) ≥ n, and thus

either ai or bi belongs to U . Therefore, the required matching is given by M = {(ai, bi) :

i ∈ [k] such that either ai ∈ W or bi ∈ W}.

The following claim gives additional detail on the structure of graphs with AC(G) = 1.

It will be used later for the analysis of a (randomized) approximation algorithm for

acquaintance in such graphs (see Theorem 7.7).

3A perfect matching in an n-vertex graph is a matching consisting of bn2 c edges.

19

Claim 7.4 Let G = (V,E) be a graph with n vertices that satisfies AC(G) = 1, and let

u, v ∈ V be two vertices of degree at least n/2. Then, either |N(u) ∩ N(v)| = Ω(n) or

|E[N(u), N(v)]| = Ω(n2), where E[N(u), N(v)] = {(a, b) ∈ E : a ∈ N(u), b ∈ N(v)}
denotes the set of edges between N(u) and N(v).

Proof If |N(u) ∩N(v)| ≥ 0.1n, then we are done. Assume now that |N(u) ∩N(v)| <
0.1n. Therefore |N(u) ∪N(v))| > 0.9n, as |N(u)|+ |N(v)| ≥ n. Define two disjoint sets

N ′(u) = N(u) \ N(v) and N ′(v) = N(v) \ N(u), and note that by disjointness we have

|N ′(u)| ≥ 0.4n and |N ′(v)| ≥ 0.4n. It suffices to prove that |E[N ′(u), N ′(v)]| = Ω(n2).

Let V = A∪B∪C be a partition of the vertices of G with A = {ai}ki=1 and B = {bi}ki=1

for some k ∈ N, and C = V \ (A ∪ B), as in Proposition 7.1. Consider the indices

I = {i ∈ [k] : ai, bi ∈ N ′(u) ∪ N ′(v)}, and define a partition I = Iu ∪ Iv ∪ Iu,v, where

Iu = {i ∈ [k] : ai, bi ∈ N ′(u)}, Iv = {i ∈ [k] : ai, bi ∈ N ′(v)}, and Iu,v = I \ (Iu∪ Iv). Also,

define Cu = C ∩ N ′(u), and Cv = C ∩ N ′(v). Note that |N ′(u)| = |Cu| + 2|Iu| + |Iu,v|,
and analogously |N ′(v)| = |Cv|+ 2|Iv|+ |Iu,v|. Using this partition we have

|E[N ′(u), N ′(v)]| ≥ |Cu| · |Cv|+
|Iu,v|2

2
+ |Iu| · |Iv|+ |Iu| · |Cv|+ |Iv| · |Cu|,

where the first term follows from the fact that C induces a clique (Proposition 7.1 Item 4),

the second and third terms follow from Item 2 of Proposition 7.1, and the last two terms

follow from Item 5 of Proposition 7.1.

Now, if |Iu,v| > 0.2n, then |E[N ′(u), N ′(v)]| ≥ |Iu,v |2
2
≥ 0.02n2, as required. Otherwise,

we have |Cu| + |Iu| ≥ 0.1n and |Cv| + |Iv| ≥ 0.1n, and therefore |E[N ′(u), N ′(v)]| ≥
(|Cu|+ |Iu|) · (|Cv|+ |Iv|) ≥ 0.01n2. The claim follows.

7.1 Algorithmic results

Recall that (unless P = NP) there is no polynomial time algorithm that, when given a

graph G with AC(G) = 1, finds a single round strategy for acquaintance of G. In this

section we provide two approximation algorithms regarding graphs whose acquaintance

time equals 1. In Theorem 7.5 we give a deterministic algorithm that finds an (n − 1)-

round strategy for acquaintance in such graphs. In Theorem 7.7 we give a randomized

algorithm that finds an O(log(n))-round strategy for acquaintance in such graphs.

We start with the simple deterministic algorithm.

Theorem 7.5 There is a deterministic polynomial time algorithm that when given as

input an n-vertex graph G = (V,E) such that AC(G) = 1 outputs an (n − 1)-round

strategy for acquaintance in G.

