
Towards Accountability in CRS Generation

Hila Dahari

Weizmann Institute
of Science

Vipul Goyal

CMU and NTT
Research

Prabhanjan Ananth

UCSB

Eurocrypt 2021

Gilad Asharov

Bar-Ilan
University

Non-Interactive Zero-Knowledge (NIZK) [BFM88]

𝝅

The model:

 Let 𝑳 be an NP-language

 Given 𝒙, the prover wants to convince the

verifier that 𝒙 in 𝑳 without revealing any

additional information about 𝒙. [GMR85] Proverr Verifierr

𝒙 ∈ 𝐿
Here the
proof: 𝝅

accept/reject

Non-Interactive Zero-Knowledge (NIZK) [BFM88]

𝝅

The model:

 For a single message zero-knowledge proof, we

require trusted set-up, specifically, we require a

common reference string. [GO94, FLS90]

Proverr Verifierr

𝒙 ∈ 𝐿
Here the
proof: 𝝅

accept/reject

Common Reference String (CRS) Model [BFM88,D00,FF00]

The model: The parties share a trusted public string

from a known distribution.

Motivation:

• Non-interactive zero-knowledge for NP [GO94, FLS90]

• Malicious two round MPC [MW16, GS18, BL18]

0100011001111101011101…

Non-Interactive Zero-Knowledge (NIZK) [BFM88]

𝝅

Proverr

𝒙 ∈ 𝐿
Here the
proof: 𝝅

Completeness: If 𝒙 ∈ 𝑳, the verifier accepts w.h.p

Soundness: If 𝒙 ∉ 𝑳, the verifier rejects w.h.p

Zero knowledge: If 𝒙 ∈ 𝑳, the verifier cannot learn

any additional information from the proof 𝝅.

More formally, ∃𝑺 such that for all 𝒙 ∈ 𝑳:

𝑺 𝒙 ≅ 𝑪𝑹𝑺,𝝅

Verifierr

accept/reject

NIZK in the Common Reference String (CRS) [FLS90]

However, in the real world,

1. Who generates the CRS?

2. What happens if the CRS is maliciously generated?

01000 1101 1 11101011101…

𝝅

Proverr Verifierr

Related Works

Weaker notions of security:

• Zap [DworkNaor00]

• Super-polynomial simulation security [Pas03]

• Multi-string model [GrothOstrovsky07]

• Unreliable CRS [GoyalKatz08, GargGoyalJainSahai11]

• NIZKs with an untrusted CRS [BellareFuchsbauerScafuro16]

CRS generation in the real world

Paranoia, the destroyer: Za Wilcox, brother of

Zcash CEO Zooko Wilcox, sets about destroying

a computer used to generate the cryptographic
parameters needed to start Zcash

Who generates the CRS?

 MPC – multiple parties generate together the CRS.

https://www.youtube.com/watch?v=D6dY-3x3teM

https://www.youtube.com/watch?v=D6dY-3x3teM

CRS generation in the real world

Who generates the CRS?

 A trusted party

In real life, do there really exist trusted parties?

CRS generation in the real world

 If a malicious party recovers private information, but keeps it to themselves – impossible to

protect against

 If the malicious party uses the private information, we want to prove they acted maliciously

Our Talk

 Our focus: a party who tries to sell private information is held accountable

 We introduce the notion of accountability in CRS generation

 We study accountability for NIZK, 2PC, and specifically, OT

Our Results: Informally,

 NIZK: Under standard assumptions, we get NIZK for all of NP with accountability in CRS generation

 2PC: There is a two-party functionality for which it is impossible to achieve accountability

 2PC: Under standard assumptions, we get 2PC for a large class of functionalities with accountability

in CRS generation

Our setting: A party called Authority generates the CRS.

 The authority is an honest party –

Everything works

CRS generation in the real world

010001101111101011101…

𝝅

Proverr Verifierr

Authorityr

CRS generation in the real world

0100011 1111 1101…

𝝅

Proverr Verifierr

Malicious Authorityr

Our setting: A party called Authority generates the CRS.

 The authority is a malicious party –

 A malicious authority generates CRS with

trapdoors.

 The prover uses the “bad” CRS to generate a NIZK

and send it to the verifier

CRS generation in the real world

0100011 1111 1101…

Malicious Authorityr

Our setting: A party called Authority generates the CRS.

 The authority is a malicious party –

 The malicious authority extracts from the proof 𝝅

(using the trapdoors in the CRS) the private

information 𝒘

Given: 𝝅, CRS
(with trapdoors)

Extract private
information: 𝒘

CRS generation in the real world

0100011 1111 1101…

Malicious Authorityr

Our setting: A party called Authority generates the CRS.

