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Tight Relaxation of Quadratic Matching
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Figure 1: Consistent Collection Matching. Results of the proposed one-stage procedure for finding consistent correspondences
between shapes in a collection showing strong variability and non-rigid deformations.

Abstract
Establishing point correspondences between shapes is extremely challenging as it involves both finding sets of
semantically persistent feature points, as well as their combinatorial matching. We focus on the latter and consider
the Quadratic Assignment Matching (QAM) model. We suggest a novel convex relaxation for this NP-hard problem
that builds upon a rank-one reformulation of the problem in a higher dimension, followed by relaxation into a
semidefinite program (SDP). Our method is shown to be a certain hybrid of the popular spectral and doubly-
stochastic relaxations of QAM and in particular we prove that it is tighter than both.
Experimental evaluation shows that the proposed relaxation is extremely tight: in the majority of our experiments
it achieved the certified global optimum solution for the problem, while other relaxations tend to produce sub-
optimal solutions. This, however, comes at the price of solving an SDP in a higher dimension.
Our approach is further generalized to the problem of Consistent Collection Matching (CCM), where we solve
the QAM on a collection of shapes while simultaneously incorporating a global consistency constraint. Lastly, we
demonstrate an application to metric learning of collections of shapes.

1. Introduction

Establishing correspondences between shapes is a funda-
mental problem in computer graphics and related fields. It
is a key ingredient in algorithms aiming at shape analysis
and understanding.

Many different approaches have been suggested for both
the formulation and computation of the extremely challeng-
ing shape correspondence problem. One common approach
aims at finding a set of meaningful pairs of corresponding

† equal contributors

points between two shapes, which in turn poses two main
difficulties: (1) finding good candidate points on general
shapes; and (2) the combinatorial problem of matching these
candidates. We focus on the latter.

Given a set of feature points, a popular model for formu-
lating the point correspondence problem is the Quadratic As-
signment Matching (QAM) [BBM05, BBK06, FS06],

max
X∈Πn

[X ]T W [X ]

where [X ] ∈ Rn2×1 denotes the column-stack vector of X ,
and Πn denotes the set of n×n permutation matrices.
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Notably, this problem is NP-hard and is considered to be
large scale for n ≥ 16 and generally intractable for n ≥ 30
[ZKRW98,LdABN∗07]. As such, different approaches have
been suggested in computer graphics and computer vision
to produce tractable algorithms for approximating its solu-
tion. Among these, the spectral and doubly-stochastic relax-
ations have stood out and became standard [LH05, Mem07,
SLZ∗13, FHJB13, ABK14].

In this paper we suggest a novel convex relaxation to the
QAM problem that is provably better than both spectral and
doubly-stochastic relaxations. It is achieved by a rank-one
reformulation of the problem in a higher dimension, fol-
lowed by relaxation into a semidefinite program (SDP).

Experiments show that the proposed convex relaxation
usually achieves an integral solution and therefore globally
optimal, while other relaxations often tend to produce sub-
optimal solutions. On the other hand, since our approach re-
quires solving an SDP in a rather high dimension, compu-
tation times are significantly higher than for simpler relax-
ation alternatives. Nevertheless, the method is suitable for
computing coarse sets of point correspondences in reason-
able times, often with a certificate of global optimality.

Going beyond pairwise matching, we generalize our
framework to the problem of Consistent Collection Match-
ing (CCM). Thereby, computing a point correspondences
across an entire collection of shapes in a single-step al-
gorithm, which simultaneously enforces a global consis-
tency criterion. This is in contrast to previous techniques
that tackle the CCM problem in two steps: first, indepen-
dently matching many or all pairs of shapes in the collection,
and second, combining all pairwise information in a glob-
ally consistent manner [NBCW∗11,SW12,KLM∗12,HG13,
HWG14]. The power of the proposed CCM framework is
demonstrated in Figure 1, where coarse correspondences are
established over a collection of octopus shapes taken from
the SHREC dataset [GBP07]; the correspondences, illus-
trated by colored spheres, further induce a continuous map
between shapes, visualized by coloring their surfaces; see
Section 5 for additional details. Lastly, we demonstrate an
application to metric learning, whereby the CCM framework
naturally induces a metric on the shape space.

2. Previous work

Shape correspondences and Quadratic Assignment
Matching. The problem of shape correspondence in the
context of computer graphics is surveyed in [vKZHCO11].
Several studies have formulated the problem of establish-
ing correspondences as the optimization of a well-defined
quadratic objective. [BBK06, BBK∗10] use a Gromov-
Hausdorff framework to define the notion of partial simi-
larity between two objects. This framework is also used by
[Mem07] for shape comparison; he further describes its re-
lation with the quadratic assignment problem and proposes a

sequence of constrained convex problems for its approxima-
tion. [BBM05] approximate the solution of QAM by solv-
ing a linear assignment problem, followed by local refine-
ment. [LH05] rely on the Perron-Frobenius theorem to pro-
pose a spectral relaxation, followed by a greedy approach for
enforcing integrality and mapping constraints. This spectral
relaxation is used in [FHJB13] for matching graphs repre-
senting surfaces, derived from the Morse-Smale complex.
[DBKP11] generalize the spectral approach to higher-order
relations between tuples of points, represented by tensors.
The closely related problem of graph matching was formu-
lated as a QAM by [ABK14]; they characterize instances for
which its doubly-stochastic relaxation is exact. The problem
of establishing partial correspondences has been discussed
in [FS06]; a priority-driven search approach has been pro-
posed for large scale shape retrieval.

Quadratic Assignment. The QAM is an instance of the
quadratic assignment problem (QAP) which is covered in
a large body of literature, see [LdABN∗07] for a survey.
Several semidefinite programming relaxations have been
suggested in this context. Most related is the work of
[ZKRW98], which also present a certain semidefinite pro-
gramming relaxation to a lifted reformulation of the prob-
lem; their formulation, however, is different: it does not
include the properties we use for proving the relation to
standard relaxations, nor does it address the case of sub-
permutations.

3. Problem statement

The goal of this paper is to introduce an approach for solv-
ing the Quadratic Assignment Matching (QAM). The in-
put of the problem is a pair of shapes M1 and M2. Each
shape Mi = {P i,di} consists of a given set of n points
P i = {pi

1, ..,p
i
n} ⊂Rd , and a distance function d(pi

q,pi
s) de-

fined between pairs of these points.

Our goal is to establish good partial matching of or-
der k between the shapes M1 and M2. We model par-
tial matchings, or injective mappings of order k (0 ≤
k ≤ n), via the set Π

k
n of n× n sub-permutations of rank

k. That is, binary matrices with k ones, and at most a
single one in each row and column. The inset
shows an example of a matrix in Π

4
6. The match-

ing betweenM1 andM2 is represented by a sub-
permutation matrix X ∈ Π

k
n, wherein p1

q is matched to p2
r if

and only if Xqr = 1.

