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Abstract

We initiate the study of testing properties of images that correspond to sparse 0/1-valued
matrices of size n×n. Our study is related to but different from the study initiated by Raskhod-
nikova (Proceedings of RANDOM, 2003 ), where the images correspond to dense 0/1-valued
matrices. Specifically, while distance between images in the model studied by Raskhodnikova
is the fraction of entries on which the images differ taken with respect to all n2 entries, the
distance measure in our model is defined by the fraction of such entries taken with respect
to the actual number of 1’s in the matrix. We study several natural properties: connectivity,
convexity, monotonicity, and being a line. In all cases we give testing algorithms with sublinear
complexity, and in some of the cases we also provide corresponding lower bounds.

∗This work was supported by the Israel Science Foundation (grant number 246/08).



1 Introduction

Suppose we are given access to an image that is defined by a 0/1-valued n × n matrix M , and
would like to know whether it has a particular property (e.g., the image it contains corresponds to
a convex shape). We may read all pixels (bits) in the matrix and run an appropriate algorithm on
this data, thus obtaining an exact answer in at least linear time. However, assume we are interested
in a much more efficient algorithm, and are willing to sacrifice some precision. Namely, we seek a
randomized, sublinear-time algorithm that can distinguish with high success probability between a
matrix that has the specified property, and a matrix that is relatively far from having the property.
In other words, we seek a property testing algorithm [RS96, GGR98].

In order to formalize the above question, we first need to define what it means to be far from
having the property, and what access we have to the matrix. One natural definition of distance
between matrices is the Hamming weight of their symmetric difference, normalized by the size of
the matrices, which is n2, and the most straightforward form of accessing the matrix is probing
its entries. Indeed, this model of testing properties of images was introduced and studied by
Raskhodnikova [Ras03], and we later discuss in more details the results that she obtained as well
as their relation to our results.

The abovementioned model is most suitable for relatively dense images, that is, images in which
the number of 1-pixels (i.e., entries (i, j) for which M [i, j] = 1) is Ω(n2). However, if the image is
relatively sparse, e.g., the number of 1-pixels is O(n), then a natural alternative is to normalize the
distance with respect to the Hamming weight of the matrix, which we denote by w(M), rather than
to normalize by n2. We believe that this type of measurement is appropriate in many contexts.
For instance, an image of a single line of constant width is not generally viewed as very similar to
an empty image, while it is considered so in the dense-images model. Essentially, while the dense-
images model is suitable for testing images composed of areas, the sparse-images model works just
as well with images composed of lines (or outlines).

An additional difference between the dense-images model and the sparse-images model is that
in the latter model we also give the algorithm access to uniformly selected 1-pixels (in addition to
query access to entries of its choice). Observe that if an image is sparse, then it actually makes
sense to store it in a data-structure of size O(w(M) log n) rather than in an n × n matrix. Such
space-efficient data structures may be easily devised to support uniform sampling of 1-pixels as well
as answering queries to particular entries of M (possibly with an overhead of O(log w(M))). In the
dense image model (as in many property testing scenarios) the algorithm complexity is measured
in terms of the number of queries it performs, where a query is checking whether the value of a
pixel is 0 or 1. As we also allow our algorithms access to uniformly selected 1-pixels, we will wish
to know how many of these were sampled, as well. Thus we consider two measures of complexity
– the number of locations in the image that the algorithm queries, which we call query complexity,
and the number of uniformly selected 1-pixels that the algorithm requests, which we call sample
complexity.

We note that the relation between the dense-images model and the sparse-images model
is reminiscent of the relation between the dense-graphs model [GGR98] and the sparse-graphs
model [PR02, KKR04] (which extends the bounded-degree model [GR02]). We return to this
relation subsequently, but first we state our results and the techniques we apply.
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1.1 Our results

In what follows, when we use the term “complexity” we mean the sample and query complexity
of the algorithm. For all the properties we study, except for line imprints, the running time of the
algorithm is at most a logarithmic factor larger, and for line imprints it is polynomial in the number
of queries (which is independent of n). The parameter ε is the distance parameter. Namely, the
algorithm should accept with high constant probability1 every matrix that has the property and
should reject with high constant probability every matrix M that is ε-far from having the property
(that is, more than ε · w(M) pixels in M should be modified so that it obtains the property). We
study the following properties.

• Connectivity. We say that an image M is connected if the underlying graph induced
by the neighborhood relation between 1-pixels is connected. We give a testing algorithm
for connectivity whose complexity is Õ

(
min

{
w(M)1/2, n2/w(M)

}
· ε−2

)
. Thus, as long as

w(M) ≤ n4/3, the complexity of the algorithm increases like the square-root of w(M), and
once w(M) > n4/3 it starts decreasing as w(M) increases. We also prove a lower bound of
Ω
(
min

{
w(M)1/3, n2/w(M)

})
for ε = Θ(1). For one-sided error algorithms (that is, algo-

rithms which accept an image with probability 1 if the image has the property) we show a
simple lower bound of Ω(min{w(M), n2/w(M)}) (which is Ω(w(M)) for w(M) = O(n)).

• A line (imprint). We say that an image is a line imprint (or simply a line) if there exists
a line such that all the pixels that the line intersects are 1-pixels, and there are no other
1-pixels in the image. We give a (one-sided error) algorithm for testing this property whose
complexity is O(log(1/ε)/ε). This algorithm and its analysis are presented with a more general
result concerning testing sparse images that have a small VC-dimension (and a corresponding
result about learning when the distance measure is defined with respect to w(M) rather than
the size of the domain, which is n2). While this result is fairly simple, it does not follow from
the known transformation of (proper) learning results to testing results [GGR98].

• Convexity. We say that an image M is convex if there exists a convex shape that is
connected, closed and such that all the pixels that the shape intersects in M are 1-pixels,
and there are no other 1-pixels in the image.2 We assume without loss of generality that the
convex shape is a polygon, and we consider a certain variant of this property where we require
the gradient of the lines defining the convex shape to be of the form 1/r for an integer r.3

For this property we give an algorithm whose complexity is Õ(w(M)1/4 · ε−2).

• Monotonicity. We say that an image M is monotone if for every two 1-pixels (i1, j1) and
(i2, j2), if i1 < i2, then j1 ≤ j2. We give a one-sided error algorithm for testing monotonicity
whose complexity is Õ

(
(n2/3/w(M)1/3)ε−2

)
. This algorithm improves on a simple sampling

algorithm whose complexity is O((w(M)/ε)1/2), whenever w(M) = Ω(n4/5). (This simple
algorithm only takes uniform samples and rejects if and only if it detects a violation of mono-
tonicity.) For example, when w(M) = Θ(n), the dependence on n is reduced from n1/2 to n1/3.

1Whenever we refer to an event that occurs “with high constant probability”, we mean with probability at least
1 − δ for any small constant δ of our choice.

2We assume that the shape is contained within the image area.
3The requirement for a gradient of the form 1/r is imposed to avoid a host of issues relating to the irregular shape

of pixelated lines in polygons with other gradients. It is possible that our results can be extended to such cases almost
unchanged or that the difference is of essence.
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We also give an almost matching lower bound. Namely, we show that any (two-sided error)
testing algorithm for monotonicity must have complexity Ω(min{w(M)1/2, n2/3/w(M)1/3})
(for constant ε).

For illustrations of the different properties, see Figure 1. Our algorithms (with the exception of
the line imprint algorithm) are assumed to be given a constant factor estimate of w(M). The
lower bounds hold when the algorithm has such knowledge as well. In the case of connectivity and
convexity we show how such an estimate can be obtained without increasing the complexity of the
algorithm.

Figure 1: Examples of the tested properties in images: (A) is a connected image, (B) is a line
imprint, (C) is convex and (D) is monotone. The image (E) is relatively far from having any of the
properties.

1.2 Techniques

As noted in the previous subsection, one of our results, concerning testing the basic property
of being a line, is part of a more general technique that exploits the small VC-dimension of the
property. While using bounds on the VC-dimension is far from being new, there is a small “twist” in
our application. The other results differ from this one, and though each has its own particularities,
they can be viewed as sharing a common “theme”.

This common theme is that the image is considered in two “scales”: a coarser one and a finer
one. The coarser scale is determined by uniform samples of 1-pixels, and the finer scale by queries.
For example, in the case of testing connectivity, the algorithm considers a partition of the input
matrix into submatrices (of size roughly

√
w(M) in each dimension). Given a sample of 1-pixels,

the algorithm first checks whether the submatrices that contain samples are connected. If they
are not connected, then the algorithm rejects.4 Otherwise these submatrices are considered the
backbone of the image and the algorithm now tests (with the use of queries), whether all but a
small fraction of the submatrices in the backbone are “internally connected”, and that all but a
small fraction of the points are “well connected” to them.

In the case of monotonicity there is no predetermined partition, but rather the sample deter-
mines such a partition (or causes rejection since a violation of monotonicity is observed). The
partition is such that if the image is far from being monotone, then (almost all) the violations are
within the submatrices defined by the sample. We then show that by performing queries within
these submatrices (with an appropriate distribution over the queries), we will detect a violation

4Indeed, this causes the algorithm to have two-sided error. As noted previously, if we require that the algorithm
have one-sided error, then there is no sublinear algorithm when the matrix is relatively sparse.)
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with high probability. The convexity testing algorithm also does not have a predetermined parti-
tion, but its use of queries is more similar to the connectivity testing algorithm (though it is able
to exploit certain useful features of convex images, and is hence more efficient).

1.3 The work of Raskhodnikova [Ras03] and its relation to our work

Raskhodnikova studies three properties in the dense-images model: connectivity , convexity , and
being a half-plane. All the algorithms in [Ras03] have complexity that is at most quadratic in 1/ε,
and have no dependence on the size (n2) of the matrix.

We also consider the (same) property of connectivity and give two algorithms. The first is
more efficient when the matrix is below a certain threshold of the density (i.e., w(M) ≤ n4/3) and
the second is more efficient when the density goes above this threshold. The second algorithm is
essentially the same as the connectivity testing algorithm in [Ras03] (with the appropriate setting
of certain parameters), and its analysis is similar (with certain subtleties). This algorithm is also
similar to the connectivity testing algorithm in bounded-degree graphs [GR02] (though the analysis
is naturally different).

We also have an algorithm for testing convexity, however, the notion we study of convexity
(appropriate for sparse images where w(M) = O(n)) and the one studied in [Ras03] (which considers
the convex hull of 1-pixels and hence is appropriate for dense images) are different, and so the results
are incomparable.

Finally, our testing algorithm for a line imprint can be seen as the “sparse analog” of being a
half-plane. As noted by Raskhodnikova [Ras03], it is possible to test whether an image corresponds
to a half-plane by attempting to learn the half-plane. She suggests a direct approach that is more
efficient (the complexity is O(1/ε) rather than O(log(1/ε)/ε)). For the line imprint we do take
what can be seen as a “learning-based” approach (for an appropriate notion of learning), and it is
possible that in our case an improvement is possible as well by a direct approach.

1.4 The relation to models for testing graph properties

In the adjacency-matrix (dense-graphs) model [GGR98], the distance between two n-vertex graphs
is the fraction of entries on which their adjacency matrices differ (where the fraction is with respect
to n2). In this model the algorithm is allowed to probe the matrix (that is, query whether there is an
edge between any pair of vertices of its choice). In the sparse/general graphs model [PR02, KKR04],
distance is measured with respect to the number of edges, m, in the graph (or a given upper bound
on this number). The algorithm may query any vertex of its choice on its ith neighbor (for any i),
and it may also query whether there is an edge between any two vertices (the latter is useful when
the graph is sufficiently dense).

Thus there is a similarity in the way the sparse/general graphs model relates to the dense-graphs
model and the way the sparse-images model relates to the dense-images model. We also note that
for both types of objects (graphs and images) while some properties are meaningful only in one
model (dense or sparse), there are properties that are of interest in both models. For example, in the
case of graphs, the property of bipartiteness (studied in [GGR98, AK02, GR02, KKR04]) exhibits
an interesting behavior when considering the whole spectrum of graph densities. In particular,
as long as the number of edges, m in the graph is below n3/2, the complexity grows like n1/2,
and once the edge-density increases, the complexity behaves like n2/m (and there is an almost
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tight corresponding lower bound). In the case of images, the property of connectivity exhibits a
somewhat similar behavior (as discussed previously).

1.5 Other related work

In addition to the work of Raskhodnikova [Ras03] (which has been discussed above), Kleiner
et al. [KKN10] study testing partitioning properties of dense images, and there have been
quite a few works on testing geometric properties, and in particular convexity, in various mod-
els [EKK+00, RV04, CLM06, CSZ00, CS01]. The different definitions in different models lead to a
variety of results. The property of monotonicity has been studied quite extensively in the context
of functions [EKK+00, BRW05, GGL+00, DGL+99, AC06, HK03, FLN+02, Fis04, HK04, BGJ+09,
MBCGS10]. Monotonicity in functions is not a direct equivalent of monotonicity in sparse images,
just as connectivity in graphs is not the direct equivalent of connectivity in images - the queries we
are allowed differ substantially, and the way local changes effecct the distance from the property
differ as well.

1.6 Open problems

Our work suggest several open problems. First, for the property of convexity we have no lower
bound, and hence a natural question is whether there is a more efficient algorithm (or a matching
lower bound). It is also interesting to study the variant of the property that is defined by imprints
of general lines (that is, when the gradient is not necessarily 1/r). For connectivity our upper and
lower bound are (almost) tight for w(M) > n3/2 and the question is what is the exact complexity
of the problem when w(M) ≤ n3/2. One might also want to consider a variant of the property
of monotonicity in which the image is also required to be connected. It is not hard to verify that
by combining a testing algorithm for connectivity and a testing algorithm for monotonicity, we
get a testing algorithm for the combined property (this is not necessarily the case in general for
disjunctions of properties). The question is whether there is a more efficient algorithm for the
combined property. Finally, one may of course consider other natural properties of sparse images
that were not studied in this work.

2 Preliminaries

For an integer k let [k] = {1, . . . , k}. For a {0, 1} matrix M of size n × n, let w(M) denote its
Hamming weight (number of 1’s). For a fixed property P of {0, 1}-valued matrices, we say that
M is ε-far from having P, if more than ε · w(M) of the entries of w(M) must be modified so as to
obtain the property.

A testing algorithm for P may query the value of M [i][j] for any 1 ≤ i, j,≤ n of its choice,
and may also obtain uniformly selected entries (i, j) such that M [i][j] = 1 (which we’ll refer to as
samples of 1-pixels). If the matrix M has the property P, then the algorithm should accept with
probability at least 2/3, and if M is ε-far from having P, then the algorithm should reject with
probability at least 2/3. If the algorithm accepts every M that has property P with probability 1,
then we say that it is a one-sided error algorithm (otherwise it is a two-sided error algorithm).
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In what follows, when we refer to an event that occurs “with high constant probability”, we mean
with probability at least 1 − δ for any small constant δ of our choice. For the sake of simplicity,
unless it affects the analysis (by more than introducing constant factors in the complexity), we
ignore floors and ceilings.

