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Abstract. We present a novel automatic multiscale algorithm applied
to segmentation of anatomical structures in brain MRI. The algorithm
which is derived from algebraic multigrid, uses a graph representation of
the image and performs a coarsening process that produces a full hier-
archy of segments. Our main contribution is the incorporation of prior
knowledge information into the multiscale framework through a Bayesian
formulation. The probabilistic information is based on an atlas prior and
on a likelihood function estimated from a manually labeled training set.
The significance of our new approach is that the constructed pyramid,
reflects the prior knowledge formulated. This leads to an accurate and
efficient methodology for detection of various anatomical structures si-
multaneously. Quantitative validation results on gold standard MRI show
the benefit of our approach.

1 Introduction

Segmentation of anatomical structures in brain magnetic resonance images (MRI)
is crucial for medical image analysis. It includes a wide range of applications such
as therapy evaluation, image guided surgery and neuroimaging studies [1–3]. The
challenge in brain MRI segmentation is due to issues such as noise, intensity
non-uniformity (INU), partial volume effect, shape complexity and natural tis-
sue intensity variations. Under such conditions, incorporation of a priori medical
knowledge, commonly represented in anatomical brain atlases by state-of-the-art
studies [1–4] is essential for robust and accurate automatic segmentation.

Automatic segmentation of brain structures in MRI has been extensively
studied in scientific literature (see [2, 3]). A popular approach is to utilize de-
formable models in a variational formulation. In [5] the templates were initial-
ized by nonlinear registration of an MRI atlas to the input and then modified
to minimize an energy based on expected textural and shape properties. Alter-
natively, [6] performed segmentation of several anatomical structures using a
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level set formulation. Numerous classification approaches have been proposed,
including supervised techniques such as artificial neural networks [1], k-nearest
neighbors (kNN) and unsupervised clustering techniques such as k-means and
fuzzy c-means. An adaptive fuzzy c-means (AFCM) algorithm was developed
in [7] using a multigrid algorithm. Statistical-based methods have been widely
used. These approaches typically model the intensity distribution of brain tis-
sues by a Gaussian mixture model and classify voxels according to the inten-
sity distribution of the data. Given the distribution, the optimal segmentation
can be estimated by a maximum a posteriori (MAP) or a maximum likelihood
(ML) formulation. The expectation maximization (EM) is a popular algorithm
for solving the estimation problem. It was pioneered by [8] to simultaneously
perform brain segmentation and estimate the INU correction and was further
extended by many others to incorporate spatial considerations. The authors in
[9] applied the EM approach to a hierarchical segmentation model. Their idea of
combining a hierarchical graph pyramid with atlas information in a statistical
model, is closely related to our work. A Bayesian approach that uses manually
labeled data for cortical parcellation was presented by [10]. The core idea, of
using a manual training set for incorporation of prior statistics and class condi-
tional densities resembles our approach. Yet, instead of using Markov random
fields (MRFs) our novel multiscale approach allows us to capture both the local
and global geometric relations between the structures. A recent multiscale seg-
mentation and classification approach (ISCA) [11] integrated segmentation with
a second classification stage and applied it to tissue classification. Our novel
probabilistic multiscale segmentation avoids the second stage by incorporat-
ing prior information into the framework. The work reported here differs from
past work in several aspect: First, to the best of our knowledge this is the first
application of a multiscale algorithm derived from a fast multi-level solver
called algebraic multi-grid (AMG) for segmentation of deep brain structures.
The benefits of using a multiscale approach include, the reduction in time com-
putation, the development of a framework that can adopt a rich set of multiscale
measurements and the hierarchical representation which as noted by [9] is indeed
a powerful and flexible representation useful for many applications. Second, the
incorporation of prior information, represented by a probabilistic atlas and a
likelihood function (based on a manually labeled training set), into the multi-
scale segmentation using Bayes formulation. Finally, in contrast with other
approaches that are typically tuned to a particular set of structures or tasks,
we propose a general framework for segmenting the three main brain tissue
classes and their substructures simultaneously, by using the same parame-
ter values for all structures. Our approach can be generalized to other tasks and
modalities, because any probabilistic atlas and registration scheme can be used
and due to the ability to define a likelihood function based on any training set.
The restriction is that the probability information of the training data (atlas
and likelihood function) represent the specific population.

The remainder of the paper is organized as follows. In section 2 our prob-
abilistic multiscale approach is introduced. Section 3 presents the experiments



and compares our results to other approaches on a gold standard data base.
Section 4 summarizes with conclusions.

