
Identification of Novel Pro-Migratory, Cancer-Associated
Genes Using Quantitative, Microscopy-Based Screening
Suha Naffar-Abu-Amara1, Tal Shay2, Meirav Galun3, Naomi Cohen1, Steven J. Isakoff4,5, Zvi Kam1, Benjamin Geiger1*

1 Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel, 2 Department of Physics of Complex Systems, Weizmann
Institute of Science, Rehovot, Israel, 3 Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel,
4 Massachusetts General Hospital Cancer Center, Boston, Massachusetts, United States of America, 5 Department of Cell Biology, Harvard Medical
School, Boston, Massachusetts, United States of America

Background. Cell migration is a highly complex process, regulated by multiple genes, signaling pathways and external stimuli.
To discover genes or pharmacological agents that can modulate the migratory activity of cells, screening strategies that enable
the monitoring of diverse migratory parameters in a large number of samples are necessary. Methodology. In the present
study, we describe the development of a quantitative, high-throughput cell migration assay, based on a modified phagokinetic
tracks (PKT) procedure, and apply it for identifying novel pro-migratory genes in a cancer-related gene library. In brief, cells are
seeded on fibronectin-coated 96-well plates, covered with a monolayer of carboxylated latex beads. Motile cells clear the
beads, located along their migratory paths, forming tracks that are visualized using an automated, transmitted-light screening
microscope. The tracks are then segmented and characterized by multi-parametric, morphometric analysis, resolving a variety
of morphological and kinetic features. Conclusions. In this screen we identified 4 novel genes derived from breast carcinoma
related cDNA library, whose over-expression induces major alteration in the migration of the stationary MCF7 cells. This
approach can serve for high throughput screening for novel ways to modulate cellular migration in pathological states such as
tumor metastasis and invasion.
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INTRODUCTION
Cell migration plays a critical role in numerous physiological

processes, including embryonic development, inflammatory respons-

es, wound healing, and angiogenesis, as well as in pathological states

such as tumor invasion and metastasis [1,2]. To explore the

mechanisms underlying the regulation of cell migration, a variety of

qualitative and quantitative approaches have been developed. These

include 2- and 3-dimensional time-lapse movies, tracking the

migration of cultured or tissue-embedded cells [3,4], wound-closure

assays [5–7], matrix-permeation assays [8,9] and ‘‘recording’’ of the

cells’ migration ‘‘history,’’ based on assays such as PKT formation

[10]. The latter assay is widely used for studying the migratory

activities of different cell types [3,11], matrix remodeling [12,13] and

perturbation of cell migration by chemical or genetic modulators

[14–19]. Such studies are of particular relevance to cancer cell

motility, which is believed to reflect the invasive or metastatic

potential of these cells in vivo [14,20–23]. Thus, identification of

chemicals that alter cell migration, or specific genes whose

perturbation affects cell migration could potentially be used for the

modulation of metastatic cell migration.

Our objective in the present study was to develop a PKT-based

approach for tracking cell migration, which is reproducible,

compatible with high-throughput microscopy, and provides quan-

titative information, morphological and dynamic, on the migratory

process. We show here that while the PKT records the integrated

history of migratory activity at a single time point, the quantitative

imaging software, enables the calculation of both ‘‘static’’ parameters

such as track length and area, and ‘‘dynamic’’ parameters such as

migration rates, persistence, and lamellar activity.

The high-throughput migration assay described herein, and the

imaging software developed for measuring different features of the

migratory process, provide a rapid, reliable and quantitative

approach for assessing cell migration in diverse cell types, cultured

under varying conditions, and exposed to a variety of chemical or

genetic perturbations.

RESULTS

Development of a bead-based high-throughput PKT

assay
Critical to the development of this PKT assay was the selection of

suitable beads, with optimal dimensions and chemical properties

(Table S1). The beads that were found most suitable for PKT

assays applied to a wide variety of cell types were carboxylate-

modified latex (CML) white polystyrene beads, with an average

diameter of 340 nm, and a negative charge content of 184.7 mEq/

g. These beads form a homogenous and visible monolayer; their

attachment to the substrate is firm enough to prevent spontaneous

detachment, but still susceptible to removal by migrating cells.

