
Pattern Recognition 39 (2006) 1876–1891
www.elsevier.com/locate/patcog

Fast multiscale clustering and manifold identification
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Abstract

We present a novel multiscale clustering algorithm inspired by algebraic multigrid techniques. Our method begins with assembling
data points according to local similarities. It uses an aggregation process to obtain reliable scale-dependent global properties, which arise
from the local similarities. As the aggregation process proceeds, these global properties affect the formation of coherent clusters. The
global features that can be utilized are for example density, shape, intrinsic dimensionality and orientation. The last three features are a
part of the manifold identification process which is performed in parallel to the clustering process. The algorithm detects clusters that
are distinguished by their multiscale nature, separates between clusters with different densities, and identifies and resolves intersections
between clusters. The algorithm is tested on synthetic and real data sets, its running time complexity is linear in the size of the data set.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Clustering algorithms are useful in many fields, from
image analysis through astronomy to biology. Generally,
clustering is applied to a data set, which is a collection
of N d-dimensional vectors (data points) representing d

measured features per sample. Given a data set, clustering
algorithms seek a partition of the data to coherent groups,
in a sense that data points in the same group share simi-
lar properties. Many approaches try to solve the clustering
problem by optimizing a global cost function, expressed in
terms of the local similarities between data points.

Typical data sets contain clusters that differ from each
other in density, and may also contain elongated clusters
that could intersect. Moreover, in many cases clusters of
interest include points that represent noisy samples from
some underlying manifold structures. Also, many data sets
are multiscale in nature, containing a nested structure of
small clusters within larger clusters. In the scope of this
work, we attempt to separate between clusters with different

∗ Corresponding author. Tel.: +972 8 9343251; fax: +972 8 934 4122.
E-mail address: dan.kushnir@weizmann.ac.il (D. Kushnir).

0031-3203/$30.00 � 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2006.04.007

densities, to identify intersections between clusters, to sup-
port the creation of clusters that preserve smooth continu-
ation, and in particular to distinguish between the different
clusters that cross an intersection. To realize these objec-
tives and to discriminate between the different clusters at all
scales in the presence of noise, scale-dependent global prop-
erties should affect the formation of coherent clusters. The
main global features that are utilized in our present study
are density, shape, intrinsic dimensionality and orientation.
The last three features are part of the manifold identifica-
tion process, which is performed in parallel to the clustering
process.

The importance of integrating these global features into
the clustering process is exemplified in Fig. 1. It should be
emphasized that a variety of additional global features, also
called multiscale similarity features or aggregative proper-
ties, can be integrated into the process. See for example [1,2],
where in the problem of image segmentation there enter ag-
gregative properties such as average color, color variations
at all intermediate scales, boundary match, shape properties
of salient sub-aggregates, etc.

In this paper, we present a novel clustering algorithm
inspired by algebraic multigrid techniques (AMG) [3]. At
the basis of our methodology is the normalized-cut cost
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Fig. 1. Nested clusters (left): the different distributions of the dense patches at large scale give rise to separation of two different clusters. Intersection
of elongated clusters (right): separation of intersecting shapes is possible by tracking their orientation at large scales.

minimization [4], in the sense that salient clusters in the data
set can be characterized by low normalized-cut costs. The
minimization problem can be formulated as a generalized
eigenvector problem.

Many other approaches that attempt to solve the cluster-
ing problem (including spectral clustering methods e.g. [5])
formulate the problem as a generalized eigenvector problem,
and usually solve it by using an eigensolver with quadratic
or cubic complexity. An efficient way in most practical cases
to compute eigenvectors at just a linear complexity is offered
by an AMG eigensolver [6]. It is important to realize, how-
ever, that the AMG solver contains in itself a hierarchical
aggregation procedure which already yields a (hierarchical)
clustering of the data set, and that it is much better to directly
use this procedure for clustering than actually computing
the eigenvectors, or using other clustering procedures. This
is because:

(1) If desired, this procedure can yield the same clustering
as computed from the eigenvectors, at a smaller cost.

(2) This procedure will actually yield a hierarchical clus-
tering, breaking the clusters into sub-clusters, sub-sub-
clusters, etc.

(3) The produced clusters can be fuzzy, with some data
points remaining undecided, belonging with different
probability weights to different clusters.

(4) Most important, the hierarchical aggregation procedure
can be modified to account for similarities in global
properties of aggregates that emerge at various interme-
diate levels (scales). To our best knowledge such use of
multiscale similarity features cannot be considered by
any uniscale procedure, or for that matter, by any for-
mulation of the problem as a functional minimization
problem.

(5) Top–down procedures can easily be iteratively incorpo-
rated at all levels, to affect finer-level aggregation crite-
ria by properties found important at coarser levels.

Our AMG-like approach discovers the desired aggregation
of the data set by following the similarities between the

data points at different resolutions, using (similarly to [2]) a
bottom-up weighted aggregation coarsening procedure that
preserves the low normalized-cut costs. Moreover, to achieve
coherent clusters at all scales, our approach allows combin-
ing multiscale similarity features, based on properties of ag-
gregates that emerge at intermediate levels. The combined
approach of bottom-up weighted aggregation and multiscale
similarity features constructs a hierarchical pyramid of ag-
gregates such that a salient cluster is guaranteed to emerge
at a certain appropriate level with low normalized-cut cost.
The cost of the algorithm is linear in the data set size, and
is independent of the number of clusters.