 The authority is a malicious party –

 The malicious authority sets up a backdoor

service that sells the private information 𝒘 for

profit

𝝅𝟏, CRS

𝒘𝟏

𝝅𝟏

𝒘𝟏

CRS generation in the real world

 The authority is a malicious party –

The authority can maliciously generate the CRS, with

trapdoors, recover private information,

and use the backdoor service to sell the private

information for profit.

Backdoor
service

0100011 1111 1101…

𝝅

Proverr Verifierr

Malicious Authorityr

CRS generation in the real world

Our goal: Be able to use the backdoor service to

generate a proof that:

1. The CRS was maliciously generated

2. The authority was dishonest

0100011 1111 1101…

𝝅

Proverr Verifierr

Malicious Authorityr

Backdoor
service

CRS generation in the real world

0100011 1111 1101…

Malicious Authorityr

 Specifically, to construct an extractor that by using the

backdoor service can generate a proof that the

authority maliciously generated the CRS

𝝅, CRS

𝒘

𝝅

𝒘

Malicious Authorityr

CRS generation in the real world

 If the backdoor service will recognize the extractor,

it will not open the proof, thus the queries should

look like “real”.

≅
𝝅

𝒘′

𝝅′

Extractorr

𝒘

Extract the witness
from the proof

using the trapdoor
in the CRS

CRS generation in the real world

0100011 1111 1101…

𝝅

Proverr Verifierr

Malicious Authorityr

Our approach: Design a CRS generation

protocol that satisfies an accountability property.

Backdoor
service

CRS generation in the real world

0100011 1111 1101…

𝝅

Proverr Verifierr

Malicious Authorityr

Judger

Authority is

malicious
Here the

evidence: 𝝉

honest/corrupted

Let (GenCRS, Prove, Verify, Judge) be a

four PPT algorithms, such that:

• (GenCRS, Prove, Verify) is a NIZK proof

system

• Judge (syntax) –

• Input: a CRS, and an evidence 𝝉

• Output: honest/corrupted CRS

Backdoor
service

CRS generation in the real world

0100011 1111 1101…

𝝅

Proverr Verifierr

Malicious Authorityr

Judger honest/corrupted

Accountability: If the authority is malicious,

and sells your information,

you can use the backdoor service to

generate a publicly verifiable proof.

* For example: to convince a judge in the court

Backdoor
service

Authority is

malicious
Here the

evidence: 𝝉

CRS generation in the real world

0100011 1111 1101…

𝝅

Proverr Verifierr

Malicious Authorityr

Judger honest/corrupted

Defamation free: If the authority is honest,

one cannot generate a proof against the authority

that is accepted by Judge.

Formally, ∀ 𝑃𝑃𝑇 malicious party 𝐴, there

exists a negligible function 𝜇(⋅) such that for all 𝜆:

𝑃𝑟[Judge(CRS, 𝑨(CRS)) outputs corrupted CRS] ≤ 𝜇 𝜆

where CRS← GenCRS(1𝜆)

Backdoor
service

Authority is

malicious
Here the

evidence: 𝝉

CRS generation in the real world

0100011 1111 1101…

𝝅

Proverr Verifierr

Malicious Authorityr

Judger honest/corrupted

We say that (GenCRS, Prove, Verify, Judge) has

Malicious Authority Security for NIZK if:

• (GenCRS, Prove, Verify) is a NIZK proof

system

• (GenCRS, Prove, Verify, Judge) satisfies both,

accountability and defamation free.