The surface chemistry of the beads was found to have a strong

effect on the PKT assay: beads with an aldehyde-modified surface

attached firmly to the substrate, and could not be removed by

migrating cells. Beads with a sulfated surface tended to aggregate,

yielding a non-uniform monolayer. Carboxylated beads, with or

without additional sulfate groups, tended to form rather
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homogenous suspensions after centrifugation. The surface density

of the carboxylate groups also affected track formation: a low

charge density (23.9 mEq/g) caused the bead to interact strongly

with the surface, such that many cell types failed to effectively

remove the beads as they migrated. Beads with carboxylate groups

of intermediate density (91.4 mEq/g) were found optimal for some

adherent cells (e.g., H1299, REF52) but not for cells with weaker

adhesions (e.g., MCF7; B16-F10). Beads containing carboxyl

groups with a density of 160–185 mEq/g were found to be optimal

for assays applied to a wide range of cell types.

Moreover, the diameter of the beads had a major effect on the

visibility of the tracks and on the stability of the monolayer. Thus,

small beads (,300 nm in diameter) could hardly be visualized,

while large beads (,1,000 nm in diameter) tended to detach from

the surface and then spontaneously reattach, resulting in poorly

defined tracks. The optimal bead diameter for automated PKT

assays was found to be about 400 nm.

Development of the automated microscopy system
PKT assays were recorded using a cell-screening microscope [24]

equipped with a laser autofocus device [25]. The microscope

operating program and the image acquisition software were

written as an application within the UCSF PRIISM environment

(http://msg.ucsf.edu/ive). For this application, images were taken

using a 106/0.4 objective, under transmitted light illumination. A

light diffuser was inserted above the multi-well plate, to minimize

non-homogenous illumination and avoid the shadows commonly

caused by the narrow well walls.

The dedicated acquisition program controls the illumination;

autofocusing and image acquisition steps for all selected fields

within each well, and for all selected wells in the plate, while

optimizing the experimental details (e.g. well number, field

position, exposure time, objective, optical setting, and the like).

In order to record a maximal number of complete cell tracks,

images of adjacent fields were fused into a seamless montage, in

which tracks spanning more than one image are merged at high

precision (Figure S1).

Quantification of migratory parameters, based on

PKT morphometry
To identify individual tracks, images were subjected to ‘‘flatten-

ing’’, thereby compensating for non-homogeneous illumination,

smoothing and contrast enhancement. The resulting intensity

histogram yielded a major peak, corresponding to the unperturbed

background (Figure 1c, black asterisk); a high intensity peak

corresponding to the bead-free tracks (Figure 1c, blue asterisk);

and low-intensity pixels corresponding to bead-loaded cells

(Figure 1c, red asterisk). By applying two binary thresholds, cells

(Figure 1d), and tracks (Figure 1e) could be differentiated from

each other. Debris, scratches, tracks with no, or more than one

cell, intersecting tracks, and tracks extending beyond the border of

the montage, were identified and discarded (Figure 1f, segments

outlined in blue). To obtain fine definition of track borders, which

were slightly blurred by the smoothing step (Figure 1g), track

boundaries were recalculated from the original images, using

multiscale segmentation analysis [26] (Figure 1h).

Figure 1. Computerized identification of individual PKT formed by H1299 cells. (a) A montage of 464 fields (102461024 pixels), each acquired
using a 106/0.4 objective. (b) A single field (5126512 pixels, binned 262) (c) Histogram of pixel intensity: the major peak (*) corresponds to
background pixels; the minor peak of bright intensity (*) corresponds to track pixels; and the dark pixels represent cell bodies and debris (*). The red
vertical lines mark the two thresholds separating the track pixels from the cells and the background. (d,e) Binary images, after applying thresholds.
Pixels with intensities below the lower threshold (cells and debris) are colored white in (d), and pixels with intensities above the higher threshold
(tracks) are colored white in (e). (f) All connected components of the entire montage are outlined: Tracks are outlined in red. Objects either too small
or too large in area to be included in the image analyses, or located on the borders of the montage, are outlined in blue. (g) Enlargement of a
segmented field following binary segmentation. (h) The same area depicted in (g), following multi-scale segmentation, and including the fine outline
of the track and the track axes. Scale bars: 250 mm.
doi:10.1371/journal.pone.0001457.g001
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Following the segmentation step, we quantified the various

