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ON THE GHOST CENTRE OF LIE SUPERALGEBRAS

MARIA GORELIK

Abstract. We define a notion of ghost centre of a Lie superalgebra g = g0 ⊕ g1 which
is a sum of invariants with respect to the usual adjoint action (centre) and invariants
with respect to a twisted adjoint action (“anticentre”). We calculate the anticentre in
the case when the top external degree of g1 is a trivial g0-module. We describe the
Harish-Chandra projection of the ghost centre for basic classical Lie superalgebras and
show that for these cases the ghost centre coincides with the centralizer of the even part
of the enveloping algebra.

The ghost centre of a Lie superalgebra plays a role of the usual centre of a Lie algebra
in some problems of representation theory. For instance, for g = osp(1, 2l) the annihilator
of a Verma module is generated by the intersection with the ghost centre.

1. Introduction

1.1. Let g0 be a complex finite dimensional Lie algebra and Z(g0) be the centre of its
universal enveloping algebra. Then Z(g0) acts on a simple g-module by an infinitesimal
character and consequently, such characters separate representations. Moreover, in the
case when g0 is semisimple, the annihilator of a Verma module is generated by the kernel
of the corresponding infinitesimal character.

Let g = g0 ⊕ g1 be a complex finite dimensional Lie superalgebra and Z(g) be the
(super)centre of its universal enveloping algebra U(g). All g-modules considered below
are assumed to be Z2-graded and “g-simple module” means simple as graded module.
The centre Z(g) acts on a simple g-module by an infinitesimal character, but, even in the
“nice” case g = osp(1, 2l), the annihilator of a Verma module is not always generated by
the kernel of the corresponding infinitesimal character. In [GL] we described, for the case

g = osp(1, 2l), a polynomial subalgebra Z̃(g) of U(g) which acts on a simple module by
“supercharacter”. The annihilator of a Verma module is generated by the kernel of the
corresponding supercharacter.

In this paper we introduce a notion of ghost centre Z̃(g) (see 2.1.2). This is a subalgebra
of U(g) which contains both Z(g) and a centre of U(g) considered as associative algebra.

The algebra Z̃(g) acts on a simple module by “supercharacter” and separates graded
representations (see 2.2).

The author was partially supported by Chateubriand fellowship and TMR Grant No. FMRX-CT97-
0100.
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By definition, Z̃(g) is a sum of Z(g) and so-called anticentre A(g). The last one is the
set of invariants of U(g) with respect to a ‘nonstandard adjoint action’ ad′ g introduced
in [ABF]. The product of two elements from the anticentre lies in the centre and the
product of an element from the centre and an element from the anticentre belongs to the
anticentre.

As well as Z(g) itself, Z̃(g) is not easy to describe and, in general, it is not noetherian
algebra. However, in the case when the top external degree Λtopg1 of g1 is a trivial g0-
module, A(g) itself as well as its image in the symmetric algebra can be easily described—
see Theorem 3.3. The above condition on Λtopg1 holds for the simple finite-dimensional
Lie superalgebras apart from the W (n) type.

The existence of non-zero anticentral elements implies two “negative” results. The
first one is that the direct generalization of the Gelfand-Kirillov conjecture does not hold
for the Lie superalgebras with even dimensional g1—see 3.5.2. The second one is that
Separation theorem does not hold for the classical basic Lie superalgebras apart from the
simple Lie algebras and the superalgebras osp(1, 2l)—see 4.5.

1.2. In the case g = osp(1, 2l) Arnaudon, Bauer, Frappat ([ABF]) and Musson ([Mu])
constructed a remarkable even element T in the enveloping algebra U(g). This element
is ad′ g-invariant and its Harish-Chandra projection is the product of hyperplanes cor-
responding to the positive odd roots. The element T has been called ‘Casimir’s ghost’
in [ABF], since its square belongs to the centre.

In 3.3 we construct such element T ∈ A(g) for any g such that Λtopg1 is a trivial g0-
module. The image of T in the symmetric algebra belongs to Λtopg1. In Section 4 we
show that in the case when g is a basic classical Lie superalgebra, the Harish-Chandra
projection of T is also the product of hyperplanes corresponding to the positive odd roots.

In [S2] A. Sergeev described the set of ‘anti-invariant polynomials’ which are the in-
variants of the dual algebra U(g)∗ with respect to the nonstandard adjoint action ad′ g.

1.3. Content of the paper. In Section 2 we define our main objects: the anticentre
A(g) and the ghost centre Z̃(g). We describe the action of Z̃(g) on the modules of finite
length in the case when g is finite dimensional.

In Section 3 we show that A(g) is equal to zero if dim g1 is infinite. Moreover all
elements of A(g) are either even (if dim g1 is even) or odd (otherwise). We describe
the structure of A(g) when Λtopg1 is a trivial g0-module. Namely, we prove that as a
vector space A(g) is isomorphic to Z(g0). The central step of the proof is Theorem 3.2.3
which states that for any g0-module L, the induced g-module Indg

g0
L and the coinduced

g-module Coindg
g0
L are isomorphic up to grading. This theorem allows us to define T as

a unique up to a scalar ad′ g-invariant element inside the ad′ g-module generated by 1.
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In Section 4 we consider the case when g is a complex classical basic Lie superalgebra.
In this case, the Harish-Chandra projection of Z(g) is described by Kac and Sergeev
(see [S1]). In Corollary 4.2.4, we describe the Harish-Chandra projection of A(g).

We say that an element u ∈ U(g) acts on a module M by a superconstant if it acts by
the multiplication by a scalar on each graded component Mi (i = 0, 1). In the case when

g is finite dimensional and dim g1 is even, any element of Z̃(g) acts on a simple module
M by a superconstant (see 2.2). In Corollary 4.4.4 we show that if g is a basic classical
Lie superalgebra then any element of U(g) acting by a superconstant on each simple

finite dimensional module belongs to Z̃(g). Moreover Z̃(g) coincides with the centre (and
the centralizer) of the even part U(g)0 of the universal enveloping algebra. For the case
g = osp(1, 2l) the last result was proven in [GL].