Backdoor
service

Authority is

malicious
Here the

evidence: 𝝉

Accountability

Sample 𝑥, 𝑤

𝜋 ← 𝑃𝑟𝑜𝑣𝑒(𝐶𝑅𝑆∗, 𝑥, 𝑤) 𝜋

𝑤′

Acc.Real

The output is 1 iff: 𝑅 𝑥, 𝑤′ = 1

Malicious

Authority

𝐶𝑅𝑆∗

Accountability

Sample 𝒙,𝒘

𝝅 ← 𝑃𝑟𝑜𝑣𝑒(𝑪𝑹𝑺∗, 𝒙, 𝒘) 𝜋

𝑤′

Acc.Real

The output is 1 iff: 𝑅 𝑥, 𝑤′ = 1

Malicious

Authority

𝑪𝑹𝑺∗

𝟎𝟏𝟎𝟎𝟎𝟏 𝟏𝟏𝟏𝟏 𝟏𝟏𝟏𝟏𝟎𝟏…

𝝅

Malicious Authorityr

Prover
𝒙,𝒘

Verifier
𝒙 r

Accountability

Sample 𝒙,𝒘

𝝅 ← 𝑃𝑟𝑜𝑣𝑒(𝑪𝑹𝑺∗, 𝑥, 𝑤) 𝝅

𝒘

Acc.Real

The output is 1 iff: 𝑅 𝑥, 𝑤′ = 1

Malicious

Authority

𝑪𝑹𝑺∗

Malicious Authorityr

𝝅

𝒘

𝝅, 𝑪𝑹𝑺∗

𝒘

Accountability

Sample 𝑥, 𝑤

𝜋 ← 𝑃𝑟𝑜𝑣𝑒(𝐶𝑅𝑆∗, 𝑥, 𝑤) 𝜋

𝑤′

Acc.Real

𝐶𝑅𝑆∗

𝜋

𝑤′

Acc.Ext

𝐶𝑅𝑆∗, 𝝉

The output is 1 iff: 𝑅 𝑥, 𝑤′ = 1

Malicious

Authority

Extractorr

Sample 𝑥, 𝑤

𝜋 ← 𝑃𝑟𝑜𝑣𝑒(𝐶𝑅𝑆∗, 𝑥, 𝑤)

Extractorr

Malicious

Authority

Judger

𝐶𝑅𝑆∗

The output is 1 if the Judge will be convinced
by the evidence 𝝉 that 𝐶𝑅𝑆∗ is corrupted

𝐶𝑅𝑆∗, 𝝉

Accountability
Acc.Real

𝐶𝑅𝑆∗

𝜋

𝑤′

Acc.Ext

The output is 1 if the Judge will be convinced
by the evidence 𝝉 that 𝐶𝑅𝑆∗ is corrupted

The output is 1 iff: 𝑅 𝑥, 𝑤′ = 1

Extractorr

Sample 𝑥, 𝑤

𝜋 ← 𝑃𝑟𝑜𝑣𝑒(𝐶𝑅𝑆∗, 𝑥, 𝑤)

Accountability: ∀ PPT authority 𝐴 that succeeds in 𝐀𝐜𝐜. 𝐑𝐞𝐚𝐥, there exists an PPT extractor 𝐸 that succeeds in 𝐀𝐜𝐜. 𝐄𝐱𝐭

Malicious

Authority

Sample 𝑥, 𝑤

𝜋 ← 𝑃𝑟𝑜𝑣𝑒(𝐶𝑅𝑆∗, 𝑥, 𝑤) 𝜋

𝑤′ Malicious

Authority

𝐶𝑅𝑆∗

𝐶𝑅𝑆∗, 𝝉

Theorem (Informal). Assuming SXDH on bilinear maps, there exists a NIZK for NP language in the
CRS model satisfying both the accountability and the defamation-free properties.

Our Results

Positive Results

High Level of Our
Construction

Rerandomize

sample 𝒓

Malicious Authority Security for NIZK

Proverr Verifierr

Malicious Authorityr

𝑵𝑰𝒁𝑲

𝑪𝑹𝑺 𝒄𝑪𝑹𝑺 = 𝐶𝑜𝑚 0; ℓ

Starting point: Force the CRS authority to add a

commitment to the CRS. Then, the proof is the ability to open

the commitment.

If the authority is malicious, then from the obtained witness

the extractor can recover the secret ℓ in the CRS and prove to

the judge

Tools: Re-rendomizable bit commitment scheme [GOS06,ADKL19]