For the case of partial matching, the QAM problem takes
the following matrix form

max
X

[X ]T W [X ] (1a)

s.t. X ∈Π
k
n (1b)

where W ∈Rn2×n2
defines a quadratic energy measuring the
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gain in matchingM1 andM2 by a sub-permutation X . As
before, [X ] ∈ Rn2×1 denotes the column-stack vector of X .

A canonical instantiation of the QAM framework can
be obtained by choosing the isometric matching functional,
which intuitively aims to match pairs of points that preserve
distances [LH05, BBM05, BBK06, FHJB13]. Formally, we
set di to be the Euclidean distance (or geodesic in case of
non-flat geometries) and the cost matrices W to decay pro-
portionally to their differences, i.e.,

d(pi
q,p

i
s) =

∥∥∥pi
q−pi

s

∥∥∥ , (2a)

Wqrst = e−|d(p
1
q,p

1
s )−d(p2

r ,p
2
t )|2
/

σ
2
. (2b)

The QAM problem as formulated in (1) is generally non-
convex, both in its objective and constraint. In fact, it is
as hard as the quadratic assignment problem (QAP) and
therefore NP-hard. Nonetheless, we propose an effective ap-
proach for its approximation.

4. Quadratic assignment matching relaxation

In this section we propose a novel SDP relaxation for the
QAM problem (1). It is shown to outperform the popu-
lar spectral and doubly-stochastic relaxations for the QAM
problem (e.g., [LH05, ABK14]). In fact, the proposed for-
mulation can be viewed as a hybrid of these two standard
relaxations, which further provides a unifying convex inter-
pretation of these techniques. See Figure 2 for an illustration.

We develop our convex relaxation to (1) in a few stages:
first, we reformulate the problem as an equivalent linear
problem subject to rank-one constraints, which is then re-
laxed into a semidefinite program. Then, we discuss its rela-
tion to standard QAM relaxations and show it can be further
tightened.

4.1. Lifting and rank-one reformulation

Problem (1) is the maximization of a quadratic objective, not
necessarily concave, over the set of n×n sub-permutation of
order k. In this section, we show it can be lifted to the space
of n2×n2 matrices. It can then be equivalently reformulated
as the problem of maximizing a linear objective over the set
of rank-one matrices. In subsequent section we further ex-
ploit its structure and propose an effective algorithm for its
approximation.

The lifting is done by observing that (1) can equivalently
rewritten by introducing an auxiliary n2×n2 matrix variable
Y that obeys Y = [X ] [X ]T . Problem (1) then becomes

max
X ,Y

tr(WY ) (3a)

s.t. Y = [X ] [X ]T (3b)

X ∈Π
k
n (3c)

QAM
Doubly-
 stocastic
   (DS)

QAM-SDP DS∩S-SDP

Spectral
    (S)

Figure 2: Illustration of QAM relaxation hierarchy. The non-
convex QAM problem (1) is illustrated as a star at the center.
The intersection of the standard convex doubly-stochastic
and non-convex spectral relaxations can be characterized
as a convex SDP (6). Additional constraints yield the tight
QAM-SDP relaxation (7).

With the lifting Y , the non-convex permutation constraint
(3c) can be replaced by a convex constraint, as the following
proposition asserts,

Proposition 1 Suppose Y = [X ] [X ]T . Then X ∈ Π
k
n if and

only if the following convex conditions hold,

X ∈ convΠ
k
n (4a)

trY = k (4b)

Here convΠ
k
n is the convex-hull of the sub-permutations

Π
k
n, characterized by the following linear inequalities and

equality [DM58],

X ≥ 0 (5a)

X1≤ 1 (5b)

XT 1≤ 1 (5c)

1T X1 = k, (5d)

where 1 ∈ Rn×1 denotes the vector of all ones.

Proof If X ∈ Π
k
N one can verify that (4a) and (4b) hold by

substituting Y = [X ] [X ]T . In the other direction, assume that
(4a) and (4b) hold. Then,

∑
qr

X2
qr = trY = k = 1T X1 = ∑

qr
Xqr = ∑

qr
|Xqr| ,

that is, ‖[X ]‖2 = ‖[X ]‖1. Combined with 0 ≤ Xqr ≤ 1 this
implies that Xqr ∈ {0,1}. Since, in addition, X ∈ convΠ

k
n,

we conclude that X ∈Π
k
n.

To recap, so far we recasted the QAM problem (1) as the
problem of maximizing a linear cost function (3a) subject
to linear equalities and inequalities, (4a) and (4b), and the
rank-one constraint (3b).

4.2. SDP relaxation

The next step of our construction is the relaxation of the
rank-one constraint (3b). We replace Y = [X ] [X ]T with Y �
[X ] [X ]T . That is, the constraint that Y − [X ] [X ]T is a positive
semidefinite (PSD) matrix. In turn, we devise the following
optimization,
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max
X ,Y

tr (WY ) (6a)

s.t. Y � [X ] [X ]T (6b)

X ∈ convΠ
k
n (6c)

trY = k (6d)

Schur’s complement (see e.g., [BV04]) asserts that Y �
[X ] [X ]T can be equivalently realized in semidefinite pro-
gramming via the PSD constraint[

Y [X ]

[X ]T 1

]
� 0.

By construction (6) is a convex SDP relaxation of the
QAM problem (1). In fact, it can be further improved (tight-
ened), as we show in Section 4.4. This will be more straight-
forward once the relation to other relaxations is clear.

4.3. Relation to spectral and doubly-stochastic
relaxations

Two relaxation approaches to the QAM problem (1) have be-
come standard – spectral and doubly-stochastic relaxations
(e.g., [ABK14, LH05]). Next, we discuss the close relation
of the SDP (6) with these relaxations. In particular, we show
that, in a sense, it is equivalent to their “intersection” and
therefore provably superior to both of them.

The doubly-stochastic approach relaxes the constraint
(1b), that X ∈ Π

k
n, into its convex-hull X ∈ convΠ

k
n. Pro-

vided that W � 0, the problem becomes a convex quadratic
program [ABK14]. The spectral relaxation replaces X ∈
Π

k
n with a necessary condition for k sub-permutations that
‖X‖2

F = ∑qr X2
qr = k. While still not convex, the resulting

problem can be solved by simply taking the top eigenvec-
tor of the spectral decomposition of W [LH05]. As we prove
next, both these standard relaxations are sub-optimal com-
pared to the SDP relaxation (6), as illustrated in Figure 2.

Proposition 2 Both spectral and doubly-stochastic relax-
ations for the QAM problem (1) are sub-optimal compared
to the SDP relaxation in (6). In fact, when formulated in the
lifted variables, the feasible set of (6) is exactly the intersec-
tion of the feasible sets of these relaxations.

To prove this proposition, we first state two lemmas which
provide a convex characterization of the spectral and doubly-
stochastic relaxations. Their proofs can be found in Ap-
pendix A.

Consider the spectral relaxation (S), expressed in terms
of the lift, and its relaxed counterpart (S′) whereby Y =

[X ] [X ]T is replaced by Y � [X ] [X ]T ,

max trWY

(S) s.t. trY = k

Y = [X ] [X ]T

max trWY

(S′) s.t. trY = k

Y � [X ] [X ]T

Lemma 1 The relaxations (S) and (S′) are equivalent.