1.4. Acknowledgement. I wish to express my gratitude to V. Hinich and A. Vaintrob
for reading this paper and providing numerous useful suggestions. I would like to thank
V. Serganova who pointed out at an error in an earlier version. I would like to thank also
M. Duflo, A. Joseph and E. Lanzmann for helpful discussions. It is finally a great pleasure
to thank my hosts at Strasbourg, especially P. Littelmann, whose hospitality and support
are greatly appreciated.

2. Ghost centre

In this paper the ground field is C. Let g = g0 ⊕ g1 be a finite dimensional Lie super-
algebra such that g1 6= 0. Everywhere except 2.1, g is assumed to be finite dimensional.
All g-modules are assumed to be Z2-graded. We denote by Π the parity change functor:
Π(M) := M ⊗ Π(C) where Π(C) is the trivial odd representation. Denote by U(g) the
enveloping superalgebra of g and by Z(g) the (super)centre of U(g).

2.1. For a homogeneous u ∈ U(g) denote by d(u) its Z2-degree. For a U(g)-bimodule
M one defines the adjoint action of g on M by setting (ad g)m := gm − (−1)d(g)d(m)mg
where m ∈ M, g ∈ g are homogeneous elements and d(m) denotes the Z2-degree of m.
Define a twisted adjoint action ad′ of g on M as the adjoint action of g on the bimodule
Π(M). One has

(ad′ g)(u) = gm− (−1)d(g)(d(m)+1)mg.

Assume thatM has a superalgebra structure such that g(m1m2) = g(m1)m2 and (m1m2)g =
m1(m2)g for all g ∈ g, m1, m2 ∈ M . Then for any homogeneous m1, m2 ∈ M and g ∈ g

one has

(ad′ g)(m1m2) = ((ad g)m1)m2 + (−1)d(g)d(m1)m1((ad′ g)m2)
= ((ad′ g)m1)m2 + (−1)d(g)(d(m1)+1)m1((ad g)m2).

Moreover if m is ad′ g-invariant then

(ad′ g)(m1m) = ((ad g)m1)m, (ad g)(m1m) = ((ad′ g)m1)m. (1)
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2.1.1. Example. Let N be a U(g)-module and End(N) be the ring of its C-linear
endomorphisms. Then End(N) admits a natural structure of graded U(g)-bimodule. Let
θ be the endomorphism of N which is equal to id (resp., − id) on the even (resp., odd)
component of N . Then θ is an even ad′ g-invariant homomorphism which commutes
with the even elements of End(N) and anticommutes with the odd elements of End(N).
The formulas (1) imply that End(N) considered as ad g-module is isomorphic to End(N)
considered as ad′ g-module. The similar assertion fails for U(g) (the structure of U(g) as
ad′ g-module is given in Lemma 3.1.2).

2.1.2. Let us call anticentre A(g) the set of elements of U(g) which are invariant with
respect to ad′. Remark that any even element of the anticentre anticommutes with odd
elements of U(g) and commutes with even ones and any odd element of the anticentre
commutes with all elements of U(g). Clearly the anticentre is a module over the centre
and the product of any two elements of the anticentre belongs to the centre. For example,
for g = osp(1, 2l) A(g) is a free rank one module over Z(g) (see [GL], 4.4.1). This is not
true for a general Lie superalgebra.

Let us call ghost centre Z̃(g) the sum of A(g) and Z(g). It is clear that Z̃(g) is a
subalgebra of U(g) which contains the centre of U(g) considered as associative algebra.

In order to describe the action of Z̃(g) on simple modules, note the following version
of Schur’s lemma for Lie superalgebras

2.1.3. Lemma. Let g be a finite or countable dimensional Lie superalgebra and M =
M0 ⊕M1 be a simple g-module. Then either End(M)ad g = k id or End(M)ad g = k id⊕kσ
where the odd element σ provides a g-isomorphism M

∼−→ Π(M) and σ2 = id.

Proof. Assume that φ ∈ End(M)ad g is even. Both homogeneous components M0 and M1

are simple U(g)0-modules. Since U(g)0 is a complex countable dimensional associative
algebra, the restriction of φ on M0 (resp., on M1) is some constant c0 (resp., c1)— see [BZ].
Since M is simple, c0 = c1 and so φ = c0 id.

Assume that φ ∈ End(M)ad g is odd. Then φ2 is even and so φ2 = c id for some c ∈ C. If
c = 0 then Kerφ 6= 0 and so φ = 0. Otherwise φ is invertible and provides a g-isomorphism
M

∼−→ Π(M). Set σ = φ/
√
c. Let ψ be another odd ad g-invariant endomorphism such

that ψ2 = id. Then (ψ±σ) are also odd ad g-invariant endomorphisms. Therefore (ψ+σ)
(resp., (ψ − σ)) is either isomorphism or zero. Since (ψ + σ)(ψ − σ) = 0, it implies that
ψ = ±σ. This proves the lemma.

2.1.4. Using Example 2.1.1, we conclude that End(M)ad′ g = End(M)ad gθ. This implies

the following lemma describing the action of Z̃(g) on simple modules.

Lemma. Let g be finite or countable dimensional Lie superalgebra, M = M0 ⊕M1 be

a simple g-module and z be an element of Z̃(g). Then the action of z on M is proportional
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to
id, if z ∈ Z(g) and z is even,
0, if z ∈ Z(g) and z is odd,
θ, if z ∈ A(g) and z is even,
σθ, if z ∈ A(g) and z is odd.

2.2. Case dim g1 is even. In this case all elements of A(g) are even (see 3.1.3). Denote

by C̃ the algebra spanned by id and θ. Then C̃ = C[θ]/(θ2 − 1). Denote by π the algebra

involution of C̃ sending θ to −θ.
Definition. An algebra homomorphism χ : Z̃(g) → C̃ is called supercharacter if

χ(Z(g)) = C and χ(A(g)) ⊆ Cθ.

By Lemma 2.1.4, Z̃(g) acts on a simple modules M by a supercharacter χM . Moreover
χΠ(M) = πχM .

