
SIAM J. IMAGING SCIENCES c© 2015 Society for Industrial and Applied Mathematics
Vol. 8, No. 1, pp. 458–483

Detection of Long Edges on a Computational Budget: A Sublinear Approach∗

Inbal Horev†, Boaz Nadler†, Ery Arias-Castro‡, Meirav Galun†, and Ronen Basri†

Abstract. Edge detection is a challenging, important task in image analysis. Various applications require
real-time detection of long edges in large and noisy images, possibly under limited computational
resources. While standard edge detection methods are computationally fast, they perform well only
at low levels of noise. Modern sophisticated methods, in contrast, are robust to noise, but may be
too slow for real-time processing of large images. This raises the following question, which is the
focus of our paper: How well can one detect long edges in noisy images under severe computational
constraints that allow only a fraction of all image pixels to be processed? We make several theoretical
and practical contributions regarding this problem. We develop possibly the first sublinear algorithm
to detect long straight edges in noisy images. In addition, we theoretically analyze the inevitable
tradeoff between its detection performance and the allowed computational budget. Finally, we
demonstrate its competitive performance on both simulated and real images.

Key words. edge detection, sublinear algorithms, group testing, design of experiments

AMS subject classifications. 68U10, 68W40, 62K99, 62F03, 62F30

DOI. 10.1137/140970331

1. Introduction. Detection of edges in images is a fundamental task in image analysis.
Over the past 30 years, numerous edge detection algorithms have been developed, many mo-
tivated by the seminal works of Marr and Hildreth [25] and Canny [7]. Traditional methods
assumed that edges are step discontinuities and relied on local gradients for their detection.
In contrast, for natural images which contain textures and more complicated structures, so-
phisticated learning-based approaches for boundary detection have been developed in recent
years; see, for example, [2], [12].

In this paper we focus on the former setting of step edges, in particular when the input
images are large and noisy. In this context, two desirable properties of edge detection algo-
rithms are speed and robustness to noise. Most algorithms are indeed computationally fast.
For instance, both the Canny Edge Detector and the recent Line Segment Detector (LSD) [16]
detect edges with a complexity that is linear in the number of image pixels. Unfortunately,
most edge detection algorithms are robust only to low levels of noise. The reason is that
traditional methods handle noise by first smoothing the image, typically with a (possibly

∗Received by the editors May 27, 2014; accepted for publication (in revised form) December 16, 2014; published
electronically February 26, 2015.

http://www.siam.org/journals/siims/8-1/97033.html
†Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100,

Israel (inbalhorev@gmail.com, boaz.nadler@weizmann.ac.il, meirav.galun@weizmann.ac.il, ronen.basri@weizmann.
ac.il). The research of the second, fourth, and fifth authors was supported by a grant from the Technion Insti-
tute for Futuristic Research. The research of the second author was also supported by a grant from the Intel
Collaborative Research Institute for Computational Intelligence (ICRI-CI).

‡Department of Mathematics, University of California, San Diego, La Jolla, CA 92093 (eariasca@ucsd.edu). This
author’s research was partially supported by a grant from the U.S. National Science Foundation (NSF DMS-1223137).

458

http://www.siam.org/journals/siims/8-1/97033.html
mailto:inbalhorev@gmail.com
mailto:boaz.nadler@weizmann.ac.il
mailto:meirav.galun@weizmann.ac.il
mailto:ronen.basri@weizmann.ac.il
mailto:ronen.basri@weizmann.ac.il
mailto:eariasca@ucsd.edu

SUBLINEAR EDGE DETECTION 459

anisotropic) Gaussian filter, and then look for significant local gradients [29], [23]. While this
approach attenuates the noise, it blurs and weakens the contrast across edges, potentially
even fusing adjacent ones. Furthermore, at high noise levels, as local gradients may exhibit
contrast reversals along actual edges, they provide only weak, possibly misleading, cues for
edge detection.

One way to deal with high levels of noise is via multiscale curvelet or contourlet image
decompositions [33], [11]. Recently, a more direct approach was suggested, whereby edge
detection is viewed as a search in a large space of feasible curves. This approach was applied
to detection of straight line segments [14], [13], curved edges [1], and more general geometric
objects [3]. Edges are detected by computing the matched filter corresponding to each feasible
curve and retaining only those responses which are statistically significant. While more robust
to noise, this approach is far more computationally intensive: For an n×n image, the algorithm
of [14] requires O(n2 log n) memory and O(n2 logL) operations, where L ≤ n is the length of
the longest line segment of interest. Moreover, from a practical perspective, the O notation
hides a large multiplicative factor that significantly affects the run-time.

In various industrial, scientific, and military applications, there is a need for edge detection
methods which are both fast and robust to noise. Notable examples include detection of long
filaments in high-throughput biological imaging, lane detection from car cameras in crash-
preventing systems, and detection of power lines in helicopter navigation systems, with the
latter two applications possibly operating under poor visibility conditions such as extreme fog.
In some cases, the images are acquired and stored by hardware, such as a CCD camera, and
the requirement of real-time processing restricts their transfer from memory to CPU and sub-
sequent analysis to only a fraction of all image pixels. This motivates the following question:
How well can one detect edges in noisy images under severe computational constraints?

In this paper we make several contributions to this problem: We develop a novel frame-
work, theory, and algorithm for extremely efficient detection of long straight edges in large,
noisy images with complexity that is sublinear in the total number of image pixels. The key
idea underlying our approach is that to detect long edges, it is not necessary to process all
image pixels, but rather only a small subset. In this context, we study two important ques-
tions: (i) What are optimal sampling schemes? and (ii) What is the tradeoff between detection
performance and level of sublinearity?

The first question is studied in section 3, where we outline some general design principles
for sublinear edge detection and define optimal sampling schemes based on their ability, in a
worst-case scenario, to detect the presence of an edge. Building on this analysis, we develop
a sublinear algorithm for the detection of sufficiently long straight edges. Next, the second
question regarding the tradeoff between the detection performance of the proposed algorithm
and its level of sublinearity is analyzed in section 4. Sublinear edge detection, by its nature,
requires handling several issues such as edge localization and nonmaximal suppression. These
are outlined in section 5. The time complexity of the resulting algorithm is analyzed in
section 6. Finally, section 7 presents some results on both synthetic and real images.

While our focus and, in particular, the theoretical analysis are on noisy images with long
straight step edges, our approach could possibly be generalized to natural images by sublinear
sampling at a few pixels of the various local features used by the sophisticated learning-based
approaches for image detection, such as [2], [12]. Other generalizations and discussion of

460 HOREV, NADLER, ARIAS-CASTRO, GALUN, AND BASRI

future work appear in section 8.

1.1. Related work. As mentioned in the introduction, there has been extensive work
on edge detection; see [4], [36], [2], and references therein. In contrast, while the study of
sublinear algorithms is widespread in computer science [32], [9], there are relatively few such
works in image analysis. One notable work is [31], which develops algorithms for testing
visual properties in binary images, such as convexity or connectedness, with a complexity
independent of the image size. Other sublinear visual property testing algorithms include [34],
which considers sparse binary images, and [18], which checks whether a binary image could be
partitioned according to a given template. A more recent work, applicable to realistic images,
is Fast-Match [19], an algorithm for approximate template matching under two-dimensional
affine transformations, which uses a sublinear method to approximate the error measure.
Another recent work is [22], which developed a sublinear sampling scheme of compressive
measurements for saliency detection in real images. To the best of our knowledge, our work
is the first to develop and analyze sublinear algorithms for edge detection.

