
Towards Accountability in CRS Generation

Hila Dahari

Weizmann Institute
of Science

Vipul Goyal

CMU and NTT
Research

Prabhanjan Ananth

UCSB

Eurocrypt 2021

Gilad Asharov

Bar-Ilan
University

Non-Interactive Zero-Knowledge (NIZK) [BFM88]

𝝅

The model:

 Let 𝑳 be an NP-language

 Given 𝒙, the prover wants to convince the

verifier that 𝒙 in 𝑳 without revealing any

additional information about 𝒙. [GMR85] Proverr Verifierr

𝒙 ∈ 𝐿
Here the
proof: 𝝅

accept/reject

Non-Interactive Zero-Knowledge (NIZK) [BFM88]

𝝅

The model:

 For a single message zero-knowledge proof, we

require trusted set-up, specifically, we require a

common reference string. [GO94, FLS90]

Proverr Verifierr

𝒙 ∈ 𝐿
Here the
proof: 𝝅

accept/reject

Common Reference String (CRS) Model [BFM88,D00,FF00]

The model: The parties share a trusted public string

from a known distribution.

Motivation:

• Non-interactive zero-knowledge for NP [GO94, FLS90]

• Malicious two round MPC [MW16, GS18, BL18]

0100011001111101011101…

Non-Interactive Zero-Knowledge (NIZK) [BFM88]

𝝅

Proverr

𝒙 ∈ 𝐿
Here the
proof: 𝝅

Completeness: If 𝒙 ∈ 𝑳, the verifier accepts w.h.p

Soundness: If 𝒙 ∉ 𝑳, the verifier rejects w.h.p

Zero knowledge: If 𝒙 ∈ 𝑳, the verifier cannot learn

any additional information from the proof 𝝅.

More formally, ∃𝑺 such that for all 𝒙 ∈ 𝑳:

𝑺 𝒙 ≅ 𝑪𝑹𝑺,𝝅

Verifierr

accept/reject

NIZK in the Common Reference String (CRS) [FLS90]

However, in the real world,

1. Who generates the CRS?

2. What happens if the CRS is maliciously generated?

01000 1101 1 11101011101…

𝝅

Proverr Verifierr

Related Works

Weaker notions of security:

• Zap [DworkNaor00]

• Super-polynomial simulation security [Pas03]

• Multi-string model [GrothOstrovsky07]

• Unreliable CRS [GoyalKatz08, GargGoyalJainSahai11]

• NIZKs with an untrusted CRS [BellareFuchsbauerScafuro16]

CRS generation in the real world

Paranoia, the destroyer: Za Wilcox, brother of

Zcash CEO Zooko Wilcox, sets about destroying

a computer used to generate the cryptographic
parameters needed to start Zcash

Who generates the CRS?

 MPC – multiple parties generate together the CRS.

https://www.youtube.com/watch?v=D6dY-3x3teM

https://www.youtube.com/watch?v=D6dY-3x3teM

CRS generation in the real world

Who generates the CRS?

 A trusted party

In real life, do there really exist trusted parties?

CRS generation in the real world

 If a malicious party recovers private information, but keeps it to themselves – impossible to

protect against

 If the malicious party uses the private information, we want to prove they acted maliciously

Our Talk

 Our focus: a party who tries to sell private information is held accountable

 We introduce the notion of accountability in CRS generation

 We study accountability for NIZK, 2PC, and specifically, OT

Our Results: Informally,

 NIZK: Under standard assumptions, we get NIZK for all of NP with accountability in CRS generation

 2PC: There is a two-party functionality for which it is impossible to achieve accountability

 2PC: Under standard assumptions, we get 2PC for a large class of functionalities with accountability

in CRS generation

Our setting: A party called Authority generates the CRS.

 The authority is an honest party –

Everything works

CRS generation in the real world

010001101111101011101…

𝝅

Proverr Verifierr

Authorityr

CRS generation in the real world

0100011 1111 1101…

𝝅

Proverr Verifierr

Malicious Authorityr

Our setting: A party called Authority generates the CRS.

 The authority is a malicious party –

 A malicious authority generates CRS with

trapdoors.

 The prover uses the “bad” CRS to generate a NIZK

and send it to the verifier

CRS generation in the real world

0100011 1111 1101…

Malicious Authorityr

Our setting: A party called Authority generates the CRS.

 The authority is a malicious party –

 The malicious authority extracts from the proof 𝝅

(using the trapdoors in the CRS) the private

information 𝒘

Given: 𝝅, CRS
(with trapdoors)

Extract private
information: 𝒘

CRS generation in the real world

0100011 1111 1101…

Malicious Authorityr

Our setting: A party called Authority generates the CRS.