2.2.1. The standard consequence of Schur’s lemma is the following statement. Any
finite length module M has a unique decomposition into a direct sum of submodules
Mi such that, for any fixed i, all simple subquotients of Mi have the same infinitesimal
character and these characters are pairwise distinct for different i. Similarly, one can
deduce from Lemma 2.1.4, that any finite length module M has a unique decomposition
into a direct sum of submodules Mj such that, for any fixed j, all simple subquotients
of Mj have the same supercharacter and these supercharacters are pairwise distinct for
different j. This new decomposition is a refinement of the previous one. For example,
let L be a simple module such that A(g) does not lie in AnnL. Then L and Π(L) have
different supercharacters. This, for instance, implies that though they have the same
infinitesimal character, there are no non-trivial extensions of L by Π(L).

2.3. Case dim g1 is odd. In this case all elements of A(g) are odd (see 3.1.3). Retain

notation of 2.2. The algebra spanned by id and σθ (see Lemma 2.1.3) is isomorphic to C̃.
However if L is a simple module such that aL 6= 0 for some a ∈ A(g), then the product of
θ and the image of a in EndL provides an isomorphism s : L

∼−→ Π(L). One can choose
a such that s2 = id. There are two possible choices of such s which differ by sign. As a
consequence, in this case, it is more natural to define a odd supercharacter as a pair of
homomorphism (χ, πχ) where χ satisfies the conditions given in Definition 2.2 and π is

the involution of C̃ sending σθ to −σθ. Observe that if L 6∼= Π(L) then χ = πχ.

As in 2.2.1, odd supercharacters allows us to construct a decomposition of any module
of finite length, but, probably, it always coincides with the decomposition coming from
the infinitesimal characters.

2.3.1. Example. Let g1 be generated by x and g0 be generated by [x, x]. Then
U(g) = C[x], Z(g) = C[x2] and A(g) = C[x2]x is a cyclic Z(g)-module generated by x.
The list of the simple representations of g is the following:
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a) Two trivial representations (one is even and one is odd). The corresponding odd
supercharacter sends A(g) to zero.

b) Two-dimensional representations L(λ) (λ ∈ C \ {0}) spanned by v and xv where

x2v = λv. The corresponding odd supercharacter sends x to ±
√
λσθ. The representations

L(λ) and Π(L(λ)) are isomorphic.

3. Anticentre A(g)

Retain notation of Section 2. Assume that g = g0 ⊕ g1 is a Lie superalgebra such that
g1 is finite dimensional and Λtopg1 is a trivial g0-module. In this section we construct a
linear injective map from the centre Z(g0) to the anticentre A(g)—see Theorem 3.3. This
allows us to describe the image of A(g) in the symmetric algebra S(g).

3.1. Denote by F the canonical filtration of U(g) given by Fk := gk. Recall that this
is an ad g-invariant filtration and that the associated graded algebra grF U(g) = S(g)
is supercommutative. For u ∈ U(g) denote its image in S(g) by gru. Remark that
(ad′ x)(u) = 2xu− (ad x)(u) for x ∈ g1 and u ∈ U(g). Therefore

gr((ad′ x)(u)) = 2(gr x)(gru), ∀u ∈ U(g), x ∈ g1 s.t. gr(xu) = (grx)(gru). (2)

3.1.1. Let L be an even vector space endowed by a structure of g0-module. Denote by
Indg

g0
L the supervector space U(g) ⊗U(g0) L (here U(g) is considered as a right U(g0)-

module) equipped with the natural left U(g)-module structure.

Let L be a submodule of U(g0) with respect to ad g0-action. Denote by (ad′ g)(L) the
ad′ g-submodule of U(g) generated by L. Note that there is a natural surjective map from
Indg

g0
L to (ad′ g)(L) given by u⊗m 7→ (ad′ u)m for u ∈ U(g), m ∈ L.

3.1.2. Lemma. Let L be a submodule of U(g0) with respect to ad g0-action. The
natural map Indg

g0
L → (ad′ g)(L) is an isomorphism. Moreover U(g) = (ad′ U(g))U(g0)

and thus as ad′ g-module U(g) is isomorphic to Indg
g0
U(g0).

Proof. Let {xi}i∈I be an ordered basis of g1. For any finite subset J ⊆ I set xJ :=
∏

i∈J xi,
where the product is taken with respect to the fixed order. Then the elements {grxJ}J⊆I

form a basis of Λg1 ⊂ S(g). Choose a basis {uj}j∈S in L such that {gruj}j∈S are linearly
independent in grF U(g0). Using (2) one concludes that gr(ad′ xJ )uj = 2|J |(grxJ)(gr uj)
for all finite subsets J ⊆ I, j ∈ S. Therefore the elements {(ad′ xJ)uj}J⊆I,j∈S are linearly
independent. This proves the first assertion.

For the second assertion, note that grU(g) is spanned by the elements of the form
(grxJ )(gru) with u ∈ U(g0). Now (gr xJ)(gru) = gr((ad′ xJ )u)/2|J | and so gr(ad′ U(g))U(g0) =
grU(g). Therefore U(g) = (ad′ U(g))U(g0) as required.

The isomorphism U(g) ∼= Indg
g0
U(g0) is proven in [S2], 3.2.



7

3.1.3. Corollary. If g1 has infinite dimension then A(g) = 0. If dim g1 is even, all
elements of A(g) are even and if dim g1 is odd, all elements of A(g) are odd.

Proof. Retain notation of Lemma 3.1.2. Any element of U(g) can be written in a form
u =

∑
J(ad′xJ )uJ where uJ ∈ U(g0). Take u 6= 0 and set m = max{|J | | uJ 6= 0}. Assume

that m < dim g1. Take J such that |J | = m and uJ 6= 0; take i ∈ I \ J . Modulo∑
|J ′|<m+1(ad′ xJ ′)U(g0) one has

(ad′xi)u =
∑

|J ′|=m

(ad′xixJ ′)uJ ′ 6= 0.

Thus if u ∈ A(g) then m = dim g1. Since A(g) is a Z2-graded subspace of U(g), the
assertion follows.

