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Improving Resolution by Image Registration
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Image resolution can be improved when the relative displace-
ments in image sequences are known accurately, and some knowl-
edge of the imaging process is available. The proposed approach is
similar to back-projection used in tomography. Examples of im-
proved image resolution are given for gray-level and color images,
when the unknown image displacements are computed from the
image sequence. © 1991 Academic Press, Inc.

1. INTRODUCTION

Image resolution depends on the physical characteris-
tics of the sensor: the optics and the density and spatial
response of the detector elements. Increasing the resolu-
tion by sensor modification may not be an available op-
tion. An increase in the sampling rate could, however, be
achieved by obtaining more samples of the scene from a
sequence of displaced pictures. An estimate of the sen-
sor’s spatial response helps obtain a sharper image.

An iterative algorithm to increase image resolution, to-
gether with a method for image registration with subpixel
accuracy, is presented in this paper. Examples are shown
for low-resolution gray-level and color images, with an
increase in resolution clearly observed after only a few
iterations. The same method can also be used for deblur-
ring a single blurred image.

Earlier research on superresolution was carried out by
Tsai and Huang [10], who used frequency domain meth-
ods. Their work disregarded the blur in the imaging pro-
cess; they used translated images to handle loss of data
due to decimation.

Gross [6] assumed that the imaging process is known,
and that the relative shifts of the input pictures are known
precisely. By merging the low-resolution pictures over a
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finer grid using interpolation, he obtained a single blurred
picture of higher spatial sampling rate. The merged pic-
ture was then deblurred by convolving it with a restora-
tion filter, obtained by applying pseudo-inverse tech-
niques to a matrix representing the blur operator. As in
the work of Tsai and Huang [10], only translations were
considered. ‘

Peleg and co-workers [16, 12] estimated an initial guess
for the higher resolution image, and simulated the imag-
ing process (assumed to be known) to obtain a set of
simulated low-resolution images. They defined an error
function between the actual and the simulated low-reso-
lution images, which they minimized iteratively until no
further improvement was obtained, or until the maximum
number of allowed iterations was reached. This method
gave good results for noise-free images, but was highly
sensitive to noise and slow to converge.

The approach described in this paper is based on the
resemblance of the presented problem to the reconstruc-
tion of a 2-D object from its 1-D projections in computer-
aided tomography (CAT) [7]. In tomography, images are
reconstructed from their projections in many directions.
In the superresolution case, each low-resolution pixel is a
“‘projection’’ of a region in the scene whose size is deter-
mined by the imaging blur. The high-resolution image is
constructed using an approach similar to the back-projec-
tion method used in CAT.

Accurate knowledge of the relative scene locations
sensed by each pixel in the observed images is necessary
for superresolution. This information is available in im-
age regions where local deformation can be described by
some parametric function. Such functions can describe,
for example, perspective transformation. In this paper
we assume that local motion can be described by transla-
tions and rotations only, but the approach is applicable
also for other image motion models.

The imaging process, yielding an observed mono-
chrome image sequence {g;}, is modeled by

gr(m, n) = o (h(f(x, y)) + m(x, y),

1049-9652/91 $3.00
Copyright © 1991 by Academic Press, Inc.
All rights of reproduction in any form reserved.



232

where

* g is the kth observed image frame,

» fis the original scene,

* his a blurring operator,

* 7, is an additive noise term,

* oy is a nonlinear function which digitizes and
decimates the image into pixels and quantizes the result-
ing pixel values from intensities into gray levels. o also
includes the displacement of the kth frame,

* (x, y) is the center of the receptive field (in f) of
the detector whose output is g;(m, n).

The receptive field (in f) of a detector whose output is
gr(m, n) is defined uniquely by its center (x, y) and its
shape. The shape is determined by the region of support
of the blurring operator 4. Assuming that the displace-
ment is a combination of translations and rotations, as
done throughout this paper, the scene location (x, y) of
the center of the receptive field for the observed location
(m, n) is computed by

x = x{ + s,m cos 6, — s,n sin 0,

y =yl + s.m sin 6; + s,n cos 6;,

where

o (x2, 9 is the translation of the kth frame,

* 0, is the rotation of the kth frame about the origin,

* s, and s, are the sampling rates in the x and y
directions, respectively.

The algorithm presented in this paper attempts to re-
construct a higher resolution image, f, which approxi-
mates f as accurately as possible. It is assumed that the
acceleration of the camera while imaging a single frame is
negligible.