From a broader perspective, many contemporary applications collect increasingly large
datasets, to the point where computational resources become a bottleneck in their analysis.
It is thus important to understand the inherent tradeoff between statistical accuracy and
computational efficiency. Whereas classical statistical theory provides bounds on detection
and parameter estimation as a function of sample size, for example, Cramer–Rao lower bounds,
it is typically not concerned with computational complexity. Even though general guarantees
of accuracy under computational constraints are still lacking, these issues have been the focus
of several recent works. In the context of denoising using convex relaxation, the authors of [8]
analyze the tradeoff between computational and sample complexity. In their setting, they
show that the same statistical accuracy of a computationally intensive algorithm operating on a
small dataset may be achieved by a weaker yet lower complexity inference procedure operating
on a much larger dataset. In [27], a hierarchical scheme is proposed to efficiently search in
astronomical data. Groups of hypotheses are formed at various resolutions using an aggregate
statistic and then are potentially ruled out collectively, thus greatly reducing the complexity
of the search. For the problem of recovery of a sparse signal, the authors of [17] develop a
sequential, adaptive sampling procedure: First, a portion of the given sampling budget is used
to crudely measure all vector components. Next, only the statistically significant components
are retained for further detailed analysis. In the context of sensor networks, a similar approach
is considered in [35], where the goal is to detect a signal while minimizing communication and
energy consumption. Common to these works is the idea that weaker statistics are used
when either data or an a priori possible number of hypotheses is abundant, whereas stronger
statistics are reserved for smaller datasets or reduced sets of hypotheses.

In our work we employ a similar approach: a fast initial screening of where edges might
be located in the image, followed by more stringent tests only at the relevant locations. In
addition, we utilize the relatively simple geometry of our problem to develop an efficient
algorithm and to theoretically analyze its detection performance.

2. Problem setup. Let Ic(x, y) be a noise-free function defined on a rectangular domain
Ω ⊂ R

2. As a simple image formation model, we assume the camera’s point spread function
is an ideal low pass filter (also known as impulse sampling) so that the discrete image I of

SUBLINEAR EDGE DETECTION 461

size nx × ny pixels is given by

(2.1) Ii,j = Ic(hx · i, hy · j) + ξi,j,

where ξi,j is additive noise. For simplicity, we assume that the noise is independent and
identically distributed Gaussian, ξi,j ∼ N(0, σ2) with known variance σ2, and independent of
Ic. When σ is unknown, it can be estimated from the image (see [21], [24] for a review of
noise estimation methods). Finally, in what follows, for notational clarity we consider square
images with nx = ny = n.

As discussed in the introduction, a critical task in several applications is fast (often real-
time) detection of long and straight edges in large and potentially very noisy images. The
key question we consider in this paper is how well can this task be done under computational
constraints, in particular, with sublinear time complexity.

We study this problem under the following simplified image model: The noise-free function
Ic is piecewise constant, with constant values in different regions Ωi ⊂ Ω. The boundaries
between adjacent regions Ωi delineate long and straight edges Γi. Note that we make no
further assumptions on the sizes or shapes of the regions Ωi. For example, some regions Ωi

may be thin fibers at arbitrary locations and orientations. For future use, for each edge Γ we
define its edge contrast μ(Γ) as the difference (in absolute value) between the mean intensities
of Ic on its two sides.

Given the noisy image I, our goal is to detect and localize the edges in it. As in [16], [14],
we wish to do so while limiting the number of erroneously detected spurious edges. In contrast
to these works, and perhaps more importantly, we aim to do so with a complexity which is
sublinear in the number of image pixels. Finally, we also wish to theoretically understand
the relation between the computational complexity of our algorithm and its statistical perfor-
mance, measured by the minimal detectable edge contrast that can be reliably distinguished
from noise.

3. A sublinear approach to edge detection. Consider the design of a sublinear algorithm
for detection of long straight edges, which initially samples only a tiny fraction, O(nβ), of all
image pixels for some β < 2. One natural sublinear approach is uniform subsampling of the
high resolution image I. This approach, however, may totally miss important edges such as
the thin power lines in Figure 1. In what follows we develop and theoretically analyze an
algorithm based on a different approach: initial sampling of a few thin strips of pixels.

To motivate this strip-based approach, in section 3.1 we first discuss some general design
principles and limitations of any sublinear edge detection scheme. Next, in section 3.2 we
present a simplified version of our sublinear algorithm, denoted the basic algorithm, as it does
not deal with advanced issues such as nonmaximal suppression and improved edge localization.
These are addressed by the complete algorithm, described in section 5. In section 4 we present
a theoretical analysis of the minimal edge contrast detectable by the basic algorithm and its
dependence on the number of initially observable pixels.

3.1. Which pixels to sample. A fundamental question in the design of any sublinear edge
detection algorithm is how to allocate its limited budget of initially observable pixels. In other
words, which pixels should be sampled and processed? We study this problem, considering

462 HOREV, NADLER, ARIAS-CASTRO, GALUN, AND BASRI

Figure 1. Power lines under poor visibility conditions. The extremely foggy weather leads to a low contrast
and some barely visible edges. The image, of size 2592 × 1936 pixels, contains two transmission towers, the
left one barely visible. Some of the power lines are hardly visible, their existence inferred only by the presence
of the transmission tower. On the right a closeup of two regions in the image—one with clearly visible power
lines and the other with very faint ones.

worst-case scenarios under the following simple class of images, which contain only noise or
precisely one long fiber:

(3.1) I1 =
⎧⎨
⎩ I = Ic + ξ

∣∣∣∣∣∣
Ic = 0 except possibly in a region defined by one straight
fiber of known intensity μ, traversing the image from left
to right, whose width is equivalent to at least one pixel

⎫⎬
⎭ .

We focus on nonadaptive sampling schemes whose observed pixel locations are fixed and
set in advance. For a sampling scheme A with a budget of s pixels, let the values of the
observed pixels of the noisy image I be a = {a1, . . . , as}. Our first result is that to guarantee
the detection of an edge one must observe at least s = n pixels.

Proposition 3.1. Let A be any sampling scheme which observes s < n pixels. Then, there
exists I ∈ I1 with an arbitrarily strong edge that cannot be detected.

Proof. Since s < n, there exists a row i with no observed pixels. Given only these s pixels,
the image I ∈ I1 with a horizontal fiber, one pixel wide at row i, cannot be distinguished
from a pure noise image, and thus its edges cannot be detected.

A direct conclusion from Proposition 3.1 is that to guarantee the detection of all sufficiently
strong and long edges with a sublinear budget of nβ pixels, we must have β ≥ 1. Next, in
the context of the image class I1 and with a sublinear budget s = nβ with 1 ≤ β < 2, let
us define an optimality criterion and study its corresponding optimal sampling schemes and
their properties.

SUBLINEAR EDGE DETECTION 463

To study this experimental design task, we formulate edge detection as the following
hypothesis testing problem: Let H0 be the null hypothesis, whereby Ic = 0 and the observed
image I contains only noise. Similarly, let Hi,j be an alternative hypothesis, where the image
Ic contains a straight fiber of known contrast μ and width of one pixel, beginning at (1, i) and
ending at (n, j) for some i, j ∈ {1, . . . , n}.

Under H0, the vector of sampled values a has the following density:

(3.2) PH0(a) = Pr(a|H0) = cs exp

(
− 1

2σ2

s∑
k=1

a2k

)
,

where cs =
(
1/2πσ2

)s/2
. Under Hi,j, in contrast, its density is

PHi,j (a) = Pr(a|Hi,j) = cs exp

(
− 1

2σ2

∑
k∈OV

(ak − μ)2

)
exp

(
− 1

2σ2

∑
k/∈OV

a2k

)

= cs exp

(
− 1

2σ2

s∑
k=1

a2k

)
exp

(
− μ2

2σ2
|OV |

)
exp

(
μ

σ2

∑
k∈OV

ak

)
,(3.3)

where OV = OVij(A) is the subset of pixels sampled by A which coincide (overlap) with the
fiber whose end points are (1, i) and (n, j).

If for some (i, j) there is no overlap between the fiber and the pixels observed by a sam-
pling scheme A, namely |OVi,j(A)| = 0, then (3.2) and (3.3) coincide, and the two hypotheses
cannot be told apart. Otherwise, the difficulty in distinguishing between the two simple
hypotheses H0 and Hi,j is governed by the Kullback–Leibler (KL)-divergence between their
corresponding distributions [20]. Our setting is more complicated as we have multiple hy-
potheses. In this setup, via Fano’s inequality, for example [5], several works provide bounds
on the overall probability of error which depend on all pairwise KL-divergences between the
different hypotheses. Given that our task is to detect an edge, rather than precisely localize it,
in this work for simplicity we focus on the worst-case KL-divergence from the null hypothesis,

(3.4) M(A) = min
Hi,j

KL
(
PH0(a)|| PHi,j (a)

)
.