3.2. Ind and Coind. Let L be an even vector space endowed by a structure of left g0-
module. Denote by Coindg

g0
L the supervector space HomU(g0)(U(g), L) (here U(g) is

considered as a left U(g0)-module) equipped with the following left U(g)-module structure:
(uf)(u′) := f(u′u) for any f ∈ HomU(g0)(U(g), L), u, u′ ∈ U(g). The aim of this subsection
is to prove that Indg

g0
L and Coindg

g0
L (resp., Π(Coindg

g0
L) ) are isomorphic if dim g1 is

even (resp., odd).

3.2.1. Retain notation of Lemma 3.1.2. For k ∈ N set

Fk
o :=

∑

J⊆I,|J |≤k

U(g0)xJ .

One has xJxJ ′ = ±xJ∪J ′ modulo F |J |+|J ′|−1
o . This implies that Fp

oF q
o ⊆ Fp+q

o and thus Fo

is a filtration of U(g). In particular, Fk
o are U(g0)-bimodules and the filtration does not

depend from the choice of {xi}i∈I .

Consider U(g) as a left U(g0)-module. Denote by ι a g0-homomorphism from U(g) to
U(g0) such that ker ι = F |I|−1

o and ι(xI) = 1. Recall that ker ι does not depend from the
choice of basis in g1. Note that u0xI = xIu0 modulo F |I|−1

o for any u0 ∈ U(g0), since Λtopg1

is a trivial g0-module. Thus ι : U(g) → U(g0) is a homomorphism of U(g0)-bimodules.

Define a map (.|.) from U(g) ⊗U(g0) U(g) to U(g0) by setting (u|u′) = ι(uu′). For any
subsets J, J ′ of I set δJ,J ′ = 1 if J = J ′ and δJ,J ′ = 0 otherwise.

3.2.2. Lemma. For any J ⊆ I there exist uJ , vJ ∈ U(g) such that (uJ |xJ ′) =
(xJ ′ |vJ) = δJ,J ′.

Proof. We prove the existence of vJ by induction on r = |I \ J |. For r = 0, J = I and
vI = 1 satisfies the conditions.
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Fix J ⊆ I. For any J ′ ⊆ I such that |J ′| ≤ |J |, one has xJ ′xI\J = ±xI\J∪J ′ modulo

ker ι = F |I|−1
o . Thus (xJ ′|xI\J ) = 0 for J 6= J ′ and (xJ |xI\J) = ±1. Set

v := xI\J −
∑

|J ′|>|J |

vJ ′(xJ ′|xI\J).

Then (xJ ′|v) = 0 for any J ′ ⊆ I, J ′ 6= J and (xJ |v) = ±1. This proves the assertion.

The existence of uJ can be shown similarly.

3.2.3. Theorem. Assume that g = g0 ⊕ g1 is a Lie superalgebra such that Λtopg1 is a
trivial g0-module. Then for any g0-module L the linear map Ψ defined by

Ψ(u′ ⊗m)(u) := (u|u′)m, ∀m ∈ L, u, u′ ∈ U(g)

provides an isomorphism Indg
g0
L

∼−→ Πdim g1(Coindg
g0
L).

Proof. For any u0 ∈ U(g0) one has (u|u′u0)m = ι(uu′u0)m = ι(uu′)u0m = (u|u′)u0m and
thus φ is well-defined on Indg

g0
L = U(g) ⊗U(g0) L. Moreover

Ψ(u′ ⊗m)(u0u) = (u0u|u′)m = u0(u|u′)m = u0Ψ(u′ ⊗m)(u)

and so Ψ(u′ ⊗m) is a U(g0)-linear map.

For any s ∈ U one has

Ψ(su′ ⊗m)(u) = (u|su′)m = (us|u′)m = Ψ(u′ ⊗m)(us) = (sΨ(u′ ⊗m))(u)

and so Ψ is a homomorphism of left U(g)-modules.

Since Ψ(1⊗m)(xJ ) = δI,Jm, the element Ψ(1⊗m) is even iff xI ∈ U(g) is even. Thus
Ψ is a map from Indg

g0
L to Coindg

g0
L if dim g1 is even and from Indg

g0
L to Π(Coindg

g0
L)

if dim g1 is odd.

Any element of Indg
g0
L can be written in the form

∑
J⊆I xJ ⊗mJ where mJ ∈ L. Fix

J ′ ⊆ I and choose uJ ′ ∈ U(g) as in Lemma 3.2.2. Then Ψ(
∑

J⊆I xJ ⊗mJ)(uJ ′) = mJ ′.
This implies that ker Ψ = 0.

Fix J ⊆ I and choose vJ ∈ U(g) as in Lemma 3.2.2. Then for any m ∈ L one has
Ψ(vJ ⊗m)(xJ ′) = δJ,J ′m. This implies the surjectivity of Ψ and completes the proof.

3.3. Retain notation of Lemma 3.2.2.

Theorem. Assume that g = g0 ⊕ g1 is a Lie superalgebra such that Λtopg1 is
a trivial g0-module. Then the map φ : z 7→ (ad′ v∅)z provides a linear isomorphism
Z(g0)

∼−→ A(g). Moreover one has grφ(z) = x gr z where x is an element of Λtop(g1).

Proof. The proof follows from Lemma 3.1.2 and Theorem 3.2.3. We give a full detail
below.
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Denote by ǫ̃ a trivial even representation of g and let e be a non-zero vector of ǫ̃. There
is a canonical bijection Φ from Homg0

(ǫ̃,U(g0)) onto Homg(ǫ̃,Coindg
g0
U(g0)) given by

Φ(ψ)(e)(u) = ψ(ue) ∀ψ ∈ Homg0
(ǫ̃,U(g0)), u ∈ U(g).

Combining the map Φ with the natural bijection Z(g0)
∼−→ Homg0

(ǫ̃,U(g0)), we obtain
the bijection

Φ′ : Z(g0)
∼−→ Homg(Π

dimg1(ǫ̃),Coindg
g0
U(g0))

given by

(Φ′(z)(e))(xJ) = δJ,∅z.

In view of Theorem 3.2.3, Φ′ induces the bijection

Φ′′ : Z(g0)
∼−→ Homg(Π

dim g1(ǫ̃), Indg
g0
U(g0))

given by

Φ′′(z)(e) = v∅ ⊗ z.