20

Proof The algorithms works by taking one agent at a time and finding a 1-round

strategy that allows this agent to meet all others. Specifically, for a given agent the

algorithm works as follows. Suppose that the agent p is located in vertex v ∈ V . We

consider two cases:

1. There is a 1-round strategy for acquaintance that leaves p in v.

2. There is a 1-round strategy for acquaintance that moves p to some u ∈ V .

Note that by the hypothesis thatAC(G) = 1 one of the two cases must hold. In the former

case consider the bipartite graph H = (A∪B,F), where A = N(v) is the neighborhood of

v, and B = V \(N(v)∪{v}) is the set of non-neighbors of v. We add an edge (a, b) ∈ A×B
to F if and only if it is contained in E.

Note that if a matching M ⊆ E is a 1-round strategy for acquaintance in G, then M

restricted to the edges of H induces a matching of size |B|. It is also easy to see that

any matching of size |B| in H is a 1-round strategy that allows the agent p to meet all

other agents. Such matching can be found in polynomial time (e.g., using an algorithm

for maximum flow), which completes the first case.

The second case is handled similarly. Suppose there is a 1-round strategy for ac-

quaintance M ⊆ E that moves the agent p from v to u. We define a bipartite graph

H = (A∪B,F), where A = N(v)∩N(u) is the set of common neighbors of v and u, and

B = V \ (N(v) ∪N(u)) is the set of common non-neighbors of v and u. Then, similarly

to the first case, in order to find a 1-round strategy that allows this p to meet all others,

it is enough to find a matching in H of size |B|. This completes the proof of the theorem.

The following corollary follows from by slightly modifying the proof of Theorem 7.5.

Corollary 7.6 There is an algorithm that when given as input c ∈ N and an n-vertex

graph G = (V,E) with AC(G) = 1 outputs an (n− c)-round strategy for acquaintance in

G in time nc+O(1).

Proof Recall, the algorithm in Theorem 7.5 that works by taking one agent at a time

and finding a 1-round strategy that allows this agent to meet all others. Instead, we first

apply the above strategy on n − c − 1 agents {p1, . . . , pn−c−1}. At this point we have a

(n − c − 1)-round strategy that allowed all agents in {p1, . . . , pn−c−1} to meet everyone.

Therefore, it is enough to find a single matching that will allow the remaining c+1 agents

to meet. This can be done by going over all possible matchings that involve the vertices

21

in which the c + 1 agents are located. There are at most nc+1 such matchings, and we

can enumerate all of them in time nc+O(1), as required.

We now turn to a randomized polynomial time algorithm with the following guarantee.

Theorem 7.7 There is a randomized polynomial time algorithm such that when given a

graph G with AC(G) = 1 finds O(log(n))-rounds strategy for acquaintance in G.

Proof Let G = (V,E) be an n-vertex graph, and let U ⊆ V be the set of vertices

of degree at least n/2. By Item 3 of Corollary 7.2 we have |U | ≥ bn/2c. The following

lemma describes a key step in the algorithm.

Lemma 7.8 Let PU be the agents originally located in U . Then, there exists a polynomial

time randomized algorithm that finds a O(log(n))-rounds strategy that allows every two

agents in PU to meet.

Now, consider all the agents P in G. For every subset of P ′ ⊆ P of size |P ′| ≤ |U | we can

use the aforementioned procedure to produce a O(log(n))-rounds strategy that allows all

agents in P ′ to meet with high probability. Let us partition the agents P into at most⌈2|V |
|U |

⌉
≤ 5 disjoint subsets P = P1 ∪ · · · ∪ P5 with at most b|U |/2c agents each in each

Pi, and apply the procedure to each pair Pi ∪ Pj separately. By Proposition 7.3, we can

transfer any pair Pi ∪ Pj to U in one step (with the exception of a single agent, that can

be dealt with separately as done in Theorem 7.5). When all pairs have been dealt with,

all agents have already met each other. This gives us an O(log(n))-rounds strategy that

can be found in randomized polynomial time for the acquaintance problem in graphs with

AC(G) = 1.

We return to the proof of Lemma 7.8.

Proof of Lemma 7.8 We describe a randomized algorithm that finds a O(log(n))-

rounds strategy that allows every two agents in PU to meet. Consider the following

algorithm for constructing a matching M .