morphometric parameters for each cell type. The track parameters

that were automatically measured included track area, perimeter,

major axis, minor axis, axial ratio and solidity. Track path length

and end-to-end length were manually measured. The track

parameters calculated from these morphometric parameters

include persistence, effective velocity, average migration velocity,

lamellar activity, and overall directionality. These morphological

and ‘‘dynamic’’ parameters are defined in Table S2, and

graphically presented in Figure 2.

Notably, even apparently similar parameters (e.g., ‘‘migration

velocity’’ and ‘‘effective velocity’’) can vary greatly. For example,

B16-F10 cell, shown in Figure 2, exhibited almost the same

migration velocity (62.4 mm/hr) as H1299 cell (67.26 mm/hr),

while the latter cell type displayed a much higher effective velocity

(57.26 mm/hr, compared to 20.4 mm/hr in B16-F10 cell),

Figure 2. Morphometric parameters of PKT. The automatic calculation of the various morphometric parameters used in this study, are demonstrated
using PKTs formed by H1299, B16-F10 and MCF7 cells. The calculated parameters include: Total track area (mm2), delineated in red; net track area after
cell area is subtracted; minor and major axes (mm) of the best-fit ellipse; ratio of the axes; migration velocity [length of skeleton and branches
(green+blue)/migration time], effective velocity [end-to-end distance (colored red)/migration time]; track perimeter; roughness [Perimeter2/(4p*Area)]
and Solidity [track area (blue)/area of the convex hull (red+blue) enclosing the track]. The values indicated in the figure refer to the single track
shown.
doi:10.1371/journal.pone.0001457.g002
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indicating a more persistent migration than the former. To assess

‘‘lateral’’ lamellar activity, which affects the width and roughness

of track borders, we measured the track perimeter, and calculated

roughness and solidity parameters. This analysis showed that while

the perimeters of tracks formed by H1299 and B16-F10 cells were

nearly the same, the roughness parameter was considerably higher

in B16-F10 cell (5.2) than in H1299 cell (3.2), indicating higher

lamellar activity in the melanoma cells. This finding was directly

confirmed by time-lapse movies (Figure 3, and Movies S1 and S2).

Application of PKT morphometry for measuring cell-

type specific and drug-induced effects on migratory

parameters
a) Different cell types produce PKT with distinct

characteristics The PKT assay described herein was used to

test the migratory behavior of a variety of cell lines. These include:

B16-F10 and B16-F1 melanoma cells; MDA-MB-231 and MCF7

breast carcinoma cells, REF52, SV80 and NIH3T3 fibroblast

lines; H1299 lung carcinoma cells, and several prostate carcinoma

lines (DU145, PC3 and CL1). Four of these cell lines (MDA-MB-

231, MCF7, H1299 and B16-F10) are utilized for the purposes of

illustration (see Figure 4a and Table S3). MCF7 cells, for example,

hardly migrate, producing only a small, bead-free zone around

each cell, with an average net track area of 4,90062,400 mm2

(n = 93). The B16-F10 melanoma cells produce branched tracks

due to the extension of multiple filopodia and thin lamella largely

perpendicular to the main migratory track, with an average net

area of 7,40062,800 mm2 (n = 124). The MDA-MB-231 cells are

highly migratory metastatic cells, producing both long and wide

tracks with an average net area of 13,50066,300 mm2 (n = 149).

H1299 cells are characterized by rapid and highly persistent

migration, forming tracks with an average net area of

14,00067,600 mm2 (n = 104).

b) The effects of cytoskeletal drugs on PKT structural and

dynamic features In order to determine whether our automated

screening system was capable of detecting changes in specific

migratory features induced by genetic or chemical perturbations, we

treated H1299 cells with various compounds (e.g., Latrunculin-A,

Nocodazole and PMA) known to affect cell motility. The effect of

each drug on the different morphometric parameters was then

measured (Figure 4b). Since the values for each PKT parameter did

not appear to have normal statistical distributions, we based our

comparison on changes in percentile values for each morphometric

parameter, rather than on changes in average values (Table S4).