Finally, Lemma 3.1.2 implies that the map sending z to (ad′ v∅)z provides a linear iso-
morphism Z(g0)

∼−→ A(g) and moreover A(g) lies in U(g)0 if dim g1 is even and in U(g)1

if dim g1 is odd.

The proof of Lemma 3.2.2 shows that v∅ = ±xI +
∑

J 6=∅ xI\JdJ where dJ are some
elements of U(g0). Therefore

φ(z) := (ad′ v∅)(z) = (ad′(xI +
∑

J⊂
6=

I

cJxJ))z (3)

where cJ are some scalars. By the formula (2), grφ(z) = x gr z for x := grxI ∈ Λtop(g1).
This completes the proof.

3.4. The condition on Λtop(g1) is essential for both Theorem 3.2.3 and Theorem 3.3.

3.4.1. Example. Let g be the Lie superalgebra W (1) spanned by the even element g

and the odd element x subject to the relations [x, x] = 0, [g, x] = x. Then Z(g) = Z̃(g) =
C and A(g) = 0.

3.4.2. For Theorem 3.2.3 the condition on Λtop is not only sufficient but also necessary.
In fact, assume that the isomorphism Ψ exists for a trivial g0-module ǫ. Then one has
the following isomorphisms of g0-modules

Λg1
∼−→ Indg

g0
ǫ

∼−→ Coindg
g0
ǫ

∼−→ (Λg1)
∗.

Thus Λg1 is a self-dual g0-module. The last is equivalent to the condition Λtop(g1)
∼−→ ǫ

if g1 is assumed to be finite dimensional.
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3.4.3. We describe below for which simple Lie superalgebras the condition Λtop(g1)
∼−→ ǫ

holds.

A classification theorem of Kac (see [K1], 4.2.1) states that any complex simple finite
dimensional Lie superalgebra is isomorphic either to one of the classical Lie superalgebra
or to one of the Cartan Lie superalgebras W (n), S(n), S̃(n), H(n).

Evidently the condition holds if g0 is semisimple or if g1
∼= g∗

1 as g0-module. In particular
the condition holds for all classical Lie superalgebras. It is easy to check that the above
condition holds also for the Cartan Lie superalgebras S(n), S̃(n), H(n) and does not hold
for the Cartan Lie superalgebras W (n) with n 6= 2.

3.4.4. Retain the assumption of Theorem 3.3.

Definition. Denote by T a non-zero ad′ g-invariant element belonging to (ad′ U(g))(1).

The element T is defined up to a non-zero scalar and it is even iff dim g1 is even.
Observe that, up to a scalar, T is a unique element of the anticentre whose image in S(g)
belongs to Λtop(g1).

3.5. Remarks.

3.5.1. Here we consider U(g) as an associative algebra and denote its centre by Z. Evi-
dently Z ∩U(g)0 = Z(g)∩U(g)0 and Z ∩U(g)1 = A(g)∩U(g)1. Hence, in the case when
g is finite dimensional,

Z = Z(g) ∩ U(g)0 if dim g1 is even,
Z = (Z(g) ∩ U(g)0) ⊕A(g) if dim g1 is odd.

3.5.2. In most of the cases U(g) is not a domain— see [AL]. However, even if U(g) is
a domain (for example g = osp(1, 2l)) the direct generalization of the Gelfand-Kirillov
conjecture does not hold for Lie superalgebras.

In fact, let k be a field of characteristic zero and An(k) be a Weyl algebra over k. Recall
that the centre of a Weyl skew field Wn(k) coincides with k and that An(k) = An(k)⊗k k.
Therefore a Weyl skew field does not contain non-central elements whose squares are
central. Take any non-zero a ∈ A(g). If dim g1 is even then a 6∈ Z, but a2 ∈ Z. This
implies that a Weyl skew field and a skew field of fractions of U(g) are not isomorphic if
dim g1 is even and Λtopg1 is a trivial g-module.

4. The case of basic classical Lie superalgebras

In this section g denotes a basic classical Lie superalgebra (see [K2] and 4.1 below) such
that g1 6= 0. In this case the dimension of g1 is even and so all elements of A(g) even. In
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particular, they anticommute with the odd elements of U(g) and commute with the even
ones.

In this section we show that the restriction of the Harish-Chandra projection P on
A(g) is an injection and describe its image. We also prove that Z̃(g) coincides with the
centralizer of U(g)0 and with the set of the elements of U(g) acting by superconstants on
each simple finite dimensional module.

4.1. Notation. A finite dimensional simple Lie superalgebra g is called basic classical if
g0 is reductive and g admits a non-degenerate invariant bilinear form. The list of basic
classical Lie superalgebras is the following as determined by Kac (see [K2]):

a) simple Lie agebras
b) A(m,n), B(m,n), C(n), D(m,n), D(2, 1, α), F (4), G(3).

Fix a Cartan subalgebra h in g0 and a triangular decomposition g = n− ⊕ h ⊕ n+. For
a U(g)-module M and an element µ ∈ h∗ set M |µ = {m ∈ M | hm = µ(h)m, ∀h ∈ h}.
When we use the notation U(g)|µ, the action of g on U(g) is assumed to be the adjoint
action. For µ ∈ h∗ we say that µ is even if U(g)|µ is a non-zero subspace of the even
part of U(g). We say that µ is odd if U(g)|µ is a non-zero subspace of the odd part of
U(g). Since g is a basic classical Lie superalgebra, µ is either even or odd in the case
when U(g)|µ 6= 0.

The Harish-Chandra projection P : U(g) → S(h) is the projection with respect to the
following triangular decomposition U(g) = U(h) ⊕ (U(g)n+ + n−U(g)) (we identify S(h)
and U(h)). An element a of U(g)|0 acts on a primitive vector of weight µ (µ ∈ h∗) by
multiplication by the scalar P(a)(µ). Thus the restriction of P on U(g)|0 = U(g)h is an
algebra homomorphism from U(g)|0 to S(h).