3 Testing Connectivity

For a {0, 1} matrix M , consider the underlying undirected graph G(M) = (V (M), E(M)), where
V (M) = {(i, j) : M [i, j] = 1} (so that |V (M)| = w(M)) and E(M) consists of all pairs (i1, j1) 6=
(i2, j2) in V (M) such that |i1 − i2| ≤ 1 and |j1 − j2| ≤ 1. We say that M is connected if the
underlying graph G(M) is connected. Given the correspondence between M and G(M) we shall
interchangeably refer to 1-pixels in M and vertices of G(M). We shall assume that w(M) ≥ 1,
since we can detect that w(M) = 0 by asking for a single sample 1-pixel (and getting none), in
which case we can accept.

In this section we describe an algorithm for testing connectivity whose sample complexity, query
complexity and running time are

Õ
(
min

{
w(M)1/2, n2/w(M)

})
· poly(1/ε) .

Thus, as long as w(M) ≤ n4/3, the complexity increases with w(M)1/2, and once w(M)
goes above n4/3, the complexity starts decreasing. We later prove a lower bound of
Ω(min{w(M)1/3, n2/w(M)}) queries (for a constant ε) on the complexity of any two-sided error
algorithm. We also show that if one requires that the algorithm have one-sided error, then there is
no sublinear-time algorithm (that is, there is a lower bound of Ω(w(M))).

3.1 The algorithm

We start by assuming that we are given a constant factor estimate, ŵ of w(M). In Subsection 3.1.2
we remove this assumption (by showing how to estimate w(M) using a procedure that has sample
and query complexity Õ

(
min

{
w(M)1/2, n2/w(M)

})
).

We describe an algorithm such that given w(M)/c ≤ ŵ ≤ c · w(M) (for some fixed and
known constant c), the algorithm has query and sample complexities, as well as running time,
Õ(
√

w(M)ε−2). We may thus assume that ε = ω(1/
√

w(M)) or else, we can take a single sample
1-pixel, run a Breadth First Search (BFS) to find its connected component in G(M) by performing
O(1/ε2) = O(w(M)) queries, and then take an additional sample of Θ(1/ε) 1-pixels to verify that
are are no (few) 1-pixels that do not belong to this component. In Subsection 3.1.1 we show that
if w(M) is relatively large (the threshold is roughly around w(M) = n4/3), then an alternative
(and simpler) algorithm, which generalizes the algorithm in [Ras03], has better performance (and
in particular improves as w(M) increases).

The high level idea of the algorithm is as follows: the algorithm tries to find evidence that the
tested matrix M is not connected, where the evidence comes in one of the following two forms. (1)
“Hard” evidence, in the form of a small connected component in G(M); (2) “Soft” (“statistical”)
evidence in the form of more than one connected component when viewing the matrix at a “coarser”
resolution. Namely, if we partition the matrix into (equal-size) submatrices, and take a sample of
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1-pixels, then we can define a graph over those submatrices that contain at least one sample 1-pixel
similarly to the way it was defined for single 1-pixels (i.e., G(M)). The algorithm checks whether this
“backbone’ graph is connected. Evidence against connectivity of this type is “soft”, or “statistical”
since it is possible that the matrix is connected but the sample missed some submatrix, causing
the backbone graph to be disconnected. Basing the decision of the algorithm on the second type
of evidence and not only on the first, is what makes the algorithm have two-sided error. Evidence
of the “hard” form is obtained by performing several BFS’s on G(M) (note that the neighbors of a
vertex in G(M) that corresponds to an entry (i, j) in M can be obtained by performing 8 queries
to M).

Figure 2: An illustration for the execution of Algorithm 1. The partition into submatrices is marked
by a grid of dashed lines. The sampled 1-pixels (in either Step 3 or in Step 4) are marked by dark
filled pixels, and the queried entries that are answered by 1 in the course of the BFS’s are marked
by lighter filled pixels. The backbone is outlined by a bold line. Note that the marked pixels outside
the backbone correspond to a BFS performed in Step 4.

Algorithm 1: Testing connectivity (Version I)

1. Consider a fixed partition of M into equal-size submatrices of dimensions s × s where s =√
ŵ/c (recall that ŵ ≤ c · w(M) and that the constant c is known to the algorithm).

2. Take a sample S1 of t1 = Θ
(√

ŵ · log(ŵ)
)

uniformly distributed 1-pixels in M and con-

sider all non-empty submatrices in the abovementioned partition (that is, all submatrices that
contain a sample 1-pixel). Let B(S1) be the (“backbone”) graph whose vertices are the non-
empty submatrices, and where there is an edge between two submatrices if they are adjacent
(horizontally, vertically, or diagonally). If B(S1) is not connected, then reject (otherwise,
continue).
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3. Select, uniformly at random, t2 = Θ(log(ŵ)/ε) non-empty submatrices (vertices in B(S1)).
For each submatrix selected, consider the first sample 1-pixel that fell into the submatrix, and
perform a BFS in G(M) starting from the vertex that correspond to this 1-pixel. Stop once the
BFS reaches at least 8

√
c · ŵ/ε vertices in G(M) or the BFS gets “stuck” (a small connected

component in G(M) is detected). In the latter case reject (otherwise, continue).

4. Take an additional sample, S3, of t3 = Θ(1/ε) 1-pixels. If any selected 1-pixel belongs to
a submatrix that does not neighbor a submatrix in the backbone (a vertex of B(S1)), then
reject. Otherwise, perform a BFS starting from each sample 1-pixel in S3 as described in
the previous step. If a small connected component is found then reject.

5. If no step caused rejection, then accept.

For an illustration of a (successful) execution of the algorithm, see Figure 2.

Theorem 3.1 Algorithm 1 is a (two-sided error) testing algorithm for connectivity. Its sample

and query complexities as well as its running time are Õ
(√

ŵ · ε−2
)

= Õ
(√

w(M) · ε−2
)
.

Proof: The sample complexity of the algorithm is t1 + t3 = O
(√

ŵ · log(ŵ) · ε−1
)
. Its query

complexity is O(log(ŵ) · ε−1) · O(
√

ŵ · ε−1) = O
(√

ŵ · log(ŵ) · ε−2
)
, since it performs t2 + t3 =

O(log(ŵ) · ε−1) searches (in Steps 3 and 4), in each search it reaches O(
√

ŵ · ε−1) vertices in G(M),
and determining all neighbors of a vertex in G(M) can be done by performing 8 queries to M . The

algorithm can be implemented so that it run in time Õ
(√

ŵ · ε−2
)
.

We turn to analyzing the correctness of the algorithm. In all that follows, when we refer to
submatrices, we mean one of the (n/s)2 = c · n2/ŵ submatrices in the partition defined by the
algorithm. For each s × s submatrix, we say that the submatrix is heavy if the number of 1-pixels
in it is at least s/2 (recall that s =

√
ŵ/c). Otherwise it is light . By our choice of the sample size

t1 = Θ(
√

ŵ log(ŵ)), with high constant probability, in Step 2 we’ll get at least one sample 1-pixel
from each heavy submatrix. This is true because for each heavy submatrix, the probability that a
single sample 1-pixel falls into it is at least

√
ŵ/c/w(M) = Ω(1/

√
ŵ), and so the probability that

we don’t get even one sample 1-pixel from the submatrix is at most (1−Ω(1/
√

ŵ))t1 = 1/poly(ŵ).
Since the number of heavy submatrices is at most w(M)/

√
ŵ/c = O(

√
ŵ), by taking a union

bound over all heavy submatrices we have that with high constant probability the sample “hits”
each heavy submatrix. We shall say in such a case that the sample S1 is typical .

Consider first the case that M is connected. We claim that the probability that it is rejected
is at most a small constant. First we observe that M cannot be rejected due to a small connected
component of G(M) being found in Step 3 or Step 4, since G(M) consists of a single connected
component of size w(M) (and we assume that ε = ω(1/

√
ŵ) = ω(1/

√
w(M)). Next we note

that if S1 is typical, then the backbone graph B(S1) must be connected. This is true since each
submatrix is of size s× s for s =

√
ŵ/c, so the existence of more than one connected component in

B(S1) implies that some heavy submatrix was not hit (under the premise that M is connected).5

By the same reasoning, if S1 is typical, then all 1-pixels in the sample selected in Step 4 belong

5To see this, consider the 1-pixels in the area of two connected components in B(S1), C1 and C2. As G(M) is
connected, there must be at least one path between these pixels in G(M), and as B(S1) isn’t connected, the length
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to submatrices that belong to or neighbor the backbone submatrices. Since the probability that
S1 is not typical is upper bounded by a small constant, M will be accepted with high constant
probability.

We now turn to deal with the case that M is ε-far from being connected. If the backbone graph
B(S1) is not connected, then M is rejected in Step 2 of the algorithm, so we consider the case that
B(S1) is connected. We say that a submatrix in the backbone is “reliable” if it would pass the BFS
test performed by the algorithm in Step 3 (starting from the first sample 1-pixel that fell into it).
Otherwise it is “unreliable”. Similarly, we say that a 1-pixel is “well connected” to the backbone if
it would pass the test performed in Step 4 of the algorithm (that is, it belongs to a submatrix that
neighbors one of the backbone submatrices, and a BFS that starts from it does not detect a small
connected component).

Suppose that the number of submatrices in the backbone that are unreliable is greater than
(ε/8)

√
w(M) ≥ (ε/8) ·

√
ŵ/c. Recall that the total number of submatrices in the backbone is

at most t1 = Θ
(√

ŵ · log(ŵ)
)
. Therefore, one of these submatrices is selected with high constant

probability in Step 3 of the algorithm (where Θ (log(ŵ/ε)) submatrices of the backbone are selected),
causing the algorithm to reject. Similarly, if the fraction of 1-pixels that are not well-connected to
the backbone is greater than ε/8, then with high constant probability we’ll obtain such a 1-pixel in
Step 4 of the algorithm and reject.

We next show that if both the number of unreliable submatrices in the backbone is at most
(ε/8)

√
w(M), and the fraction of 1-pixels that are not well-connected to the backbone is at most

ε/8, then M is ε-close to being connected. We show this by describing how M can be made
connected with relatively few modifications, building on the backbone. This implies that if M is
ε-far from being connected then it will be rejected with high constant probability. Details follow.

For each of the reliable submatrices of the backbone, consider the BFS performed starting from
the first sample 1-pixel in S1 that belongs to the submatrix. Since the submatrix is reliable, at
least 8

√
cŵ/ε vertices in G(M) are reached by the BFS. Similarly, for each well-connected 1-pixel,

consider the BFS that starts from this 1-pixel and reaches at least 8
√

cŵ/ε vertices in G(M). Since
the total number of vertices in G(M) is w(M), the number of connected components in the subgraph

of G(M) that is induced by the union of all these BFS’s is at most w(M)

8
√

c bw/ε
≤ (ε/8)

√
w(M). We

note that, by their definition, well-connected 1-pixels may belong to submatrices in the backbone.
That is, there may be more than one BFS that starts in the same submatrix.

Next we deal with the unreliable submatrices in the backbone (where there are at most
(ε/8)

√
w(M) ≤ (ε/8)w(M)/s such submatrices). For each unreliable submatrix in the backbone,

we change at most s of the entries in it from 0 to 1, so as to obtain a connected component that
corresponds to some arbitrary row in the submatrix (say, the middle row). Let M ′ be the resulting
matrix (where M ′ and M differ in at most (ε/8)w(M) entries).

At this point we have at most (ε/4)
√

w(M) connected components in the subgraph of G(M ′)
that is induced by the aforementioned BFS’s and the modified entries in the unreliable submatrices.
These components intersect all submatrices in the backbone and possibly additional neighboring
submatrices (due the the BFS’s that start from well-connected 1-pixels). If we consider an auxiliary
graph whose vertices are these components and where there is an edge between two components

of this path must be at least s. Let us trace this path until it leaves the submatrices neighboring C1. In particular,
consider the last s 1-pixels in this subpath. These pixels pass through no more than 2 submatrices and so one of
these is heavy. Such a heavy submatrix must be hit by S1 in a typical sample.
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if they intersect neighboring submatrices or the same submatrix, then this auxiliary graph is con-
nected. Let T be some (arbitrary) spanning tree of this auxiliary graph. For each edge in the
spanning tree (a pair of neighboring (or identical) submatrices that are intersected by different
connected components), we can modify at most 23/2s = 23/2

√
ŵ/c ≤ 23/2

√
w(M) entries in the

neighboring (or identical) submatrices from 0 to 1 so as to connect the two corresponding connected
components, and get a single connected component. Let M ′′ be the resulting matrix (so that M ′′

and M ′ differ on less than (3ε/4)w(M) entries).

Finally, we observe that all vertices in G(M ′′) that do not belong to the abovementioned single
connected component in G(M ′′) necessarily correspond to 1-pixels in M that are not well-connected
(though it is possible that some 1-pixels that are not defined as well-connected belong to the single
connected component). Therefore, we can change all these (at most (ε/8)·w(M)) entries in M ′′ from
1 to 0 and remain with a single connected component in the resulting matrix. The total number of
modifications made is at most (ε/8)w(M) + (3ε/4)w(M) + (ε/8) · w(M) = εw(M), implying that
M is ε-close to being connected, as claimed.

3.1.1 An alternative algorithm for dense submatrices

In this subsection we describe an algorithm whose query and sample complexities, as well as its
running time are O((n2/w(M)) · ε−3), when given an estimate ŵ such that w(M)/c ≤ ŵ ≤ c ·
w(M). The algorithm is essentially a generalization of the algorithm of Raskhodnikova [Ras03]
for testing connectivity in the dense-images model (which is appropriate when w(M) = Θ(n2)),
and we also apply a lemma proved in [Ras03]. We note that the complexity can be reduced to
O
(
(n2/w(M)) · ε−2 log2(1/ε)

)
similarly to what is done in [Ras03] and [GR02]. We discuss this

further following the proof of Theorem 3.2.

Thus, we get an improved performance when M is relatively dense (ignoring the dependence on
1/ε, and logarithmic factors, this occurs around the threshold of w(M) = n4/3). Here we assume
that ε = ω(n2/ŵ2) = ω(n2/w(M)2), or else, by taking a sample of size Θ̃((n2/w(M)) · ε−2), we can
obtain with high constant probability all the 1-pixels in M .6

Algorithm 2: Testing connectivity (Version II)

1. Take a sample of Θ(1/ε) 1-pixels.

2. From each sampled 1-pixel perform a BFS in G(M) until 16cn2/(ε2ŵ) vertices in G(M) are
reached (recall that w(M)/c ≤ ŵ ≤ c ·w(M) and the constant c is known to the algorithm) or
the BFS gets “stuck” before reaching this number of vertices (a small connected component is
found).

3. If a small connected component is found, then reject, otherwise, accept.

Theorem 3.2 Algorithm 2 is a (one-sided error) testing algorithm for connectivity. Its sample
complexity is O(1/ε) and its query complexity and running time are O

(
(n2/w(M)) · ε−3

)
.

We shall apply the next lemma from [Ras03].

6Alternatively, we can slightly modify the algorithm so that if it finds a single connected component, then it takes
an additional sample of Θ(1/ε) 1-pixels and rejects only if one of them falls in another connected component.
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Lemma 3.1 ([Ras03]) If G(M) contains at most k connected components then it can be made
connected by changing at most n(

√
2k + O(1)) pixels in M from 0 to 1.