Similarly, Consider the doubly-stochastic relaxation
(DS), expressed in terms of the lift, and its relaxed coun-
terpart (DS′),

max trWY

(DS) s.t. X ∈ convΠ
k
n

Y = [X ] [X ]T

max trWY

(DS′) s.t. X ∈ convΠ
k
n

Y � [X ] [X ]T

Lemma 2 The relaxations (DS) and (DS′) are equivalent.

The proof of Proposition 2 now follows by noticing that
the feasible set of (6) is the intersection of the feasible sets
of (DS′) and (S′). Figure 2 illustrates this intersection (in
purple).

4.4. Tightening the relaxation

Thus far, we have shown that the convex SDP relaxation (6)
is as good as both the spectral and doubly-stochastic relax-
ations. However, bridging the gap between these two relax-
ations in a convex optimization framework enables deriving
an even better relaxation.

We propose adding linear equality and inequality con-
straints to the SDP relaxation in (6). Any constraints that
are satisfied by the feasible points of the QAM (1) may
be added; namely, constraints which hold for Y = [X ] [X ]T

with X ∈ Π
k
n. These constraints are guaranteed to improve

(tighten) the relaxation provided that they are not containing
the constraints of (6).

We devise the following convex SDP relaxation to the
QAM problem (1), which we denote by QAM-SDP,

max
Y

tr(WY ) (7a)

s.t. Y � [X ] [X ]T (7b)

X ∈ convΠ
k
n (7c)

trY = k (7d)

Y ≥ 0 (7e)

∑
qrst

Yqrst = k2 (7f)

Yqrst ≤


0, if q = s, r 6= t
0, if r = t, q 6= s
min{Xqr,Xst} , otherwise

(7g)

Here, the notation Yqrst refers to double indexing of the en-
tries of the matrix Y , corresponding to the lift Yqrst = XqrXst .
Note that QAM-SDP is a convex relaxation and can be
plugged as-is into a semidefinite program (SDP) solver of
choice. See additional implementation details in Section 7.

It is easy to verify that the additional linear equality and
inequality constraints (7e)-(7g) hold for feasible points of
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the QAM problem (1). Each constraint has an intuitive in-
terpretation in terms of permutations. If Y = [X ] [X ]T with
X ∈ Π

k
n then Y is a binary matrix with k2 ones, which im-

plies (7e) and (7f). To derive (7g), note that since X is a
permutation its q’th row has at most one non-zero entry,
which entails that Yqrqt = XqrXqt = 0 for r 6= t; a simi-
lar argument for columns of X corresponds to the second
case; otherwise, since X is binary, Yqrst = XqrXst implies that
Yqrst ≤min{Xqr,Xst}.

Furthermore, the additional constraints (7e)-(7g) are not
implied by the previous constraints (7b)-(7d). For instance,
the latter do not imply that Y is non-negative : suppose n = k
and take X to be the n× n constant matrix whose entries
equal 1/n; let u = [1,−1,0, · · · ,0]T and set

Y = [X ][X ]T +
n−1

2
uuT .

It follows that the pair (X ,Y ) satisfies (7b)-(7d). However,
Y12 = 1

n2 − n−1
2 is negative for n > 1, thus (7e) fails to

hold. As such, these additional constraints are guaranteed to
strictly tighten the QAM relaxation. This is summarized in
the following proposition.

Proposition 3 The feasible set of the QAM-SDP relaxation
(7) is strictly contained within the feasible set of relaxation
(6). Therefore, it is strictly contained within the intersection
of the feasible sets of the spectral (S′) and doubly-stochastic
(DS′) relaxations.

Although this is not captured in full by Proposition 3, in
practice the QAM-SDP relaxation (7) is far superior to the
spectral and doubly-stochastic relaxations. As demonstrated
in Section 6, the QAM-SDP relaxation often produces opti-
mal or near-optimal results, which may be verified by check-
ing that Y = [X ] [X ]T .

5. Consistent collection matching

Instead of matching just pairs of shapes, we may consider the
problem of jointly matching a collection of shapes. As we
show next, the QAM-SDP relaxation developed for match-
ing pairs can be used to address this problem. Thus yield-
ing an algorithm that combines, in a single optimization
framework, a state-of-art pairwise matching algorithm and
a global criterion enforcing compatibility between all pair-
wise matches.

Now, the input is a collection of m shapes M1, ..,Mm.
The goal is to establish a good set of consistent partial
matchings of order k between all pairs of shapes

(
Mi,M j

)
,

represented by sub-permutations X i j ∈Π
k
n.

A set of sub-permutations {X i j} ⊂ Π
k
n is consistent if it

allows coloring a subset of k points in each shape such that
X i j relates points of the same color for any pair of shapes
Mi and M j, see for example the colored spheres in Fig-
ure 1. More formally, consistency allows well-defined la-
beling of the points of each shape in the set; inferring la-

bels from one shape to all others via X i j is independent of
the choice of a reference shape. The notion of consistency
for permutations and functional maps was suggested and de-
fined in [NBCW∗11,HG13,HWG14]. It can be algebraically
expressed as the transitivity relation X i jX j` = X i`, for all
i, j, `.

5.1. Single-step consistent collection matching

Algorithms for matching a collection of shapes typically
operate in two stages: first, matching many or all pairs of
shapes in the collection, and second, combining all pair-
wise information by using a global principle, e.g., by im-
posing map consistency. Examples include the works of
[NBCW∗11,SW12,KLM∗12,HG13,HWG14]. However, al-
tering correspondences to achieve global consistency may
often lead to suboptimal matches.

We propose a single optimization step, in which pairwise
matches are optimized in an inherent globally consistent
manner. We formulate the problem of consistent collection
matching (CCM) as the following global optimization prob-
lem,

max
{X i j}

∑
i, j
[X i j]TW i j[X i j] (8a)

s.t. X i j ∈Π
k
n (8b)

{X i j} are consistent (8c)

where 1 ≤ i, j ≤ m. W i j ∈ Rn2×n2
defines a quadratic en-

ergy measuring the gain in matchingMi andM j by a sub-
permutation X i j. It aims at establishing correspondences be-
tween all pairs of shapes, while respecting a global consis-
tency requirement (8c).

5.2. Convex SDP relaxation.

Huang and Guibas [HG13] showed that a necessary and suf-
ficient condition for the set {X i j} of permutations is that the
block matrix containing all pairwise permutations,

X =


X11 X12 . . . X1m

X21 X22 . . . X2m

...
...

. . .
...

Xm1 Xm2 . . . Xmm

 (9)

satisfies X � 0. We generalize their result to the case where
X comprises sub-permutations {X i j} ⊂ Π

k
n. More specifi-

cally, in Appendix C we prove the following proposition.

Proposition 4 Assume that X has sub-permutation blocks,
X i j ∈Π

k
n. Then {X i j} are consistent if and only if X� 0.