Denote by ∆0 the set of non-zero even roots of g. Denote by ∆1 the set of odd roots of
g. Set ∆ = ∆0 ∪ ∆1. Set

∆0:= {α ∈ ∆0| α/2 6∈ ∆1}, ∆1:= {β ∈ ∆1| 2β 6∈ ∆0}.
Note that ∆1 is the set of isotropic roots. Denote by ∆+ the set of positive roots and

define ∆−,∆±
0 ,∆

±
1 ,∆

±
0 as usual.

Denote by W the Weyl group of ∆0. For any α ∈ ∆0 let sα ∈ W be the corresponding
reflection. Let W ′ be the subgroup of W generated by the reflections sα, α ∈ ∆0. Note
that W = W ′ iff all odd roots are isotropic. Otherwise (if g is of the type B(m,n) or
G(3)) W ′ is a subgroup of index two.

Set
ρ0 := 1

2

∑

α∈∆+

0

α, ρ1 := 1
2

∑

α∈∆+

1

α, ρ := ρ0 − ρ1.

Define the translated action of W on h∗ by the formula:

w.λ = w(λ+ ρ) − ρ, ∀λ ∈ h∗, w ∈W.
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Define the left translated action of W on S(h) by setting w.f(λ) = f(w−1.λ) for any
λ ∈ h∗.

Denote by (−,−) a non-degenerate W -invariant bilinear form on h∗.

4.1.1. For λ ∈ h∗ denote a graded g-Verma module of the highest weight λ by M̃(λ)
where the grading is fixed in such a way that a highest weight vector has degree zero.
By [LM], an element of U(g) annihilating the modules M̃(λ) for λ running through a
Zariski dense subset of h∗, is equal to zero.

We use the following result which is a consequence of a theorem of Kac (see [Ja], 2.4)

4.1.2. Lemma. Assume that a pair (n, α) belongs to the following set

(N+ × ∆
+
0 ) ∪ ((1 + 2N) × (∆+

1 \ ∆
+
1 ))

and λ ∈ h∗ is such that (λ + ρ, α) = n. Then M̃(λ) contains a primitive vector of the

weight λ − nα. If α ∈ ∆
+
1 and (λ + ρ, α) = 0 then M̃(λ) contains a primitive vector of

the weight λ− α.

Remark. Note that the formula for Shapovalov determinants presented in [Ja], 2.4
contains misprints; the correct formula reads as follows

detSη = A · B · C,
A =

∞∏

n=1

∏

γ∈∆
+

0

(hγ + (ρ, γ) − n(γ, γ)/2)P (η−nγ),

B =
∞∏

n=1

∏

γ∈∆+

1
\∆

+

1

(hγ + (ρ, γ) − (2n− 1)(γ, γ)/2)P (η−(2n−1)γ),

C =
∏

γ∈∆
+

1

(hγ + (ρ, γ))Pγ(η−γ).

This formula can be proven following the proof of [J], 6.1—6.11.

4.2. For β ∈ h∗ denote by hβ the element of h such that µ(hβ) = (µ, β) for any µ ∈ h∗.
Set

t :=
∏

α∈∆+

1

(hα + (ρ, α)).

4.2.1. Lemma. The restriction of the Harish-Chandra projection P provides a linear
injective map A(g) → tS(h)W..

Proof. Recall that a ∈ U(g)|0 acts on a primitive vector of weight µ (µ ∈ h∗) by multi-
plication by the scalar P(a)(µ). Fix a non-zero a ∈ A(g). Since A(g) ⊂ U(g)|0, a acts

on the even component of M̃(λ) by multiplication by the scalar P(a)(λ) and on the odd

component of M̃(λ) by multiplication by the opposite scalar. The intersection of the
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annihilators of all Verma modules is zero (see 4.1.1) and so P(a) is a non-zero polynomial
in S(h).

Choose a pair (n, α) and an element λ satisfying the assumption of Lemma 4.1.2. Note

that nα is even iff α is even. This implies that P(a)(λ) = P(a)(λ− nα) for α ∈ ∆
+
0 and

P(a)(λ) = −P(a)(λ − nα) for α ∈ ∆+
1 \ ∆

+
1 . Observe that for α ∈ ∆

+
0 λ − nα = sα.λ

and so P(a)(λ) = P(a)(sα.λ). For fixed α ∈ ∆
+
0 the set of λ such that (λ+ ρ, α) ∈ N+ is

a Zariski dense subset of h∗. Thus P(a) ∈ S(h) is W ′.-invariant.

Take α ∈ (∆+
1 \ ∆

+
1 ). Then 2α ∈ ∆+

0 and λ− nα = s2α.λ; arguing as above we obtain
that s2α.P(a) = −P(a). In particular, P(a) is divisible by (hα + (ρ, α)).

Now take α ∈ ∆
+
1 . Then α is isotropic. In particular, (λ + ρ, α) = 0 implies (λ− α +

ρ, α) = 0. Using Lemma 4.1.2, we conclude that (λ + ρ, α) = 0 implies that P(a)(λ) =
(−1)nP(a)(λ− nα) for any n ∈ N. Therefore P(a)(λ) = 0 if (λ+ ρ, α) = 0. Thus P(a) is
divisible by (hα + (ρ, α)).

Hence P(a) is divisible by (hα + (ρ, α)) for any α ∈ ∆+
1 . This implies that P(a) is

divisible by t. Since t is W ′.-invariant, P(a)/t is also W ′.-invariant. For any α ∈ (∆+
0 \∆

+
0 ,

both P(a) and t are antiinvariant with respect to the action of sα. Thus P(a)/t is
invariant with respect to the action of sα and so P(a)/t is W.-invariant. This completes
the proof.

4.2.2. Define a filtration on g by setting F0
u = 0, F1

u = g1, F2
u = g and extend it

canonically to an increasing filtration on U(g). Let z ∈ Z(g0) have a degree r with
respect to the canonical filtration. Then, by (3), φ(z) ∈ Fdimg1+2r

u and so P(φ(z)) is a
polynomial of degree less than or equal to (dim g1 + 2r)/2 = |∆+

1 | + r. In particular,
P(φ(1)) is a polynomial of degree less than or equal to |∆+

1 | and so it is equal to t up to
a non-zero scalar. Recall that the map φ depends on the choice of basis {xi}i∈I ; choose a
basis {xi}i∈I such that P(φ(1)) = t.