1. For each vertex u ∈ U select a vertex u′ ∈ N(u) ∪ {u} as follows.

(a) With probability 0.5 let u′ = u.

(b) With probability 0.5 pick u′ ∈ N(u) uniformly at random.

2. Select a random ordering σ : {1, . . . , |U |} → U of U .

3. Start with the empty matching M = ∅.

22

4. Start with an empty set of vertices S = ∅. The set will include the vertices partici-

pating in M , as well as some of the vertices that will not move.

5. For each i = 1, . . . , |U | do

(a) Set ui = σ(i).

(b) If ui /∈ S and u′i /∈ S, then // (ui, u
′
i) will be used in the current step

i. S ← S ∪ {ui, u′i}.

ii. If ui 6= u′i, then M ←M ∪ {(ui, u′i)}.

6. Output M .

The following claim bounds the probability that a pair of agents in PU meet after a single

step of the algorithm.

Claim 7.9 For every u, v ∈ U , let pu and pv be the agents located in u and v respectively.

Then, Pr[The agents pu, pv meet after one step] ≥ c for some absolute constant c > 0 that

does not depend on n or G .

In order to achieve a O(log(n))-rounds strategy that allows every two agents in PU to

meet apply the matching constructed above, and then return the agents to their original

positions (by applying the same matching again). Repeating this random procedure

independently d3 log(n)
c
e times will allow every pair of agents to meet with probability at

least 1/n3. Therefore, by union bound all pairs of agents pu, pv ∈ PU will meet with

probability at least 1/n. This completes the proof of Lemma 7.8.

Proof of Claim 7.9 Note first that for every i ≤ |U | and for every vertex w ∈ U∪N(U)

the probability that in step 5 of the algorithm the vertex w has been added to S before

the i’th iteration is upper bounded by 3i/n. Indeed,

Pr[∃i′ < i such that w ∈ {ui′ , u′i′}] ≤ Pr[w ∈ {ui′ : i′ < i}] + Pr[w ∈ {u′i′ : i′ < i}]

≤ i

n
+

i∑
i′=1

Pr[u′i′ = w]

≤ i

n
+ i · 2/n

where the bound Pr[u′i′ = w] ≤ 2/n follows from the assumption that deg(ui′) ≥ n/2 for

all ui′ ∈ U , and hence, the probability of picking ui′ to be w is 1/ deg(ui′) ≤ 2/n.

23

Let T ∈ {2, . . . , |U |} be a parameter to be chosen later. Now, let i ≤ |U | be the

(random) index such that σ(i) = u, and let j ≤ |U | be the (random) index such that

σ(j) = v. Then,

Pr[i ≤ T and j ≤ T] =

(
T
2

)
· (|U | − 2)!

|U |!
=

T (T − 1)

2 · |U | · (|U | − 1)
≥ T 2

4n2
.

Conditioning on this event, the probability that either u or u′ have been added in S

before iteration i is upper bounded by 3i
n
≤ 3T

n
, and similarly the probability that either

v or v′ have been added in S before iteration j is at most 3T
n

. Therefore, with probability

at least T 2

4n2 · (1− 6T
n

) both (u, u′) and (v, v′) will be used in the current step. Therefore,

Pr[The agents pu, pv meet after one step] ≥ T 2

4n2
· (1− 6T

n
) · Pr[(u′, v′) ∈ E].

In order to lower bound Pr[(u′, v′) ∈ E] we use Claim 7.4, saying that for every two

vertices u, v ∈ U it holds that either N(u) ∩ N(v) ≥ αn or |E[N(u), N(v)]| ≥ α ·
n2 for some constant α > 0 that does not depend on n or G. Therefore, for ev-

ery u, v ∈ U it holds that Pr[(u′, v′) ∈ E] ≥ α/4. Letting T = αn/12 we get that

Pr[The agents pu, pv meet after one step] = Ω(α3), as required.

8 Other Variants and Open Problems

There are several variants of the problem that one may consider.

1. The problem of maximizing the number of pairs that met when some predetermined

number t ∈ N of matchings is allowed. Clearly, this problem is also NP-complete,

even in the case of t = 1.