We say that a sampling scheme A∗ with a budget of s pixels is optimal w.r.t. the class I1 if
it satisfies

(3.5) M(A∗) = M∗ = max
A such that |a|=s

M(A).

The next proposition shows that in an optimal sampling scheme, the number of observed
pixels should be distributed evenly among the rows.

Proposition 3.2. Assume s/n is integer. Then, for a sampling scheme to be optimal w.r.t.
the image class I1 and its associated criterion (3.5), a necessary condition is that it observe
precisely s/n pixels in each row.

464 HOREV, NADLER, ARIAS-CASTRO, GALUN, AND BASRI

Proof. First, for a given sampling scheme A and a given hypothesis Hi,j, let us compute
the KL-divergence KL

(
PH0 || PHi,j

)
. Using (3.2) and (3.3), we obtain

KL
(
PH0 || PHi,j

)
=

∫
· · ·
∫
a
PH0 log

PH0

PHi,j

da

=

∫
· · ·
∫
a
cs

μ

σ2
exp

(−∑s
k=1 a

2
k

2σ2

)⎡⎣μ
2
|OVi,j(A)| −

∑
k∈OVi,j(A)

ak

⎤
⎦da

=
μ2

2σ2
|OVi,j(A)|.(3.6)

Put simply, the KL-divergence is linear in the size of the overlap between the fiber and the
set of sampled pixels. So, for a given sampling scheme, its worst-case fiber is the one with the
smallest overlap |OVi,j(A)|.

Next, consider a sampling scheme A which observed more than s/n pixels for some image
rows. Then there exists at least one row whose number of observed pixels is less than s/n.
For an image I ∈ I1 with a horizontal fiber passing through this row, the overlap is less than
s/n, and hence mini,j |OVi,j(A)| < s/n. In contrast, consider any scheme B which samples
s/n whole columns at arbitrary locations. By definition, for such a scheme |OVi,j(B)| =
mini,j|OVi,j(B)| = s/n. Hence, scheme A is strictly worse than B and thus not optimal.

Remark 1. When s/n is noninteger, �s/n� pixels should be sampled per row, and the
remaining r = s− n�s/n� pixels can be distributed arbitrarily.

Remark 2. Note that having s/n observed pixels per row is a necessary condition for
optimality, but by no means a sufficient one. In particular, there are many sampling schemes
with an equal number of observed pixels per row which nonetheless have M(A) = 0 and
cannot detect certain edges at all.

The proof of Proposition 3.2 suggests that sampling entire pixel columns is an optimal
strategy. The next proposition makes this statement precise. However, we note that there
exist optimal sampling schemes that do not sample entire pixel columns.

Proposition 3.3. Assume s/n is integer. Then, any scheme A which samples whole pixel
columns is optimal w.r.t. the image class I1 under criterion (3.5).

Proof. Since the scheme A samples whole columns, M (A) = cs/n, where c = μ2/2σ2.
Hence, M∗ ≥ cs/n. Next, consider any optimal sampling scheme B which, by Proposition 3.2,
samples s/n pixels per row. Then for any horizontal fiber, its overlap with scheme B is at
most s/n pixels. Thus, M(B) = mini,j KL

(
PH0 || PHi,j

) ≤ cs/n. Combining these results
gives that M (A) = M∗ = cs/n.

With an eye toward efficient implementation, in this paper we consider sampling strips of
pixels, i.e., blocks of adjacent columns. This sampling scheme has several advantages: In most
computer architectures, sequential access to contiguous chunks of data is faster than random
access. Furthermore, it naturally allows for parallelization on multicore systems, where each
processing unit analyzes a different strip. Another important advantage is that strips, as
opposed to single columns of pixels, provide angular information about edges.

3.2. A simplified sublinear algorithm. Having decided on a strip-based sampling scheme,
we now describe the basic algorithm to detect horizontal edges, which form an angle ≤ π

4

SUBLINEAR EDGE DETECTION 465

Basic Sublinear Edge Detection

Input: I - an n× n noisy image
σ - noise level
L - width of each strip
w - half-width of mask
αs, αm - false detection rates

Output: A list of start and end points of detected edges
Algorithm:

1 : Extract two image strips of width L
2 : Detect edges within each strip (using false detection rate αs)
3 : Match edges across the two strips
4 : Validate matched edges (using αm)

Figure 2. The basic sublinear algorithm.

(in absolute value) w.r.t. the horizontal axis. The algorithm assumes that adjacent edges are
separated by at least w pixels and applies a 2w-pixel-wide gradient mask to detect edges.
As outlined in Figure 2, the algorithm consists of four main steps, which we now describe in
detail.

Step 1: Strip extraction. Suppose our sublinear budget of initially observable pixels is
nβ = 2nL for some integer L = o(n). In step 1, the algorithm extracts two n × L vertical
strips of pixels at either end of the input image; see Figure 3(a).

Step 2: Edge detection in strips. In each strip we detect edges that go through it, from
one side to the other. To this end, we test which of a set of feasible line segments (see exact
definition below) traces a real edge. Given that in practice the number of edges in the image
and their contrasts are unknown, we use the vertical pixel gradients, rather than the pixel
values, for this task. Furthermore, since the image may potentially be very noisy, we do
not rely solely on local gradients. Instead, as in [14], for each line segment we compute its
matched filter edge response, using a derivative filter with a mask of length L and width 2w
pixels. Only line segments with a response higher than an appropriately chosen threshold are
considered candidate edges and kept for further analysis. Below we give a detailed description
of this step.

The set of feasible line segments in a strip. Let Γ be a straight line segment with start
point z1 = (x1, y1) and end point zL = (xL, yL), conveniently denoted as Γ = z1zL. We define
its length by the �∞ norm l(Γ) = max {|xL − x1|, |yL − y1|}.

Ideally, to detect the presence of an arbitrarily positioned straight edge, we would examine,
at all subpixel shifts, an infinite set of line segments in the strip. In practice, we consider a
finite set of feasible line segments FL, whose end points are exactly at the midpoints between
adjacent pixels:

(3.7) FL =

{
Γ = z1zL

∣∣∣∣ z1 = (1/2, y1 + 1/2), zL = (L− 1/2, yL + 1/2), where
y1, yL ∈ {0, 1, 2, . . . , n− 1} and |y1 − yL| ≤ L− 1

}
.

Note that the condition |y1 − yL| ≤ L − 1 implies that each Γ ∈ FL makes an angle ≤ π
4 in

466 HOREV, NADLER, ARIAS-CASTRO, GALUN, AND BASRI

(a) (b)

Δθ
Δθ

+

(c)

Figure 3. (a) The two thin strips of initially observed pixels are depicted in gray. The black region is a
long fiber present in the noise-free image. Our algorithm first detects its presence in the strips, then validates
its existence in the pixels between them. (b) A mask of length 2w = 6 is convolved with the input image I to
produce the pixel responses. (c) For each start grid location on the left end (away from the top and bottom strip
boundaries) we consider 2L − 1 potential end points on the right. The image pixels are located at the centers
of the squares, and feasible line segments’ start and end locations are precisely between adjacent vertical pixels.
The black dots are L equispaced points on a given line segment.

absolute value w.r.t. the horizontal axis, and hence its l∞ length is l(Γ) = L− 1. Second, the
size of FL is approximately 2nL since for each start location z1 on the left, away from the
top and bottom boundaries of the strip, there are 2(L− 1) + 1 = 2L− 1 end points zL on the
right. Some representative line segments are shown in Figure 3(c).

Pixel and edge responses. Next, let W = (1, . . . , 1,−1, . . . ,−1) ∈ R
2w be a mask with

elements Wi = 1 for i = 1, . . . , w and Wi = −1 for i = w + 1, . . . , 2w. For each grid location
of the form (i, j − 1/2), we define its vertical pixel response R(i, j − 1/2) as the convolution
of the image I(i, j + ·) with the mask W (see Figure 3(b)):

(3.8) R(i, j − 1/2) =
1

w

w−1∑
k=−w

WkI(i, j + k) =
1

w

(
w−1∑
k=0

I(i, j + k)−
w∑

k=1

I(i, j − k)

)
.