Analysis of the PKT area of H1299 cells treated with the various

inhibitors indicated that Latrunculin-A or Nocodazole markedly

reduced track areas, axial ratios, migration velocities and roughness,

compared to control cells. In the PMA-treated cells, the PKT area,

major axis and calculated migration velocities increased (p,0.05),

but the minor axis, axial ratios and solidity did not significantly differ

from those of control cells.

Application of the PKT assay to the identification of

pro-migratory genes in a breast carcinoma-related

gene library (BC1000)
The PKT assay described herein was used to screen a library of

cancer-related genes for their ability to induce a migratory phenotype

in largely stationary breast epithelial cells. For that purpose, we

infected cultured MCF7 cells with retroviral vectors encoding 55

genes selected from the BC1000 library (Table S5) and tested their

migratory activity by means of quantitative PKT screening.

As shown in Figure 5a and Table S6, the PKT screen enabled

us to identify four novel pro-migratory candidates: HOXB7,

FGF7, ERBB3 and PKCf. The 80th percentile values, as well as

the average and standard deviation, are presented in Table S6.

While all four genes stimulated MCF7 cell migration, their effects

on the various migratory parameters differed. Thus, while FGF7

and PKCf clones induced the formation of long, persistent tracks,

due to the enhancement of directional membrane protrusions, the

elongated tracks, induced by HOXB7 and ERBB3 appeared to be

associated with multiple membrane protrusions in all directions.

Therefore, while prominence of directional ‘‘forward protrusions’’

cannot be directly assessed by track morphometry, it is apparent

that enhancement of track length which is not accompanied by

high roughness values is, most likely, driven by increased

directional lamellipodial activity (Table S6 and Figure 5). It is

interesting to note that in the screen of the BC1000 library,

changes in migratory behavior were noted for another gene,

namely MFGE8 (also known as breast epithelial antigen BA46).

While the overexpression of this gene induced only minor

enhancement in PKT area, it did greatly enhance track roughness,

suggesting that it enhances non-directional membrane protrusion

(Naffar Abu-Amara, unpublished data).

To determine the interrelationships between the various

migratory parameters, we applied the Pearson correlation test to

all PKT produced by unperturbed cells (Figure S2). This analysis

Figure 3. Track border roughness indicates lateral lamellar activity. Different time points are shown at which lateral lamellar activity of an H1299
(upper panel) or B16-F10 (lower panel) cells leave behind marks on the shape and roughness of the track border. (Full-length movies are available
online as Movie S1 and Movie S2, respectively.)
doi:10.1371/journal.pone.0001457.g003
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revealed, for example, that track length (major axis and axial ratio)

is negatively correlated with track solidity, indicating that the

production of elongated tracks by the control cells is highly

correlated with the lateral protrusive activity. This analysis was

also applied to those cells expressing the different pro-migratory

genes, in order to determine their capacity to disrupt the apparent

Figure 4. PKT features of different cell lines and the effects of cytoskeletal drugs on tracks parameters. (a) A montage of 263 images of the PKT of
MCF7 cells, as well as for MDA-MB-231 cells, B16-F10 cells, and H1299 cells. Note the differences in track net area (AN) and axial ratio (X), depending
on the cell line. (b) A montage of 263 image of H1299 control cells, which exhibit long migratory paths that are highly persistent. The montage
images of the Latrunculin A (4 mM)- and Nocadazole (2.5 mM)-treated wells indicate inhibited cell motility; PMA (100 ng/ml)-treated well shows an
increase in cell motility. Scale bars: 250 mm.
doi:10.1371/journal.pone.0001457.g004
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interdependence between the various migratory parameters.

These analyses demonstrate that, overexpression of PKCf,

HOXB7, and ERBB3 diminished the reciprocal relationship

between track length and solidity.