The lemma follows by considering a partition of M into submatrices of size s × s, for s = n
√

2/k,
creating a path between the bottom-right corners of all these submatrices, and adding a path from
each connected component to the closest corner.

Proof of Theorem 3.2: The bounds on the sample complexity, query complexity and running
time of the algorithm follow directly from its description (where again we note that in order to
obtain all the neighbors of a vertex in G(M) it suffices to perform 8 queries to M).

Clearly, if M is connected, then the algorithm accepts (with probability 1). Therefore, suppose
that M is ε-far from being connected. We shall show that in such a case, necessarily the number of
vertices in G(M) that belong to connected components of size smaller than 16cn2/(ε2ŵ), is greater
than (ε/2)w(M). But in such a case, with high constant probability, the algorithm rejects (since
it takes a sample of Θ(1/ε) vertices in G(M) and from each it performs a BFS until it reaches
16cn2/(ε2ŵ) vertices).

Assume, contrary to the claim, that M is ε-far from being connected but in G(M) there are at
most (ε/4)w(M) vertices that belong to connected components of size smaller than 16cn2/(ε2ŵ).
We next show that in such a case, by modifying at most εw(M) entries in M we can obtain a
connected matrix, which contradicts the premise that M is ε-far from being connected.

We can first change from 1 to 0 all the at most (ε/2)w(M) entries in M that correspond to ver-
tices that belong to connected components of size smaller than 16cn2/(ε2ŵ). Consider the remaining
big connected components (that is, the components of size at least 16cn2/(ε2ŵ) ≥ 16n2/(ε2w(M))).

Since there are at most w(M)
16n2/(ε2w(M))

= ε2w(M)2

16n2 , such components, by Lemma 3.1, we can connect

them by modifying at most n ·
(

εw(M)

2
√

2n
+ O(1)

)
which is at most (ε/2)w(M).

In order to reduce the dependence on ε to Õ(1/ε2), we do the following. We will consider the
possibility of connected components of different sizes in separate iterations. If connected compo-
nents of small size cause our image to be far from connected, a relatively small number of queries
will discover such a component if we land in it. Likewise, if a number of relatively large components
is responsible for the image being far from connected, we have a reasonable probability of landing
in each such component in a sample, but we must query more pixels to cover it. Obviously a combi-
nation of these two possibilities exists, and each iteration i in the following deals with components
of a different order of magnitude. The algorithm works in log(1/ε) iterations. In iteration i it takes
a sample of Θ(log(1/ε)/(2iε)) 1-pixels and for each it performs a BFS in G(M) until it reaches
(32cn22i)/(εŵ) vertices (or it detects a small connected component). The dependence on ε is hence
reduced to Õ(1/ε2). The correctness of the algorithm is implied by the following argument. If for
some 1 ≤ i ≤ log(1/ε), the number of vertices that reside in connected components of size at most
(32cn22i)/(εŵ) is at least 2iεw(M)/(4 log(1/ε)), then, with high constant probability, the algorithm
rejects in iteration i.

But otherwise, we have that there are at most εw(M)/(2 log(1/ε)) vertices in components of
size at most (32cn2)/(εŵ), and for each 1 ≤ i ≤ log(1/ε) there are at most 2iεw(M)/(4 log(1/ε))
vertices in components of size at most (32cn22i)/(εŵ) and at least (32cn22i−1)/(εŵ). We next
show that after changing from 1 to 0 all (at most (ε/2)w(M)) pixels that belong to components
of size at most (32cn2)/(εŵ), we have at most ε2w(M)2/(16n2) connected components. For each
1 ≤ i ≤ log(1/ε), the number of components of size (32cn22i)/(εŵ) and at least (32cn22i−1)/(εŵ)
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is upper bounded by 2iεw(M)/(4 log(1/ε))
(32cn22i−1)/(ε bw)

≤ ε2w(M)2/(64 log(1/ε), and the number of components of

size greater than (32cn2)/(ε2ŵ) is upper bounded by ε2w(M)2/(32 log(1/ε)). Adding them all up,
we get the desired bound on the number of connected components and we can apply Lemma 3.1.

3.1.2 Obtaining an estimate of w(M)

In this subsection we show how to obtain an estimate ŵ such that with high constant probability,
w(M)/c ≤ ŵ ≤ c ·w(M) for some constant c. Given the estimate we get, we decide whether to run
Algorithm 1 or Algorithm 2 (where the algorithm is provided with the estimate ŵ).

We next show how to obtain such an estimate by taking a sample of size
O(min{

√
w(M), n2/w(M)}) and performing at most these many queries. The idea behind the

algorithm is the following. It is possible to obtain an estimate of w(M) in two different ways.
Roughly speaking, the first achieves a better performance when w(M) is “large”, and the second
when w(M) is “small”.

Specifically, the first approach is to simply query uniformly selected entries in M and take the

fraction of entries that are 1 (among those queried) to be an estimate for p(M)
def
= w(M)/n2. If we

want to obtain an estimate p̂ such that with high constant probability, p(M)/c ≤ p̂ ≤ cp(M), then
by the multiplicative Chernoff bound, it suffices to query Θ(1/p(M)) = Θ(n2/w(M)) uniformly
selected entries in M . The difficulty of course is that we do not know w(M) so that it is not
clear how many queries to perform so as to get such an estimate. We can however perform queries
(on uniformly selected 1-pixels), until we get a certain constant number of “hits” (i.e., queries
(i, j) for which M [i, j] = 1) and use the number of queries performed to derive an estimate for
1/p(M) = n2/w(M). (In fact, for a rough estimate, it suffices to obtain a single hit.) The
drawback of this approach is that if w(M) is very small (in particular, n2/w(M) is significantly
greater than

√
w(M)), then the query complexity is large.

The second approach is based on collision probabilities (where in the term collision we mean
getting the same 1-pixel twice when uniformly sampling 1-pixels). Namely, if there are w(M) entries
in M that are 1, then if we take a sample of significantly less than

√
w(M) (uniformly selected)

1-pixels then we do not expect to see any collision, while if we take a sample of, say, 4
√

w(M)
1-pixels, then we expect to get a collision with high constant probability.

In order to “enjoy both worlds”, we run two iterative processes “in parallel”. One process is the
“query process” and the other is the “sampling process”. Namely, in each iteration, we both ask a
new query (uniformly selected among all entries (i, j) ∈ [n]× [n], where n = {1, . . . , n}), and we ask
for a new sample 1-pixel (which is uniformly selected among all entries (i, j) such that M [i, j] = 1).
We stop once we either get a positive answer to a query (i.e., we “hit” an entry (i, j) such that
M [i, j] = 1 in a uniformly selected query), or we get a collision in our sampled 1-pixels (i.e., we get
the same sample 1-pixel (i, j) a second time). Let t be the number of queries performed (samples
obtained) until one of these events occurs. If the first event occurs, then we output ŵ = n2/t, and
if the second event occurs, then we output t2.

It remains to bound the probability that ŵ > c · w(M) or that ŵ < w(M)/c. The first
event may occur either because the query process causes the algorithm to stop when t < t1 for
t1 = (1/c)(n2/w(M)) or because the sampling process causes the algorithm to stop only when
t > t2 for t2 =

√
c · w(M). The probability that the query process stops prematurely is upper

bounded by t1 ·w(M)/n2 = 1/c, and the probability that the sampling process doesn’t stop before
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t reaches t2 is upper bounded by (1− (t2/2) · (1/w(M)))t2 /2 = (1−
√

c/w(M)/2)
√

c·w(M)/2 < e−c/4.
The latter bound can be derived by considering a partition of the t2 samples into two equal parts,
p1 and p2. The expression (1 − (t2/2) · (1/w(M))) is the probability for each sample in p2 not to
hit a sample in p1 given that all the samples in p1 are distinct (which they are, or we would have
stopped earlier). This process is repeated t2/2 times once t2 samples have been taken, and thus at
least one sample will be hit twice with probability greater than (1 − (t2/2) · (1/w(M)))t2/2.

Similarly, the second event (ŵ < w(M)/c) may occur because the sampling process causes the
algorithm to stop when t < t′2 for t′2 ≤

√
w(M)/c. The probability of this is upper bounded by(t′

2

2

)
· (1/w(M)) < 1/c, the union bound on the probability of any two such samples returning the

same location. The other possibility for underestimation is that the query process stops only when
t > t′1 for t′1 = c · (n2/w(M)), which is upper bounded by (1 − w(M)/n2)t

′

1 < e−c.

The above discussion also implies that the probability that the estimation algorithm performs
more than min{

√
c · w(M), c·(n2/w(M))} queries (takes more than these many samples), decreases

exponentially with c.

3.2 Lower bounds on testing connectivity

We start with a simple lower bounded for one-sided error algorithms, and then turn to two-sided
error algorithms.

Theorem 3.3 Any one-sided error testing algorithm for connectivity must perform
Ω(min{w(M), n2/w(M)}) queries (for a constant ε). The lower bound holds when the algo-
rithm is given an estimate ŵ such that w(M)/2 ≤ ŵ ≤ 2w(M).

Proof: By the definition of one-sided error testing algorithm, a one-sided error testing algorithm
for connectivity can reject only if the sample and queries that it observes are not consistent with
any connected matrix M for which w(M)/2 ≤ ŵ ≤ 2w(M). That is, the entries of the matrix that
are viewed by the algorithm imply that G(M) must contain more than one connected component.

Consider first the case that ŵ ≤ 2n (so that the lower bound is Ω(w(M))). Let M be the matrix
in which M [1, 1] = 1, . . . ,M [1, ŵ/2] = 1, M [ŵ/2, 1] = 1, . . . ,M [ŵ/2, ŵ/2] = 1 and M [i, j] = 0 for
every other entry (i, j). The matrix M is Ω(1)-far from being connected (and w(M) = ŵ). However
even if we give the algorithm sample 1-pixels “for free” (and the estimate ŵ so that it knows that
w(M) ≤ 2ŵ), then the algorithm cannot reject before it performs Ω(w(M)) queries, since it won’t
observe a “vertex cut” between the two sub-rows.

If ŵ > 2n then we generalize the above construction as follows (where we assume for simplicity
that ŵ is divisible by 2n and that n2 is divisible by 2ŵ or else some rounding is required). We
take 2ŵ/n equally spaced rows in the matrix (so that the distance between every two rows is
n2/(2ŵ)), and in each row we put 1’s in ŵ/(2n) subrows, each of length n2/ŵ, where each two
consecutive subrows are at distance n2/ŵ from each other. Here too, the matrix is Ω(1)-far from
being connected (and w(M) = ŵ), but every one-sided error algorithm must perform Ω(n2/w(M))
queries.

Theorem 3.4 Any (two-sided) error testing algorithm for connectivity has sample complexity and
query complexity Ω(min{w(M)1/3, n2/w(M)}) (for a constant ε). The lower bound holds when the
algorithm is given an estimate ŵ such that w(M)/2 ≤ ŵ ≤ 2w(M).
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j1
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Figure 3: An illustration for the proof of Theorem 3.4 for ŵ = n. On the top is an example of
the first row of submatrices of a matrix in F1, and on the bottom is an example of the first row of
submatrices of a matrix in F2. The outline of the submatrices is marked in dashed lines, and the
rows and columns of 1-pixels are marked by bold lines.

Proof: We first establish the claim for ŵ = Θ(n) (where the bound is Ω(n1/3)), and later explain
how to modify it to smaller and larger values of ŵ (and hence w(M)). In order to prove the lower
bound we define two families of matrices. In the first family, denoted F1, all matrices are connected,
and in the second family, denoted F2, with very high probability over the choice of a random matrix
in F2, the matrix is Ω(1)-far from being connected. We shall show that any algorithm that takes a
sample of size o(n1/3) and performs at most these many queries, cannot distinguish with constant
probability between a matrix selected uniformly at random from F1 and a matrix selected uniformly
at random from F2.

Defining the two families. Consider a partition of the entries of an n × n matrix into submatrices
of dimensions n1/3 × n1/3. For both families there will actually be 1-pixels only in the first “row”
of these submatrices, where we number this sequence of submatrices from 1 to n2/3 (from left to
right).

Each matrix in F1 is determined by 2n2/3 integers, i1, . . . , in2/3 and j1, . . . , jn2/3 , where 1 ≤
ik, jk ≤ n1/3 for every 1 ≤ k ≤ n1/3. These integers determine the locations of the 1-pixels in the
matrix in the following way: For each k, there are 1-pixels in row ik of submatrix number k and
submatrix number k + 1 (if such exists), and there are 1-pixels in column jk of submatrix number
k. All other entries are 0.

Each matrix in F2 is determined by two subsets Tr, Tc ⊂ [n2/3] each of size n2/3/2 and by n2/3

indices {ik}k∈Tr ∪ {j`}`∈Tc where 1 ≤ ik, j` ≤ n1/3 for every k ∈ Tr and ` ∈ Tc. These integers
determine the locations of the 1-pixels in the matrix in the same way that was defined for matrices
in F1. That is, For each k ∈ Tr, there are 1-pixels in row ik of submatrix number k and submatrix
number k + 1 (if such exists), and for each ` ∈ Tc there are 1-pixels in column j` of submatrix
number `. All other entries are 0. Thus, the difference between matrices in F1 and matrices in
F2, is that in the latter family, there may be submatrices (in the first row of submatrices) that are
“empty” (contain only 0’s) or contain only a row of 1-pixels and no column of 1-pixels.

Properties of the two families. By the above description, every matrix in F1 is connected. On the
other hand, as we explain next, with high probability a uniformly selected matrix in F2 will be
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Ω(1)-far from being connected. The reason is that with high probability over the choice of M the
following three events will occur:

1. The columns 1, . . . , n/3 will contain at least n/12 different 1-pixels.

2. The columns 2n/3 + 1, . . . , n will contain at least n/12 different 1-pixels.

3. At least n/24 of the columns n/3 + 1, . . . , 2n/3 will contain no 1-pixels.

Thus M will be Ω(1)-far from connected, as either all 1-pixels must be removed from one of the
sides of the image, or each column in the middle of the image must contain at least a single 1-pixel.

The difficulty of distinguishing between the two families. Consider any (two-sided error) algorithm for
testing connectivity of matrices that takes a sample of o(n1/3) 1-pixels and asks o(n1/3) queries. We
may assume without loss of generality that it first takes the sample and then performs all queries
(possibly adaptively). We first show that for both families, the distributions on sampled 1-pixels
are very similar. More precisely, we show that unless a certain low probability event occurs, the
distributions on samples are identical. We later deal with the answers to queries.

Since once the algorithm is given a sample 1-pixel it can determine in an additional constant
number of queries whether the 1-pixel belongs to a row or to a column (and in the former case
whether the row extends to the next submatrix or to the previous submatrix), we assume that the
algorithm is actually given a sample of rows/columns. That is, each sample is either of the form
(k, ik) or (`, j`) for k, ` ∈ [n2/3] and ik, jk ∈ [n1/3]. Rather than first selecting a matrix uniformly
from F1 (similarly, uniformly from F2) and then generating a sample, we may think of the sample
being generated in the process of determining the uniformly selected matrix. Specifically, for each
family we define a “process” (P1 for F1 and P2 for F2) that generates samples that are distributed
according to a uniformly selected matrix in the family, while constructing the matrix. This is done
as follows.