2 Methods

Our aim is to perform segmentation of anatomical structures, by incorporating
prior anatomical information into a multiscale segmentation framework, through
a Bayesian formulation. We utilize a probabilistic atlas where each region of im-
age space is assigned a prior probability of belonging to a variety of anatomical
structures. This prior probability is aggregated and used throughout the segmen-
tation process. The likelihood in the model is computed based on an automatic
learning process derived from labeled training data. Consequently, the posterior
probability (the chance) that two neighboring aggregates reside in the same seg-
ment is estimated by integrating the Bayesian formulation into the multiscale
segmentation algorithm. This section describes the segmentation framework to-
gether with the probability-based criteria computed for the aggregates.

2.1 Segmentation Methodology

Our method is based on the Segmentation by Weighted Aggregation (SWA) [12],
which was extended to handle 3D multi-channel and anisotropic data [11]. The
algorithm uses a graph representation of the images and constructs a ”pyramid”,
i.e., a sequence of progressively smaller (”coarser”) graphs (”levels” or ”scales”),
which adaptively represents progressively larger aggregates of voxels of similar
properties. The nodes and the couplings (edge values) of the initial graph are the
voxels of the given images and similarity measures between neighboring voxels,
respectively. The algorithm recursively coarsens the graph, level after level, by
softly aggregating several similar nodes of a finer level into a single node of
the next coarser level. The couplings of the coarser graph are based on tunable
statistical measures, called aggregative features which are scale dependent
properties computed along with the segmentation process. Features obtained
for small aggregates at a fine level affect the aggregation formation of larger
aggregates at coarser levels, according to features similarity. This work employs
as aggregative features both the average intensity of voxels at an aggregate i,
denoted by Ī(i) and the average atlas prior probabilities of an atlas structure
at an aggregate i, denoted for example by P (i ∈ WM) for finding the white
matter (WM) in an aggregate i. The scheme provides a recursive mechanism for
calculating the aggregative features (see [12]).

2.2 Incorporating the Probabilistic Model into the Segmentation

Let L = {l1, . . . , lν , . . . , lK} be a collection of K anatomical structures. In our
experiment we use twelve structure classes (K = 12) referring to white mat-
ter (WM), gray matter (GM), cerebrospinal fluid (CSF), Caudate(CN), Puta-
men(Pu), Thalamus(Th), Pallidum(GP), Brainstem(Bs), Ventral Diencephalon
(VDC), Hippocampus(H), Amygdala(Am) and ”Other”. The prior probabil-
ity P (i ∈ lν)[s=0] of a voxel i at the finest graph level (s = 0) is defined by the
spatial distribution of the probability atlas aligned with the test data set where



the atlas construction is performed based on the training set (see Sec. 3.1). At
coarser levels of the segmentation pyramid the prior probability P (i ∈ lν)[s] of
an aggregate i is accumulated as an aggregative feature, so that at level s it is
modelled by the average prior probabilities of its sub-aggregates obtained at level
s− 1 . The posterior probability of a structure being present at an aggregate
i can be obtained using Bayes formula as follows (Z is a normalization factor):

P (i ∈ lν |Ī(i))[s] =
1
Z

[P (i ∈ lν)[s]P (Ī(i)|i ∈ lν)[s]], (1)

The likelihood P (Ī(i)|i ∈ lν)[s] represented by the second term in the right
hand side of Eq. 1 reflects the conditional intensity probability for an aggre-
gate i given that the structure class is lν . It is computed for each structure lν ,
based on the voxel intensity and the ground-truth structure, as determined by
the manual labeling of the training data. The histograms for each structure, are
then averaged over all training subjects and used as the likelihood for the test
set.We decided to model the voxel intensity probability with a nonparametric
distribution, sincethe real distribution can differ from the commonly used Gaus-
sian distribution model. In addition, the ability to define a likelihood function
based on the training set allows generalization to other tasks and clinical pop-
ulation.The average intensity of voxels in aggregate i, is accumulated as an
aggregative feature. Thus, at every level of the pyramid, we find the histogram
bin corresponding to Ī(i) and determine the likelihood value for each aggregate
and structure accordingly.