Comparing Proposition 4 to the sample selection of
Huang and Guibas in [HG13] reveals two differences: first,
our formulation does not require fixing the subset of k points
to be matched, for any of the shapes. Rather, this subset
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is chosen automatically. Secondly, the linear constraints in
their Proposition 2 seem unnecessary.

The CCM problem (8) is a generalization of the QAM
(1) to the to the setting of collections. We therefore plug-in
the QAM-SDP relaxation (7) into the CCM framework, as
well as replace the consistency constraint (8c) with the PSD
constraint X� 0. This leads to the CCM-SDP, the proposed
relaxation of the CCM problem:

max
X,Y ∑

i, j
tr
(

W i jY i j
)

(10a)

s.t.
(

X i j,Y i j
)
∈ Ck ∀i < j (10b)

X ii ∈ D∩ convΠ
k
n ∀i (10c)

X� 0 (10d)

where Ck is the set defined by the convex SDP constraints
(7b)-(7g), with k indicating the sub-permutation order. X ii is
the mapping of the shapeMi onto itself, and is therefore a
diagonal matrix (denoted by D) that is also in convΠ

k
n. In-

tuitively, the non-zero values on the diagonal of X ii identify
the subset of k points in shapeMi that are matched. Lastly,
Y = {Y i j} is the set of all lifted sub-permutations between
each pair of shapesMi andM j.

As demonstrated in Section 6, the CCM-SDP relaxation
often produces optimal or near-optimal results. Optimality
can be verified by checking that Y i j = [X i j][X i j]T for all i, j.
In this case, a consistent set of sub-permutations can be read-
ily extracted from Y or X. Appendix D details a projection
scheme onto the space of consistent sub-permutations, ad-
dressing cases in which the optimization yields sub-optimal
results.

6. Experimental results

We have experimented with our convex QAM-SDP and
CCM-SDP relaxations for matching sets of points within
pairs and collections of shapes originating from synthetic,
computer graphics and computational anatomy datasets. In
all cases, the suggested convex relaxations proved to be ex-
tremely tight, in the sense that very often they returned the
certified globally optimal solution to these challenging opti-
mization problems.

6.1. Synthetic evaluation of QAM-SDP for pairwise
matching

We have tested the QAM-SDP relaxation independently
against three relaxations of the QAM problem: the spectral
and DS relaxations described above, and a straightforward
SDP relaxation, that we name D-SDP. Following a similar
derivation to that of [KSSC03], this relaxation is obtained
by directly computing the dual of the binary QAM problem,
which also leads to an SDP.

Each relaxation provides an upper-bound p+ to the op-
timal value p∗ of the QAM problem. We project the re-
laxed result onto Π

k
n using linear-programming over the set

of doubly stochastic matrices. (For the D-SDP method we
use the Lagrangian to extract a corresponding primal solu-
tion and then project.) This provides a feasible instance X
of the QAM and therefore a lower bound p− to its optimal
value. Thus, each method provides bounds on the optimal
value p− ≤ p∗ ≤ p+.

We measure the quality of each relaxation method by
computing its relative optimality gap, defined by ∆ = (p+−
p−)/p− ≥ 0. This indicates the optimality of a solution X ,
and in particular, vanishes for the global optimum of the
QAM. We further compare the objective value p− of a pro-
jected solution of each of the methods to QAM-SDP via
the objective ratio Γ = p−QAM−SDP/p−. Here, Γ > 1, repre-
sented as percentage in the figures, implies that QAM-SDP
has achieved higher (i.e., better) objective value.

Evaluation. We evaluated the matching performance of
each of the methods over random pairs of shapes, gen-
erated as follows. We sampled n = 10 points uniformly
at random on a sphere. We deformed the sphere with
an increasing level of noise to create a set of 20 shapes
M1,M1,M2, ...,M20, as the inset illustrates. We then
comparedM1 to each of the noise
perturbed shapes. We repeated this
experiment 100 times, for an over-
all of 2000 matching experiments.
For this experiment we took k = n,
corresponding to the case of opti-
mization over (full) permutations.

We have considered two instantiations of the QAM prob-
lem (1), that is, choices of W :

1. Graph matching functional [ABK14] – relaxation pre-
scribed by

[X ]T W [X ] =−
∥∥∥XD1−D2X

∥∥∥2

F
,

where D1,D2 are the Euclidean distance matrices of
each of the two compared shapes, that is, (D1)qr =∥∥∥p1

q−p1
r

∥∥∥
2
, and similarly for D2. The expression for the

corresponding W is provided for completeness in Ap-
pendix B.

2. Isometric matching functional – use Eq. (2) to define the
QAM objective. We choose σ to be proportional to the
standard deviation of the absolute values of all the pair-
wise differences between entries of D1 and D2.

Note that the first case defines a concave quadratic func-
tional, as W � 0, and therefore DS is suitable form of re-
laxation in this case. For the isometric matching functional,
however, W � 0 thus the DS relaxation cannot be directly
employed. On the other hand, using the spectral relaxation
is natural in this case. Since W is entry-wise non-negative
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Figure 3: Evaluation of QAM relaxations for pairwise
matching. Left – graph matching functional; Right – iso-
metric matching functional. First row – average optimality
gaps as a function of perturbation level. Second and third
rows – distribution of optimality gaps and objective ratios
(for medium noise level).

the Perron-Frobenius theorem [HJ90] guarantees that the en-
tries of the top eigenvector are all within the interval [0, 1].
In both cases we also applied the D-SDP.

Figure 3 summarizes the results of these experiments
where the left column shows the first instantiation and the
right column the second one. The first row shows the aver-
age optimality gaps as a function of deformation level (with
each data point representing 100 experiments).

The second and third rows show statistics of 100 experi-
ments performed with medium noise level. The second row
shows the histogram of relative optimality gaps of each of
the methods and the third shows the histogram of the ob-
jective ratios of the D-SDP, spectral and doubly-stochastic
relaxations compared to QAM-SDP. (Values over 100% in-
dicate that QAM-SDP achieved higher objective in its so-
lution.) These experiments demonstrate that the quality of
the different relaxations deteriorates as the perturbation level
increases, while QAM-SDP produces optimal results (near
zero optimality gap). This behaviour persists even at very
high levels of noise. The histograms of objective ratios in-
dicate that the functional value of the different relaxation
methods is equal or higher than the values produced by the
QAM-SDP relaxation.

As an additional experiment, we evaluated the perfor-
mance of QAM-SDP with a random objective matrix W , at
different problem dimensions n = 2, . . . ,15. W was gener-
ated by drawing its entries from normal distribution followed
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Figure 4: Evaluation of QAM relaxations for random objec-
tives. Left – average optimality gaps vs. problem size (n).
Right – distribution of optimality gaps (for n = 10); the D-
SDP optimality gaps are concentrated above 100%, illus-
trated by the blowup.

by rank projection via SVD; the rank was drawn uniformly
at random between zero to n. We repeated this experiment
100 times for each problem dimension n, for an overall of
1400 matching experiments. We evaluated the performance
of QAM-SDP and D-SDP. Figure 4 (left) summarizes the
results of this experiment, showing the average optimality
gaps ∆D−SDP and ∆QAM−SDP as a function of problem size n.
In this scenario, as the problem size increases, QAM-SDP
does not achieve zero optimality gap. Nonetheless, it is sig-
nificantly superior to D-SDP. This is also demonstrated in
Figure 4 (right), which shows the distribution of optimality
gaps for n = 10.