 The authority is a malicious party –

 The malicious authority sets up a backdoor

service that sells the private information 𝒘 for

profit

𝝅𝟏, CRS

𝒘𝟏

𝝅𝟏

𝒘𝟏

CRS generation in the real world

 The authority is a malicious party –

The authority can maliciously generate the CRS, with

trapdoors, recover private information,

and use the backdoor service to sell the private

information for profit.

Backdoor
service

0100011 1111 1101…

𝝅

Proverr Verifierr

Malicious Authorityr

CRS generation in the real world

Our goal: Be able to use the backdoor service to

generate a proof that:

1. The CRS was maliciously generated

2. The authority was dishonest

0100011 1111 1101…

𝝅

Proverr Verifierr

Malicious Authorityr

Backdoor
service

CRS generation in the real world

0100011 1111 1101…

Malicious Authorityr

 Specifically, to construct an extractor that by using the

backdoor service can generate a proof that the

authority maliciously generated the CRS

𝝅, CRS

𝒘

𝝅

𝒘

Malicious Authorityr

CRS generation in the real world

 If the backdoor service will recognize the extractor,

it will not open the proof, thus the queries should

look like “real”.

≅
𝝅

𝒘′

𝝅′

Extractorr

𝒘

Extract the witness
from the proof

using the trapdoor
in the CRS

CRS generation in the real world

0100011 1111 1101…

𝝅

Proverr Verifierr

Malicious Authorityr

Our approach: Design a CRS generation

protocol that satisfies an accountability property.

Backdoor
service

CRS generation in the real world

0100011 1111 1101…

𝝅

Proverr Verifierr

Malicious Authorityr

Judger

Authority is

malicious
Here the

evidence: 𝝉

honest/corrupted

Let (GenCRS, Prove, Verify, Judge) be a

four PPT algorithms, such that:

• (GenCRS, Prove, Verify) is a NIZK proof

system

• Judge (syntax) –

• Input: a CRS, and an evidence 𝝉

• Output: honest/corrupted CRS

Backdoor
service

CRS generation in the real world

0100011 1111 1101…

𝝅

Proverr Verifierr

Malicious Authorityr

Judger honest/corrupted

Accountability: If the authority is malicious,

and sells your information,

you can use the backdoor service to

generate a publicly verifiable proof.

* For example: to convince a judge in the court

Backdoor
service

Authority is

malicious
Here the

evidence: 𝝉

CRS generation in the real world

0100011 1111 1101…

𝝅

Proverr Verifierr

Malicious Authorityr

Judger honest/corrupted

Defamation free: If the authority is honest,

one cannot generate a proof against the authority

that is accepted by Judge.

Formally, ∀ 𝑃𝑃𝑇 malicious party 𝐴, there

exists a negligible function 𝜇(⋅) such that for all 𝜆:

𝑃𝑟[Judge(CRS, 𝑨(CRS)) outputs corrupted CRS] ≤ 𝜇 𝜆

where CRS← GenCRS(1𝜆)

Backdoor
service

Authority is

malicious
Here the

evidence: 𝝉

CRS generation in the real world

0100011 1111 1101…

𝝅

Proverr Verifierr

Malicious Authorityr

Judger honest/corrupted

We say that (GenCRS, Prove, Verify, Judge) has

Malicious Authority Security for NIZK if:

• (GenCRS, Prove, Verify) is a NIZK proof

system

• (GenCRS, Prove, Verify, Judge) satisfies both,

accountability and defamation free.