The role of the posterior probabilities (Eq. 1) in the segmentation is
to determine if two neighboring aggregates at level (s − 1) reside in the same
aggregate at the level s. The algorithms goal is to accurately segment a set of
anatomical structures which consist of both clearly and weakly defined bound-
aries. Subcortical structures (e.g., the thalamus) are commonly defined by weakly
visible boundaries, since their intensity pattern is often similar to their neigh-
bors. In such cases, the atlas prior is critical. However, in the case of the main
tissue classes, the borders are more visible and the smooth atlas prior can im-
pede the delineation accuracy. The multiscale framework allows us to adjust
the influence of the aggregative features on the coarse graph couplings across
scale during the pyramid construction. Once reaching an intermediate scale the
aggregates have gathered sufficient statistics, therefore the probability criteria
can fully control the segmentation process. Yet, at finer scales (s ≤ 4), we have
experienced that for the three main tissues, the probability criteria needs to be
regulated by intensity. Accordingly, the coupling weights of aggregates i, j are
modified based on their aggregative feature similarity denoted by exp(−ζaij)
and defined as follows:

aij =
{

λ(∆P ij)
1
2 + (1− λ)|Ī(i)− Ī(j)| if s ≤ 4

(∆P ij)
1
2 otherwise ,

(2)

where λ = (∆P ij)
1
η (η = 10,ζ = 7 in our implementation), and



∆P ij =
K−1∑
ν=4

(P (i ∈ lν |Ī(i))− P (j ∈ lν |Ī(j)))2. (3)

The expression for the finer scales (s ≤ 4) combines an intensity term and
posterior probability term based on the internal structures. λ is derived from
the posterior probability itself and controls the relative weight of the two terms.
When the posterior difference between two aggregates is high, then the first term
controls the expression, otherwise the average intensity controls the process.

The algorithm’s solution in terms of voxels is computed as follows. First,
voxel occupancy of the aggregates is determined by projection of all aggregates
onto the data voxels using the interpolation matrix (see [12]). A voxel is associ-
ated with the aggregate for which it has the maximal interpolation weight. Then,
each aggregate in the coarsest scale of the pyramid is matched to one structure
based on its maximal a-posteriori probability.

Computational cost is linear in the size of the data. Our implementation
on a standard Xeon 1.7GHz PC takes 5 min for the segmentation of all 12
structures on a 150× 150× 60 region of interest. This does not include the atlas
construction which takes about 8min using 5 brains and likelihood histogram
computation which is done in advance.The efficiency of our approach is superior
to previously reported results, for instance [13] requires 5min for segmentation of
the caudate structure on a pentium 4 2Ghz and [5] takes 6min for four structures
on a pentium 3, 1GHz (the training phase took about 20 hours).

3 Experiments

The methods performance was assessed on a gold standard database. The MR
brain data sets and their manual segmentations were provided by the Center
for Morphometric Analysis at Massachusetts General Hospital and are available
at http://www.cma.mgh.harvard.edu/ibsr/. The data set contains 18 real T1-
weighted normal MR brain scans and the manual segmentation of 43 structures,
performed by a trained expert. The selection of the 12 structures that commonly
appear in literature, was motivated by memory considerations. The MR scans are
256× 256× 128 volumes acquired with 1.5mm coronal slice thickness resolution
and pixel dimension going from 0.84mm to 1mm on each slice. The approach
was tested on the same 150× 150× 60 region of interest in all data sets, which
contains the entire volume of all internal structures. Since we are not interested
in the skull or the scalp, the images were skull stripped using the automatic
BET procedure [14], and present validation results for the structures.

3.1 Atlas Construction

Similarly to other MRI brain segmentation methods [1–4] we employ proba-
bilistic anatomical atlases to determine the prior information. The atlas is con-
structed based on affine co-registrations of the manually labeled training set to
the test subject, implemented using the publicly available AIR5.0 [15] registra-
tion algorithm with 12-parameter affine transformation. First, the training sets
are aligned with the test set and then the atlas is created by voxel-wise averaging



of the neuroanatomical structures over the manually labeled training data sets.
The atlas prior is formed by the frequency that each structure occurred at a
voxel across the training sets. Thus, the atlas represents the prior probability of
each voxel in the test set to belong to a particular structure.

3.2 Results

We applied the algorithm to the data set and performed a ”leave one out”
learning strategy, leading to eighteen separate experiments. In each experiment
one subject is removed from the training set and considered as the test set.
The probabilistic atlas is constructed from five data sets randomly selected from
training sets with K = 12 labels. Table 1 presents our segmentation results on
all structures in comparison to other approaches. Only the four first rows in the
table report on the same data set used here. The first and second rows present
our novel approach with a baseline comparison based on the atlas priors. The
third row presents the ISCA [11] applied on the same data set, whereas the lower
rows are based on published results. Denote by S, the set of voxels automatically
segmented as a specific structure, and by R the set of voxels labeled as the same
structure in the ’ground truth’ reference. The similarity between S and R is
evaluated using the following validation measures:

– Dice similarity statistics κ: 2|S ∩R|/(|S|+ |R|)
– Hausdorff distance Hf : The maximum of the minimum Eucledian distance be-

tween S and its closest voxel on R. H(S, R) = maxv∈S(minw∈RdEuclidean(v, w))
The distance is symmetrized by taking the maximum of both symmetric measures.
Due to outliers H95 measures the f = 95% percentile of the Hausdorff distance.