4.2.3. Fix r ∈ N and set Zr := Z(g0) ∩ F r. Denote by Sr the space of W.-invariant
polynomials of degree less than or equal to r. Take z ∈ Zr. Combining Lemma 4.2.1
and 4.2.2, we conclude that (P(φ(zr))/t) ∈ Sr. Recall that grZ(g0)

∼−→ S(h)W as
graded algebras and so dimZr = dimSr. Since φ is a linear isomorphism, it follows that
P(Zr) = tSr.

4.2.4. Corollary. The restriction of the Harish-Chandra projection P provides a
linear bijective map A(g) → tS(h)W.. In particular, P(T ) = t.

4.2.5. Lemma. Any non-zero element z ∈ A(g) is a non-zero divisor in U(g).

Proof. Assume that zu = 0. Recall that z acts by multiplication by P(z)(λ) (resp.,

−P(z)(λ)) on the even (resp., odd) graded component of M̃(λ). Therefore u annihilates
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M̃(λ) when λ is such that P(z)(λ) 6= 0. Since P(z) 6= 0, the set {λ| P(z)(λ) 6= 0} is a
Zariski dense subset of h∗. By 4.1.1, it implies that u = 0.

4.2.6. Remark. On the contrary to the central elements, gr z is a zero-divisor for any
z ∈ A(g). In fact, by (1) (adU(g))(z) = (ad′ U(g))(1)z and thus (adU(g))z contains Tz.
Therefore z and Tz have the same degree with respect to the canonical filtration and so
grT gr z = 0. In particular, T 2 is a central element whose degree is equal to dim g1.

4.2.7. Corollary.

Z(g) ∩ A(g) = 0.

Proof. For any z ∈ Z(g)∩A(g) and any odd element u ∈ g1 one has zu = 0. Hence z = 0
by Lemma 4.2.5.

4.3. The structure of Z̃(g). The algebra Z̃(g) has the following easy realization. Con-

sider the algebra S̃(h) := S(h)[ξ]/(ξ2 − 1). Define a map P ′ : Z̃(g) → S̃(h) by setting

P ′(z) = P(z) for z ∈ Z(g) and P ′(z) = P(z)ξ for z ∈ A(g). Since Z̃(g) ⊂ U(g)|0, the re-

striction of P on Z̃(g) is an algebra homomorphism. Taking into account Corollary 4.2.4,

we conclude that P ′ provides an algebra isomorphism from Z̃(g) onto the subalgebra

(P(Z(g)) ⊕ tS(h)W.ξ) of S̃(h).

4.3.1. Assume that g is of the type B(m,n) or G(3). Then W ′ 6= W and so t is not W.-
invariant. Therefore P(A(g))∩P(Z(g)) = {0}. Then, using Corollary 4.2.4, we conclude
that the restriction of the Harish-Chandra projection provides an algebra isomorphism
Z̃(g) ∼= (P(Z(g)) ⊕ tS(h)W.).

In all other cases, P(A(g)) ⊂ P(Z(g)).

4.3.2. In the case when g = osp(1, 2l), Z(g) is a polynomial algebra and A(g) is a cyclic
Z(g) module generated by T . In other cases (when g is basic classical Lie superalgebra)
this does not hold. However, a similar result hold after a certain localization.

More precisely, if g 6= osp(1, 2l) (that is g is not of the type B(0, l)) then P(Z(g))
is strictly contained in S(h)W.. However, since the product of two elements from the
anticentre belongs to the centre, P(Z(g)) contains t2S(h)W.. Set Q := T 2, q := t2. Then

the localized algebras Z(g)[Q−1] and S(h)W.[q−1] are isomorphic. Moreover Z̃(g)[Q−1] =
Z(g)[Q−1] ⊕A(g)[Q−1] and A(g)[Q−1] is a cyclic Z(g)[Q−1]-module generated by T .
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4.4. The action of Z̃(g) on the simple modules. Let us say that an element u ∈ U(g)
acts on a U(g)-module M by a superconstant if it acts by a multiplication by a scalar on

each graded component of M . By 2.2, each element of Z̃(g) acts by a superconstant on

any simple module. In this subsection we shall prove that actually Z̃(g) coincides with
the set of elements of U(g) which act by superconstants on each simple finite dimensional

module. Moreover Z̃(g) coincides with the centralizer of the even part U(g)0 in U(g).

4.4.1. By definition, Z̃(g) lies in the centralizer of U(g)0 in U(g) and even in the centre

of U(g)0 since all elements of Z̃(g) are even.

Let A be a centralizer of U(g)0 in U(g) and a be an element of A. Clearly, a acts by a

superconstant on any Verma module. On the even component of M̃(λ) a acts by P(a)(λ).
Let f(a) be the function h∗ → k such that a acts by f(a)(λ) on the odd component of

M̃(λ).

4.4.2. Lemma. For any a ∈ A the function f(a) : h∗ → k is polynomial.

Proof. Choose y ∈ n−
1 and x ∈ n+

1 such that h := [y, x] ∈ S(h) and h 6= 0. For each µ ∈ h∗

choose a highest weight vector vµ ∈ M̃(µ). Then yvµ is odd and so

xayvµ = f(a)(µ)xyvµ = f(a)(µ)h(µ)vµ.

Since xay ∈ U(g)|0 one has xayvµ = P(xay)(µ)vµ. Thus

f(a)(µ)h(µ) = P(xay)(µ). (4)

This implies that P(xay)(µ) vanishes on the whole hyperplane {µ| h(µ) = 0}. Therefore
h divides P(xay)(µ) and so f(a) = P(xay)/h is a polynomial.

4.4.3. Lemma 4.4.2 implies that an element a ∈ A acts by P(a)(λ) on the even com-

ponent of M̃(λ) and by f(λ) on the odd component of M̃(λ). Arguing as in 4.2.1, we
obtain that P ′ := P(a)− f(a) belongs to tS(h)W.. Similarly, P := P(a)+ f(a) belongs to

S(h)W. and moreover for any α ∈ ∆1
+

one has P (λ−α) = P (λ) if (λ+ ρ, α) = 0. By [S1]
and Corollary 4.2.4, this implies that P = P(z) for some z ∈ Z(g) and P ′ = P(z′) for
some z′ ∈ A(g). Then a− (z + z′)/2 kills any Verma module and so a = (z + z′)/2. This

proves that Z̃(g) = A.