Backdoor
service

Authority is

malicious
Here the

evidence: 𝝉

Accountability

Sample 𝑥, 𝑤

𝜋 ← 𝑃𝑟𝑜𝑣𝑒(𝐶𝑅𝑆∗, 𝑥, 𝑤) 𝜋

𝑤′

Acc.Real

The output is 1 iff: 𝑅 𝑥, 𝑤′ = 1

Malicious

Authority

𝐶𝑅𝑆∗

Accountability

Sample 𝒙,𝒘

𝝅 ← 𝑃𝑟𝑜𝑣𝑒(𝑪𝑹𝑺∗, 𝒙, 𝒘) 𝜋

𝑤′

Acc.Real

The output is 1 iff: 𝑅 𝑥, 𝑤′ = 1

Malicious

Authority

𝑪𝑹𝑺∗

𝟎𝟏𝟎𝟎𝟎𝟏 𝟏𝟏𝟏𝟏 𝟏𝟏𝟏𝟏𝟎𝟏…

𝝅

Malicious Authorityr

Prover
𝒙,𝒘

Verifier
𝒙 r

Accountability

Sample 𝒙,𝒘

𝝅 ← 𝑃𝑟𝑜𝑣𝑒(𝑪𝑹𝑺∗, 𝑥, 𝑤) 𝝅

𝒘

Acc.Real

The output is 1 iff: 𝑅 𝑥, 𝑤′ = 1

Malicious

Authority

𝑪𝑹𝑺∗

Malicious Authorityr

𝝅

𝒘

𝝅, 𝑪𝑹𝑺∗

𝒘

Accountability

Sample 𝑥, 𝑤

𝜋 ← 𝑃𝑟𝑜𝑣𝑒(𝐶𝑅𝑆∗, 𝑥, 𝑤) 𝜋

𝑤′

Acc.Real

𝐶𝑅𝑆∗

𝜋

𝑤′

Acc.Ext

𝐶𝑅𝑆∗, 𝝉

The output is 1 iff: 𝑅 𝑥, 𝑤′ = 1

Malicious

Authority

Extractorr

Sample 𝑥, 𝑤

𝜋 ← 𝑃𝑟𝑜𝑣𝑒(𝐶𝑅𝑆∗, 𝑥, 𝑤)

Extractorr

Malicious

Authority

Judger

𝐶𝑅𝑆∗

The output is 1 if the Judge will be convinced
by the evidence 𝝉 that 𝐶𝑅𝑆∗ is corrupted

𝐶𝑅𝑆∗, 𝝉

Accountability
Acc.Real

𝐶𝑅𝑆∗

𝜋

𝑤′

Acc.Ext

The output is 1 if the Judge will be convinced
by the evidence 𝝉 that 𝐶𝑅𝑆∗ is corrupted

The output is 1 iff: 𝑅 𝑥, 𝑤′ = 1

Extractorr

Sample 𝑥, 𝑤

𝜋 ← 𝑃𝑟𝑜𝑣𝑒(𝐶𝑅𝑆∗, 𝑥, 𝑤)

Accountability: ∀ PPT authority 𝐴 that succeeds in 𝐀𝐜𝐜. 𝐑𝐞𝐚𝐥, there exists an PPT extractor 𝐸 that succeeds in 𝐀𝐜𝐜. 𝐄𝐱𝐭

Malicious

Authority

Sample 𝑥, 𝑤

𝜋 ← 𝑃𝑟𝑜𝑣𝑒(𝐶𝑅𝑆∗, 𝑥, 𝑤) 𝜋

𝑤′ Malicious

Authority

𝐶𝑅𝑆∗

𝐶𝑅𝑆∗, 𝝉

Theorem (Informal). Assuming SXDH on bilinear maps, there exists a NIZK for NP language in the
CRS model satisfying both the accountability and the defamation-free properties.

Our Results

Positive Results

High Level of Our
Construction

Rerandomize

sample 𝒓

Malicious Authority Security for NIZK

Proverr Verifierr

Malicious Authorityr

𝑵𝑰𝒁𝑲

𝑪𝑹𝑺 𝒄𝑪𝑹𝑺 = 𝐶𝑜𝑚 0; ℓ

Starting point: Force the CRS authority to add a

commitment to the CRS. Then, the proof is the ability to open

the commitment.

If the authority is malicious, then from the obtained witness

the extractor can recover the secret ℓ in the CRS and prove to

the judge

Tools: Re-rendomizable bit commitment scheme [GOS06,ADKL19]