– Mean distance M : the mean distance between the boundarys of S and R.

Method: CN Pu Th GP H Am Bs VDC WM GM CSF

Multiscale Bayesian:-κ: 0.79 0.79 0.84 0.75 0.68 0.63 0.84 0.76 0.87 0.87 0.83
-M: 1.44 1.6 1.41 1.43 1.91 1.69 1.63 1.43 - - -
-H95: 3.03 3.34 2.79 2.82 4.66 3.4 3.38 2.84 - - -

Naive Prior:-κ: 0.65 0.77 0.83 0.72 0.62 0.65 0.81 0.77 0.69 0.72 0.53

ISCA [11] -κ: 0.68 0.72 0.72 0.63 0.59 0.55 0.54 0.61 0.77 0.76 0.7
-M: 1.85 1.7 1.63 1.695 1.945 1.81 2.305 1.715 - - -
-H95: 4.515 3.76 3.545 3.655 4.53 3.925 5.71 3.73 - - -

C. Ciofolo et al. [6] -κ: 0.65 0.70 0.77 0.62 - - - - - - -
-M: 1.71 1.46 1.70 1.51 - - - - - - -

B. Fischl et al. [10]-κ : 0.88 0.86 0.87 0.78 0.80 0.67 0.89 - - - -

K. Pohl et al. [9]-κ : 0.866 - 0.894 - - - - - 0.87 0.9 0.7

A. Pitiot et al. [5] -M : 1.6 - - - 2.1 - - - - - -
-H95 : 2 - - - 3 - - - - - -

B.M. Dawant et al. [16]-κ : 0.86 - - - - - - - - - -

D. Nain et al. [13]-H95 : 3.16 - - - - - - - - - -

Table 1. Segmentation scores for brain structures by various algorithms.



Quantitative analysis shows that the algorithm can be considered as a promis-
ing platform for segmentation of anatomical structures. Figure 3.2 demonstrates
our results comparing the manual and automatic segmentation in 2D and 3D
views. It is important to note that the same parameter values were used on
all structures. Our results compare favorably with results reported on the same
gold standard data set. They are better than [6] on all structures and validation
measures, except for the M measure on Pu. The significant difference (p ≤ 0.05)
between [11] and our novel approach, shows that the latter which is a faster,
less complex approach, also leads to a more accurate approach, since the ag-
gregates in the constructed pyramid reflect the prior information formulated. A
significant difference to the Naive approach was found on 8 of the 11 structures.
The results reported in [10] are better. However, the analysis in Fischl et al.
is based on 7 subjects whereas our work presents results on 18 subjects of and
gold-standard database. Comparison to other approaches applied on different
data sets, shows that our H95 results for the Hippocampus and caudate(CN) are
inferior compared to [5], but our M is better, indicating that the error is due
to a small percent of outliers. The results for CN, in terms of κ are lower than
[16, 9], yet M and H95 are better than [6, 5, 13]. This can be explained by the
small volume of the CN, since in such volumes, small differences in placement
of boundaries between S and R can have a large effect on κ. In sum, comparing
the results obtained on internal structures to other approaches, we conclude that
the results are not as high as the results reported by [9, 10], but comparable or
superior to results reported by other algorithms. We believe that the results are
lower than the results reported by [9, 10], which are the only study reporting
results on both the tissues and their substructures, mainly due to the need to
include additional features in the framework.

(a) 3D structures (b) Slice #1 (c) Segmentation (d) Slice #2 (e) Segmentation

Fig. 1. Manual and automatic segmentation (upper, lower row). Presented in a 3D view
(a) and super imposed on two coronal 2D slices (c,e) corresponding to their original
input (b,d) respectively.

4 Discussion
An automatic multiscale probabilistic method for segmentation of anatomical
structures in MRI is introduced. The inclusion of prior information is a critical



feature of the algorithm. Additional imaging contrasts protocols, and multiscale
features can be easily incorporated into the framework. Future work will ex-
tend this work by enforcing shape, texture, spatial and neighborhood relations
between the structures. Such constraint can be modelled implicitly and explic-
itly during the pyramid construction [9, 5, 10]. Also we plan to further improve
our approach by using more sophisticated registration techniques. In sum, the
method’s strength is demonstrated on gold standard real MRI, by performing
accurate and efficient segmentation of many structures simultaneously, including
both subcortical structures and brain tissues.
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