For each new sample, both of the processes first flip a coin with bias 2/3 to decide whether to
generate a row or a column (as in both families the number of 1-pixels that belong to rows is twice
as large as the number of 1-pixels that belong to columns). Suppose that a row is to be generated
(the generation of a column is analogous). Let t be the number of different rows already generated
(where by our assumption on the sample complexity of the algorithm, t = o(n1/3)). Then the
process P1 flips a coin with bias t/n2/3 to determine whether the new row will be identical to a
row that already appeared in the sample. If the coin turns out “heads”, then one of the previously
generated rows is selected to be the next sample row, while if the coin turns out “tails”, then the
process uniformly selects a submatrix k that is not yet associated with a row (that is, there is
no row starting at this submatrix and ending in the next). It then uniformly selects ik ∈ [n1/3]
to determine the position of the row in submatrix k (and k + 1). The process P2 does the same
except that it flips a coin with bias t/(n2/3/2) = 2t/n2/3. The important observation is that for
both processes, for any choice of a prefix of the sample, conditioned on the coin coming up “tails”
(which occurs with probability at least 1 − 2t/n2/3 in both cases), the distribution over the new
row is identical .

The above discussion implies, that, since the algorithm takes a sample of size o(n1/3), with
probability at least 1 − o(n1/3) · o(n1/3)/n2/3 = 1 − o(1), the distributions over the samples that
the algorithm observes are identical for both families (processes).
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It remains to deal with the queries. Here the argument is even simpler, where we now let the
two processes answer queries while continuing to construct a matrix in their respective families.
We may assume, without loss of generality, that the algorithm does not ask queries about 1-pixels
that belong to rows/columns that it observed in the sample (as we already gave the algorithm the
complete row/column “for free”). Thus the algorithm only asks queries about entries that do not
belong to sample rows/columns. We claim that given that the algorithm asks o(n1/3) queries, for
both processes (families), with probability 1 − o(1), all queries are answered by 0.

To verify this, consider any fixed submatrix k. If the algorithm asked already t queries in the
submatrix, so that the queries belong to at most t rows and at most t columns, and they were
all answered by 0, for both processes, the probability that the next query in the submatrix is
answered by 1 is upper bounded by O(1/(n1/3 − t)). Since the algorithm performs o(n1/3) queries,
the probability that it gets an answer of 1 to any of its queries, is o(1), as claimed.

Thus, if the algorithm takes a sample of size o(n1/3) and performs o(n1/3) queries, then with
probability at least 1−o(1) the distributions on samples and the answers to its queries are identical
when the matrix is uniformly selected in F1 and when it is uniformly selected in F2. This implies
that there is no testing algorithm with this complexity for the property of connectivity when
w(M) = Θ(n).

Dealing with w(M) that is not Θ(n). To extend the lower bound to w(M) = Θ(ŵ) for ŵ < n, we can
easily scale-down the lower bound construction as follows. We take a partition of M into submatrices
of size ŵ1/3 × ŵ1/3, consider the first ŵ2/3 such submatrices in the first row of submatrices, and
replace each occurrence of n in the above construction (and corresponding analysis) by ŵ.

To extend the bound to w(M) = Θ(ŵ) for ŵ > n, we further consider two cases. If ŵ = O(n3/2)
(so that the lower bound should still be Ω(ŵ1/3)), then we consider a partition into submatrices
of size ŵ1/3 × ŵ1/3 (as in the case that ŵ ≤ n), but the construction uses not only the first row
of submatrices but rather ŵ/n (which is at most n/ŵ1/3) such rows. Here we have that the total
number of submatrices considered is of the order of ŵ2/3. To ensure connectivity between different
rows of submatrices we can add (in both families) the last column of the matrix, and in order to
simplify the argument that a random matrix in F2 is Ω(1)-far from being connected, we can use
only half of the rows of submatrices (alternating between an “occupied” row and an “empty” row).
Other than that, the argument remains essentially as is (with n replaced by ŵ).

Finally, if ŵ = Ω(n3/2) (so that the lower bound should be Ω(n2/ŵ)), then we consider a
partition into submatrices of size (n2/ŵ)× (n2/ŵ), where we use all ŵ/(2n) odd numbered “rows”
of submatrices (and add the rightmost column as in the previous case). Since the number of
submatrices is of the order of (ŵ/n)2, the probability of getting a collision (that is, that a sample
row/column hits the same submatrix twice) using o(n2/ŵ) samples, is even smaller than in the other
cases (since n2/ŵ < ŵ/n for the current setting of ŵ). Turning to the queries, if the algorithm
performs o(n2/ŵ) queries, then for both distributions it will with high probability see only 0’s, as
in the other cases.

4 Testing and Learning in the Sparse Image Model

In the standard PAC learning model [Val84], a learning algorithm is given access to examples
that are distributed according to a fixed underlying distribution D and labeled by an unknown
target function f from a known class C of Boolean functions (also known in the learning theory
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literature as concepts). Given an error (or distance) parameter ε and a confidence parameter δ,
the algorithm is required, based on the labeled samples it has seen, to output a hypothesis h for
which the following holds. With probability at least 1− δ, taken over the selection of the examples
and possibly the internal coin-flips of the algorithm, the distance between h and f with respect to
the underlying distribution D, is at most ε (i.e., Prx∼D[h(x) 6= f(x)] ≤ ε). If the algorithm always
outputs a hypothesis h ∈ C, then it is a proper learning algorithm. Variants of this model may
allow the algorithm to have query access to the target function, and it may also be assumed that
the underlying distribution D is known, and in particular that it is the uniform distribution over
the domain.

It was observed in [GGR98], that given a proper learning algorithm for a class of Boolean
functions C (which is allowed queries and works under the uniform distribution), we can easily
transform it into a testing algorithm for the property of membership in this class, with the same
complexity. In particular, this implies that we can get testing algorithms for membership in classes
of functions where the complexity of the algorithm depends linearly on the VC-dimension [VC71]
of the class (we recall the notion of the VC-dimension momentarily).

In our context, an image M can be seen as a Boolean function fM : [n] × [n] → {0, 1}. There-
fore, the existence of a proper learning algorithm for a certain class of images under the uniform
distribution over [n] × [n] and with queries, implies testing the class in the dense-images model
(with essentially the same complexity). However, in our sparse-images model, the distance mea-
sure is different, and furthermore, we are given access to uniform samples of 1-pixels. Thus, the
corresponding notion of learning needs to be modified.

Specifically, a learning algorithm for a class C of sparse images is given query access to an
unknown image M in the class as well as access to uniformly selected 1-pixels in the image. The
algorithm is also given a distance parameter ε, and is required to output a (representation of) an

image M̂ such that with probability at least7 2/3, the hypothesis image M̂ and the target image
M differ on at most ε · w(M) pixels.

While our focus is on testing algorithms for properties of sparse images (membership in classes
of sparse images), and we state our results for such algorithms, in this section we actually perform
“testing through learning”, even when this is not stated explicitly. We first describe two general
results, and then consider a particular basic class of sparse images – line imprints, and present a
special purpose algorithm (that does not directly apply the general results but rather uses ideas
from them). We also note that the results presented here, though stated in the context of sparse
images, are not restricted to this domain. Rather they apply in general to learning and testing
membership for classes of sparse functions.

4.1 Testing sparse images and the VC-dimension

In what follows we may view an image M as the set of its 1-pixels. Recall that the VC-
dimension [VC71] of a class of images (sets) C is the size of the largest subset of pixels in [n] × [n]
that is shattered by C. A subset S is said to be shattered by C if for every T ⊆ S there exists an
image M ∈ C such that M∩S = T . The relation between small VC-dimension and PAC learnability
is well known. Here we adapt this knowledge to our context of testing sparse images (where, as

7For the sake of simplicity, and in order to be consistent with our definition of testing, we set δ = 1/3. As usual,
it is possible to increase the success probability of the algorithm to 1 − δ at a multiplicative cost of log(1/δ).
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noted previously, we actually perform testing through learning, where learning here is in the sense
discussed above).

Lemma 4.1 Let C be a class of images with VC-dimension d. There exists a one-sided error
property testing algorithm for testing membership in C (in the sparse-images model) that given
w = w(M) for the tested image M has sample complexity O(d log(1/ε)/ε) (and performs no queries).

Proof: Denote by Cw the subclass of C where all hypotheses have Hamming weight w. Now
consider any hypothesis image H in this class that differs from M on more than ε · w pixels (i.e.,
viewing the two images as sets of 1-pixels, |M \H|+ |H \M | > ε ·w). Since w(H) = w (as H ∈ Cw),
we have that |M \ H| > ε/2, and so the hypothesis H is at least (ε/2)-far from M with respect to
the uniform distribution on 1-pixels in M . We claim that in order to test for membership in C it

suffices to sample Θ
(

d log(1/ε)
ε

)
1-pixels uniformly from M , accept if there is a member of Cw that

is consistent with this sample, and reject otherwise.

Clearly, if M ∈ C (so that M ∈ Cw since w = w(M)) then we accept (with probability 1). To
prove that if M differs from every image in C on more than ε · w pixels, then it is rejected with
high constant probability, we consider the class C ′ = Cw ∪ {M} (that has a VC-dimension at most
d + 1, and by its definition contains M). By [VC71] (see also [KV94, Sec. 3.5]) we know that
there exists a constant c1 such that for any fixed distribution D, with high constant probability, a
sample of c1

d log(1/ε)
ε examples distributed according to a distribution D, forms an (ε/2)-net for the

concept class with respect to D (or, more precisely, for the class of symmetric differences defined
by the concept class, which has the same VC-dimension as the original class). Namely, with high
constant probability, the sample is such that for every two functions (images) in the class that have
distance greater than ε/2 according to D, the sample contains at least one point (pixel) on which
they disagree.

It follows that if M differs from every image in C on more than ε · w pixels, so that it has
distance greater than ε/2 from every image in Cw with respect to the distribution D that is uniform
on the 1-pixels of M , then with high constant probability, no image in Cw will be consistent with

a sample of 1-pixels of M that has size Θ
(

d log(1/ε)
ε

)
.

A difficulty with applying Lemma 4.1 is that it requires knowing w = w(M) exactly. However,
the lemma and proof above can be adapted to the case where we have an estimate ŵ such that
w(M)/(1+ε/4) ≤ ŵ ≤ (1+ε/4) ·w(M). In such a case we will simply test consistency with a subset
of C containing all images whose Hamming weight is in the interval [ŵ/(1 + ε/4), (1 + ε/4) · ŵ], and
take a sample that is a constant factor larger. If M ∈ C then it is still accepted with probability 1
(since w = w(M) ∈ [ŵ/(1 + ε/4), (1 + ε/4) · ŵ]). On the other hand, for every H that differs from
M on more than εw(M) pixels and for which w(H) ∈ [ŵ/(1 + ε/4), (1 + ε/4) · ŵ] ⊆ [w(M)/(1 +
3ε/4), (1 +3ε/4) ·w(M)], we have that |M \H| > ε/8. Therefore, we can apply the same argument
as in the proof of Lemma 4.1 (using a slightly bigger sample) to infer that if M is ε-far from
membership in C, then with high constant probability, it will be rejected.

We next extend our approach to deal with the case where we don’t have a good approximation
of w. This comes at a cost of increasing the complexity of the algorithm by a factor of log log n,
and obtaining a two-sided error algorithm rather than a one-sided error algorithm.
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Lemma 4.2 Let C be a class of images with VC-dimension d. There exists a two-sided error prop-
erty testing algorithm for membership in C (in the sparse-images model) whose sample complexity
is O (log log n · d log(1/ε)/ε) and whose query complexity is O(1/ε).

Proof: Denote by C≤w the subset of C containing images with Hamming weight at most w. The
two-sided error algorithm will perform a binary search to try and find a hypothesis image H that
is consistent with a sample of 1-pixels from M (whose size is as stated in the lemma) and such that
H belongs to C≤w for as small a value of w as possible.

We first check whether w(M) = 0 by requesting a single sample 1-pixel from M . If no pixel is
returned, then we accept or reject depending on whether the empty image belongs to C (i.e., C≤0

is non-empty). Assuming M is not the empty image, we start the search from C≤n2 = C. Namely,
we take a sample of size Θ (log log n · d log(1/ε)/ε) (which will be “re-used” in the different stages
of the search), and we first check whether C≤n2 contains a consistent hypothesis. If no consistent
hypothesis is found in C≤n2 = C, then we may reject. Otherwise, we continue the search in an
iterative manner. At the start of each iteration we have two values, w1 and w2 such that C≤w2

contains a hypothesis image that is consistent with the sample, while C≤w1
does not. We then set

w = bw1+w2

2 c an check whether C≤w contains a hypothesis that is consistent with the sample.

The search terminates after O(log n) iterations, once we find the smallest value w such that
C≤w contains a consistent hypothesis H. Given H, we uniformly select Θ(1/ε) pixels among the
1-pixels of H, and we query M on these pixels. If more than an (ε/2)-fraction of the queries are
answered by 0, then we reject, otherwise we accept.

We next prove the correctness of this procedure. The size of the sample was selected so that
for each fixed choice of w, with probability at most 1/(c log n) (for a sufficiently large constant c),
there exists a hypothesis in C≤w that differs from M on more than (ε/4)w(M) of the 1-pixels in M ,
but is consistent with the sample. By a union bound over the 2 log n iterations of the algorithm,
such a hypothesis exists for some class C≤w considered with probability at most 1/c. Assume from
this point on that no such hypothesis exists. In particular, for the final hypothesis H we have that
|M \ H| ≤ (ε/4) · w(M).

If M is ε-far from C, then this implies that |H \ M | > (3ε/4) · w(M) ≥ (3ε/5) · w(H) (where
we assume that ε ≤ 1/3 or else we run the procedure with ε = 1/3). By a multiplicative Chernoff
bound we get that with high constant probability, a sample of Θ(1/ε) pixels among the 1-pixels of
H will contain at least an (ε/2)-fraction of pixels that do not belong to M . On the other hand,
assume M ∈ C. By definition of w = w(H) we have that w − 1 < w(M), so that w(H) ≤ w(M).
Since |M \ H| ≤ (ε/4) · w(M), we also have that |H \ M | ≤ (ε/4) · w(M) ≤ (3ε/11) · w(H) (again
assuming that ε ≤ 1/3), and so with high constant probability a sample of Θ(1/ε) pixels among
the 1-pixels of H will contain less than an (ε/2)-fraction of pixels that do not belong to M .

4.2 Testing for line imprints

A natural way to define a line in the sparse-images model is to consider the coordinates of pixels in
the image as whole numbers, and to imagine them superimposed on the real plane. Any line in the
real plane intersects a subset of these pixels, and we think of this subset as the imprint of the line.

Definition 4.1 The imprint of a line (or line segment) is the set of pixels the line (segment)
intersects.
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The property of being a line imprint corresponds naturally to the dense half-plane property studied
by Raskhodnikova [Ras03]. However, while there the half-plane must go from one side of the image
to another, we are willing to allow the line imprint (or, perhaps more appropriately, the line-segment
imprint) to begin and end at arbitrary locations in the image. We describe an algorithm that tests
for the property of being an imprint of a line. Adapting it to require the imprint to span the image
is straightforward.