2. The rules for moving agents are the same, but the goal is to make every agent visit

every vertex of the graph.

3. Instead of choosing a matching in each round, one may choose a vertex-disjoint

collection of cycles, and move agents one step along the cycle.

One may also consider a more game-theoretic variant of the problem: Let G = (V,E) be

a fixed graph with one agent sitting in each vertex of G. In each round every agent pu

sitting in a vertex u ∈ V chooses a neighbor u′ ∈ N(v) according to some strategy. Then,

for every edge (v, w) ∈ E the agents pv and pw swap places if the choice of the agent

pv was w and the choice of pw was v. Suppose that the graph is known, but the agents

24

have no information regarding their location in the graph (e.g., G is an unlabeled vertex

transitive graph). Find an optimal strategy for the agents so that everyone will meet

everyone else as quickly as possible. The question also makes sense in the case where the

graph is not known to the agents.

We conclude with a list of open problems.

Problem 8.1 Find AC of the Binary Tree. Recall that AC(Binary − tree) is between

Ω(n) and O(n log(n)), where the lower bound is trivial from the number of edges, and the

upper bound is obtained in Proposition 3.5.

Problem 8.2 Find AC of the Hypercube graph. Recall that AC(Hypercube) is between

Ω(n/ log(n)) and O(n), where the lower bound is trivial from the number of edges, and

the upper bound follows from Hamiltonicity of the graph (see Corollary 3.2).

Problem 8.3 Let p ≥ log(n)
n

so that w.h.p. G(n, p) is connected . Compute the ex-

pectation/typical behavior of AC(G(n, p)). Note that w.h.p. AC(G(n, p)) ≥ Ω(p−1) by

the trivial bound on the number of edges. We conjecture that w.h.p. AC(G(n, p)) =

O(p−1 · poly log(n)) which can be achieved by a random sequence of matchings coming

from a reasonable distribution.

Problem 8.4 Is it true that for every graph G with n vertices the acquaintance time is

bounded by AC(G) = O(n1.5)?

Problem 8.5 Prove Conjecture 6.5, namely, that for every constant t ∈ N it is NP-hard

to decide whether a given graph G has AC(G) = 1 or AC(G) ≥ t. Recall that it follows

from Conjecture 6.7.

Problem 8.6 Prove stronger inapproximability results. Is it true that AC is hard to

approximate within a factor of log(n)? How about n0.01? How about n1.499?

Problem 8.7 Derandomize the algorithm given in Theorem 7.7.

Problem 8.8 Give a structural result regarding graphs with small constant values of

AC(G) similar to Proposition 7.1. Also, is there an efficient O(log(n))-approximation

algorithm for such graphs?

25

References

[ACG94] N. Alon, F. R. K. Chung, and R. L. Graham. Routing permutations on graphs

via matchings. SIAM J. Discrete Math, 7:513–530, 1994.

[BHK04] A. Björklund, T. Husfeldt, and S. Khanna. Approximating longest directed

paths and cycles. In Proceedings of the 31st International Colloquium on Au-

tomata, Languages and Programming, pages 222–233, 2004.

[Che09] N. Chen. On the approximability of influence in social networks. SIAM Journal

on Discrete Mathematics, 23(5):1400–1415, 2009.

[HHL88] S. T. Hedetniemi, S. M. Hedetniemi, and A. Liestman. A survey of gossiping

and broadcasting in communication networks. Networks, 18(4):319–349, 1988.

[Kho01] S. Khot. Improved inaproximability results for maxclique, chromatic number

and approximate graph coloring. In Proceedings of the 42nd IEEE Symposium

on Foundations of Computer Science, pages 600–609, 2001.

[KKT03] D. Kempe, J. Kleinberg, and É. Tardos. Maximizing the spread of influence

through a social network. In KKD, pages 137–146, 2003.

[LY94] C. Lund and M. Yannakakis. On the hardness of approximating minimization

problems. J. ACM, 41(5):960–981, 1994.

[Rei12] D. Reichman. New bounds for contagious sets. Discrete Mathematics, 312:1812–

1814, 2012.

26