Concerning the relationships between the axial ratio and the

dimensions of the long and short axes, the control cells show the

predominant contribution of the long axis to the axial ratio value,

with the minor axis exerting a limited effect. In cells expressing FGF7

and PKCf the axial ratio was mainly correlated to the major axis,

while ERBB3 and HOXB7 affected the axial ratio by changing the

track width. It thus appears that enhancement of overall cell

migration by different pro-migratory genes can be achieved by

selective modulation of a variety of dynamic cellular features such as

cell polarization and protrusive membrane activity.

DISCUSSION

The primary objective of this study was the development of a

quantitative assay for cell migration, which could measure multiple

migratory features, and would be compatible with high-through-

put screening. The major experimental challenge involved in

designing such an assay is the apparent conflict between the rapid

acquisition of vast amount of migration data, and the need to

obtain ‘‘high content’’ information about the migratory behavior

of many cells, including dynamic features such as migration

velocity and lamellipodial activity. Since collection of direct

dynamic information about cell migration is incompatible with

high throughput, we therefore chose to explore indirect, yet

reproducible and robust, approaches for obtaining such informa-

Figure 5. The pro-migratory effect of genes derived from the BC1000 library. (a) A montage of 464 images, comparing PKT produced by GFP-
MCF7 control cells, to those produced by MCF7 cells expressing the BC1000-derived genes HOXB7, PKCf, FGF7, and ERBB3. Magnification: 106. Scale
bars: 250 mm. (b) Calculated ratio between each of the migratory morphometric parameters of the different BC1000 library candidates, and those of
control cells (GFP-MCF7). The primary statistical approach utilized was based on calculating, for each parameter, the ‘‘80th percentile.’’ The normalized
effect of GFP-control is always defined as zero: a zero value indicates no difference between the ‘‘80th percentile’’ value of the candidate gene, and of
the control cells. Numbers that are higher or lower than zero indicate an increase or decrease, respectively, in the 80th percentile value of the tested
parameters. (For additional details, see Table S6).
doi:10.1371/journal.pone.0001457.g005
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tion. We propose herein that detailed morphometric analysis of

PKT generated by individual migrating cells can provide such

quantitative, morphological and apparently dynamic data.

The novel aspects of this study which deserve specific discussion

are: (i) the choice of beads; (ii) track segmentation and morphometry;

and (iii) statistical analysis of the data. The selection of beads for the

PKT assay was based on three properties of the ‘‘migration field’’:

visibility of the track (primarily affected by the bead size, with an

optimal bead diameter of 300–400 nm); their ability to form a

homogenous layer (optimal with aldehyde or carboxylated surfaces;

poor with sulfate-modified beads), and the capacity to be removed by

migrating cells (optimal with carboxylated- and poor with aldehyde-

modified beads). Notably, the susceptibility of carboxylated beads to

removal by migrating cells is inversely correlated to the surface

density of the carboxylate groups, enabling ‘‘fine tuning’’ of the bead

layer for the particular cell type to be tested.

PKT segmentation and morphometry provided important

insights into the basic features of the migratory process. These

include the overall migratory activity of the cell, corresponding to

the net PKT area; migration polarity, corresponding to the length

of the major axis of migration (or the axial ratio); and ‘‘lateral’’

lamellar activity, measured by the track’s solidity, among other

values. Based on these measurements, several dynamic parameters

were calculated, including average and effective migration rates,

and lamellar activity. Naturally, the dynamic information, inferred

from the static PKT morphology, is rather indirect, yet the high-

resolution data [especially the roughness of track borders,

measured by multiscale segmentation analysis [26]; (Figure 1h)]

which could be correlated to dynamic information, based on time-

lapse video microscopy (Figure 3). Once calculated for each track,

the multiple parameters could be correlated to each other, either

in control cells, or following chemical or genetic perturbation.

For our purposes, the PKT assay was utilized to discover novel

pro-migratory genes in a breast carcinoma-related gene library.

The rationale underlying this approach is that despite the obvious

molecular complexity of the cell migration process, there might be

‘‘master genes’’ that could induce migratory features in a

stationary cell. The unique capacity of the PKT assay we

developed to highlight and quantify individual features of the

migratory phenotype, could then link a given pro-migratory gene

to specific migratory mechanisms. The new pro-migratory genes

identified here include: HOXB7, ERBB3, PKCf and FGF7.