6.2. Matching pairs of shapes

Evaluating the performance of QAM-SDP in a non-synthetic
scenario is not straightforward. Existing evaluation proto-
cols for shape matching algorithms assume a complete shape
matching pipeline, and are not suitable for independently
evaluating our proposed relaxation for the QAM problem
as formulated in Section 4. We therefore used simple pre-
and post-processing components to obtain a basic complete
shape matching pipeline.

We have experimented with intra-class pairs of shapes
taken from the SHREC dataset [GBP07]. For each shape
we automatically generated a sparse set of candidate points.
We followed [KLCF10] by taking the local critical points of
the approximate average geodesic distance (AGD) function,
which typically contain a subset of semantically meaning-
ful points. We completed a full set of n candidate points by
farthest point sampling. Both n and k were manually cho-
sen. We further associate withMi an approximate geodesic
distance di, approximated by computing Dijkstra’s shortest
path length, normalized by the approximate geodesic diame-
ter of the shape. We used the isometric matching functional,
Eq. (2), to set W .

Correspondences generated by our approaches for vari-
ous pairs of shapes are presented in Figure 5. Note that
the QAM-SDP requires no initialization nor employs ad-
ditional information regarding the shapes except the dis-
tances between the feature points. For the majority of
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Figure 5: Quadratic Assignment Matching. Coarse correspondences found using the QAM-SDP relaxation applied to pairs of
shapes of SHREC 2007 database. A simple procedure was used to find candidate feature points. Correspondences computed with
QAM-SDP are visualized by colored spheres. Surface colors visualize dense maps induced by these sparse correspondences.

experiments, QAM-SDP achieved an optimal result, as
summarized in the histogram of optimality gaps shown
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100in the inset. In particular, our pair
matching experiments comprised
over 7000 QAM-SDP optimiza-
tions, of which over 90% achieved
the global optimum for the corre-
sponding QAM problem.

For completeness, we further followed the evaluation pro-
tocol of [KLF11], indicating the quality of dense vertex-
vertex correspondences. It computes the percentage of corre-
spondences whose deviations from ground-truth correspon-
dences fall within a varying threshold. To this end, we used
post-processing to induce vertex-vertex correspondences be-
tween pairs of models: pairs were bijectively mapped us-
ing Tutte’s embedding to the unit disc, with the addi-
tional requirement that corresponding points are mapped
to each other; then, naive vertex-vertex correspondences
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were deduced by search-
ing nearest-neighbors in the
plane. The surface colors in
Figure 5 visualize the ob-
tained maps, indeed interpo-
lating the colors of the corre-
spondences. The inset shows
comparable results to those
reported by [KLF11] for the
same categories and pairs of
shapes.

6.3. Synthetic evaluation of CCM-SDP for collection
matching

Evaluation of randomly generated collections. We evalu-
ated the performance of the one-stage CCM-SDP algorithm
compared to two-stage algorithms, that first compute the
pairwise matchings X i j :Mi↔M j and then project X onto
the space of consistent sub-permutations. We compared to
the projection method of Huang and Guibas [HG13] (HG),
as-well as to the heuristic projection (Proj) described in Ap-
pendix D. We feed both methods with X i j computed with
our QAM-SDP relaxation, which precisely corresponds to
the pairwise matching component in the CCM-SDP algo-
rithm.

For each of three overall noise levels, we generated 500
sequences of 10 increasingly deforming shapesM1, ...M10,
as described in Section 6.1. We matched n = k = 8 points,
and used the isometric matching functional, Eq. (2), to set
W i j for every pair of shapesMi andM j.

Figure 6 summarizes the results of this experiment. The
top row shows the distributions of relative optimality gaps
and objective values, obtained with HG and Proj relative
to CCM-SDP. The latter presents far lower optimality gaps
compared to other methods. In particular, in more than 70%
of the experiments CCM-SDP achieved globally optimal re-
sults (zero gap). Moreover, in the majority of experiments
the single-stage CCM-SDP achieved higher objective value
(p−) compared to the two-stage methods.

To further demonstrate the advantage of the single-stage
CCM-SDP approach we evaluated the quality of the result-
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Figure 6: Evaluation of CCM relaxations for matching col-
lections. Top – distribution of optimality gaps and objec-
tive ratios (for high noise level). Bottom – miss-rate statis-
tics, for three increasing levels of deformation. HG and Proj
are initialized with pairwise correspondences computed with
QAM-SDP.

ing correspondences. For each collection of 10 shapes we
computed the ratio of correct matchings, over all pairs of
shapesMi andM j, with respect to the ground-truth label-
ing of the points. The bottom of Figure 6 shows the percent-
age of experiments whose miss-rate (percentage of points
incorrectly matched) falls within a varying threshold. Each
graph summarizes 500 experiments conducted on sequences
of increasingly deformed shapes, at three noise levels. The
insets illustrate the highest noise level of the data corre-
sponding to each graph. In these experiments, the CCM-
SDP consistently produces lower miss-rates. The single-step
CCM-SDP relaxation has a significant advantage in scenar-
ios involving large shape variability. This advantage lessens
at low levels of deformation, as HG and Proj are already ini-
tialized with very good initial pairwise matchings provided
by the QAM-SDP.

Synthetic evaluation of shape collections. We further
evaluated the performance of the single-step CCM-SDP
compared to two-step approaches on 2 classes of mod-
els from the 3D Warehouse (chairs and planes), for which
a sparse set of ground-truth correspondences is available
[KLM∗13].

For each class, we randomly select 10 distinct shapes
M1, ...M10. We use the feature points provided with the
datasets, 10 points for chairs and 7 for the planes and bikes.
We chose n accordingly. In all cases we took n = k. As be-
fore, we used the isometric matching functional, Eq. (2), to
set W i j for every pair of shapesMi andM j. We repeated
each experiment 100 times.

Figure 7 summarizes the results of these experiments. The
miss-rate statistics, distribution of optimality gaps and ob-
jective ratios are presented for each class, as previously de-
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Figure 7: Evaluation of CCM relaxations for matching col-
lections of shapes. For each set (chairs, planes) – miss-rate
statistics, distribution of optimality gaps and objective ratios.
HG and Proj are initialized with pairwise correspondences
computed with QAM-SDP. Representative models from set
show the correspondences established by CCM-SDP.

scribed. In addition, for each class a selection of models
from a typical random collection is presented, overlaid with
the correspondences established by CCM-SDP.

These experiments suggest that establishing pairwise cor-
respondences in an inherently consistent manner is prefer-
able to two-step alternatives. Intuitively, enforcing consis-
tency during the optimization of correspondences between
pairs has an “error-correction” effect: stable correspon-
dences (e.g., for similar shapes) propagate throughout the
collection, eventually disambiguating pairs of weaker rela-
tions. Therefore, improving robustness to large variations
within the collection.