𝐶𝑜𝑚 0; ℓ ⊕ 𝒓𝐶𝑜𝑚 0; ℓ

Malicious Authority Security for NIZK

Proverr Verifierr

Malicious Authorityr

𝑵𝑰𝒁𝑲 𝑜𝑓 𝒄

𝑪𝑹𝑺 𝒄𝑪𝑹𝑺 = 𝐶𝑜𝑚 0; ℓ

Extractorr

Statement: 𝒄 = 𝐶𝑜𝑚 0; 𝒙

Witness: 𝒙

ℓ⊕ 𝒓

𝑵𝑰𝒁𝑲 𝑜𝑓 ො𝒄

Sample 𝒓 and rerandomize

Statement: ො𝒄 = 𝐶𝑜𝑚 0; ℓ ⊕ 𝒓

Witness: ℓ⊕ 𝒓

𝐶𝑜𝑚 0; ℓ 𝐶𝑜𝑚 0; ℓ ⊕ 𝒓

Toy example, not an NPC language

Malicious Authority Security for NIZK

Extract ℓ

Statement: ො𝒄 = 𝐶𝑜𝑚 0; ℓ ⊕ 𝒓

Witness: ℓ⊕ 𝒓

Extractorr

Statement: 𝒄 = 𝐶𝑜𝑚 0; 𝒙

Witness: 𝒙

ℓ⊕ 𝒓

Judger

Check: if 𝒄𝑪𝑹𝑺 = 𝐶𝑜𝑚 0; ℓ

Output: corrupted CRS

ℓ, 𝒄𝑪𝑹𝑺

Proverr Verifierr

Malicious Authorityr

𝑪𝑹𝑺 𝒄𝑪𝑹𝑺 = 𝐶𝑜𝑚 0; ℓ

𝑵𝑰𝒁𝑲 𝑜𝑓 ො𝒄

𝑵𝑰𝒁𝑲 𝑜𝑓 𝒄

Toy example, not an NPC language

Malicious Authority Security for NIZK

Proverr Verifierr

Malicious Authorityr

𝑵𝑰𝒁𝑲 𝑜𝑓 𝒄

𝑪𝑹𝑺 𝒄𝑪𝑹𝑺 = 𝐶𝑜𝑚 0; ℓ

Extractorr

Statement: 𝒄 = 𝐶𝑜𝑚 0; 𝒙

Witness: 𝒙

ℓ⊕ 𝒓

𝑵𝑰𝒁𝑲 𝑜𝑓 ො𝒄

Sample 𝒓 and rerandomize

Statement: ො𝒄 = 𝐶𝑜𝑚 0; ℓ ⊕ 𝒓

Witness: ℓ⊕ 𝒓

𝐶𝑜𝑚 0; ℓ 𝐶𝑜𝑚 0; ℓ⊕ 𝒓

Accountability follows from

perfect rerandomization.

Defamation free follows from

the security of the commitment.

Challenges

 In the paper, we extend this idea to an NPC problem (a variant of Circuit Satisfiability)

 A major challenge is to generate a NIZK while the extractor does not know the witness

Malicious Authorityr

𝑪𝑹𝑺 𝒄𝑪𝑹𝑺 = 𝐶𝑜𝑚 0; ℓ

Extractorr

ℓ ⊕ 𝒓

𝑵𝑰𝒁𝑲 𝑜𝑓 ො𝒄

Sample 𝒓 and rerandomize

Statement: ො𝒄 = 𝐶𝑜𝑚 0; ℓ ⊕ 𝒓

Witness: ℓ⊕ 𝒓

𝐶𝑜𝑚 0; ℓ 𝐶𝑜𝑚 0; ℓ ⊕ 𝒓

Challenges

 Our approach is to force the authority to add more information to the CRS.

However, if the authority is a malicious party, how can the prover check that the

additional information is valid?

 We cannot use NIZK since it will require CRS

More Results –
Accountability in 2PC

2PC in CRS model

 We cannot achieve malicious 2 rounds 2PC in the plain model [MW16, GS18, BL18]

 In the CRS model, we can achieve malicious 2 rounds 2PC, but a corrupted authority can recover the

private inputs

Can we achieve accountability in CRS generation for 2PC?

 We extend the definition of accountability for 2PC

Strong Accountability

In 2PC protocol the authority can be active – and corrupted one of the parties during the protocol.

We call such a case strong accountability, and we ask whether strong accountability is achievable.

Our Results - OT

Positive Results

Theorem (Informal). Assuming IO for P/poly [BGI+01,GGH+16] and SXDH on bilinear groups, there
exists a two-round maliciously secure OT in the CRS model satisfying both strong accountability
and defamation-free properties.

Theorem (Informal). Assuming SXDH on bilinear maps, there exists a two-round maliciously secure
OT in the CRS model satisfying both weak accountability and defamation-free.

Our Results – 2PC

Positive Results

Theorem (Informal). Assuming SXDH on bilinear maps, there exists a two-round maliciously secure
two-party computation protocol for G satisfying both weak accountability and defamation-free.

Theorem (Informal). There exists a two-party functionality F such that there does not exist any
secure two-party computation protocol for F in the CRS model satisfying both (weak)
accountability and defamation-free properties.

Impossibility Result

* The class of functions G includes for instance: oblivious transfer, private information retrieval, subset sum, and
more.

Our Results – 2PC

Positive Results

Theorem (Informal). Assuming SXDH on bilinear maps, there exists a two-round maliciously secure
two-party computation protocol for G satisfying both weak accountability and defamation-free.

Theorem (Informal). There exists a two-party functionality F such that there does not exist any
secure two-party computation protocol for F in the CRS model satisfying both (weak)
accountability and defamation-free properties.

Impossibility Result