When enhancing the resolution of color images, it is
suggested that the YIQ representation [15] be used. The
monochrome superresolution algorithm may then be ap-
plied separately to each component, where the gray-level
images are processed together with the Y component im-
age sequence.

2. THE IMAGING PROCESS

This section describes the two preliminary tasks of ob-
taining the parameters of the imaging process. The rela-
tive displacements of the input images at subpixel accu-
racy, as well as the blur in the imaging process, are
computed.

2.1. Image Registration

Keren et al. [12] used the following method, based on
[13], which has been found to be the most accurate for
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our purposes. This image registration method, which we
used to obtain the results reported in this paper, is re-
viewed here. Other image registration methods that as-
sume different imaging models have also been developed
[3, 8, 14].

Horizontal shift a, vertical shift b, and rotation angle 6
between images g, and g, can be written as

g2(x, y)
=gixcos@ —ysinf +a,ycos § +xsinb + b).

Expanding sin(#) and cos(8) to the first two terms in
their Taylor’s series expansion gives

2, y) =gix +a—y8 —x0%2,y + b+ x0 — y0?/2).

Expanding g, to the first term of its own Taylor’s series
expansion gives the first-order equation

F)
220x, y) = gi(x, y) + (a — yb — x6%/2) %
g
_ 2 o7 .
+ (b + x0 — y0%/2) ay 2)

The error function between g, and g, after rotation by 6
and translation by a and b can therefore be approximated
by

9
E(a, b, 6) = > [gn(x, y) + (a — yb — x6%/2) %

2 agl 2
+ (b + x0 — y6 /2)@—gz(x,y) ,

where the summation is over the overlapping part of g,
and g,.

The minimum of E(a, b, #) can be recovered by com-
puting its derivatives with respect to a, b, and 6 and
setting them to zero. Solving the following equation for
(a, b, 6) will thus minimize the difference between the
image g» and the image g, warped by (a, b, 6):

Dogla+ Y ggb+ > Agb = g,
D ogegat+ > gib+ > Agf = gog, 3)
> Agea + D Ag,b + >, A0 = Ag,,

where g, = dg/ox, g, = dgi/dy, & = g2 — g1, and A =
xg, — yg.. The motion parameters a, b, and 6 will be
computed by solving this set of linear equations. The
above equations were obtained under assumptions which
are valid only for small displacements.
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2.2. [Iterative Refinement

As images are recorded in discrete time intervals, the
displacements between them may not be sufficiently
small for the motion recovery method of Egs. (3). We
therefore iterate the following process for two given im-
ages g, and g, [12]:

1. Initially assume no motion between the frames.

2. Compute approximations to the motion parame-
ters by solving Egs. (3). Add the computed motion to the
existing motion estimate.

3. Warp frame g, toward g; using the current mo-
tion estimates, and return to Step 2 with the warped im-

age g7.

2> gets closer to gy at every iteration, and as the resid-
ual corrections to (a, b, ) computed in Step 2 get
smaller, the motion parameters become more accurate.
The process terminates when the corrections to (a, b, 6)
approach zero.

Since frame g; remains unchanged, 9 of the 12 coeffi-
cients in the set of equations are computed only once,
and only 3 coefficients, depending on g,, need to be re-
computed every iteration. This saves time in the iterative
process.

In order to speed up the process and improve accu-
racy, a Gaussian pyramid data structure is used [17].
First, the motion parameters are computed for a reduced
resolution image in the pyramid, where even large trans-
lations become small. The computed motion parameters
are then interpolated into a larger image, the motion esti-
mate is corrected through a few iterations, and again in-
terpolated to the next resolution level. This process is
continued until the original full-size image is reached.

2.3. Recovering the Blur

Some knowledge of the digitization process is neces-
sary to simulate the imaging process. Images used in our
experiments were scanned by a flatbed scanner, and its
blurring function was evaluated by scanning a small,
white dot on a black background. We have approximated
the point spread function by a 3 X 3 kernel.

When the imaging process cannot be applied to control
images, similar to the above mentioned white dot, the
blur can be estimated from the degradation of features
that are originally small points or sharp edges.

5. SUPERRESOLUTION

In this section the superresolution algorithm is de-
scribed in detail, with noise and stability analyses. Exper-
imental results are also given.