While all these genes are known to be ‘‘cancer-related’’, the

current study points to the possibility that their contribution to the

malignant process might be related to their pro-migratory activity.

MATERIALS AND METHODS

Preparation of bead-coated 96-well plates
Glass-bottomed 96-well plates (Whatmann, Inc., Clifton, NJ, USA,

Cat. # 7706-2370) were incubated for 2 hr at room temperature,

with 50 ml of 10 mg/ml fibronectin solution dissolved in PBS

(Fibronectin, F-1141; Sigma Chemical Co., St Louis, MO, USA).

The wells were then washed twice with PBS and coated with 340 nm

white polystyrene latex beads (Interfacial Dynamics Corporation-

Molecular Probes Microspheres Technologies, USA; Product no. 2-

300; Batch no. 1344). The bead suspension (3.2 ml) was centrifuged

for 5 minutes at 20,8006g, and the pellet resuspended in 4 ml PBS,

until all visible bead clumps were dispersed. The sedimentation

procedure was then repeated once more, after which the beads were

resuspended in 7 ml PBS, to a final concentration of 0.912 particles/

ml. Aliquots of 70 ml of the bead suspension were added to each well,

which had been pre-coated with fibronectin, and incubated at 37uC
for 2 hr, followed by gentle washing with PBS (65) using a plate

washer (Colombus Plus, Tecan, Switzerland). Before cell plating, the

PBS was replaced with 50 ml culture medium suitable for the

particular cell type used in the assay (see Figure S3).

Cell preparation for the PKT assay
MCF7 (ATCC-HTB-22), MDA-MB-231 (ATCC-HBT-26), and

B16-F10 (ATCC-CRL-6475) cells were cultured in Dulbecco’s

Modified Eagle’s Medium (DMEM); H1299 cells (ATCC-CRL-

5803) were grown in RPMI-1640. Both culture media were

supplemented with 10% FCS, 2 mM glutamine, 100 International

Units/ml penicillin, and 100 mg/ml streptomycin (Biological

Industries, Beit Haemek, Israel), and maintained in a 5% CO2

humidified incubator at 37uC. For the PKT assay, 200–400 cells

(in 50 ml of medium) were cultured in each well. Depending on the

typical track dimensions, as determined in preliminary experi-

ments, the number of plated cells, and the time of incubation were

calibrated to maximize the number of single, non-intersecting cell

tracks. Typically, 200–400 cells/well and 7 hours of incubation

were found to be optimal parameters for most cells.

Pharmacological perturbations of PKT formation
To determine the effects of various pharmacological inhibitors on

the H1299 cell line, cells were plated and incubated for one hour,

after which they were treated with either 4 mM Latrunculin A;

2.5 mM Nocodazole; or 100 ng/ml PMA (Phorbol 12-mirystate

13-acetate). The cells were then incubated for an additional 4 hr,

fixed with 3% paraformaldehyde and washed twice with PBS.

Plates were either examined immediately by means of a screening

autofocus microscope, or stored at 4uC for later inspection.

Screening for migration-inducing genes
To screen for migration-inducing genes, we selected 55 candidate

genes from the BC1000 library: (http://www.hip.harvard.edu/

research/breast_cancer/index.htm), assembled at the Harvard

Institute of Proteomics using literature-mining software [27]. This

library consists of a collection of full-length cDNAs known to be

associated with breast cancer development. The cDNAs are cloned

into a puromycin- selectable retroviral vector (JP1520) [28] using the

CreatorTM recombination system (Clontech, Mountain View, CA).

The 55 genes tested (see Table S5) were randomly selected from this

library, and were generously provided by Prof. Joan Brugge

(Department of Cell Biology, Harvard Medical School, USA). Genes

were introduced into the MCF7 cells by means of retroviral infection.

Each clone was tested for its impact on cell migration, using the PKT

assay. As controls, we also generated JP1520 GFP-expressing MCF7

cells. The PKT assay was carried out in 96-well plates. Four hundred

cells per well were seeded, and 8 wells were tested for each clone. The

cells were incubated for 7 hours, and then fixed using 3% PFA. Data

was collected using the autofocus-screening microscope.