Assuming adjacent edges are separated by at least w pixels, this mask optimally attenuates
the noise. When w = 1, (3.8) is the classical finite difference approximation to the vertical
image gradient. Other mask choices or weights that optimize other measures are possible; see,
for example, [30].

Next, we define the edge response R(Γ) of a line segment Γ ∈ FL. Following [14], we
denote by z1, . . . , zL the L equispaced points along it and (by the trapezoidal integration rule)
define

(3.9) R (Γ) =
1

L− 1

L∑
k=1

αkR(zk), where αk =

{
1, 1 < k < L,
1/2, k = 1, L.

As in [6], the pixel response R(zk) of an intermediate point zk that does not coincide with the
grid is approximated by linear interpolation of its two vertically neighboring pixel responses.

SUBLINEAR EDGE DETECTION 467

Control of false detection rate. After computing the O(nL) edge responses of all Γ ∈ FL

in a strip, our next task is to keep only those line segments whose response is statistically
significant, namely |R(Γ)| > ts for a suitably chosen threshold. Specifically, applying the
a contrario principle [28], we choose the threshold such that for an image strip containing
only noise, the probability of a false detection is at most αs for some small αs ∈ (0, 1).

To this end, note that for a line segment Γ passing through a constant intensity region
in Ic, where no edges are present, its edge response R(Γ) has mean zero, and, moreover, it
is Gaussian distributed since by (3.9) it is a weighted sum of independent Gaussian random
variables. For perfectly horizontal edges, each R(zk) ∼ N(0, 2σ2/n), and thus

(3.10) R(Γ) ∼ N
(
0, 2σ2/(wL̃)

)
, where L̃ =

(L− 1)2∑
k a

2
k

=
(L− 1)2

L− 3/2
≈ L− 1.

At other orientations, R(Γ) is still Gaussian with mean zero. However, due to linear interpo-
lation of intermediate pixel values, the overall variance, which is the sum of squares of these
weights, may differ slightly, depending on the angle with the horizontal axis. In what follows,
we neglect this small deviation and assume all edge responses have the same variance 2σ2/wL̃.

Next, note that the edge responses {R(Γ) | Γ ∈ FL } are not independent but rather
weakly dependent due to overlaps. However, by a union bound,

Pr (max |R(Γi)| > t) ≤ NL Pr (|R(Γi)| > t) ≈ 2NLΦ

(
−t

wL̃

2σ2

)
,

where NL = |FL| and Φ(x) is the cumulative distribution function of a standard Gaussian.
For the right-hand side to be smaller than αs, an approximate conservative expression for the
threshold is then [10]

(3.11) ts =

√
2σ2

wL̃
(2 lnNL − ln lnNL − ln 4π − 2 lnαs).

This expression is more accurate and generalizes the cruder threshold considered in our pre-
vious work [14].

Step 3: Matching edges across adjacent strips. The output of the previous step consists
of two lists of candidate edges, one for each strip. In step 3, for each candidate edge Γ(l) in
the left strip list, we search the right strip for a matching candidate edge Γ(r) with the same
angular orientation and expected position upon extrapolation of Γ(l). Matching pairs are
added to a list of candidate matched edges.

Due to the limited angular resolution of FL in the two strips, when a true edge does not
belong to FL, its two detected subparts may not match perfectly. One reason is that small
angular inaccuracies are magnified when Γ(l) is extrapolated to the other strip, resulting in
a possibly large spatial displacement of the expected position of Γ(r). This problem is most
significant when the distance between strips is large and when the strips are very thin.

To overcome this problem we propose the following method: First, we assume that the
angular error of a detected line segment is at most half of the angle between adjacent orienta-
tions above and below it, denoted by Δθ− and Δθ+, respectively (see Figure 3(c)). For a line

468 HOREV, NADLER, ARIAS-CASTRO, GALUN, AND BASRI

(a) (b)

Figure 4. Validation of matched edges: The pixels in the red hatched areas are used to compute the edge
responses in sliding subsegments of length m. (a) Consistent edge. (b) Nonconsistent edge.

segment Γ(l) at an angle θ, the cone of angles θ′ ∈ (θ −Δθ−/2, θ +Δθ+/2) defines a region
of intersection with the other strip, in which we search for a matching line segment Γ(r) of
orientation θ. This method not only increases the number of properly matched edges but also
yields refined angular orientations, since once a match is found, it has an orientation θ not
originally in FL.

Finally, note that this process substantially reduces the probability of false detection. For
an edge of length n to be falsely detected, it must be not only erroneously detected in each of
the two strips, but also matched in both position and orientation.

Step 4: Validation of matched edges. The last step of the basic algorithm tests whether
the candidate matched edges Γ in our list indeed trace consistent edges. In this paper,
a consistent edge is defined as a line segment with a constant contrast μ(Γ) along it. In
particular we would like to detect and rule out line segments as in Figure 4(b) which contain
a long subinterval that does not trace an edge. For reasons given below, we choose this length
to be equal to the width of a strip, namely m = L.

To test for consistency, we first extract the yet unobserved pixel values in the region
between the two strips of width 2w around Γ. We consider all subsegments of length m and
compute R (Γi), the estimate of local contrast in the ith subsegment. In a worst-case scenario,
depicted in Figure 4(b), Γ delineates a consistent edge excluding exactly one subinterval Γi∗

of length m having no contrast (μ = 0). Then its response R (Γ∗
i) ∼ N

(
0, 2σ2/(wm̃)

)
with

m̃ ≈ m−1. Assuming the edge contrast μ is large, with high probability Rmin = mini R (Γi) =
R (Γ∗

i).

We require that such a nonconsistent edge be ruled out with probability ≥ 1 − αm. So,
we choose a threshold tm such that

(3.12) Pr (Rmin < tm|μ(Rmin) = 0) = Φ

(√
wm̃

2σ2
tm

)
≥ 1− αm.

Candidate matched edges Γ are said to be consistent and to trace real image edges if Rmin > tm,

SUBLINEAR EDGE DETECTION 469

where tm is given by

(3.13) tm =

√
2σ2

wm̃
Φ−1(1− αm).

As explained in section 4, it makes sense to set m = L.

The final output of our basic algorithm is a set of validated edges Γ(i) = z
(i)
l z

(i)
r whose

start and end points are at the left and right vertical boundaries of the image.

4. Theoretical analysis. We now examine the relation between the sublinearity of our
basic algorithm and its detection performance. For simplicity, we perform the analysis on a
noisy image containing a single fiber, of width at least w pixels, traversing the entire image.
The question is at which contrasts the upper and lower boundaries of this fiber can be detected,
with high probability, by our algorithm.

Let Γ0 denote one of these true edges. Clearly, to detect it, its leftmost and rightmost

parts, denoted Γ
(l)
0 and Γ

(r)
0 , must first be detected in the left and right strips, respectively.

We thus begin our analysis by finding the minimal edge contrast detectable in a single strip.

For simplicity, we consider detection in the right strip, assuming Γ
(r)
0 ∈ FL. The following

lemma characterizes the minimal detectable contrast in this case.
Lemma 4.1. Let Γ0 be an edge whose restriction to the n×L right strip Γ

(r)
0 belongs to FL

and whose edge contrast satisfies

(4.1) μ(Γ0) ≥ μmin = ts +

√
2σ2

wL̃
Φ−1(1− δ),

where ts is defined in (3.11) and L̃ given in (3.10). Then Γ
(r)
0 is detected in step 2 of the basic

algorithm with probability ≥ 1− δ.

Proof. Consider the line segment Γ = Γ
(r)
0 which belongs to the set of feasible lines FL.

According to (3.9), its edge response may be decomposed as R(Γ) = μ(Γ0) + ξ, where ξ is a
term due to noise, distributed approximately as N(0, 2σ2/(wL̃)); see section 3.2. Thus, for

Γ
(r)
0 to be detected with probability ≥ 1 − δ, we require that P (ξ ≥ ts − μ) ≥ 1 − δ. Solving

for μ gives (4.1).
For future use, it is instructive to study the form of the minimal contrast for large images.