𝐶𝑜𝑚 0; ℓ ⊕ 𝒓𝐶𝑜𝑚 0; ℓ

Malicious Authority Security for NIZK

Proverr Verifierr

Malicious Authorityr

𝑵𝑰𝒁𝑲 𝑜𝑓 𝒄

𝑪𝑹𝑺 𝒄𝑪𝑹𝑺 = 𝐶𝑜𝑚 0; ℓ

Extractorr

Statement: 𝒄 = 𝐶𝑜𝑚 0; 𝒙

Witness: 𝒙

ℓ⊕ 𝒓

𝑵𝑰𝒁𝑲 𝑜𝑓 ො𝒄

Sample 𝒓 and rerandomize

Statement: ො𝒄 = 𝐶𝑜𝑚 0; ℓ ⊕ 𝒓

Witness: ℓ⊕ 𝒓

𝐶𝑜𝑚 0; ℓ 𝐶𝑜𝑚 0; ℓ ⊕ 𝒓

Toy example, not an NPC language

Malicious Authority Security for NIZK

Extract ℓ

Statement: ො𝒄 = 𝐶𝑜𝑚 0; ℓ ⊕ 𝒓

Witness: ℓ⊕ 𝒓

Extractorr

Statement: 𝒄 = 𝐶𝑜𝑚 0; 𝒙

Witness: 𝒙

ℓ⊕ 𝒓

Judger

Check: if 𝒄𝑪𝑹𝑺 = 𝐶𝑜𝑚 0; ℓ

Output: corrupted CRS

ℓ, 𝒄𝑪𝑹𝑺

Proverr Verifierr

Malicious Authorityr

𝑪𝑹𝑺 𝒄𝑪𝑹𝑺 = 𝐶𝑜𝑚 0; ℓ

𝑵𝑰𝒁𝑲 𝑜𝑓 ො𝒄

𝑵𝑰𝒁𝑲 𝑜𝑓 𝒄

Toy example, not an NPC language

Malicious Authority Security for NIZK

Proverr Verifierr

Malicious Authorityr

𝑵𝑰𝒁𝑲 𝑜𝑓 𝒄

𝑪𝑹𝑺 𝒄𝑪𝑹𝑺 = 𝐶𝑜𝑚 0; ℓ

Extractorr

Statement: 𝒄 = 𝐶𝑜𝑚 0; 𝒙

Witness: 𝒙

ℓ⊕ 𝒓

𝑵𝑰𝒁𝑲 𝑜𝑓 ො𝒄

Sample 𝒓 and rerandomize

Statement: ො𝒄 = 𝐶𝑜𝑚 0; ℓ ⊕ 𝒓

Witness: ℓ⊕ 𝒓

𝐶𝑜𝑚 0; ℓ 𝐶𝑜𝑚 0; ℓ⊕ 𝒓

Accountability follows from

perfect rerandomization.

Defamation free follows from

the security of the commitment.

Challenges

 In the paper, we extend this idea to an NPC problem (a variant of Circuit Satisfiability)

 A major challenge is to generate a NIZK while the extractor does not know the witness

Malicious Authorityr

𝑪𝑹𝑺 𝒄𝑪𝑹𝑺 = 𝐶𝑜𝑚 0; ℓ

Extractorr

ℓ ⊕ 𝒓

𝑵𝑰𝒁𝑲 𝑜𝑓 ො𝒄

Sample 𝒓 and rerandomize

Statement: ො𝒄 = 𝐶𝑜𝑚 0; ℓ ⊕ 𝒓

Witness: ℓ⊕ 𝒓

𝐶𝑜𝑚 0; ℓ 𝐶𝑜𝑚 0; ℓ ⊕ 𝒓

Challenges

 Our approach is to force the authority to add more information to the CRS.

However, if the authority is a malicious party, how can the prover check that the

additional information is valid?

 We cannot use NIZK since it will require CRS

More Results –
Accountability in 2PC

2PC in CRS model

 We cannot achieve malicious 2 rounds 2PC in the plain model [MW16, GS18, BL18]

 In the CRS model, we can achieve malicious 2 rounds 2PC, but a corrupted authority can recover the

private inputs

Can we achieve accountability in CRS generation for 2PC?

 We extend the definition of accountability for 2PC

Strong Accountability

In 2PC protocol the authority can be active – and corrupted one of the parties during the protocol.

We call such a case strong accountability, and we ask whether strong accountability is achievable.

Our Results - OT

Positive Results

Theorem (Informal). Assuming IO for P/poly [BGI+01,GGH+16] and SXDH on bilinear groups, there
exists a two-round maliciously secure OT in the CRS model satisfying both strong accountability
and defamation-free properties.

Theorem (Informal). Assuming SXDH on bilinear maps, there exists a two-round maliciously secure
OT in the CRS model satisfying both weak accountability and defamation-free.

Our Results – 2PC

Positive Results

Theorem (Informal). Assuming SXDH on bilinear maps, there exists a two-round maliciously secure
two-party computation protocol for G satisfying both weak accountability and defamation-free.

Theorem (Informal). There exists a two-party functionality F such that there does not exist any
secure two-party computation protocol for F in the CRS model satisfying both (weak)
accountability and defamation-free properties.

Impossibility Result

* The class of functions G includes for instance: oblivious transfer, private information retrieval, subset sum, and
more.

Our Results – 2PC

Positive Results

Theorem (Informal). Assuming SXDH on bilinear maps, there exists a two-round maliciously secure
two-party computation protocol for G satisfying both weak accountability and defamation-free.

Theorem (Informal). There exists a two-party functionality F such that there does not exist any
secure two-party computation protocol for F in the CRS model satisfying both (weak)
accountability and defamation-free properties.

Impossibility Result