The presented algorithm for solving the superresolu-
tion problem is iterative. Starting with an initial guess f©@
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for the high-resolution image, the imaging process is sim-
ulated to obtain a set of low-resolution images {g "'} cor-
responding to the observed input images {g:}. If f@ were
the the correct high-resolution image, then the simulated
images {g”} should be identical to the observed images
{g«}. The difference images {g, — g} are then com-
puted, and used to improve the initial guess by ‘‘back-
projecting’’ each value in the difference images onto its
receptive field in £©@. This process is repeated iteratively
to minimize the error function

> 2 (glx, y) — gPx, y).

ko (ey)

e =

The algorithm is described schematically in Fig. 1.

DEFINITION 3.1. A low-resolution pixel y is influ-
enced by a high-resolution pixel x, if x is in y’s receptive
field.

DEFINITION 3.2. A low-resolution image g is influ-
enced by a high-resolution pixel x, if g contains a pixel y
such that y is influenced by x. ‘

The following notation is used:

» f, the target high-resolution image to be con-
structed (unknown);
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FIG. 1. Schematic diagram of the superresolution algorithm. A

high-resolution reconstructed image (left) is sought, which gives simu-
lated low-resolution images that are as close as possible to the observed
low-resolution images.
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» f®, the approximation of f obtained after n itera-
tions;

* g, the kth observed low-resolution image;

« g, the low-resolution image obtained by apply-
ing the simulated imaging process to f. If f® is the
correct high-resolution, we expect g}

» hPSF  the point spread function of the imaging
blur;

* KPP a back-projection kernel (the choice of hB? is
referred to later);

* x denotes a high-resolution pixel;

+ ydenotes a low-resolution pixel (influenced by x).

Let z, denote the center of the receptive field of y in f®,
computed by (1). The imaging process is then expressed
by

g"(y) = 2 FOX)hPSF(x — z,).

X

The iterative update scheme to estimate the high-resolu-
tion image fis expressed by

£ = fOx) +
(hEh)?

BP’
c EYIEUk Yix h")"

> (ay) — gy 4)

YEUYix

where

* Y.« denotes the set {y € g, | y is influenced by x},
» ¢ is a (constant) normalizing factor,
< hy = hPP(x — z).

In Eq. (4) the value of £ at each high-resolution pixel
x is updated according to all low-resolution pixels y
which it influences. The contribution of the low-resolu-
tion pixel y of an input image g, is the error (g;(y) —
2{’(y)) multiplied by a factor of hi/c. Therefore,
strongly influenced low-resolution pixels also strongly in-
fluence f»*V(x), while weakly influenced low-resolution
pixels hardly influence f"*P(x). Since receptive fields of
different low-resolution pixels overlap, f“*1(x)’s new
value is influenced by several low-resolution pixels. All
corrections generated by the various low-resolution pix-
els are combined by taking their weighted average, using
the coefficients of 45" as weights.

It is important to bear in mind that the original high-
resolution frequencies may not always be fully restored.
For example, if the blurring function is an ideal low-pass
filter, and its Fourier transform has zero value at high
frequencies, it is obvious that the frequency components
which have been filtered out cannot be restored. In such
cases, there is more than one high-resolution image
which gives the same low-resolution images after the
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imaging process. Therefore, there are several possible
solutions, and the algorithm may either converge to one
of them or oscillate among some of them. The choice of
initial guess does not influence the performance of the
algorithm (speed or stability). It may, however, influence
which of the possible solutions is reached first. A good
choice of initial guess is the average of the low-resolution
images. The average image is computed by registering all
the low-resolution images over a fixed finer grid. Each
high-resolution pixel in the fine grid is taken to be the
average of all the low-resolution pixels stacked above it.
Such an initial guess leads the algorithm to a smooth
solution, which is usually a desired one.

Another issue is the choice; of #8P. Unlike #"SF, which
represents properties of the sensor, A8 can be chosen
arbitrarily. Observation of the mathematical analysis
shows that more than one choice of A8 may lead to
convergence. The choice of £8P does, however, affect the
characteristics of the solution reached when there are
several possible solutions. #B” may therefore be utilized
as an additional constraint, so that the solution reached is
smooth, or has another desired property. Additional con-
siderations for choosing 4#B? appear in Section 4.