Since for n → ∞, to leading order ts = 2
√

σ2 lnn
wL̃

, (4.1) simplifies to

(4.2) μmin =

√
2σ2

wL̃

(√
2 ln n+Φ−1(1− δ)

)
.

Let Γ0 be a true edge whose contrast μ(Γ0) satisfies (4.1). Then, according to Lemma 4.1,

its two parts Γ
(l)
0 ,Γ

(r)
0 will be detected in the two strips with probability larger than (1− δ)2.

Assuming that both Γ
(l)
0 ,Γ

(r)
0 belong to FL, the two edge segments will be perfectly matched

by step 3 of the basic algorithm.
After two parts of an edge are matched, in step 4 we test its consistency, verifying that

all its subsegments of length m trace an edge. Mathematically, we require that its minimal

470 HOREV, NADLER, ARIAS-CASTRO, GALUN, AND BASRI

% observed pixels

S
N

R

1.8 3.4 6.6 13 25.8 51.4

2.78

2.49

2.21

1.93

1.65

1.37

1.09

0.81

0.53

0.25 0

0.2

0.4

0.6

0.8

1
Theory

Figure 5. Probability of detection: For a 1000 × 1000 image containing a single fiber traversing its entire
width, and for a range of signal-to-noise ratios (SNRs) μ(Γ)/σ ∈ [0.25, 3] and strip widths L, we record the
probability that the two fiber edges are detected by our algorithm. The x-axis is the fraction, on a logarithmic
scale, of observed pixels 2L/n. Lighter colors signify a higher probability of detection. The red line traces the
SNR which by (4.1) achieves a detection probability of (1− δ)2 = 0.9.

segment response Rmin be larger than the threshold tm defined in (3.13). For the edge Γ0, all of
its segment responses are distributed as N(μ(Γ0), 2σ

2/(wm̃)). Hence, for n 1, its minimal

response may be approximated as Rmin ≈ μ(Γ0) − 2
√

σ2 lnn/(wm̃). Thus, the condition for
this edge to pass the consistency test Rmin > tm is

(4.3) μ(Γ0) ≥
√

2σ2

wm̃

(√
2 ln n+Φ−1(1− αm)

)
.

Comparing (4.3) to the minimal contrast in (4.2), we see that for n 1, if m < L, then
μ(Γ0) > μmin, and so real edges detected inside the strips may fail the edge consistency test. To
avoid this undesirable situation, we set m = L. With m = L and δ = αm, the two thresholds
are equal, and with high probability actual edges detected in step 2 of the algorithm will also
pass the edge consistency test.

When Γ
(r)
0 or Γ

(l)
0 does not belong to FL, to account for the small misalignment error, an

edge contrast slightly higher than (4.1) is required to achieve the same probability of detection.
While a rigorous analysis of this effect is beyond the scope of this paper, empirically, we found
it to be negligible.

To validate this theoretical analysis, we carried out the following simulation: We created
a noisy 1000 × 1000 image with a single fiber at an arbitrary angle |θ| ≤ π/4, crossing
the entire image from left to right. For SNRs in the range [0.25, 3] and for strip widths
L = 2j + 1, j ∈ [3, 8], we recorded whether our basic algorithm detected the fiber’s two
edges. We made 1000 random realizations of this process, creating a new random noisy image
each time. The empirical detection probability for various values of σ,L, shown in Figure 5,
demonstrates a good agreement between theory and practice.

SUBLINEAR EDGE DETECTION 471

Figure 6. By sampling C strips, at distance d ≈ n−L
C−1

pixels apart, any horizontal edge of length ≥ 2d
crosses at least two strips and can be detected if sufficiently strong.

Sublinear Edge Detection

Input: I - an n× n noisy image
σ - noise level
C - number of strips to extract
L - width of each strip
w - half-width of mask
αs, αm - false detection rates
k - number of candidates in each response cluster

Output: A list of start and end points of detected edges
Algorithm:

1 : Extract C equidistant image strips, each of width L
2 : Detect edges within each strip (using false detection rate αs and k candidates for each

response cluster)
3 : Match edges across pairs of adjacent strips
4 : Validate matched edges (using αm)
5 : Postprocessing (edge unification, nonmaximal suppression, end point localization)

Figure 7. The sublinear algorithm.

5. The complete sublinear algorithm. The basic algorithm of section 3 detects long
edges that cross an image from one side to the other. To detect shorter, yet sufficiently long,
edges which do not span the entire image width, we first extract from it C > 2 equispaced
strips of width L; see Figure 6. Then, using the basic algorithm, for each pair of neighboring
strips we detect the edges that go through them. As the left boundaries of adjacent strips
are approximately d = n−L

C−1 pixels apart, this allows the detection of arbitrarily positioned
horizontal edges, provided that their length � 2d and their edge contrast satisfies (4.1). To
detect vertical edges, we transpose the image and reapply our algorithm.

The full algorithm is outlined in Figure 7. Apart from extracting C strips instead of only
two, steps 1–4 are essentially identical to those of the basic algorithm. One modification is in
step 2, where we address the issue of nearby detections within the strips due to overlaps of line
segments slightly misaligned with a real edge Γ0; see Appendix A. If untreated, these nearby

472 HOREV, NADLER, ARIAS-CASTRO, GALUN, AND BASRI

detections may pass the threshold ts in (3.11), significantly driving up the run-time of the
algorithm. Finally, the key addition is the postprocessing step 5, which includes nonmaximal
suppression and localization of detected edge end points (see Appendix B).

6. Complexity. We now analyze the run-time of our complete algorithm, given a budget
of nβ = nCL initially observed pixels, and an n × n input image that contains J sufficiently
long horizontal edges at arbitrary positions and orientations.

Recall that in step 1 we extract C image strips, each of size n×L pixels, whereas in step 2
each strip is processed individually to detect edges that cross it from side to side. Let us first
analyze the complexity of this step: We begin by computing the edge responses of all O(nL)
length L− 1 line segments in FL. In a naive implementation, each edge response R(Γ) would
be computed individually in O(L) operations, for an overall complexity of O(nL2). However,
following [14], we employ the multiscale method of [6] which computes all edge responses in
time O(nL logL).

Next, we apply the statistical tests of section 3.2 and Appendix A. The first test has a
negligible complexity of O(nL). The second test requires O(JwL) operations, since for each
real edge in the image a cluster of at most O(wL) responses passes the threshold ts. Given
that there are C strips, the total complexity of step 2 is O(CnL logL) = O

(
nβ logL

)
.

In step 3 we match edges across pairs of adjacent strips. The variance test of Appendix A
keeps at most k candidate edges for each of the J real edges in the image. For each of these
candidate edges we check ≈ d/L candidate matches (at intermediate angles) in its neighboring
strip. Plugging in the value of d, the complexity of matching edges between a single pair of
strips is O

(
Jkn2−β

)
.

In the worst case, O(Jk) edges are matched between each pair of strips. For each matched
edge, the complexity of step 4, edge validation (section 3.2), is linear in the interstrip distance
n/(C − 1). The final postprocessing step (Appendix B) is also linear in n/(C − 1). Hence,
these two steps have a complexity of O(Jkn).

In summary, the total run-time complexity of our algorithm is thus

(6.1) O
(
nβ logL+ CJkn2−β + Jkn

)
.

When the number of edges in the image is J � nβ−1 logL, to leading order this becomes
O
(
nβ logL

)
= O (nCL logL). Namely, up to logarithmic factors, the run-time is linear in the

initial number of observed pixels.
Figure 8 shows the empirical run-time of the algorithm averaged over 1000 iterations for

various parameter configurations. Each panel was created by modifying either the image size
n, the width of the strips L, or the number of edges in the image J . The other parameters
were kept fixed and identical in all experiments: σ = 1, αs = 0.01, αm = 0.1, w = 3, C = 2,
and k = 10. In addition, all step edges had a jump discontinuity of 1; hence their SNR is 1.
Here and in the simulations below, n = 1000 and L = 129. The three panels demonstrate the
linear dependence of the run-time on the various parameters, as predicted by (6.1).