The approach described in Lemma 4.1 will not lead us directly to a good testing algorithm for
a line imprint. While taking a sample of Θ(1/ε) 1-pixels and considering the distance between the
furtherest pair of pixels will give us a good estimation of w(M) if M is indeed a line imprint, it
may be far from the mark if M is not. We may use the approach described in Lemma 4.2, but this
will give us a two-sided error testing algorithm that depends on n, and as we will now show, we
can do better.

We first introduce the following definition:

Definition 4.2 The sleeve defined by two pixels is the union of all the imprints of line segments
starting in one pixel and ending in the other.

p2
R

p1

Figure 4: An illustration for the execution of Algorithm 3 and its analysis. The furthest two 1-pixels
p1 and p2 define the sleeve P whose borders are marked by dotted lines. The additional 1-pixels
belong to S1 ∪ S2 as well as the queries in T that were answered by 1. The queries in T that were
answered by 0 are marked by empty squares. A line whose imprint is consistent with the samples
and queries is marked as well. The rectangle R is as defined in the analysis of the algorithm.

Algorithm 3: Testing for a Line Imprint

20



1. Take a sample S1 of m1 = Θ(1/ε) uniformly distributed 1-pixels in M . Let p1, p2 be two
1-pixels from S1 with maximum distance between them.

2. Take an additional sample S2 of m2 = Θ(1/ε) uniformly distributed 1-pixels in M .

3. Let P be the sleeve defined by p1 and p2. Draw uniformly a set T of m3 = Θ(log(1/ε)/ε)
pixels from P and query M on the pixels in T . If there exists a line imprint that is consistent
with the 1-pixels in S1∪S2 and with the answers to the queries in T , then accept, otherwise
reject.

Before proving the correctness of Algorithm 3, we state without proof two claims that are relatively
straightforward and that we use in the proof of correctness.

Claim 4.3 Every sleeve between two 1-pixels contains at most three pixels in each row or at most
three pixels in each column.

Claim 4.4 For every two pixels p1 and p2, the class of all line imprints containing p1 and p2 has
constant VC-dimension.

Theorem 4.1 Algorithm 3 is a one-sided error testing algorithm for the property of being a line
imprint. Its sample and query complexities are O(log(1/ε)/ε). Its running time is polynomial in
1/ε.

Proof: The bound on the sample and query complexities follows immediately from the description
of the algorithm. The algorithm can be implemented so that it runs in time polynomial in 1/ε,
e.g., by linear programming. One direction of the theorem is straightforward. If M is indeed the
imprint of a line `, then the algorithm will accept with probability 1 since it rejects only if the
1-pixels it samples and the answers to queries it performs, are not consistent with any line imprint.

It remains to show that an image M that is ε-far from all line imprints will be rejected with high
constant probability. Let R(S1) be the minimal rectangle (submatrix) that contains all 1-pixels in
the sample S1. Given the size of S1, with high constant probability, the number of 1-pixels of M
that fall outside of R is at most (ε/3) · w(M). Assume from this point on that this is in fact the
case.

As M is ε-far from every line imprint, it is, in particular, ε-far from all line imprints that
intersect R along the sleeve P defined by p1 and p2. Thus at least one of the two holds:

1. There are at least (ε/3) · w(M) 1-pixels of M inside R and outside P .

2. For every line imprint that contains p1 and p2, there are at least (ε/3) ·w(M) pixels in P that
disagree with the line imprint.

In the first case, since the size m2 of the sample S2 is Θ(1/ε), with high constant probability (for an
appropriate constant in the Θ(·) notation) S2 will contains a 1-pixel inside R and outside the sleeve,
causing the algorithm to reject. In the second case, by Claim 4.4, every line imprint that contains
p1 and p2 has distance at least ε/9 from M with respect to the uniform distribution over the sleeve
P . Applying Claim 4.3 and an argument similar to the one applied in Lemma 4.1, given the setting
of m3 (the size of the query set T ), with high constant probability, every line-imprint that contains
p1 and p2 will be inconsistent with M on at least one query in T , causing the algorithm to reject.
Summing up the probabilities of “bad” events, the theorem follows.
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5 Testing Convexity

As noted in the introduction, we say that an image M is convex if there exists a convex shape that
is connected, closed and such that all the pixels that the shape intersects in M are 1-pixels, and
there are no other 1-pixels in the image. Some work has been done in the field of computational
geometry, testing in different models whether a set of points is in convex formation or is far from
convex formation (e.g., [RV04, EKK+00, CLM06, CSZ00, CS05]). Generally speaking, the object
under inquiry in these papers is a set of points or edges, and not an image. Convexity is also tested
for in the dense image model [Ras03] but the difference in models leads to different algorithms and
results. We assume without loss of generality that the convex shape is a polygon, and we consider
a slightly restricted version of this property where we require the slope of the lines defining the
convex shape to be of the form 1/r for an integer r. For the sake of succinctness, we refer to this
notion as a convex shape. This variant of convexity leads to an alternative definition that builds
on the notion of blocks, which are defined next.

Figure 5: An illustration of a horizontal block of period-length 3.

Definition 5.1 A horizontal (vertical) block (see Figure 5) is a maximal connected set of 1-pixels
that has the following properties:

1. There is a single 1-pixel in every column (row).

2. The number of 1-pixels in every row (column) is identical.

3. All the 1-pixels in a row (column) are connected (in a single interval).

Each subset of 1-pixels in a block that all belong to the same row (column) is called a sub-block.
The number of 1-pixels in each sub-block (its length) is considered the period-length of the block,
and the total number of 1-pixels in a block is its size. To avoid ambiguity, a block of period-length
1 is considered horizontal.

Thus a block is the imprint of a line beginning and ending at the corner of a pixel where the
gradient of the line (either horizontally or vertically) is of the form 1/r (for some r ∈ [n]).

Definition 5.2 A convex image (see Figure 6) is an image that has the following properties:

1. The image is connected (as defined in Section 3).

2. All the top-most, bottom-most, left-most and right-most 1-pixels are (within each set) con-
nected. These are called extremal 1-pixels, and the corresponding (extremal) sets (blocks) are
denoted by T , B, L and R, respectively.
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Figure 6: An illustration of a convex shape.

3. The top-most 1-pixel in L and the left-most 1-pixel in T are connected by a series of vertical
blocks of monotonically decreasing period-length followed by a series of horizontal blocks of
monotonically increasing period-length. For both series, each block is above and to the right of
the previous block. The right-most 1-pixel in T and the top-most 1-pixel in R are connected by
a series of horizontal blocks of monotonically decreasing period-length, followed by a series of
vertical blocks of monotonically increasing period-length. For both series, each block is below
and to the right of the previous block. The blocks R and B, as well as B and L, are connected
in a similar manner.

We note that if the number of 1-pixels in T is at least as large as the sum of the period-lengths
of the two adjacent horizontal blocks, then there is more than one way to view the image as an
imprint of lines, but this is immaterial to our testing problem. A similar statement holds for B, L
and R.

One approach to testing convexity is through learning – if an image is convex, then we can
approximately (almost exactly) reconstruct it (where this notion of “almost exact” reconstruction
is explained presently) by performing Õ(

√
w(M)) queries, and taking a sample of size that depends

on the quality of the approximation. This is based on three observations (where the first two will
also be used by our more efficient algorithm).

The first observation is that given a 1-pixel in a convex image, we can determine (learn) the
sub-block it belongs to by performing a binary search (using O(log w(M)) queries, where we double
the estimated length of the sub-block in each iteration). The only worry is that in the process of
performing this search we may erroneously “reach the other side” of the shape (for an illustration,
see Figure 7). However, if the image is convex, then this may occur only in rows/columns adjacent
to the extremal blocks T , B, L and R, and we address this issue below.

The second observation is, that by building on the sub-block reconstruction procedure, we can
reconstruct the whole block that a 1-pixel belongs to (recall that all sub-blocks in a block have
the same length). This again can be done by a binary (doubling) search that uses O(log w(M))
queries. The third observation is that between, e.g., the set (block) L and the set (block) T , there
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can only be fewer than 2
√

w(M) different horizontal (vertical) blocks, as the sum of their sizes
cannot exceed w(M) (and the blocks have different period-lengths).

Therefore, starting from any 1-pixel in a convex shape (and in particular, a uniformly selected
1-pixel), it is possible to approximately reconstruct the shape, by reconstructing block after block.
The reason that this reconstruction may be approximate is that two (sub-)blocks from different
sides of the image may be relatively close, and we think they are connected. As noted previously
this may occur (in the case of a convex image), only in the (sub-)blocks just adjacent to the extremal
blocks (so that we effectively “cut off” one/some of them). Thus, after the reconstruction procedure
is completed, we take a sample of size Θ(1/γ) of 1-pixels, where γ is a precision parameter. If any
1-pixel in the sample belongs to a row (column) just above/below (to the left/right) of the top-
most/bottom-most (left-most/right-most) 1-pixels we have observed, then we learn its sub-block,
and modify the image accordingly. Alternatively, we can uniformly query Θ(1/γ) pixels in the
four extreme sub-blocks we have found, and if we get an answer of 0, then we “break” the sub-
block into two blocks and determine the correct extreme sub-block by performing O(log(w(M))
additional queries. In either case, this ensures with high probability that the image we reconstruct
and the actual image differ on O(γ ·w(M)) pixels. Note that exact reconstruction in general requires
Ω(w(M)) queries.

Figure 7: While the lengths of the sub-blocks in (A) can easily be determined by a binary search,
the two sub-blocks in (B) that are right below the top block may be considered to be a single
sub-block when running the binary search procedure.

The above almost-exact learning/reconstruction procedure can be easily modified to give a (one-
sided error) testing algorithm with query complexity Õ(

√
w(M)) and sample complexity O(1/ε).

We now turn to describe a more efficient (though somewhat more involved) algorithm. The query
and sample complexities of this algorithm are Õ(w(M)1/4)poly(1/ε). We assume that the algorithm
is given an estimate ŵ such that w(M)/c ≤ ŵ ≤ c · w(M) for some constant c, and we later show
how to remove this assumption. The high level structure of the algorithm is as follows. The
algorithm samples Θ̃(ŵ1/4/ε) 1-pixels, and applies the subroutines for learning sub-blocks and
blocks (as described above) to learn the blocks they belong to. These blocks and the intervals
between them serve as a “backbone”. The algorithm then uses additional samples and queries to
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verify (probabilistically) that pixels in the intervals of the “backbone” exist as expected, and that
few 1-pixels fall outside their expected location. A small number of intervals (which we denote
“special”) can not be checked by the algorithm. It thus verifies that these intervals account for
only a small number of the 1-pixels in the image.

Algorithm 4: Test-Convexity

1. Let ε′ = ε/(100c) (where c is the constant (known by the algorithm) for which w(M)/c ≤ ŵ ≤
c · w(M)).

2. Take a sample S1 of Θ̃(ŵ1/4/ε) uniformly distributed 1-pixels in M . For each of the 1-pixels
selected, learn its block (using O(log(ŵ)) queries).

3. If the set of pixels sampled and queried is inconsistent with a convex shape having at most
c · ŵ 1-pixels, then reject (recall that w(M) ≤ ŵ/c).

4. Considering blocks in a clockwise order, if there are two blocks that are separated by more
than ε′ · ŵ3/4 columns or more than ε′ · ŵ3/4 rows, then reject.

5. Considering blocks in a clockwise order, we define the area of the interval between any two
consecutive blocks as the set of pixels that can be 1-pixels connecting the two blocks in consis-
tent convex images.

If there are pairs of consecutive horizontal (vertical) blocks whose period-lengths differ by
more than ŵ1/4 and the smaller period length among the two is at most ŵ1/2, then mark the
interval (area) between these two blocks as “special”. Likewise, mark intervals between two
blocks where one is horizontal and the other is vertical, or intervals following a block that may
be the last sampled block (in clockwise order) before reaching an extremal set as special (there
are at most 8 such intervals).

6. Select a sample S2 of Θ(1/ε) blocks adjacent to non-special intervals where the probability
of selecting a block is proportional to the number of columns/rows (depending on whether
the block is horizontal or vertical) of the block and the interval following it (in a clockwise
direction). For each selected block learn the blocks in the interval (area). If in any step an
inconsistency is detected, then reject.

7. For each sequence of blocks learned in Step 6 as well as the preceding block (learned in Step 2)
do the following. perform Θ(1/ε) queries to uniformly selected pixels within each of these
sequences. With the exception of the four extreme sub-blocks, if any query is answered by 0,
then reject. If a query within one of the four extreme sub-blocks is answered by 0, then
perform a binary search to learn the two sub-blocks it should be broken into and reject if
any inconsistency is found.

8. Take a sample S3 of Θ(1/ε) 1-pixels uniformly at random. If any 1-pixel in S3 does not
belong to the area of any interval, then reject. Otherwise, if the number of 1-pixels in S3

that fall within the areas of special intervals is greater than expected (given the number of
rows/columns in special intervals) by more than an ε′ · ŵ additive factor, then reject. Note
that for special intervals that are so defined because they may be the last sampled block before
reaching an extremal set we expect the set of points in unsampled blocks following them in
clockwise order to be of size O(ŵ1/4).
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9. For each sampled 1-pixel that isn’t in the area of a special interval, learn the sequence of blocks
beginning from the block preceding it in the clockwise order. If any inconsistency is detected,
then reject. (Note that if in this process we do not learn the block containing the 1-pixel,
we will reject).

10. If no step caused rejection, then accept

In all that follows, let ε′ = ε
100c . We first establish the next simple claim.

Claim 5.1 If the algorithm Test-Convexity passes Step 3, then there are at most 8ŵ1/4+8 special
intervals. Furthermore, if the image is convex, then in each non-special interval there are at most
ŵ1/4 different blocks.

Proof: Since (by the premise of the claim) the algorithm passes Step 3, the sampled and queried
pixels are consistent with a convex shape. Hence, the set of blocks learned contains at most 8
different monotone sequences of blocks. Consider such a sequence. The smallest period-length of a
block in the sequence is 1, and each special interval that is not associated with an extremal set is
adjacent to a block of period-length at most ŵ1/2. But since the period-length of blocks that are
adjacent to special intervals differ by at least ŵ1/4, the number of special intervals in the sequence
can be at most ŵ1/4. Adding the at most 8 special blocks that do not belong to the monotone
sequences, we get the bound in the claim.

Turning to the second part of the claim, for non-special intervals that neighbor blocks of period-
length at most ŵ1/2, by the definition of special intervals, these (non-special ) intervals contain at
most ŵ1/4 different blocks. Next observe that if the two blocks defining a non-special interval have
period length more than ŵ1/2, then the number of sub-blocks (and hence blocks) between them is
at most ŵ1/4 (given that the image is consistent with a convex image and there are at most ε ′ŵ3/4

columns and rows in the interval). This immediately gives a bound on the number of different
blocks in these intervals, and the claim follows.

We are now ready to state and prove our main theorem concerning testing convexity.

Theorem 5.1 Given an estimate ŵ such that w(M)/c ≤ ŵ ≤ c · w(M), the algorithm Test-
Convexity has the following properties:

1. Completeness: When given access to a convex image, the algorithm accepts with probability
at least 2/3.

2. Soundness: When given access to an image that is ε-far from any convex image, the algorithm
rejects with probability at least 2/3.