This superresolution algorithm performs well on both
real and computer-simulated images. Improvement in
resolution is clearly observed even when a very small
number of low-resolution images are available. The algo-
rithm converges rapidly (usually within less than five iter-
ations) and is very stable. The complexity of the algo-
rithm is low; there are O(KN min{M, log N}) operations
per iteration, where N is the size of the high-resolution
image f, M is the size of the blurring kernel, and K is the
number of low-resolution pictures. Since the number of
iterations is very small, this is also a good estimate of the
complexity of the complete algorithm. The algorithm has
parallel characteristics; the contributions (to be aver-
aged) of the low-resolution pixels to the high-resolution
pixels, within a single iteration, may all be computed
independently. Synchronization is needed only at the end
of each iteration, when the values have to be averaged to
obtain the new value.

Figure 2 shows the result of applying the algorithm to
three low-resolution images recorded by a scanner and
translated relative to each other. The sampling rate was
doubled in both directions. The relative displacements
were computed as described in Section 2.1, and the blur
was estimated as described in Section 2.3.

3.1.

The section describes the application of the superreso-
lution algorithm to color image sequences.

The color images are first transformed into YIQ repre-
sentation [15, 2], since in this representation most of the
energy is concentrated in the luminance (Y) component,

Color Superresolution
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R

FIG. 2. Superresolution from three 100 x 70 monochrome input
images. (a) One of the three original images. (b) Initial guess: average of
the three input images after registration. (c) Improved resolution image.

with little energy in the chrominance (I,QQ) components
[4]. It is therefore sufficient to apply the iterative mono-
chrome superresolution algorithm only to the Y compo-
nent, and use simpler processing of the I and Q compo-
nents. In our experiments it was sufficient to average
each of the chrominance component sequences after reg-
istration. Applying superresolution to the Y component
enables the mixing of color and gray-level images, as the
gray-level images could be mixed with the Y component
images.
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The superresolution algorithm for color images is
therefore the following:

Step 1. Transform the color images into Y1Q repre-
sentation.
Step 2. Apply the monochrome superresolution al-

gorithm to the Y component images.

Step 3. Register the images at the two chrominance
image sequences using the same registration parameters
obtained in Step 2 for the Y component. Create an aver-
age image for each of the 1 and Q components.

Step 4. Use the high-resolution Y component and
the low-resolution 1 and Q components to generate a
high-resolution RGB image.

Figure 3 shows the result of applying this algorithm to
three low-resolution RGB images scanned by a flat-bed
scanner. The sampling rate was doubled in both direc-
tions. Since it is hard to reproduce color images, only the
green image is displayed.

4. DEBLURRING

Restoration of degraded images, when a model of the
degradation process is given, is considered as an ill-con-
ditioned problem [1, 5, 9, 11, 18]. In this section deblur-
ring of a single image is shown to be a special case of
superresolution, and convergence conditions of the algo-
rithm with stability analysis are given for this case. De-
blurring a single image is achieved by applying the algo-
rithm to a single input image, without increasing the
sampling rate. Equation (4) then reduces to

hBP(x — 2
FurDx) = fOX) + > (gly) — ™) (_u

C
Using convolutions, this can be written as
/,lAUX
foreh = [0+ (g~ g") x T (5)
. . £ c

b c

FIG. 3.
enable printing, only the green band is shown. (a) The green band of an
original low-resolution color image. (b) The initial guess: average of the
three input images after registration. The average was performed in the
Y1Q domain. (c) The green band of the improved resolution image.
Resolution has been improved only for the Y component.

Superresolution from three 100 X 100 color images. To
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where

+ * is the convolution operator,
o RAUX = (jBP)2,

When the image blur is expressed by
g — f* hPSF’ (6)

the following theorems show that the iterative superreso-
lution scheme is an effective deblurring operator.

THEOREM 4.1.  Let HPSY and HAYX denote the Fourier
transforms of h™Y and hAVX, respectively. If

3 HPSF(w)HAUX(w)
c

Vo 0<]1 <1, 7

then the iterations of Eq. (5) converge to the original
image f.

Proof. See Appendix.

It is clear that Condition (7) does not hold for frequen-
cies w for which HP¥(w) = 0. Those frequencies are
completely lost and cannot be restored by any method.
For any other w, however, #4Y* and ¢ may be chosen so
that Condition (7) is fulfilled (recall that we are dealing
with a finite space), and the original frequency is fully
restored. The behavior of frequencies @ for which
HP¥(w) = 0 will be examined later.