Statistical Analysis
Since the distribution of track parameters displays non-normal

distributions, we used the percentile statistical tool to estimates

parameters variability. For example, the 80th percentile for track

area is the value bellow which 80% of the tracks area are found.

Differences between control and treated cultures were evaluated

for significance using the Two-Sample Kolmogorov-Smirnov

goodness-of-fit hypothesis test. A p-value of ,0.05 was considered

to be statistically significant.

The Pearson’s correlation test was conducted with values

ranging from +1 (a perfect positive linear relationship between two

tested variables) to 21 (a perfect negative linear relationship). A p-

value of ,0.0014 was considered statistically significant.
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SUPPORTING INFORMATION

Table S1 Comparison of the properties of different beads used

for the PKT assay.

Found at: doi:10.1371/journal.pone.0001457.s001 (0.03 MB

DOC)

Table S2 Parameters annotation.

Found at: doi:10.1371/journal.pone.0001457.s002 (0.03 MB

DOC)

Table S3 PKT analysis for the various cell lines.

Found at: doi:10.1371/journal.pone.0001457.s003 (0.03 MB

DOC)

Table S4 PKT analysis of H1299 cells treated by various drugs.

Found at: doi:10.1371/journal.pone.0001457.s004 (0.03 MB

DOC)

Table S5 List of tested genes.

Found at: doi:10.1371/journal.pone.0001457.s005 (0.04 MB

DOC)

Table S6 PKT analysis of MCF7 cells overexpressing a given

pro-migratory gene.

Found at: doi:10.1371/journal.pone.0001457.s006 (0.05 MB

DOC)

Figure S1 A scheme describing the image acquisition and

display process. (a) A template of a 96-well plate. (b) The positions

of 52 fields that can be acquired within one well, using a 106
objective. (c) A montage of 464 images (102461024 pixels),

corresponding to the marked area of the well. (d) A full-resolution

image of one field (5126512 pixels) within the montage (marked in

c). Scale bar: 250 mm.

Found at: doi:10.1371/journal.pone.0001457.s007 (2.03 MB TIF)

Figure S2 Auto-correlation between the PKT morphometric

parameters in control cells, and in cells expressing pro-migratory

genes. Auto-correlation between the various morphometric

parameters was calculated for the control (GFP-MCF7) library,

as well as for cells overexpressing the different pro-migratory genes

described in figure 5. Each rectangle is divided by a white line into

two triangles; each triangle shows the correlation test of a different

candidate. The p-value of each correlation result is indicated

beneath the correlation score number.

Found at: doi:10.1371/journal.pone.0001457.s008 (4.16 MB TIF)

Figure S3 Schematic outline of the 96-well plate preparation for

the PKT assay.

Found at: doi:10.1371/journal.pone.0001457.s009 (0.96 MB TIF)

Movie S1 PKT formation by H1299, plated on polystyrene

beads. H1299 cells were plated on a glass-bottomed 35 mm dish

covered with 10 mg/ml fibronectin, and coated with polystyrene

beads. Cells were maintained at 370C in CO2-buffered RPMI

1640 medium with 10% FCS and penicillin/streptomycin

antibiotics. Before transferring the cells to the microscope, the

CO2- buffered RPMI 1640 medium was replaced with HEPES

buffered pre-warmed medium. Images were acquired using a 106
objective, every 5 minutes over 5 hours.

Found at: doi:10.1371/journal.pone.0001457.s010 (2.93 MB

MOV)

Movie S2 PKT formation by B16-F10 melanoma cells, plated

on polystyrene beads. B16-F10 cells were plated on a glass-

bottomed 35 mm dish covered with 10 mg/ml fibronectin, and

coated with polystyrene beads. Cells were maintained at 370C in

CO2-buffered DMEM medium with 10% FCS and penicillin/

streptomycin antibiotics. Before transferring the cells to the

microscope, the CO2-buffered DMEM medium was replaced

with pre-warmed HEPES-buffered medium. Images were ac-

quired using a 106 objective, every 5 minutes for 7 hours.

Found at: doi:10.1371/journal.pone.0001457.s011 (2.14 MB

MOV)
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