3. The algorithm takes Õ(ŵ1/4/ε) samples and performs Õ(ŵ1/4/ε2) queries. Its running time
is Õ(ŵ1/4/ε2) as well.

Proof: The bounds on the sample and query complexities follow directly from the description of
the algorithm and the second part of Claim 5.1 (which bounds the number of queries performed
in Steps 6 and 9). Its running time is at most a polylogarithmic factor larger than its sample and
query complexities. Hence, we turn to proving completeness and soundness.
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Completeness. Let M be a convex image. By the premise of the theorem concerning the estimate
ŵ, the image M will not be rejected in Steps 3 of the algorithm. The image will also not be rejected
in Steps 3, 6, 7, and 9, because all pixels queried and sampled are consistent with M , and M is
convex.

We next bound the probability of rejection in Step 4. Now consider a partition of the 1-pixels
of M to consecutive (connected) subsets of size ε′ŵ3/4/2 each. By an appropriate choice of the
constant in the Θ(·) notation for the size of S1, the probability that there exists a subset that does
not include any sample 1-pixel from S1 is at most 1/6. Thus, the probability that the algorithm
rejects in Step 4 is at most 1/6.

Turning to Step 8, recall that by Claim 5.1, there are at most 8ŵ1/4 + 8 special intervals. Since
each should contain at most ε′ŵ3/4 pixels (or 2ε′ŵ3/4 for the extreme intervals), the total number of
1-pixels that belong to the areas of special intervals should be at most ε′ŵ ≤ cε′w(M). This implies
(using a multiplicative Chernoff bound) that for an appropriate constant in the Θ(·) notation for
the size of S3, the probability that the estimate of the number of 1-pixels that belong to special
intervals exceeds this upper bound by more than ε′ŵ is at most 1/6. Therefore, the algorithm
rejects in Step 8 with probability at most 1/6. Having established that the algorithm may reject
only in Step 4 or in Step 8, and in each with probability at most 1/6, by a simple union bound we
have that it rejects with probability at most 1/3, and completeness is proved.

Soundness. Let M be an image that is ε-far from any convex image. We will show that it is rejected
with probability at least 2/3. If M is rejected by the end of Step 4 then we are done. Otherwise,
M is in particular far from every convex image that is consistent with the blocks constructed based
on the sample S1. For a fixed sample S1 (that didn’t cause rejection), and the blocks learned from
each sampled 1-pixel in S1, let C(S1) denote the set of convex images that are consistent with the
learned blocks. If M is ε-far from being convex, then in particular it is at least ε-far from every
image in C(S1). We next consider several cases that together cover all cases in which there is such
a distance to all images in C(S1).

1. In the first case, the number of 1-pixels that do not belong to the areas of intervals that are
determined by the learned blocks is at least (ε/4)w(M). In this case the algorithm will reject
with high constant probability in Step 8. Therefore, assume from this point on that this is
not the case. It follows that M differs from every image in C(S1) on at least 3ε/4 pixels that
are within the areas of the intervals.

2. In the second case, there are at least (ε/8)w(M) 1-pixels in M that belong to areas of special
intervals. In this case, since, as noted previously, the number of 1-pixels in special intervals
must be much smaller (at most 9ε′ŵ ≤ εw(M)/10), this will be detected with high constant
probability in Step 8, and the algorithm will reject. Therefore, assume from this point on that
this is not the case. It follows that M differs from every image in C(S1) on at least (ε/2)w(M)
pixels within the areas of non-special intervals (since by removing at most all 1-pixels in M
from the areas of the special intervals and adding less than this number of 1-pixels, M can
be made consistent within these areas with an image in C(S1)).

3. To describe the third case, consider any non-special interval between blocks Bi and Bi+1

(that were learned in Step 2), where from this point on we consider Bi as part of the interval.
We shall say that this interval is good if the process of learning the sequence of blocks in
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this interval would succeed if started from block Bi, and the fraction of missing pixels in this
sequence is at most ε/(8c2). Otherwise it is bad .

If the fraction of bad intervals is at least ε/(8c2), then with high constant probability, at least
one such interval is selected in Step 6. Conditioned on this event, either the algorithm rejects
in this step, or it rejects with high constant probability in Step 7. Thus, assume from this
point on that the fraction of bad intervals is at most ε/(8c2).

Recall that each interval contains at most ε′ · ŵ3/4 rows and columns, and that the blocks
learned in Step 2 are consistent with a convex image that has at most c · ŵ pixels. Therefore,
by adding at most (ε/(4c2)) · c · ŵ ≤ (ε/4) · w(M) 1-pixels to M we can obtain an image M ′

whose set of 1-pixels within non-special intervals contains the set of 1-pixels in these intervals
from an image in C(S1). It follows that M must contain at least (ε/4) · w(M) 1-pixels in
non-special images that are not in M ′.

4. It remains to deal with the final case described above. Since M contains at least (ε/4) ·w(M)
1-pixels that are not in M ′, with high constant probability at least one such pixel will be
selected in Step 8. Conditioned on this event occurring, the algorithm rejects in Step 9 either
because the process of learning a sequence of blocks fails, or because the selected pixel falls
outside the sequence of blocks learned.

It thus follows that if M is ε-far from being convex then it will be rejected with high constant
probability (due to one of the reasons described above).

5.1 Estimating w(M)

In this subsection we describe a procedure for estimating w(M) to within a multiplicative constant c
under the assumption that M is a convex image. Using the estimate, we can then run Algorithm 4.
We note that the estimation procedure may reject the image if it finds evidence that the image is
not convex. This evidence may be statistical evidence, so that it is possible that a convex image
is rejected (with small probability). However, Algorithm 4 has two-sided error as well and so the
error probability introduced by the estimation algorithm is simply added to the one introduced by
Algorithm 4 (where, as usual, we can decrease these probabilities (exponentially) by repetitions (or
directly, by increasing the sample and query complexities)).

The estimation procedure starts by taking a sufficiently large constant-size sample, and consid-
ering the distance between the furthest pair of points. If M is convex, then this value, denoted w̃,
is at most w(M) and, with high constant probability, is at least w(M)/8. However, if the image is
not convex, then w̃(M) could differ significantly from w(M). In particular, it could be much larger
than w(M) so that if we set ŵ = w̃ and run Algorithm 4 with this estimate, then the resulting
complexity of Algorithm 4 might be much larger than w(M)1/4. Therefore, we run a procedure
that tries to verify if indeed w(M) is of the same order as w̃. Our starting point is the next simple
claim.

Claim 5.2 Let M be a convex image. At least w(M)/2 −
√

w(M) of the 1-pixels in M are in
blocks of size at least

√
w(M)/4 1-pixels (each).

Proof: Since all blocks with period-length greater than
√

w(M)/4 must trivially contain at least√
w(M)/4 1-pixels, we consider the blocks of period-length less than

√
w(M)/4. With the possible
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exception of the four extreme blocks, for every period-length in {1, . . . , (
√

w(M)/4)− 1} there can
be at most 8 blocks, and by definition each includes at most

√
w(M)/4 1-pixels. Thus, the total

number of pixels in such blocks cannot exceed 8 ·
√

w(M)/4 ·
√

w(M)/4 = w(M)/2. Adding the at
most 4 ·

√
w(M)/4 pixels that belong to the extreme blocks (if they have size at most

√
w(M)/4),

we get w(M)/2 +
√

w(M). It follows that all remaining at least w(M)/2 −
√

w(M) pixels belong
to blocks that contain (each) at least

√
w(M)/4 1-pixels.

It follows from Claim 5.2 that a sampled 1-pixel will be in a block containing at least
√

w(M)/4
1-pixels with probability very close to 1/2. Thus, we first take a constant size sample of 1-pixels,
and for each 1-pixel selected, we learn the block it belongs to. In order to ensure that in this
process we perform only O(log w(M)) queries even if the image is not convex (and in particular
not connected) we make the following small modification to the procedure. Whenever our estimate
of the size of the block is increased by a factor of 2, we test, by performing a constant number of
queries, whether the part of the block learned so far is (close to being) full. In performing this
test we need not consider the cumulative probability of error, as even if we err on a small constant
fraction of these tests, the total number of 1-pixels in M that belong to the block learned so far, is
still high.

If either any of the learning processes fail (since they find evidence that the image is not convex),
or less than a 1/4 of the selected pixels belong to blocks of size at least

√
w̃/32, then we reject. If M

is a convex image, then conditioned on w̃ ≥ w(M)/8 (which holds with high constant probability),
by Claim 5.2 (and a multiplicative Chernoff bound), the probability that we reject at this stage
is a small constant. On the other hand, if the image is not convex, then we have high confidence
that w(M) = Ω(

√
w̃) (since we have learned blocks of at least this size and verified that they are

close to being full), implying that log(w̃) = O(log(w(M))). This means that we can learn, using
O(log(w(M)) queries the size of any block in which we sample a 1-pixel, unless the size of the
block is far greater than w̃, in which case we may reject. Once again, if the image is convex, then
conditioned on w̃ ≥ w(M)/8, we won’t reject. From this point on we shall assume that this is in
fact the case.

Throughout the whole process we next describe we will reject if we encounter evidence that M
is not a convex image. We may thus discuss “learning the block of a given 1-pixel” – this means
learning the block the pixel belongs to assuming that M is convex, and verifying that the block is
(almost) full.

We shall say that a block is large it its size is at least
√

w̃/32 (where in the case of a convex
image this is at least

√
w(M)/4). Now that we have the ability to check the size of a block we

hit with a random sample of a 1-pixel, we will attempt to estimate the number of large blocks in
M . If this number is as large as expected and distributed as we expected, then we will accept, and
otherwise we will reject. Consider partitioning the large blocks into buckets according to their size.
The bucket Ti will contain the blocks of size at least

√
w̃2i−5 and no more than

√
w̃2i−4. Thus the

number of buckets is O(log(w̃)), and by Claim 5.2, if the image is convex, then they contain close
to a half of all the 1-pixels in the image.

We can obtain an estimate to the fraction of 1-pixels (out of w(M)) that fall into each bucket Ti

to within an additive term of 1/(c′ log(w̃)) (where c′ is a sufficiently large constant) for each bucket
by taking a sample of Θ̃(log(w̃) 1-pixels, and for each, learning its block size. From this point on we
consider only buckets for which we have a sufficiently large sample of pixels, and we refer to them
as significant buckets. With high probability, the total number of 1-pixels that belong to the other
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(non-significant) buckets is at most a small constant fraction of w(M). Since within each bucket
all blocks have approximately the same size, the estimated fraction of 1-pixels in each significant
bucket, together with the estimate w̃ of w(M), give us an estimate of the number of blocks that

should belong to each bucket. Since the blocks in the buckets are of size Ω(
√

W̃ ), there should be

O(
√

W̃ ) blocks in each bucket.

Given the above, we verify that the number of blocks in each significant bucket is indeed as it
should be, where we rely on collision probabilities, similarly to what was done in the context of
testing connectivity. However, while in the case of obtaining an estimate for w(M) in the context of
testing connectivity we used collisions between single 1-pixels (implying complexity O(

√
w(M))),

here we build on collisions between blocks.

Thus, we do the following. Let bi denote our estimate of the number of blocks in (significant)
bucket Ti. We begin sampling 1-pixels uniformly at random, and for each pixel selected, we learn
the block it belongs to (and hence the bucket to which this block belongs to). For each such block
we will verify with high probability that it contains all the 1-pixels we would expect. If we sample
more than one pixel from the same block in a bucket before we expect to (e.g., before having
sampled at least

√
bi/c

′′ 1-pixels in this bucket, for some sufficiently large constant c′′), we take
this as an indication that this bucket does not contain the number of 1-pixels that it should (given
the estimate w̃), and we reject. Otherwise, we continue sampling until we’ve sampled Θ̃(w̃1/4)
1-pixels. If the number of collisions within buckets is significantly far from its expected value, then
we reject, otherwise we use w̃ as an estimate for w(M). The total number of samples taken and
queries performed is Θ̃(w(M)1/4), are required.

6 Testing Monotonicity

We shall say that a matrix M is monotone if for every two entries (i1, j1) and (i2, j2) for which
M [i1, j1] = 1 and M [i2, j2] = 1, if i1 < i2 then j1 ≤ j2. In all that follows we assume that
the algorithm has a constant factor estimate ŵ of w(M). As shown in Subsection 3.1.2, it is
possible to obtain such an estimate by running a procedure that has sample and query complexity

Õ
(
min

{√
w(M), n2

w(M)

})
). It is an open problem whether it is possible to obtain such an estimate

with a procedure that has complexity o(
√

w(M)) (by exploiting the fact that the image should be
monotone).

We begin by observing that there is a simple one-sided error algorithm that uses only sampling
(that is, only uniformly distributed 1-pixels), whose sample complexity is O((ŵ/ε)1/2) (and whose
running time is Õ((ŵ/ε)1/2)). This algorithm simply takes a sample of Θ((ŵ/ε)1/2) 1-pixels and
rejects if and only if it gets a pair that violates monotonicity (that is, (i1, j1) and (i2, j2) such that
i1 < i2 but j1 > j2). Clearly, a monotone matrix is never rejected.

In order to prove that if M is ε-far from monotone then the algorithm will reject with high
constant probability, we consider the following violation graph 8 Gviol(M) = (V (M), Eviol(M))
where V (M) = {(i, j) : M [i, j] = 1} and Eviol(M) consists of all pairs of vertices that correspond to
violating pairs in M . By the definition of Gviol(M), the distance of M to being monotone is just the
size of the minimum vertex cover of Gviol(M) divided by w(M). This implies that if M is ε-far from

8The notion of a violation graph in the context of monotonicity was used previously for testing monotonicity of
functions (see e.g. [DGL+99]).
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being monotone, then there exist a matching in Gviol(M) of size at least ε|V (M)|/2 = εw(M)/2.
Therefore, which high constant probability, a sample of size Θ((ŵ/ε)1/2) = Θ((w(M)/ε)1/2) will
contain a violating pair, causing the algorithm to reject as required.

We next give an algorithm whose complexity is Õ(n2/3/(ε2w(M)1/3)), which improves on the
simple sampling algorithm (in terms of the dependence on n) when w(M) = Ω(n4/5). We then give
an almost matching lower bound of Ω(min{w(M)1/2, n2/3/w(M)1/3}) which holds for w(M) = O(n)
(and holds when the algorithm has a constant factor estimate of w(M)).

6.1 The Algorithm

Indeed, by sampling alone, we cannot reduce the complexity below Θ(w(M)1/2)) for any w(M) =
O(n). We give the argument for any one-sided error algorithm and w(M) = Θ(n). It is not hard to
extend the argument to get a lower bound for two-sided error algorithms and any w(M) = O(n).
These bounds hold when the algorithm has a constant factor estimate of w(M). Suppose that
the 1-pixels in the matrix reside on two diagonals: the main diagonal (that is, all pixels (i, i) for
1 ≤ i ≤ n) and the third diagonal (that is, all pixels (i, i + 2) for 1 ≤ i ≤ n − 2). This matrix
is (1/2)-far from being monotone (or, more precisely (1/2 − O(1/n)))-far from being monotone).
However, unless the sample contains a pair of 1-pixels of the form (i, i + 2) and (i + 1, i + 1), then
no violation is observed, and any one-sided error algorithm must accept. The probability that such
a pair appears in a sample of size o(n1/2) is o(1).