7. Results. We compared our algorithm to the Canny Edge Detector [7], the Line Seg-
ment Detector (LSD) [16], and the Straight Edge Detector [14], on simulated, natural, and
electron microscope images. On the simulated image, for which the ground truth is known, all

SUBLINEAR EDGE DETECTION 473

500 1000 1500 2000
0

1

2

3

4

T
 [s

ec
]

n

(a)

1000 2000 3000
0

1

2

3

4

5

LlogL

T
 [s

ec
]

(b)

0 5 10 15 20
0.8

0.9

1

1.1

1.2

1.3

number of edges

T
 [s

ec
]

(c)

Figure 8. Average run-time of the proposed sublinear algorithm as a function of (a) image width n (with
L fixed); (b) L logL (with n fixed); (c) the number of edges J in the image (with n,L fixed). The empirical
results are in agreement with the theoretical analysis of (6.1).

(a)

0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

SNR

F
−

m
ea

su
re

Canny
LSD
Straight
SubLinear w/o PostProcessing
SubLinear

(b)

Figure 9. Quantitative comparison: (a) The clean synthetic 1000× 1000 image on which the methods were
evaluated; (b) F-measure versus SNR.

algorithms were evaluated quantitatively by means of the F-measure for image segmentation
as described in [26].1 The F-measure is defined as the harmonic mean between two quantities,
recall and precision, and is thus a number between 0 and 1 with a value of 1 representing
perfect detection. Recall is the fraction of true edge pixels that are detected, whereas pre-
cision is the fraction of edge pixel detections that are indeed true positives rather than false
positives. In the context of edge detection, the particular F-measure of [26] allows for some
small tolerance in the localization of the edges; see that paper for exact details. For the other
images only a qualitative evaluation was performed.2

For the quantitative comparison, a clean synthetic image of size 1000 × 1000 (see Figure
9(a)), was corrupted by noise of varying strength, yielding SNRs in the range μ/σ ∈ [0.2, 3].
For the Canny Edge Detector, for the entire range of SNRs, its default high and low thresholds

1The F-measure code is available at https://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds.
2Further details, code of our sublinear algorithm, and scripts that reproduce the results of this section will

be made available at Boaz Nadler’s website.

https://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds

474 HOREV, NADLER, ARIAS-CASTRO, GALUN, AND BASRI

were modified to 0.65 and 0.25, respectively, on the one hand, to reduce its sensitivity to noise,
while, on the other hand, keeping the number of false detections low. For both our sublinear
algorithm and the Straight Edge Detector of [14], we used a mask of width w = 3 pixels,
which is comparable to the default Gaussian width parameter of Canny (σCanny =

√
2). Our

algorithm is fairly insensitive to the false alarm rates αs, αm, which were set to 0.01 and 0.1,
respectively. The number of candidates in each response cluster was k = 10 (see Appendix
A). The sublinear algorithm extracted C = 5 vertical as well as horizontal strips from the
image, each of width L = 65. For the Straight Edge Detector to be able to detect edges of
comparable SNR to our sublinear approach (but not much weaker edges with lower SNR), its
maximal edge length was set to lmax(Γ) = 65, matching the width of the strips in the sublinear
algorithm. Also, its minimal edge length was set to 33. The noise level was known for both
the Straight Edge Detector and the sublinear algorithm.

Figure 9(b) shows the F-measure as a function of the SNR for the various methods,
averaged over 25 iterations. First, we see that our sublinear algorithm and the Straight Edge
Detector obtain high F-measures already at relatively low SNRs, and hence are much more
robust to noise as compared to LSD and Canny. This is because they both rely on matched
filter responses. At high SNRs, the Straight Edge Detector achieves the highest F-measure
because it also detects the short sides of the rectangles, which are too short to be detected
by the sublinear algorithm. As the SNR decreases, edges of length L become more difficult
to detect for both algorithms, and it is the end point localization of the sublinear algorithm,
absent in the Straight Edge Detector, which gives it a slightly higher F-measure. Note that
the F-measure for the Canny Edge Detector does not decrease to exactly zero because even at
very low SNRs, locally, some gradients remain strong. The LSD performs poorly at the levels
of noise considered here, probably as it was designed to detect edges in natural images where
typically SNR � 10. Finally, we remark that if it is a priori known that edges are spatially
well separated, then the F-measure of Canny as well as that of our algorithm can both be
improved by increasing the Gaussian width parameter and the mask width, respectively.

On a standard desktop PC, both Canny and LSD took about 0.5sec to process this 1000×
1000 image. The Straight Edge Detector, although far more accurate, took about 50sec,
whereas our sublinear algorithm had a run-time of 1.6sec.

In our qualitative experiments we applied the four algorithms to the 2592 × 1936 image
of power lines corrupted by fog (see Figure 1) and to a 1024 × 1024 image of an inorganic
nanotube, taken by a transmission electron microscope. Note that for the rectangular image,
in our sublinear algorithm we kept the strip width fixed; hence the number of horizontal strips
Ch was different from the number of vertical strips Cv. Also, the unknown noise level was
estimated in each strip by the median of all individual pixel responses. The results are shown
in Figures 10 and 11. The parameters and run-time for each algorithm appear in the captions
below each panel.

For the power line image, the Canny Edge Detector and the LSD do not detect the faint
power lines of the left transmission tower. The Straight Edge Detector detects parts of them,
but only as discontinuous line segments. Our algorithm, in contrast, detects the power lines
belonging to both transmission towers, leaving out only the lower parts of the right power
lines, which are too short to be detected.

SUBLINEAR EDGE DETECTION 475

(a) Canny thresholds (0.05, 0.4), run-time 1.9s. (b) LSD run-time 2.46s.

(c) Straight edge σ = 0.0196, run-time 5m. (d) Sublinear Ch = 8, Cv = 10, L = 65, σ = 0.0196,
run-time 7s.

Figure 10. Power lines (best viewed on screen or printed in color).

476 HOREV, NADLER, ARIAS-CASTRO, GALUN, AND BASRI

(a) Original. (b) Canny thresholds 0.2, 0.5, run-time 0.52s.

(c) LSD run-time 0.57s. (d) straight edge, σ = 0.098, run-time 65s.

(e) Sublinear, no postprocessing. (f) Sublinear, C = 6, L =33, σ = 0.098, run-time
1.56s.

Figure 11. Transmission electron microscope image of an inorganic nanotube.

SUBLINEAR EDGE DETECTION 477

For the nanotube image, our sublinear algorithm traces the straight walls of the nanotube
with very few falsely detected edges. The Canny edge detector also traces the straight edges,
albeit with discontinuities. The LSD detects a few short line segments scattered throughout
the image. The Straight Edge Detector produces many false positives, in addition to the
accurately traced walls. This is because it is set to find even shorter edges, which are more
prone to noise.

Finally, Figure 12 presents the results of our sublinear algorithm on three large natural
images. As expected, our algorithm is able to detect the long edges in these images while
initially observing only about 10% of their pixels.

We remark that our algorithm, as well as the Straight Edge Detector and the Canny Edge
Detector, are implemented mostly in MATLAB. Approximately 50% of the run-time of our
algorithm is spent on computing the line segment integrals. In contrast, LSD is implemented
in C. The code of the LSD is freely available from the online paper [15], and the code of the
Straight Edge Detector was given to us by the authors of [14].

8. Discussion. In this paper we developed a novel sublinear framework, theory, and al-
gorithm for the detection of long straight edges in large, noisy images. The algorithm first
samples C equispaced strips of width L of whole pixel columns, thus initially processing a
total of nβ = nCL pixels. Given a fixed sampling budget, there is a degree of freedom in
choosing the two parameters C and L: We may extract many thin strips or fewer wide strips.
The first option allows the detection of shorter edges but provides less accurate angular resolu-
tion. Furthermore, as shown in the theoretical analysis, it increases the minimal edge contrast
which can be reliably detected.