6.4. Matching collections of shapes

Matching collections of SHREC models. We employed
the CCM-SDP framework to establish consistent correspon-
dences over a few categories of similar models taken from
the SHREC 2007 dataset [GBP07], each containing about 20
models. We followed the procedure described in Section 6.2
for generating feature points and setting W i j for every pair of
shapes. Figures 1 and 8 present sparse consistent correspon-
dences automatically established using our approach. Note
that our method succeeds in computing high quality consis-
tent correspondences over each of the collections, inspite the
presence of significant shape variability.

Matching collections of anatomical models. We used the
dataset of [BLSC∗11], comprising 94 surfaces representing
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Figure 8: Consistent Collection Matching. Consistent sparse correspondences found using the CCM-SDP relaxation applied to
two classes of SHREC 2007 database are visualized by colored spheres. Surface colors visualize induced dense maps.

high-resolution digitizations of teeth. This is a highly chal-
lenging dataset that consists of non-isometric models with
large shape and feature variations. It is of particular interest
in this type of anatomical data to identify consistent land-
marks across the collection. This problem directly fits into
our CCM framework that is guaranteed to return consistently
labeled points.

For this application, we used Euclidean distances for the
construction of the pairwise functionals W i j . To choose
candidate points, we flattened each model by minimizing
the LSCM functional [LPRM02]; we then chose the local
minima of the conformal factor, indicating points of max-
imal local shrinkage. As suggested in [BLSC∗11], these
points demonstrate good correspondence with morphologi-
cally salient points. We completed to a full set of n candidate
points by farthest point sampling.

We employed the CCM-SDP relaxation to collections
of 20 models selected from the entire dataset. Figure 9
shows the consistent correspondences found by our ap-
proach. We further used the results to extrapolate dense
correspondence maps. To this end, we registered the flat-
tened versions of pairs of models using thin plate splines,
aiming to match the correspondences found by CCM-
SDP; then, vertex-vertex correspondences are deduced by
nearest-neighbor search. The surface colors in Figure 9
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visualize the obtained maps. Lastly,
in the inset we compare our re-
sults against ground truth corre-
spondences (human-marked land-
marks, provided with the dataset).
Note that more than 80% of the

Figure 9: Consistent sparse correspondences computed by
CCM-SDP on a collection of 20 surfaces from a dataset of
teeth models [BLSC∗11]. Dense maps, visualized by surface
color, are inferred from these correspondences.

ground-truth correspondences were found with distance er-
ror smaller than 10% of the diameter.

6.5. Collection metric learning

The CCM framework naturally establishes a metric or an
affinity measure on the shape space {Mi}. In this appli-
cation we used the CCM-SDP algorithm to automatically
produce an affinity measure on the collection of teeth sur-
faces studied in the previous section, and employed mani-
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Figure 10: 3D embedding of the collection obtained by
applying diffusion maps to pairwise affinities provided by
our CCM-SDP method. The Euclidean coordinates correlate
with biological classification.

fold learning technique in order to embed it into a lower di-
mensional Euclidean space. The Euclidean coordinates cor-
related nearly perfectly with ground truth biological classifi-
cation.

Specifically, the functional of the CCM problem, (8a), is
of the form of a sum ∑i j ai j where

ai j = [X i j]TW i j[X i j]

quantifies the affinity between the modelsMi andM j. In-
tuitively, a higher ai j value indicates that better correspon-
dences were found (with respect to the problem model W i j).

We computed the affinities associated with our CCM-SDP
solution for the teeth models shown in Figure 9. Then, we
used diffusion maps [NLCK05] to find a 3D embedding of
the collection, realizing the diffusion distances. Figure 10 il-
lustrates this embedding; the 3D embedded coordinates of
each of the models are represented by both their spatial lo-
cations as well as their RGB colors.

We further validate the results by comparing to ground
truth classification provided with the data [BLSC∗11]. Fig-
ure 11 shows the same models, with the same coloring. The
underlying color textures indicate the ground truth classifi-
cation of the collection according to genus.

7. Implementation details and limitations

We implemented the QAM-SDP and CCM-SDP algorithms
in MATLAB, using YALMIP for the modeling of semidefi-
nite programs [L0̈4].

The main limitation of the proposed framework is its com-
putational scalability. The number of variables in the QAM-
SDP and CCM-SDP relaxations are o(n4) and o(m2n4), re-
spectively; thus the problem size scales quadratically with
the number of models m and quartically with the dimen-
sion of sub-permutations n. Nevertheless, it provides a
polynomial-time approach for approximating an NP-hard
problem, which is considered to be large scale for n≥ 16 and
generally intractable for n≥ 30 [ZKRW98, LdABN∗07].

Figure 11: Comparison to ground truth classification of
genus. Models are colored by their 3D embedding. The
ground truth classes are indicated by the underlying texture.

As of today, interior point methods are the standard ap-
proach for solving SDP with high accuracy. Unfortunately,
these are second order methods which tend to scale un-
favorably with problem size. We therefore used MOSEK
[AA99], an interior point solver, for computing the cer-
tified global optimum of relaxations with n ≤ 15 within
acceptable times. We have further experimented with a
first order ADMM solver, SCS [OCPB13], for larger prob-
lems. Although first order methods scale well with prob-
lem size, they are known to only achieve moderate accu-
racy within a reasonable number of iterations; we termi-
nated this solver after 5000 iterations. Figure 12 presents
QAM-SDP results obtained using ADMM optimization
for three pairs of shapes taken from the SHREC dataset.
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The inset shows typical run-times
for solving pairwise problems of
varying dimension, optimized us-
ing MOSEK or SCS; timings were
measured on a 2.50GHz Intel Xeon.

8. Concluding remarks

In this paper, we have considered the combinatorial problem
of matching given sets of points, modeled as a Quadratic As-
signment Matching (QAM) problem. We have presented a
novel convex relaxation for this NP-hard problem that builds
upon a rank-one reformulation of the problem in a higher di-
mension. The proposed formulation is shown to be a hybrid
of the standard spectral and doubly-stochastic relaxations. In
particular, we prove that it is in fact tighter than both.

Our approach is further generalized to the problem of
Consistent Collection Matching (CCM). We introduce a con-
vex relaxation which enables establishing consistent corre-
spondences over a collection of shapes, in a single optimiza-
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Figure 12: Quadratic Assignment Matching using ADMM
for a larger number of points (20≤ n≤ 30).

tion. This is in contrast to alternative approaches, which first
estimate pairwise correspondences and then enforce global
consistency in a second step.

Experiments show that these relaxations are extremely
tight, often producing guaranteed optimal solution for the
QAM and CCM problem, far better than existing ap-
proaches. Thus, providing a well performing polynomial-
time approximation for a notoriously hard problem. This,
however, comes at the cost of a solving an SDP in a higher
dimension, which limits the scalability of the approach. The
properties of the proposed approach, as well as the unified
convex perspective is provides, offer a contribution that goes
beyond the practical limitations dictated by current evolving
optimization technology.