THEOREM 4.2. Given Condition (7), the algorithm
converges at an exponential rate (the norm of the error
converges to zero faster than q" for some 0 < g < 1),
regardless of the choice of initial guess f©.

Proof. See Appendix.

One of the main benefits of the algorithm is in the free-
dom of choice of the auxiliary filter #4YX and the normal-
izing constant ¢, so that Condition (7) holds for as many
frequencies as possible, ensuring optimal conditions for
convergence. A sensible choice of h1AYX and ¢ increases
numerical stability. The farther the term |I —
HPF(w)HAY(w)/c| is from its lower limit (0), the less
sensitive the algorithm is to noise and errors. However,
since the speed of convergence is acclerated as the term
approaches 0, there is a trade-off between stability and
speed of convergence.

It should be emphasized that even if Condition (7) in
Theorem 4.1 does not hold for all frequencies w, the
proof still holds for the frequencies that fulfill this condi-
tion.

The following is an examination of the behavior of the
algorithm in case Condition (7) does not hold. This hap-
pens only when H"F(w) = 0, as in any other case
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HAY(w) and ¢ can be chosen so that Condition (7) does
hold. An arbitrary choice of HAYX(w) causes F"W(w) to
diverge as n — ». However, if H*YX(w) = 0, then ac-
cording to Eqs. (8) and (10} in the Appendix Vn F"(w) =
F9(w); i.e., the algorithm preserves the component of w
in the initial guess . This is one of the reasons for using
the average of the input images as the initial guess.

A good choice of #2YX is usually not unique. In the
common case of a real and symmetric #"F, a possible
choice of hAVX is hAUX = pPSF This is a good choice,
because for a real and symmetric APSF, HPSF ig also a real
function; therefore, Vo HPSF(w)HAYX(w) = (H"SY(w))?
= (. This means that for all nonzero frequency compo-
nents, Condition (7) holds if ¢ is sufficiently large. Ac-
cording to Eqgs. (8) and (10), stability is achieved in this
case because as HSF(w) tends to zero, so does HA"X(w).
This prevents components of such frequencies from
varying much in few iterations, hence remaining similar
to their initial value in f©. For the same reason, noise is
not amplified by such frequency components. This can be
observed by adding a noise term to G in Eq. (10). In
general, HAYX(w) may be chosen to be proportional to
higher powers of H"F(w), as long as Condition (7) is
maintained. Such a choice would increase numerical sta-
bility of the algorithm, but would decrease the rate of
convergence. '

This method, therefore, has the advantage of being sta-
ble even in neighborhoods of zero-valued frequency com-
ponents of the blur. This compared well with other de-
blurring methods, such as inverse filtering, which tend to
amplify noise.

Figure 4 shows the result of deblurring a monochrome
image which was synthetically blurred by convolving it
with a 7 X 7 blurring kernel.

Figure 5 shows the result of deblurring a monochrome
image scanned by a flatbed scanner. The blurring func-
tion in this case was the measured point spread function
of the scanner. The initial guess was some arbitrary im-
age, to show the small effect of the initial guess on the
result.

a b c

FIG. 4. Deblurring a 50 x 50 synthetically blurred monochrome
image. (a) Original image. (b) Blurred image. (c) Restored image.



IMPROVING RESOLUTION BY IMAGE REGISTRATION

FIG. 5.
arbitrary initial guess. (a) Blurred input image. (b) An arbitrary initial
guess. (c) Deblurred image, which is independent of the initial guess.

Deblurring a 100 X 70 monochrome input image, with an

5. HEURISTIC IMPROVEMENTS

5.1. Fixing Stable Pixels

To increase speed and stability of the algorithm, a high-
resolution pixel is fixed when it is assigned the same
value (or nearly the same value) two iterations in a row.
This pixel will not be considered again in future itera-
tions.

This fixing process increases the speed of conver-
gence, since at later iterations fewer pixels are examined.
It also prevents harmful salt-and-pepper type of noise
from contaminating large surrounding areas. It is unlikely
for a noisy pixel to be fixed as its gray level usually differs
from those of its neighboring pixels.