Therefore, in order to reduce the dependence on n (for w(M) = Ω(n4/5)), and in particular
reduce the dependence on n from n1/2 to n1/3 when w(M) = Θ(n), we shall perform queries
in addition to sampling. Roughly speaking, by sampling we try to detect violations that occur
at relatively large distances, and by performing queries we try to detect violations that occur at
relatively small distances (such as those in the above lower-bound construction).

The algorithm first takes a sample that with high probability either contains evidence that
the matrix is not monotone (in a form of a violating (“distant”) pair), or it (the sample) can be
used to determine a set of submatrices with the following properties. First, the fraction of 1-pixels
that reside outside the submatrices is relatively small. Second, there can be no violations between
pairs of 1-pixels that reside in two different submatrices. Therefore, if the matrix is far from being
monotone, then the violations are within the submatrices. In the second stage of the algorithm
we take an additional (small) sample, and for each sampled 1-pixel we perform queries within its
submatrix (at varying distances from the selected 1-pixel) in order to detect violations with the
sampled 1-pixels.

For the sake of simplicity (since the algorithm and its analysis include quite a lot of details), we
assume that the algorithm is given w(M). The algorithm and its analysis can be adapted to work
with an estimate ŵ such that w(M)/c ≤ ŵ ≤ c ·w(M). We add a few more words about this issue
following the algorithm.

The following notations will be used in the algorithm and its analysis.

• g1(n,w(M))
def
= n2/3/w(M)1/3;

• g2(n,w(M))
def
= w(M)2/3/n1/3;

• g3(n,w(M))
def
= w(M)4/3/n2/3; and
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• g4(n,w(M))
def
= n1/3w(M)1/3.

For the sake of succinctness we shall use the shorthand gi for gi(n,w(M)) (where i = 1, . . . , 4). For
example, when w(M) = n we have that g1 = g2 = n1/3 and g3 = g4 = n2/3. In general g3 is just
(g2)

2, and we also have that g1 · g3 = w(M), g1 · g4 = n, and g3/g4 = w(M)/n.

Algorithm 5: Testing monotonicity

1. Take a sample S1 of t1 = Θ(g1 log n/ε2) 1-pixels. S1 contains a violating pair, then reject,
otherwise, continue.

2. Take a sample S2 of t2 = Θ(1/ε) 1-pixels. If there is a violating pair in S1∪S2, then reject.
Otherwise, for each of the 1-pixels (a, b) in S2 perform the following sub-test:

• For ` = 1 to g2, where ` increases by a multiplicative factor of 2 in each iteration,
uniformly select t3(`) = Θ(`·(n/w(M))·log(n)/ε2) entries in the submatrix of dimensions
` × ` that (a, b) is the bottom-right corner of, and similarly for the ` × ` submatrix that
(a, b) is the top-left corner of, and perform queries on all these pixels. If any is answered
by ‘1’ then reject.

3. If no step caused rejected, then accept.

If the algorithm is only given an estimate ŵ of w(M) that is within a constant multiplicative factor
c away from w(M) then we simply replace g1 = g1(n,w(M)) by g1(n, ŵ/c) (so that t1 is increased
by a constant factor), we replace g2 = g1(n,w(M)) by g2(n, c·w(M)) (so that the maximum value of
` is increased by a constant factor), and in t3(`) we replace w(M) by ŵ/c (so that t3(`) is increased
by a constant factor). This increases the complexity of the algorithm by a constant factor, but the
proof of correctness follows from Theorem 6.1 given the assumption on ŵ and the fact that the
algorithm has one-sided error.

Theorem 6.1 Algorithm 5 is a one-sided error algorithm for monotonicity of matrices. Its sample
and query complexity as well as its running time are Õ(n2/3/(ε2w(M)1/3)).

Since the algorithm only rejects when it has evidence of violation of monotonicity, it clearly
has one-sided error. The sample complexity of the algorithm is t1 + t2 = O(g1 log n/ε2) =
Õ
(
n2/3/(ε2w(M)1/3

)
, and the query complexity is of the order of log(n) · g2 · (n/w(M)) · log(n)/ε2

which is Õ
(
n2/3/(ε2w(M)1/3)

)
as well. The running time is at most a factor of log(n) larger. Thus

it remains to prove that if M is ε-far from being monotone, then it is rejected with high constant
probability.

For the sake of the analysis, it will be convenient to partition the first sample, S1, into two
subsamples, S1

1 and S2
1 , where S1

1 is of size Θ(g1/ε), and S2
1 is of size Θ(g1 log n/ε2) . We also

introduce the following two definitions.

Definition 6.1 For a subset of 1-pixels S that obey monotonicity, we can sort the 1-pixels in S in a
monotonically increasing order: (i1, j1), . . . , (i|S|, j|S|), so that every two consecutive 1-pixels (ir, jr)
and (ir+1, jr+1) define a submatrix, Mr, where (ir, jr) is the bottom-left corner of the submatrix
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and (ir+1, jr+1) is the top-right corner. We note that these submatrices may have width 1 (if
ir = ir+1) or height 1 (if jr = jr+1). If we also add the submatrix determined by (1, 1) and (i1, j1)
(assuming that (i1, j1) 6= (1, 1)) and the submatrix determined by (i|S|, j|S|) and (n, n) assuming
that ((i|S|, j|S|) 6= (n, n), then we denote the resulting set of submatrices by M(S).

Definition 6.2 We say that a submatrix T is heavy if it contains more than g3 (= (w(M))4/3/n2/3)
1-pixels.

��

Figure 8: An illustration for the partition into submatrices that is induced by a set of monotonically
increasing 1-pixels, and a violating 1-pixel with respect to this set.

We start by establishing the following lemma.

Lemma 6.1 With high constant probability over the choice of the sample S1
1 , either S1

1 contains

a violating pair or there exists a subset of S1
1 of size at most 6g1 (= 6n2/3/w(M)1/3), denoted S̃1

1

such that at most an (ε/16)-fraction of the 1-pixels in M belong to heavy submatrices in M(S̃1
1).

In order to prove Lemma 6.1 we introduce one more notion and a simple claim.

Definition 6.3 For a submatrix T , whose bottom-left corner is (x, y) and whose top-right corner
is (x′, y′), we say that a 1-pixel (a, b) in T is a separating 1-pixel (with respect to T ), if both the
submatrix determined by (x, y) and (a, b) and the submatrix determined by (a, b) and (x ′, y′) contain
at most 2/3 of the 1-pixels in T .

Note that in the above definition, we do not care how many 1-pixels belong to the two remaining
submatrices of T (these are 1-pixels that are violating with respect to (a, b)).

Claim 6.2 For any (non-empty) submatrix T , at least 1/3 of the 1-pixels in T are separating
1-pixels (with respect to T ).

Proof: Consider ordering the 1-pixels in T according to their lexicographical order. That is,
we have (a1, b1) = (x, y), (a2, b2), . . . , (aq, bq) = (x′, y′), where ar ≤ ar+1 and if ar = ar+1 then
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br < br+1. Then each of the 1-pixels that are in the middle third according to this order are
separating 1-pixels.

Proof of Lemma 6.1: The proof of the lemma is based on the fact that as long as an Ω(ε)-
portion of the 1-pixels belong to heavy submatrices, we are Ω(ε)-likely to select a separating 1-pixel
for one of these submatrices. After 6g1 such splits we show that the fraction of 1-pixels that belong
to heavy submatrices in M(S̃1

1) must go below ε/16. Details follow.

Consider selecting the 1-pixels in S1
1 one after the other. We denote the rth selected 1-pixel by

(xr, yr) and each subset {(x1, y1), . . . , (xr, yr)} by S1
1(r). We shall say that (xr, yr) is violating (with

respect to the previously selected 1-pixels S1
1(r − 1)) if there exists a 1-pixel (xr′ , yr′) ∈ S1

1(r − 1)
such that (xr′ , yr′) and (xr, yr) constitute a violating pair.

As long as no violating 1-pixel is selected, we construct the set S̃1
1 ⊂ S1

1 iteratively, starting from

S̃1
1 = ∅. Let us say that an iteration r (in which a new 1-pixel is selected) is a successful iteration,

if (xr, yr) is either a violating 1-pixel with respect to S1
1(r − 1), or it is a separating 1-pixel with

respect to some heavy T ∈ M(S̃1
1). In the latter case we add the 1-pixel to S̃1

1 . Given the definition
of heavy matrices and separating 1-pixels, we show that if there is no successful iteration in which
we get a violating 1-pixel, then after at most 6g1 successful iterations, the fraction of 1-pixels that
belong to heavy submatrices in M(S̃1

1) must go below ε/16.

To verify this, consider the binary “tree of submatrices” that is defined by a sequence of suc-
cessful iterations that do not include a violating 1-pixel. That is, the root of the tree is M , and for
each successful iteration, if the new 1-pixel (which is a separating 1-pixel) belongs to the submatrix
T , then the two children of T in the tree, are the two submatrices that the new 1-pixel defines with
the (bottom-left and top-right) corners of T . We claim that the number of leaves in this tree is
upper bounded by 3g1, implying that |S̃1

1 | ≤ 6g1.

We shall prove this by assigning each leaf in the tree at least g3/3 (= w(M)4/3/3n2/3) distinct
1-pixels in M . Consider any leaf in the tree. By the definition of the tree, its parent submatrix
is a heavy submatrix, that is, it contains at least g3 1-pixels. If the sibling of this leaf is also a
leaf, then we assign half of the 1-pixels of the parent submatrix to each. Otherwise (the sibling is
not a leaf), we assign the leaf all 1-pixels in its parent submatrix that do not belong to its sibling
submatrix. By the definition of separating 1-pixels, it is assigned at least g3/3 1-pixels. Thus the
number of leaves in the tree is at most

w(M)

g3/3
=

3w(M)

w(M)4/3/n2/3
=

3n2/3

w(M)1/3
= 3g1 . (1)

Finally, since as long as the fraction of 1-pixels that belong to heavy submatrices with respect
to M(S̃1

1) is at least ε/16, and among them at least a third are separating 1-pixels, the probability
that an iteration is successful is Ω(ε). It follows that with high constant probability, after cg1/ε
iterations (where c is a sufficiently large constant), either we observe a violation or the fraction of
1-pixels that belong to heavy submatrices (with respect to M(S̃1

1)), is at most ε/16.

Assuming that the sample S1
1 does not cause rejection, we next make the following simple

observation (based on the fact that the number of 1-pixels in S2
1 is Ω(1/ε)).

Claim 6.3 For any fixed choice of S̃1
1 ⊆ S1

1 , if the fraction of 1-pixels that do not belong to any

submatrix in M(S̃1
1) is at least ε/16, then with high probability, at least one such 1-pixel is selected

in S2
1 (causing the algorithm to reject).
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Let M be a matrix that is ε-far from being monotone. By Lemma 6.1 and Claim 6.3, with
high constant probability over the choice of the samples S1

1 and S2
1 , either M is rejected because

S1
1 contains a violating pair, or it is rejected because there is a violating pair in S 1

1 × S2
1 , or the

following holds:

• The sample S1
1 contains a subset S̃1

1 of size at most 6g1 such that the fraction of 1-pixels that

belong to heavy submatrices in M(S̃1
1) is at most ε/16, and the fraction of 1-pixels outside

of the submatrices in M(S̃1
1) is at most ε/16.

If the former holds (that is, there is a violating pair either in S1
1 or in S1

1 × S2
1), then we are done.

Thus assume from this point on that the latter holds (where we take into account the small constant
probability that neither holds).

Since M is ε-far from being monotone, Gviol(M) contains a vertex cover of size at least
(ε/2)w(M). Given the bound of at most ε/8 on the fraction of 1-pixels that do not belong to
any submatrix in M(S̃1

1) or that belong to a heavy submatrix in M(S̃1
1), we have the following.

Let G1
viol(M) be the subgraph of Gviol(M) that is induced by vertices that correspond to the 1-pixels

in M that belong to non-heavy submatrices in M(S̃1
1). Then |V (G1

viol(M))| ≥ (1− ε/8)w(M), and
the size of a minimum vertex cover of G1

viol(M) is at least 3ε
8 w(M).

Suppose that we further consider the subgraph of G1
viol(M), denoted G2

viol(M), that is induced

by the vertices in G1
viol(M) that correspond to 1-pixels belonging to matrices in M(S̃1

1) whose
length in each dimension is at most 16g4/ε (= 16n1/3w(M)1/3/ε). Observe that the number of
matrices that have a larger length in one of these dimensions is at most

2 · n

16g4/ε
=

εn

8n1/3w(M)1/3
=

εn2/3

8w(M)1/3
, (2)

and each contains at most g4 = w(M)4/3/n2/3 1-pixels. Therefore, |V (G2
viol(M))| ≥ (1−ε/4)w(M),

and the size of a minimum vertex cover in G2
viol(M) is at least ε

4w(M).

We perform one more step of this form. For each submatrix T of M(S̃1
1), consider the size of

a minimum vertex cover of the subgraph induced by the vertices that correspond to 1-pixels in T .
We shall say that the submatrix is significant if this size is at least εg3/15 (= ε

15w(M)4/3/n2/3). Let
G3

viol(M) be the subgraph of G2
viol(M) that is induced by the vertices of G2

viol(M) that correspond
to 1-pixels belonging to significant submatrices. Since there are no edges in Gviol(M) (and hence
in G3

viol(M)) between vertices that correspond to 1-pixels that belong to different submatrices in

M(S̃1
1), and the total number of submatrices in M(S̃1

1) is at most 6g1 + 2 = 6n2/3/w(M)1/3) + 2,
we have that |V (G3

viol(M))| > (1 − ε)w(M).

Thus G3
viol(M) is the disjoint union of subgraphs that each is induced by a subset of 1-pixels

(vertices) that reside in a submatrix of size at most 16g4/ε (= 16n1/3w1/3/ε), where the size of
a minimum vertex cover of each submatrix (subgraph) is at least εg3/15 (= εw(M)4/3/(15n2/3)).
The next lemma will allow us to complete our analysis (where we refer interchangeably to 1-pixels
in a submatrix and the vertices they correspond to in the underlying violation graph) .

Lemma 6.4 Consider a submatrix whose length in each dimension is at most s. Suppose that the
size of the minimum vertex-cover for this submatrix is at least k. Then for at least k/2 of the
1-pixels in the submatrix, there exists for each some ` = s/2t, such that the number of neighbors

35



that the 1-pixel has in an `× ` submatrix that it is either the bottom-right or the top-left corner of,
is at least `·(k/s)

8 log n .

We prove the lemma momentarily, but first show how to apply it in order to show that conditioned
on the abovementioned properties of G3

viol(M) (which hold with high constant probability), M is
rejected either due to a violating pair in S2

1 , or due to a violating pair that is found in the last
step of the algorithm (in which queries are performed). Setting s = 16g4/ε and k = εg3/15, in each
significant submatrix there are either at least k/4 1-pixels for which the statement in the lemma
holds for ` ≤ g2, or there are at least k/4 1-pixels for which the statement in the lemma holds for
` > g2. We refer to the former type of 1-pixels as closely useful and to that latter type of 1-pixels
as distantly useful .