An interesting question for future work is the analysis of different sampling schemes, for
example, uniform subsampling of single columns (L = 1), and detection of slightly curved
yet long edges. In addition, it is instructive to consider other definitions of optimal sampling
schemes, possibly incorporating priors on the location, orientation, and length distribution of
edges. Another promising topic is the development of efficient algorithms for edge or fiber de-
tection in large three-dimensional volumes, as present in video sequences, and their theoretical
analysis. Sublinear algorithms may be highly useful in such three-dimensional settings, since
merely transferring the data from memory to the CPU is already computationally intensive.

Finally, note that in this paper we considered (adaptive) subsampling strategies that
assume the whole image is available in memory. In particular, we did not consider compressed
measurements, whose main purpose is to decrease the number of measurements taken in the
first place. The possibility of edge detection from compressed sensing data is yet another
interesting topic for future research.

Appendix A. Suppression of nearby detections by a variance test. For a strip with a
single strong edge Γ0 passing through it, let us analyze the set {R(Γ) | |R(Γ)| ≥ ts, Γ ∈ FL }.
For any candidate edge Γ at a vertical distance larger than w pixels from Γ0, all of its pixel
responses are due to noise. Hence, by construction, when αs � 1, the probability that its
edge response R(Γ) > ts is negligible. However, as illustrated in Figure 13, candidate edges Γ
with slight spatial or angular displacement from Γ0 are likely to have strong responses, larger
than ts. These form a cluster of nearby detections in start point–orientation space.

478 HOREV, NADLER, ARIAS-CASTRO, GALUN, AND BASRI

(a) Road to infinity, 1280 × 960 pixels.

(b) A road in the forest, 3200× 2133 pixels.

(c) Soccer corner, 2014 × 1411 pixels.

Figure 12. Empirical results of our sublinear edge detection on several natural images. In all images
the width of the extracted strips was L = 17. In image (a) the mask width was w = 3 and σ = 0.05. For
images (b) and (c) that contain texture, the width of the mask was w = 7, and the noise level was determined
automatically from the image gradients. In all images, the percentage of sampled pixels from the extracted strips
was 5%–15%.

SUBLINEAR EDGE DETECTION 479

(a) (b)

Figure 13. Slightly displaced edges Γ �= Γ0 may yield strong responses even if not fully aligned with Γ0.
The solid line encloses the pixel responses participating in the computation of R(Γ0). The dashed lines enclose
those used to compute R(Γ). (a) Spatial displacement. (b) Angular displacement.

To determine which of the candidate edges in this cluster best delineates Γ0 requires
an additional statistical test. To this end, consider the individual pixel responses along a
candidate line segment Γ. When Γ = Γ0, the L pixel responses have a variance which is due
only to the image noise. In contrast, for a slightly misaligned Γ �= Γ0 the pixel responses may
vary quite notably. This suggests the variance of the pixel responses along an edge as a test
statistic, which we define as

(A.1) V (Γ) = T (Γ)−R2(Γ),

where T (Γ) is the integrated value along Γ of the squared pixel responses T (i, j + 1/2) :=
R(i, j + 1/2)2, defined by a formula analogous to (3.9).

A natural approach would be to derive some threshold tV based on the distribution of
V (Γ) due to noise, then discard all candidate edges for which V (Γ) > tV . However, implicit
in such an approach is the assumption that Γ0 ∈ FL. In practice, an accurate threshold must
also take into account the integration errors introduced by the limited angular resolution of
our line integrals.

For our approach to be robust and work on real images, for each cluster of strong responses
we keep only the k candidate edges with the minimal (nondimensional) ratio

√
V (Γ)/|R(Γ)|,

i.e., those with the lowest variance and highest edge response.

Appendix B. Postprocessing. After edges are matched and verified between adjacent
strips, three main issues remain to be resolved in postprocessing: nonmaximal suppression,
edge unification, and edge localization. To illustrate their importance, Figure 14 compares
the results of our edge detection algorithm before and after postprocessing.

Nonmaximal suppression. We assume that each cluster corresponds to a single real edge
Γ0. Thus, our first task is to keep only one edge for each cluster of O(k) nearby detected edges
which pass the variance test (see Appendix A) and are matched between the strips. To this
end, the detected edge responses are clustered in position/orientation space using a connected

480 HOREV, NADLER, ARIAS-CASTRO, GALUN, AND BASRI

(a) (b)

(c) (d)

Figure 14. Postprocessing. (a) The input image I. (c) C = 5 strips of initially observed pixels. (b) and
(d) The results of our edge detection algorithm before and after postprocessing. The postprocessing step yields
better edge localization and keeps only one edge for each cluster of nearby detections.

component algorithm, whereby two line segments Γ = z1zL and Γ′ = z′1z′L are connected if
either (i) θ = θ′ and |z1−z′1| = 1; or (ii) θ = θ′ and |zL−z′L| = 1; or (iii) |z1−z′1|+|zL−z′L| = 1.

Given the clusters, a standard approach is to keep only the maximal response in each of
them. However, due to noise, the strongest response may not correspond to the line segment
which best traces Γ0. So, we keep the centroid of each cluster, which, due to the averaging,
also improves the spatial and angular localization of the edge.

Edge unification. Nonmaximal suppression keeps one edge for each cluster between any
two adjacent strips. However, a long edge Γ0 spanning more than two strips is detected in
several parts, one for each pair of neighboring strips it crosses. Consider an edge that passes
through three strips. Let Γ(l),Γ(r) be the edge segments matched in the first pair of strips
and Γ′(l),Γ′(r) in the second pair. Whenever Γ(r) ≈ Γ′(l), our goal is to merge these two edges
into a single long one from Γ(l) to Γ′(r).

Joining two edges is done as follows: Each detected edge Γ is parameterized as Γ(t) =
At + B. To obtain a coordinate-free condition, the origin (t = 0) is set to the center of the

SUBLINEAR EDGE DETECTION 481

Γ(t)

t
2

t
1

(a)

0 20 40 60 80
−1

−0.5

0

0.5

1

1.5

2

2.5

t
1
* t

2
*

Offset

se
gm

en
t r

es
po

ns
es

estimated
empirical

(b)

Figure 15. Edge localization. (a) The initially detected portion of the edge t1t2 is marked in red. The edge
extends beyond both strips but remains undetected before we localize the end points. (b) The solid line is the
empirical (noisy) profile created by the sliding window. The dotted line is the theoretical mean profile created
by an edge whose end points are t∗1 and t∗2.

shared strip. If the two line equations are close, i.e.,

(B.1) |A−A′| ≤ δA, |B −B′| ≤ δB

for some suitably chosen δA, δB , we merge the two edges into a single longer one by averaging
their parameters A,B.

End point localization. The final postprocessing step is end point localization. By con-
struction, the end points t1, t2 of the detected edges lay on the strip boundaries. Our goal is
to find a more accurate interval t′1t

′
2 for the actual end points of the edge. We consider end

points in the range

(B.2) t− ≤ t′1 ≤ t1 + L/2, t2 − L/2 ≤ t′2 ≤ t+,

where t− = t1 − d− L/2 and t+ = t2 + d+ L/2 (see Figure 15(a)).
In principle, t′1 and t′2 can be estimated jointly. However, for computational efficiency we

split the two-dimensional search into two separate one-dimensional searches. First, we keep
the end point t2 fixed and estimate the start point t′1. Then, we estimate t′2 while holding the
newly found start point fixed.

In more details, let Γ̃ be the edge Γ extended to the interval t−t+. First, we compute the
pixel responses along Γ̃. Using a sliding window of size s, we compute the segment responses
R(Γ̃s

i), where i is the start point of the segment. As the window extends beyond the actual
ends of the edge, the segment responses begin to decrease. When the window no longer has
an overlap with the edge, the mean value of the segment responses reaches zero. Thus, in the
absence of noise, the profile of the segment responses is a trapezoid whose height is determined
by the edge contrast μ(Γ); the slope of the lateral sides is determined by the size of the sliding
window.