Acknowledgements This work was supported in part by the
European Research Council (ERC Starting Grant, grant No.
307754 "SurfComp"), the Israel Science Foundation (grant
No. 1284/12 and 1265/14) and the I-CORE program of the
Israel PBC and ISF (Grant No. 4/11). The authors would like
to thank Amit Singer for useful discussions and the anony-
mous reviewers for their helpful comments and suggestions.

References

[AA99] ANDERSEN E. D., ANDERSEN K. D.: The MOSEK inte-
rior point optimization for linear programming: an implementa-
tion of the homogeneous algorithm. Kluwer Academic Publish-
ers, 1999, pp. 197–232. 11

[ABK14] AFLALO Y., BRONSTEIN A., KIMMEL R.: Graph
matching: relax or not? arXiv preprint arXiv:1401.7623 (2014).
2, 3, 4, 6

[BBK06] BRONSTEIN A. M., BRONSTEIN M. M., KIMMEL
R.: Generalized multidimensional scaling: A framework for
isometry-invariant partial surface matching. Proceedings of the
National Academy of Sciences of the United States of America
103, 5 (2006), 1168–1172. 1, 2, 3

[BBK∗10] BRONSTEIN A. M., BRONSTEIN M. M., KIMMEL
R., MAHMOUDI M., SAPIRO G.: A gromov-hausdorff frame-
work with diffusion geometry for topologically-robust non-rigid
shape matching. International Journal of Computer Vision 89,
2-3 (2010), 266–286. 2

[BBM05] BERG A. C., BERG T. L., MALIK J.: Shape match-
ing and object recognition using low distortion correspondences.
In Computer Vision and Pattern Recognition, 2005. CVPR 2005.
IEEE Computer Society Conference on (2005), vol. 1, IEEE,
pp. 26–33. 1, 2, 3

[BLSC∗11] BOYER D. M., LIPMAN Y., ST. CLAIR E.,
PUENTE J., PATEL B. A., FUNKHOUSER T., JERNVALL J.,
DAUBECHIES I.: Algorithms to automatically quantify the geo-
metric similarity of anatomical surfaces. Proceedings of the Na-
tional Academy of Sciences 108, 45 (2011), 18221–18226. 9, 10,
11

[BV04] BOYD S., VANDENBERGHE L.: Convex Optimization.
Cambridge University Press, 2004. 4, 13

[DBKP11] DUCHENNE O., BACH F., KWEON I.-S., PONCE J.:
A tensor-based algorithm for high-order graph matching. Pattern
Analysis and Machine Intelligence, IEEE Transactions on 33, 12
(2011), 2383–2395. 2

[DM58] DULMAGE A., MENDELSOHN N.: The convex hull of
sub-permutation matrices. In Proc. Amer. Math. Soc (1958),
vol. 9, pp. 253–254. 3

[FHJB13] FENG W., HUANG J., JU T., BAO H.: Feature corre-
spondences using morse smale complex. The Visual Computer
29, 1 (2013), 53–67. 2, 3

[FS06] FUNKHOUSER T., SHILANE P.: Partial matching of
3d shapes with priority-driven search. In Proceedings of the
Fourth Eurographics Symposium on Geometry Processing (Aire-
la-Ville, Switzerland, Switzerland, 2006), SGP ’06, Eurographics
Association, pp. 131–142. 1, 2

[GBP07] GIORGI D., BIASOTTI S., PARABOSCHI L.: Shape re-
trieval contest 2007: Watertight models track, 2007. 2, 7, 9

[HG13] HUANG Q.-X., GUIBAS L.: Consistent shape maps via
semidefinite programming. Computer Graphics Forum 32, 5
(2013), 177–186. 2, 5, 8

[HJ90] HORN R. A., JOHNSON C. R.: Matrix Analysis. Cam-
bridge University Press, 1990. 7

[HWG14] HUANG Q., WANG F., GUIBAS L.: Functional map
networks for analyzing and exploring large shape collections.
ACM Trans. Graph. 33, 4 (July 2014), 36:1–36:11. 2, 5

[KLCF10] KIM V. G., LIPMAN Y., CHEN X., FUNKHOUSER T.:
Möbius transformations for global intrinsic symmetry analysis.
In Computer Graphics Forum (2010), vol. 29, Wiley Online Li-
brary, pp. 1689–1700. 7

[KLF11] KIM V. G., LIPMAN Y., FUNKHOUSER T.: Blended
intrinsic maps. In ACM Transactions on Graphics (TOG) (2011),
vol. 30, ACM, p. 79. 8

[KLM∗12] KIM V. G., LI W., MITRA N. J., DIVERDI S.,
FUNKHOUSER T.: Exploring Collections of 3D Models using
Fuzzy Correspondences. Transactions on Graphics (Proc. of
SIGGRAPH) 31, 4 (2012). 2, 5

[KLM∗13] KIM V. G., LI W., MITRA N. J., CHAUDHURI S.,
DIVERDI S., FUNKHOUSER T.: Learning Part-based Templates
from Large Collections of 3D Shapes. Transactions on Graphics
(Proc. of SIGGRAPH) 32, 4 (2013). 9

[KSSC03] KEUCHEL J., SCHNORR C., SCHELLEWALD C.,
CREMERS D.: Binary partitioning, perceptual grouping, and
restoration with semidefinite programming. Pattern Analysis
and Machine Intelligence, IEEE Transactions on 25, 11 (2003),
1364–1379. 6

[L0̈4] LÖFBERG J.: Yalmip : A toolbox for modeling and opti-
mization in MATLAB. In Proceedings of the CACSD Conference
(Taipei, Taiwan, 2004). 11

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.



I. Kezurer, S.Z. Kovalsky, R. Basri and Y. Lipman / Tight Relaxation of Quadratic Matching

[LdABN∗07] LOIOLA E. M., DE ABREU N. M. M.,
BOAVENTURA-NETTO P. O., HAHN P., QUERIDO T.: A
survey for the quadratic assignment problem. European Journal
of Operational Research 176, 2 (2007), 657 – 690. 2, 11

[LH05] LEORDEANU M., HEBERT M.: A spectral technique for
correspondence problems using pairwise constraints. In Com-
puter Vision, 2005. ICCV 2005. Tenth IEEE International Con-
ference on (2005), vol. 2, IEEE, pp. 1482–1489. 2, 3, 4

[LPRM02] LÉVY B., PETITJEAN S., RAY N., MAILLOT J.:
Least squares conformal maps for automatic texture atlas gen-
eration. ACM Trans. Graph. 21, 3 (July 2002), 362–371. 10

[Mem07] MEMOLI F.: On the use of gromov-hausdorff distances
for shape comparison. In Eurographics symposium on point-
based graphics (2007), The Eurographics Association, pp. 81–
90. 2

[NBCW∗11] NGUYEN A., BEN-CHEN M., WELNICKA K., YE
Y., GUIBAS L.: An optimization approach to improving collec-
tions of shape maps. Computer Graphics Forum 30, 5 (2011),
1481–1491. 2, 5