If at least half of the significant submatrices contain each at least k/4 distantly useful 1-pixels,
then we claim that with high constant probability, the sample S2

1 will contain a violating pair. To
see why this is true, consider partitioning S2

1 further in to two parts, S2,1
1 and S2,2

1 , where S2,1
1 is of

size Θ(g1/ε) and S2
1 is of size Θ(g1 log n/ε2). Since there are Ω(g1) submatrices that are significant

and contain each at least k/4 = Ω(εg3) distantly useful 1-pixels and at most g3 1-pixels, with high
constant probability, S2,1

1 will contain some distantly useful 1-pixel from at least a constant fraction

of the Ω(g1) significant submatrices. Each of these Ω(g1) 1-pixels has at least `(k/s)
8 log n neighbors in

G3
viol(M) for ` > g2. That is, Ω

(
g2·ε2·g3

g4·log n

)
neighbors (where two 1-pixels from different submatrices

have different neighbors). The probability of getting a 1-pixel in the the union of these neighbors
in a single sample is lower bounded by

Ω

(
g1 · g2 · ε2 · g3

g4 · log n · w(M)

)

= Ω

(
ε2 · (n2/3/w(M)1/3) · (w(M)2/3/n1/3) · w(M)4/3/n2/3)

n1/3w(M)1/3 · log n · w(M)

)
(3)

=
ε2w(M)1/3

n2/3 log n
. (4)

Since S2
1 is of size Θ(g1 log n/ε2), it will contain one such neighboring 1-pixel with high constant

probability.

On the other hand, if at least half of the significant submatrices contain each at least k/4
closely useful 1-pixel, then with high constant probability, the sample S2 will contain at least one
such 1-pixel. Assuming this is indeed the case, let (x, y) be the 1-pixel and let `(x, y) ≤ g2 be

such that (x, y) has at least `(x,y)·(k/s)
8 log n neighbors in the `(x, y) × `(x, y) submatrix that it is the

bottom-right or top-left corner of. Once, in the last step of the algorithm, we reach ` such that
`(x, y) ≤ ` ≤ 2`(x, y), the probability of “hitting” a neighbor of (x, y) (in one of the abovementioned
submatrices) in a single query is Ω(k/(` ·s log n)) = Ω(ε2g3/(`g4 log n)) = ε2w(M)/(`n log n). Since
the algorithm asks Θ(` · (n/w(M)) · log n · ε−2) queries in this submatrix, one such neighbor will be
obtained with high constant probability.

It remains to prove Lemma 6.4. To this end we first prove the next claim (for an illustration
see Figure 9).
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Claim 6.5 Consider a submatrix whose length in each dimension is at most `, and that is deter-
mined by a 1-pixel (x0, y0) in its bottom-left corner and a 1-pixel (x5, y5) in its top-right corner.
Then there exists a subset of at most four 1-pixels {(xi, yi)}4

i=1 for which the following holds. The
subsequence {(xi, yi)}5

i=0 is monotonically non-decreasing, and each of the submatrices defined by a
pair of 1-pixels (xi−1, yi−1) and (xi, yi) either has length at most `/2 in each dimension, or contains
no other 1-pixels.

Proof: We first partition the submatrix into four fourths. We shall have at most two 1-pixels in
the bottom-left fourth (one of them is (x0, y0)), at most two 1-pixels in the top-right fourth (one of
them is (x5, y5)), and at most two 1-pixels in either the top-left fourth or the bottom right fourth.
Given (xi, yi) (where 0 ≤ i ≤ 3), if (xi, yi) is not already in the top-right fourth (this may occur for
i < 4), then we select (xi+1, yi+1) as follows.

1. If (xi, yi) is the first 1-pixel in the fourth it belongs to (that is, (xi−1, yi−1) belongs to a different
fourth or doesn’t exist), then we do the following. We consider all 1-pixels (x, y) > (xi, yi) in
the same fourth as (xi, yi). If there is no such 1-pixel, then we proceed as in the next item
(that is, when (xi, yi) is the second 1-pixel in its fourth). If there is at least one such 1-pixel
then we further consider those 1-pixel with the largest y coordinate, and amongst them let
(xi+1, yi+1) have the largest x coordinate. In this case, the submatrix defined by (xi, yi)
and (xi+1, yi+1) has length at most `/2 in each dimension (since both 1-pixels belong to the
same fourth). Furthermore, there are no 1-pixels (x, y) > (xi+1, yi+1) in the same fourth as
(xi+1, yi+1).

2. Otherwise ((xi, yi) is the second 1-pixel in its submatrix) we do the following. Observe that
in this case there are no 1-pixels (x, y) > (xi, yi) in the same fourth as (xi, yi). Here we
let (xi+1, yi+1) > (xi, yi) be a 1-pixel in one of the other fourths such that the submatrix
defined by (xi, yi) and (xi+1, yi+1) contains no other 1-pixels. Such a 1-pixel can be defined
by considering all 1-pixels (x, y) > (xi, yi) that have the smallest y coordinate, and among
them let (xi+1, yi+1) have the smallest x coordinate.

By the above construction, the matrix defined by (xi, yi) and (xi+1, yi+1) has either length at most
`/2 in each dimension (when both 1-pixels belong to the same fourth of the submatrix), or it
contains no additional 1-pixels. Since by the construction there can be at most two 1-pixels in each
fourth (and there can’t be both a 1-pixel in the top-left fourth and in the bottom-right), the claim
follows.

Proof of Lemma 6.4: Assume that the claim in the lemma does not hold. We’ll reach a
contradiction to the premise of the lemma (regarding the size of a minimum vertex cover) by
constructing a smaller vertex cover. We start by putting in the cover all, 1-pixels that for some
` = s/2t have at least `·(k/s)

8 log n neighbors in an ` × ` submatrix that they are the corner of. By the
counter assumption, there are fewer than k/2 such 1-pixels.

We continue working in O(log n) iterations, where in each iteration we select a new set of 1-
pixels. Each such set is monotonically increasing and has no neighbors among previously selected
1-pixels. We then add to the cover all their neighbors. We’ll stop when each of the submatrices
between consecutive 1-pixels contains no edges within it. Starting from t = 1, we’ll ensure that
in each iteration t, every submatrix has length at most s/2t in each dimension. In iteration t we
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Figure 9: An illustration for the proof of Claim 6.5.

consider those submatrices that have length at least s/2t+1 in each dimension, where the total
number of such matrices is at most 2t+2.

By Claim 6.5, for each such submatrix, there exist at most four 1-pixels that break the submatrix
into smaller submatrices with the following properties. Each of the smaller submatrices either has
length at most s/2t+1 in each dimension, or it contains no edges within it. Since each of these four

1-pixels has at most (s/2t)·(k/s)
8 log n = k

2t+3 log n
neighbors within the (bigger) submatrix, each iteration

adds to the cover at most 2t+2 · k
2t+3 log n

= k
2 log n 1-pixels. Since there are less than log n iterations,

this stage contributes at most k/2 1-pixels to the cover. The resulting cover is of size less that
k/2 + k/2 = k, and we reach a contradiction.

6.2 A Lower Bound

We next show that there is a lower bound that almost matches our upper bound (for w(M) = O(n)).

Theorem 6.2 Any (two-sided error) testing algorithm for monotonicity must have complexity
Ω(min{w(M)1/2, n2/3/w(M)1/3}) (for constant ε). The lower bound holds when w(M) = O(n)
and the algorithm is given an estimate ŵ such that w(M)/2 ≤ ŵ ≤ 2w(M).

We note that we can obtain the lower bound also when w(M) is known exactly, but since our
algorithm only uses a constant factor estimate of w(M), for the sake of simplicity we prove the
theorem as stated.

Proof: We first establish the lower bound for ŵ ≤ n4/5 (where it is Ω(w(M)1/2)), we then establish
it for ŵ = n (where it is Ω(n2/3/w(M)1/3 = Ω(n1/3)), and after that we deal with the general case
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that ŵ ranges between n4/5 and n (where the lower bound should behave like Ω(n2/3/w(M)1/3)).

The case ŵ ≤ n
4/5. We define the following two families of matrices. In both families we consider

a partition of the matrices into submatrices of size (n/ŵ) × (n/ŵ). Note that since ŵ ≤ n4/5,
the number of entries in each submatrix is at least w(M)1/2. In the first family each matrix is
determined by selecting, in each submatrix that is on the diagonal of these submatrices, a random
entry either in the top-left fourth of the submatrix or in the bottom-right fourth, and setting it to
1. In the second family each matrix is determined by selecting, in each submatrix on the diagonal,
both a random entry in the top-left fourth of the submatrix, and a random entry in the bottom-
right fourth, and setting them both to 1. Clearly every matrix in the first family is monotone, and
every matrix in the second family is 1/2-far from monotone. For an illustration, see Figure 10. The
construction is such that for each matrix M in the first family we have that w(M) = ŵ/2, and in
the second family w(M) = ŵ. In order to get the exact same value of w(M) we can simply modify
the second family so that only half of the diagonal submatrices are occupied (with two 1-pixels).

Figure 10: An illustration for the two families used for the lower bound when ŵ ≤ n4/5. The
submatrices on the diagonal (and their partition into 4 fourths) are denoted by dashed lines.

However, suppose that the algorithm performs o(w(M)1/2) queries and takes a sample of at
most that size. Consider its execution when the matrix is either chosen uniformly in the first
family or is chosen uniformly in the second family. We may assume without loss of generality that
the algorithm first takes a sample of 1-pixels and then performs queries. Observe that in both
distributions over matrices, the probability of the sample “hitting” the same submatrix twice in a
sample of size o(w(M)1/2) is o(1) (since there are O(w(M)) submatrices). However, if there is no
such collision then the samples are distributed identically.

Turning to the queries, note that the number of pixels in each (fourth of a) submatrix is
Ω(n2/w(M)2) = Ω(w(M)1/2). Since in the distribution over the first family there is a single 1 in
each diagonal submatrix whose location is equally distributed in the top-left or bottom-right fourth
of each submatrix, and in the second there are two 1-pixels, each uniformly distributed in one of
the two fourths, if the algorithm performs o(w(M)1/2) queries, they are all answered by 0 with
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probability 1 − o(1) 9. We have thus showed that with high probability it is not possible to D: more

elabora-

tion?

G: Is the

footnote

suffi-

cient?

Neces-

sary?

distinguish between a uniformly selected matrix in the first family (which should be accepted with
high constant probability) and a uniformly selected submatrix in the second family (which should
be rejected with high constant probability).

The case ŵ = n. In this case we simply “scale up” the lower bound construction of the previous
case in the following manner. Here we think of a partition of each n × n matrix into submatrices
of size n1/3 × n1/3, where only the n2/3 diagonal submatrices are non-empty. In the first family,
each matrix is determined by selecting, for each diagonal submatrix, either the top-left fourth or
the bottom-right fourth and within the selected fourth, selecting one of the n1/3/2 rows to be filled
with 1’s. In the second family such a row is selected in both families. Here too every matrix M in
the first family is monotone and w(M) = ŵ/2, and every matrix M in the second family is 1/2-far
from monotone and w(M) = ŵ. For an illustration, see Figure 11.

Figure 11: An illustration for the two families used for the lower bound when ŵ = n. The
submatrices on the diagonal (and their partition into 4 fourths) are denoted by dashed lines.

Since there are n2/3 non-empty submatrices, if the algorithm takes a sample of size o(n1/3), then
with probability 1−o(1) it won’t hit the same submatrix twice (in both distributions). Conditioned
on there being no collisions, the distributions on sampled 1-pixels are identical for both families. As
for the queries, since the number of rows in each fourth of a submatrix is n1/3/2, if the algorithm
performs o(n1/3) queries, with probability 1 − o(1) (over a uniformly selected matrix in either one
of the two families), the answers to its queries are all 0. Thus we get a lower bound of Ω(n1/3) for
the case that w(M) = Θ(ŵ) = Θ(n) (that is, Ω(n2/3/w(M)1/3)).

The case n
4/5

< ŵ < n. For the general case we partition the matrices into submatrices of size
` × ` where ` = ŵ2/3/n1/3, so that there are t = n/` = n4/3/ŵ2/3 submatrices on the diagonal.
Similarly to the case ŵ = n, in one distribution (over a family of matrices) a row is selected
uniformly either from the top-left fourth or the bottom right fourth, and in the second distribution
a random row is selected from each. However, here each selected row is not completely filled with

9To see this note that we may consider the queries to be non-adaptive so long as a 1-pixel isn’t encountered. Thus,
the probability of a given algorithm hitting on a pixel that wasn’t previously sampled must be at most O(1/w(M)1/2)
per query.
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1’s but rather each is randomly filled with k = ŵ/2t = ŵ5/3/2n4/3 1’s, so that the density of 1’s in
the selected rows is α = k/(`/2) = ŵ/n. Note that this coincides (for the appropriate rounding)
with our constructions for ŵ = n (where ` = n2/3, t = n2/3, k = n1/3/2 and α = 1) and ŵ = n4/5

(where ` = n1/5, t = n4/5, k = 1 and α = 1/(n1/5/2)). We refer to these rows as the “occupied”
rows.

Similarly to the arguments given for the cases ŵ ≤ n4/5 and ŵ = n, if the algorithm takes a
sample of size o(n2/3/w(M)1/3) = o(

√
t) (where t is the number of submatrices on the diagonal),

with probability 1 − o(1), it won’t hit the same submatrix twice. Conditioned on this, the distri-
butions on sampled 1-pixels are identical. Turning to the queries, here too we claim that if the
algorithm performs o(n2/3/w(M)1/3) = o(`2/k) = o(`/α) queries (where ` is the length of each
submatrix, k is the number of 1’s in the submatrix and α = ŵ/n is the density of the 1’s in each
row), then with probability 1 − o(1) all queries are answered by 0.

The verify this, suppose that the algorithm performs β ·n2/3/w(M)1/3 queries for β = o(1). The
main observation is that we may assume without loss of generality that the algorithm selects its
queries non-adaptively (though possibly based on the 1-pixels it got in the sampling stage). This is
true because conditioned on all its queries being answered by 0, there is no use in adaptivity (and
once the algorithm gets an answer of 1 on any query, it has “won”, in the sense that it may be able
to distinguish between the two distributions).

Thus consider any fixed choice of β · n2/3/w(M)1/3 = β · (`/α) queries for β = o(1) (which
corresponds to a setting of the coin-flips of the algorithm). We shall show that for both distributions,
the probability that any one of these queries is answered by 1 is o(1). For 1 ≤ i ≤ t (recall that
t is the number of submatrices on the diagonal) and for 1 ≤ j ≤ log(`/2), let s1

i,j be the number

of subrows in the top-left fourth of the ith diagonal submatrix that contain between 2j−1 and 2j

queries, and similarly define s2
i,j for the bottom-right fourth. Then the probability that any query

in one of the subrows is answered by 1 (under both distributions) is upper bounded (using the
union bound) by

t∑

i=1

log(`/2)∑

j=1

(
s1
i,j

`/2
· 2j · α +

s2
i,j

`/2
· 2j · α

)

=
2α

`

t∑

i=1

log(`/2)∑

j=1

(s1
i,j + s2

i,j) · 2j (5)

≤ 2α

`
· 2β`

α
= 4β = o(1) , (6)

and the proof is completed.
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