Let the interval under current examination be denoted t∗1t∗2. For each such interval we
create a trapezoidal profile Tr and fit it to the segment responses (see Figure 15(b)). The
height of the trapezoid, i.e., the edge contrast, is estimated by the mean pixel response be-
tween t∗1 and t∗2. Under our assumption of Gaussian noise, for the true interval the difference

482 HOREV, NADLER, ARIAS-CASTRO, GALUN, AND BASRI

between the empirical profile and the estimated one, Tr, at each point j is distributed as
N(0, 2σ2/(ws)). Thus, the negative log-likelihood associated with the observations on each
interval is proportional to

(B.3) LL =
∑

j∈t−t+−s

(
R
(
Γ̃s
j

)
− Tr(j)

)2
.

The final localized edge is the interval t′1t′2 which minimizes (B.3).

Acknowledgments. This work is part of IH’s M.Sc. thesis at the Weizmann Institute of
Science. The basic concept of this paper arose out of conversations between BN and EAC at
the 2011 Mathematical Statistics Conference in Luminy, France. BN would also like to thank
Alain Trouvé, David Jacobs, Anna Gilbert, and Rebecca Willett for interesting discussions.

REFERENCES

[1] S. Alpert, M. Galun, B. Nadler, and R. Basri, Detecting faint curved edges in noisy images, in
Computer Vision—ECCV 2010, Springer-Verlag, Berlin, Heidelberg, 2010, pp. 750–763.

[2] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, Contour detection and hierarchical image seg-
mentation, IEEE Trans. Pattern Anal. Mach. Intell., 33 (2011), pp. 898–916.

[3] E. Arias-Castro, D. L. Donoho, and X. Huo, Near-optimal detection of geometric objects by fast
multiscale methods, IEEE Trans. Inform. Theory, 51 (2005), pp. 2402–2425.

[4] M. Basu, Gaussian-based edge-detection methods—A survey, IEEE Trans. Syst. Man Cybern. C, Appl.
Rev., 32 (2002), pp. 252–260.

[5] L. Birgé, A new lower bound for multiple hypothesis testing, IEEE Trans. Inform. Theory, 51 (2005),
pp. 1611–1615.

[6] A. Brandt and J. Dym, Fast calculation of multiple line integrals, SIAM J. Sci. Comput., 20 (1999),
pp. 1417–1429.

[7] J. Canny, A computational approach to edge detection, IEEE Trans. Pattern Anal. Mach. Intell., 8 (1986),
pp. 679–698.

[8] V. Chandrasekaran and M. I. Jordan, Computational and statistical tradeoffs via convex relaxation,
Proc. Natl. Acad. Sci. USA, 110 (2013), pp. E1181–E1190.

[9] A. Czumaj and C. Sohler, Sublinear-time algorithms, in Property Testing, Springer, Berlin, Heidelberg,
2010, pp. 41–64.

[10] L. de Haan and A. Ferreira, Extreme Value Theory: An Introduction, Springer Ser. Oper. Res. Financ.
Eng., Springer, New York, 2006.

[11] M. N. Do and M. Vetterli, The contourlet transform: An efficient directional multiresolution image
representation, IEEE Trans. Image Process., 14 (2005), pp. 2091–2106.

[12] P. Dollar and C. L. Zitnick, Structured forests for fast edge detection, in Proceedings of the IEEE
International Conference on Computer Vision, 2013, pp. 1841–1848.

[13] D. L. Donoho and X. Huo, Beamlets and multiscale image analysis, in Multiscale and Multiresolution
Methods, Springer, Berlin, Heidelberg, 2002, pp. 149–196.

[14] M. Galun, R. Basri, and A. Brandt, Multiscale edge detection and fiber enhancement using differences
of oriented means, in Proceedings of the IEEE 11th International Conference on Computer Vision,
2007.

[15] R. Grompone von Gioi, J. Jakubowicz, J.-M. Morel, and G. Randall, LSD: A Line Segment
Detector, IPOL, 2 (2012), pp. 35–55; available online at http://dx.doi.org/10.5201/ipol.2012.gjmr-lsd.

[16] R. Grompone von Gioi, J. Jakubowicz, J.-M. Morel, and G. Randall, LSD: A fast line segment
detector with a false detection control, IEEE Trans. Pattern Anal. Mach. Intell., 32 (2010), pp. 722–
732.

[17] J. Haupt, R. M. Castro, and R. Nowak, Distilled sensing: Adaptive sampling for sparse detection
and estimation, IEEE Trans. Inform. Theory, 57 (2011), pp. 6222–6235.

http://dx.doi.org/10.5201/ipol.2012.gjmr-lsd

SUBLINEAR EDGE DETECTION 483

[18] I. Kleiner, D. Keren, I. Newman, and O. Ben-Zwi, Applying property testing to an image partitioning
problem, IEEE Trans. Pattern Anal. Mach. Intell., 33 (2011), pp. 256–265.

[19] S. Korman, D. Reichman, G. Tsur, and S. Avidan, Fast-match: Fast affine template matching, in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 1940–
1947.

[20] S. Kullback and R. A. Leibler, On information and sufficiency, Ann. Math. Statistics, 22 (1951),
pp. 79–86.

[21] M. Lebrun, M. Colom, A. Buades, and J.-M. Morel, Secrets of image denoising cuisine, Acta
Numer., 21 (2012), pp. 475–576.

[22] X. Li and J. Haupt, Identifying Outliers in Large Matrices via Randomized Adaptive Compressive
Sampling, preprint, arXiv:1407.0312v3 [cs.IT], 2014.

[23] T. Lindeberg, Edge detection and ridge detection with automatic scale selection, Int. J. Comput. Vis.,
30 (1998), pp. 117–156.

[24] C. Liu, W. T. Freeman, R. Szeliski, and S. B. Kang, Noise estimation from a single image, in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2006, pp. 901–
908.

[25] D. Marr and E. Hildreth, Theory of edge detection, Proc. R. Soc. Lond. Ser. B Biol. Sci., 207 (1980),
pp. 187–217.

[26] D. R. Martin, C. C. Fowlkes, and J. Malik, Learning to detect natural image boundaries using local
brightness, color, and texture cues, IEEE Trans. Pattern Anal. Mach. Intell., 26 (2004), pp. 530–549.

[27] N. Meinshausen, P. J. Bickel, and J. Rice, Efficient blind search: Optimal power of detection under
computational cost constraints, Ann. Appl. Stat., 3 (2009), pp. 38–60.

[28] P. Musé, F. Sur, F. Cao, Y. Gousseau, and J.-M. Morel, An a contrario decision method for shape
element recognition, Int. J. Comput. Vis., 69 (2006), pp. 295–315.

[29] P. Perona, T. Shiota, and J. Malik, Anisotropic diffusion, in Geometry-Driven Diffusion in Computer
Vision, Springer, Dordrecht, The Netherlands, 1994, pp. 73–92.

[30] K. R. Rao and J. Ben-Arie, Optimal edge detection using expansion matching and restoration, IEEE
Trans. Pattern Anal. Mach. Intell., 16 (1994), pp. 1169–1182.

[31] S. Raskhodnikova, Approximate testing of visual properties, in Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, Springer, Berlin, 2003, pp. 370–381.

[32] R. Rubinfeld and A. Shapira, Sublinear time algorithms, SIAM J. Discrete Math., 25 (2011), pp. 1562–
1588.

[33] J.-L. Starck, F. Murtagh, E. J. Candès, and D. L. Donoho, Gray and color image contrast en-
hancement by the curvelet transform, IEEE Trans. Image Process., 12 (2003), pp. 706–717.

[34] G. Tsur and D. Ron, Testing properties of sparse images, in Proceedings of the 51st Annual IEEE
Symposium on Foundations of Computer Science (FOCS), 2010, pp. 468–477.

[35] R. Willett, A. Martin, and R. Nowak, Backcasting: Adaptive sampling for sensor networks, in
Proceedings of the 3rd International Symposium on Information Processing in Sensor Networks,
ACM, New York, 2004, pp. 124–133.

[36] D. Ziou and S. Tabbone, Edge detection techniques—An overview, Int. J. Pattern Recogn. Image Anal.,
8 (1998), pp. 537–559.

http://arxiv.org/abs/1407.0312

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