[NLCK05] NADLER B., LAFON S., COIFMAN R. R.,
KEVREKIDIS I. G.: Diffusion maps, spectral clustering
and eigenfunctions of fokker-planck operators. arXiv preprint
math/0506090 (2005). 11

[OCPB13] O’DONOGHUE B., CHU E., PARIKH N., BOYD S.:
Operator splitting for conic optimization via homogeneous self-
dual embedding. arXiv preprint arXiv:1312.3039 (2013). 11

[SLZ∗13] SHAO T., LI W., ZHOU K., XU W., GUO B., MI-
TRA N. J.: Interpreting concept sketches. ACM Transactions
on Graphics (TOG) 32, 4 (2013), 56. 2

[SW12] SINGER A., WU H.-T.: Vector diffusion maps and the
connection laplacian. Communications on Pure and Applied
Mathematics 65, 8 (2012), 1067–1144. 2, 5

[vKZHCO11] VAN KAICK O., ZHANG H., HAMARNEH G.,
COHEN-OR D.: A survey on shape correspondence. Computer
Graphics Forum 30, 6 (2011), 1681–1707. 2

[ZKRW98] ZHAO Q., KARISCH S. E., RENDL F., WOLKOWICZ
H.: Semidefinite programming relaxations for the quadratic as-
signment problem. Journal of Combinatorial Optimization 2, 1
(1998), 71–109. 2, 11

A. Convex representation of standard relaxations

Proof of Lemma 1 To prove the equivalence of (S′) and
(S) we show that the maximizer of (S′) is smaller or equal
to the maximizer of (S). Denote by µ1 the top eigenvalue
of W . In turn, note that kµ1 is exactly the optimal objective
value of (S). Let u1,u2, ...,un2 and λ1 ≥ λ2 ≥ ... ≥ λn2 be
the eigenvectors and eigenvalues of Y . Then,

trWY = ∑
`

λ`u
T
` Wu` ≤ µ1 ∑

`

λ` = kµ1,

where we used the fact that maxu:‖u‖2=1 uTWu = µ1, and
that ∑` λ` = trY = k. �

Proof of Lemma 2 Since (DS′) is a relaxation of (DS) it
is enough to show that the maximizer of (DS′) is smaller
or equal to the maximizer of (DS). Indeed, for W � 0,
where the (DS) relaxation is well posed, the constraint
Y − [X ] [X ]T � 0 implies that trWY ≤ trW [X ] [X ]T . �

B. Graph matching functional

Recall that [AXB] =
(

BT ⊗A
)
[X ], where ⊗ is the Kro-

necker product of matrices. Therefore, for a permutation ma-
trix X we have

[X ]T W [X ] =−
∥∥∥XD1−D2X

∥∥∥2

F
,

with

W =−
(

D1T
⊗ I− I⊗D2

)T (
D1T
⊗ I− I⊗D2

)
.

C. Consistency constraint

We prove Proposition 4. We make use of a Schur comple-
ment (with a singular block) formulated below for complete-
ness (see, e.g., [BV04] , p. 651).

The direction ’⇒’ follows the fact that consistency im-
plies that for all i, j, X i1X1 j = X i j and therefore, by con-

struction, X =
[
X11 X12 . . .X1m

]T [
X11 X12 . . .X1m

]
� 0.

To prove the other direction ’⇐’ assume that X� 0. First,
we observe that its diagonal blocks X`` are diagonal; oth-
erwise, since X`` = (X``)T ∈ Π

k
n, it has a principal minor[

0 1
1 0

]
in contradiction to X� 0.

Next, we need to show that X i j = X i`X` j for all i, j and
`. Without loss of generality, it suffices to show that X i j =
X i1X1 j . To this end, we Partition X as follows

X =

[
X11 X1,2:m

(X1,2:m)T X2:m,2:m

]
� 0, (11)

with the notation

Xq:r,s:t =

Xq,s · · · Xq,t

...
. . .

...
X r,s · · · X r,t

 .
Schur’s complement then implies that

X2:m,2:m− (X1,2:m)T (X11)†X1,2:m � 0 (12)

X1,2:m ∈ R
(

X11
)

(13)

where (X11)† is the pseudo-inverse of X11, and R
(

X11
)

de-

notes the column space of the matrix X11.

Since X11 is diagonal with {0,1} entries we have
(X11)† = X11. Eq. (13) entails that X11X1` = X1`, for ` =
2, . . . ,m. Combining these we obtain

(X1`)T (X11)†X1` = (X1`)T X11X1` = (X1`)T X1` = Q`,

for every ` = 2, . . . ,m, where Q` is a diagonal matrix with
exactly k ones on its diagonal. For the `’th diagonal block of
(12) we have

X``−Q` � 0. (14)
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Since X`` is diagonal as well as in Π
k
n, it also has exactly k

ones on its diagonal. The only case Eq. (14) can hold is if
X`` = Q`. Thus, the left-hand-side in (12) is a PSD matrix
whose diagonal blocks are all zeros, which implies it must
be the zero matrix. In turn, (12) and (13) reduce to

X2:m,2:m = (X1,2:m)T X1,2:m,

whose blocks entail that X i j =X i1X1 j for i, j = 2, . . . ,m. The
case where i = 1 or j = 1 can be easily verified to hold using
(13), which completes the proof. �

Lemma 3 (Schur complement with a singular block) Let

X =

[
A B

BT C

]
be a symmetric matrix. Then,

X � 0 ⇐⇒ A� 0 , B ∈ R(A) , C−BT A†B� 0.

D. Projection on the set of consistent sub-permutations.

When the optimization of (10) returns near- or sub-optimal
solution we project the resulting Y onto the space of consis-
tent sub-permutations, according to the following procedure:

1. Factorize Y i j – use eigen-decomposition to compute the
best rank-one factorization of Y i j; that is, find

[
X i j
]

that

best approximates Y i j ≈
[
X i j
][

X i j
]T

. The sign ambigu-

ity in
[
X i j
]

is resolved by majority voting. The diagonal

blocks X ii are taken directly from the optimization out-
put. Combine the resulting X i j to form a new matrix X̂.

2. Factorize X̂ – use eigen-decomposition to compute the
best rank-k factorization of X̂; that is, find U ∈ Rmn×k

such that X≈UUT . To resolve the ambiguity in this fac-
torization, we use the fact that we know that each of the
n×k blocks of U should reside in Π

k
n×k , the set of rectan-

gular n×k sub-permutation matrices of order k. Let Ũ1 be
the k× k matrix obtained by taking the k rows of largest
norm out of the n first rows of U . Then set V =UŨ−1

1 .
3. Project onto sub-permutations – form a matrix Ṽ by pro-

jecting each n× k block of V onto Π
k
n×k. The projection

is done using linear programming. As numerical errors
sometimes prevent perfect integer solutions, few steps of
branch and bound are guaranteed to provide the globally
optimal integer solution at almost no extra computational
effort. The final consistent sub-permutations are the n×n
blocks of X = ṼṼ T .
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