5.2. Noise Reduction

Referring back to the updating scheme of Eq. (4), the
new value of a high-resolution pixel in each iteration is
computed by taking the average of all contributions of the
various low-resolution pixels. Taking an average in itself
already handles additive noise. In order to handle multi-
plicative noise as well, contributions having extreme
(high and low) values are eliminated before taking the
average. Only contributions whose values are neither
maximal nor minimal are averaged, eliminating both ad-
ditive and multiplicative noise. For such noise cleaning a
reasonable number of low-resolution images is needed.

a b

FIG. 6. Superresolution from ten 50 x 70 noisy monochrome im-
ages. (a) One of the 10 low-resolution images. (b) The initial guess:
average of the low-resolution images after registration. (c) Improved
resolution image.
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Figure 6 shows the result of applying the algorithm to
10 monochrome low-resolution images, contaminated by
zero-mean Gaussian noise of standard deviation 10. The
sampling rate was doubled in each direction.

6. CONCLUDING REMARKS

Superresolution is shown to be feasible for mono-
chrome and color image sequences, when the relative
displacements can be computed, and with approximate
knowledge of the imaging process.

An iterative algorithm for computing superresolution
has been presented. It was shown that when the algo-
rithm is applied to a single image without increasing the
sampling rate, superresolution reduces to deblurring.

The suggested algorithm performed well for both com-
puter-simulated and real images, and has been shown,
theoretically and practically, to converge quickly. The
algorithm can be executed in parallel for faster hardware
implementation.

Accurate knowledge of the relative displacements of
scene regions is essential when using image sequences.
In this paper we have assumed a simple uniform motion
of translation and rotation for the entire image, and im-
plemented an accurate method for computing this dis-
placement. This method, however, can also be applied to
other types of motion, such as perspective transforma-
tion and multiple motions in the image. As long as the
image can be divided into regions such that each region
undergoes some uniform motion, resolution can be im-
proved in the regions.

All images used in this paper were digitized using uni-
form sampling. This is, however, not necessary; the pro-
cess can be applied to images sampled in any arbitrary,
nonuniform manner. Samples not on a uniform sampling
grid, as well as blur that varies between sample locations,
can be accommodated.

APPENDIX

The appendix contains proofs of Theorems 4.1 and 4.2.
The following notation will be used:

« HPSF and HAYX denote the Fourier transforms of
hPSF and hAUX respectively.
« h denotes the expression

JPSF 5 J AUX

h

c
+ H(w) denotes the expression

PSF AUX
Hw) =2 (“’):1 (@) (8)
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THEOREM 4.1. If

Vo 0<|l - Hw)| <1 9

then the iterations of Eq. (5) converge to the original
image f.

Proof. Mathematical manipulations on (5) yield

frD = f0 4+ (g — g« hAcUX
AUX
= f0 4 (g = O 5 hSF) 2 2 ~— (using (6))
AUX
=fW (@~ h) +g x
(unfolding the recursion)
AUX n
=NW®—MW“#NhC*E®—mi
j=0

where

» 8 denotes the unity pulse function centered at 0,
* a™ denotes

a*a*--
—

“xa (a0 = §).

—~—

n times

It is easier to analyze the behavior of the algorithm in
the frequency domain (where convolutions are replaced
by multiplications). Let F, F* and G denote the Fourier
transforms of f, /™, and g, respectively. Then switching
to the Fourier domain we get

Frt (@) = FY @)l — H(w))"!

AUX n
+mmﬁi#9§a~ﬂmwwm

Since (according to Condition (9)) H"E(w) # 0 and
HAYX (@) + 0,

Fo @) = F¥ o)1 — H(w))""!
HAX(w) (1 — (1 — H(w))"t")

+ G(w) 7 Hw)
= F(O)(w)(] — H(w))”“
+G@ = ).
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As |l — Hw)| <1 (9),
lim (1 — H(w))" = 0. (1)
We therefore have
. G(w)
(nt+1) - =77
i ) < iy
Since by definition (6)
G(w) = Flw)H™M N w), (13)
from (12) and (13) we get
lim F"* @) = F(w), (14)

n—

For (14) to entail lim,_.. ) = f, it is sufficient that the
convergence of F to F be uniform. Since our images are
discrete and of finite number of samples, this condition
holds. (In the continuous case, Condition (9) must be
slightly altered to e < |l — H(w)| < 1 — &, for some & >
0.) m

THEOREM 4.2. Given Condition (9), the algorithm
converges at an exponential rate (the norm of the error
converges to zero faster than q" for some 0 < g < 1),
regardless of the choice of initial guess f©.

Proof. Equation (11) confirms the exponential speed
of convergence. The absence of F@(w) in Eq. (12) con-
firms that the choice of initial guess does not affect the
convergence. H
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