The intersection of the annihilators of all simple highest weight modules is equal to
zero (see 4.1.1). This implies that the set of elements of U(g) acting by superconstants
on each graded simple finite dimensional module coincides with A. Hence we obtain

4.4.4. Corollary. If g is a basic classical Lie superalgebra then the following algebras
coincide

i) The algebra of elements of U(g) which act by superconstants on each graded simple
finite dimensional module.
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ii) The algebra Z̃(g).

iii) The centre of U(g)0.

iv) The centralizer of U(g)0.

4.5. A remark concerning the separation theorem. An important structure theo-
rem of Kostant asserts that for any finite dimensional semisimple Lie algebra there exists
an ad g-submodule H of U(g) such that the multiplication map induces the isomorphism
H ⊗ Z(g)

∼−→ U(g). In [Mu], I. Musson proved the similar assertion for g = osp(1, 2l).
These theorems are called the separation theorems. We shall show that Separation theo-
rem does not hold for any basic classical Lie superalgebra apart from finite dimensional
simple Lie algebras and g = osp(1, 2l).

4.5.1. Denote by V (resp., Ṽ ) a trivial representation of g0 (resp., g).

Lemma. Assume that g1 contains a non-zero element x such that [x, x] = 0. Then

the trivial submodule Ṽ is not a direct summand of Indg
g0
V .

Proof. Denote a generator of V ⊂ Indg
g0
V by v and a generator of the trivial submodule

of Indg
g0
V by v′. Retain notation of 3.3. Choose an ordered basis {xi}i∈I of g1 in such a

way that [x1, x1] = 0. Write v′ =
∑

J⊂I cJxJ ⊗ v where cJ ∈ C. One has x1xJ = 0 when
1 ∈ J and x1xJ = x{1}∪J otherwise. Since x1v

′ = 0, this implies that c∅ = 0.

Recall that Homg(Indg
g0
V, Ṽ ) is one-dimensional and is spanned by an element f such

that f(V ) 6= 0 and f(U(g)gV ) = 0. Thus f(v′) = 0 and so the trivial submodule Ṽ is not
a direct summand of Indg

g0
V .

4.5.2. Let g be a basic classical Lie superalgebra which is neither simple Lie algebra nor
osp(1, 2l). Then g1 contains a non-zero element x such that [x, x] = 0. From (1) it follows
that the multiplication by T gives a g-map from the ad′ g-module generated by 1 onto the
ad g-module generated by T . Since T is a non-zero divisor, this map is an isomorphism.
In particular, T 2 ∈ (adU(g))T and (adU(g))T ∼= Indg

g0
V where V is a trivial g0-module.

Using Lemma 4.5.1, we conclude that T 2 spans a trivial ad g-submodule of U(g) which
is not a direct summand. On the other hand, 1 spans a trivial ad g-submodule of U(g)
which is a direct summand, since U(g) = C ⊕ U(g)g as ad g-module.

Assume now that Separation theorem holds for U(g). Then Z(g) ∼= (H)g ⊗ Z(g)
as Z(g)-module. Therefore (H)g is one-dimensional. Thus all trivial ad g-submodules
of U(g) are either direct summands or are not direct summands of U(g). This gives a
contradiction.

5. Questions
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5.1. The centralizer of U(g)0 contains Z̃(g). Do they coincide provided that Λtopg1 is a
trivial g0-module? Note that the condition on Λtopg1 is essential— see Example 3.4.1.

5.2. Let C be the set of the elements of U(g) which act by a superconstant on each

simple module. Clearly, C is a subalgebra of U(g). By 2.2, C contains Z̃(g) if dim g1 is
even. Assume that dim g1 is even and that the intersection of all graded primitive ideals
of U(g) is zero. Does this imply that C = Z̃(g)?

5.3. In the case when g is a basic classical Lie superalgebra both answers are positive—
see Corollary 4.4.4.

References

[ABF] D. Arnaudon, M. Bauer, L. Frappat, On Casimir’s Ghost, Comm. Math. Phys. 187 (1997),
no. 2, p. 429—439.

[AL] M. Aubry and J.-M. Lemaire, Zero divisors in enveloping algebras of graded Lie algebras, J.
Pure Appl. Algebra 38 (1985), p. 159—166.

[BZ] J. Bernstein, A. Zelevinsky, Representations of the group GL(n, F ), where F is a local
non-Archimedean field. Uspekhi Mat. Nauk (Russian), 31 (1976), no. 3, p. 5—70.

[GL] M. Gorelik,, E. Lanzmann, The minimal primitive spectrum of the enveloping algebra of the
Lie superalgebra osp(1, 2l), preprint 1999.

[Ja] H. P. Jakobsen, The full set of unitarizable highest weight modules of basic classical Lie
superalgebras, Memoirs of the Amer. Math. Soc. 532 (1994).

[J] A. Joseph, Sur l’annulateur d’un module de Verma, in Representation theories and algebraic
geometry, ed. A. Broer, 1998.

[K1] V. G. Kac, Lie superalgberas, Adv. in Math. 26 (1977) p.8—96.
[K2] V. G. Kac, Representations of classical Lie superalgebras, Lecture Notes in Math. 676 (1978)

p. 597—626.
[LM] E. S. Letzter, I. M. Musson, Complete sets of representations of classical Lie superalgebras,

Lett. Math. Phys. 31 (1994), p. 247—253.
[Mu] I. M. Musson, On the center of the enveloping algebra of a classical simple Lie superalgebra,

J. of Algebra, 193 (1997), p. 75—101.
[S1] A. N. Sergeev, Invariant polynomial functions on Lie superalgebras, C.R.Acad. Bulgare Sci.

35 (1982), no.5, p. 573—576.
[S2] A. N. Sergeev, The invariant polynomials on simple Lie superalgebras, math.RT/9810111.

email: gorelik@msri.org

http://arXiv.org/abs/math/9810111