Clustering and manifold identification are known to be
related. In manifold learning one is interested in finding the
intrinsic dimensionality and low dimensional structure of the
data. In this work, the clustering and manifold identification
processes influence each other, so that the cluster partition is
used to approximate the manifolds, and the manifold struc-
ture is used to improve the cluster partition. The identifica-
tion of manifolds created by aggregates is dealt within the
bottom-up process by using a scale-dependent local principal
component analysis (PCA). An aggregate manifold is repre-
sented as a composition of spatially ordered sub-manifolds,
each of which is approximately convex and well approxi-
mated by a set of principal axes. The aggregate manifold is
identified even in the cases in which the manifold is non-
convex and noisy.

In addition to the bottom-up aggregation process, a
top–down process is applied in the present work to resolve
intersections between clusters and to separate dense clusters
from background noise. Relying on the AMG strength, the
algorithm can be applied to data sets of any dimensionality,
although the junction resolving, which relies on smooth
continuation of orientations, is currently developed only for
the cases of clusters with intrinsic dimensionality of 2D
and 3D. The complexity of the algorithm is not dependent
on the data dimensionality.

The paper is divided as follows. In Section 2 we describe
work related to clustering algorithms and manifold learning.
In Section 3 an overall description of the clustering algorithm
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is given. In Section 4 we demonstrate the use of aggregative
properties. In Section 5 the algorithm complexity analysis is
presented. In Section 6 clustering results of real astrophysi-
cal data in 3D are demonstrated. Section 7 compares our 2D
and 3D results with results obtained by other algorithms.

2. Related work

There are numerous approaches for data clustering and
manifold learning. In this survey we mostly refer to the
algorithms that are related to our approach. For an extensive
overview see text books such as Refs. [7,8].

Spectral clustering methods for graph-based clustering
and image segmentation [4,5] use the eigenvectors of the
Laplacian matrix to embed the data in a lower subspace
where they are expected to be well separated. Spectral clus-
tering uses explicitly eigenvector solvers to find clusters
whose graph cut is minimal. The Nyström approximation [9]
is used to decompose the similarity matrix W efficiently by
choosing a random sample of the data, so that the complex-
ity of decomposing W to its eigenvectors is of O(nN) where
n is the size of the sample, and N is the size of the data set.
Path-based methods [10,11] discover elongated structures
and overcome noise. Their complexity is at least O(N3).
In the super-paramagnetic clustering (SPC) [12] method,
also known as the granular magnet method, the data points
are modelled as a collection of magnets. The scale of the
temperatures used in a Monte-Carlo simulation of this col-
lection determines the resolution at which the magnets align
to form clusters, creating hierarchical clustering similar to
ours. A related work [13] approaches the clustering prob-
lem as a minimal cut problem and produces a stochastic
set of cuts by hard contractions of the original graph. The
complexity of Ref. [13] is O(N log2(N)). In tensor-voting
[14] additional properties of location and orientation of data
points in 2D and 3D are used to cluster data points and char-
acterize their manifold. The method also detects cases of
junctions and copes well with noise. Moreover, a criterion to
measure smooth continuation between oriented structures,
which is based on proximity and curvature, has some simi-
larities with our criterion of completion probability (Section
4.2). Tensor voting divides the data into voxels, each voxel
aggregates some data points and geometric features but only
on the scale induced by the partition into voxels. The algo-
rithm complexity is O(n3k) where n is the number of voxels
at the side length of the data set volume, and k is the number
of the additional input properties.

Some of the early manifold learning methods are the
PCA [15] and multi-dimensional scaling (MDS) [16]. In
extensions of PCA such as the principal curve method
(and the principal surface method) [17–19] one estimates a
manifold by computing a smooth curve that passes through
the “middle” of a d-dimensional data cloud. In projection
pursuit [20] different optimization strategies are sought to
find a basis for local data projections that optimize certain

criteria. Our use of scale-dependent local PCA in different
scales reveals the shape of the clusters with respect to their
scatter. The local-linear embedding (LLE) algorithm [21]
learns the manifold structure by finding a global coordinate
system on the manifold. LLE attempts to compute a low
dimensional embedding such that nearby points in the high
dimensional space remain nearby and similarly co-located in
the low dimensional space. A similar approach is the Lapla-
cian eigenmaps (LEM) method [22], where the graph Lapla-
cian matrix is used for dimensionality reduction that pre-
serves local proximity. In Isomap [23] the embedding is op-
timized with the constraint of preserving geodesic distances.
The complexity of LLE, LEM and Isomap is at least O(N2).

3. The clustering algorithm

The clustering problem can first be formulated as seeking
for a minimal normalized-cut in a weighted graph. Given
a data set with N data points and a distance matrix D of
the dissimilarities between the data points, a weighted graph
G = (V , W) is constructed as follows. Each data point i is
represented by a graph node i ∈ V where V ={1, 2, . . . , N}.
For every two nodes i and j the following similarity weight
is assigned

wij = exp(−cdist · dij ), (1)

where cdist is a pre-defined parameter that is determined
with experience, and dij is usually the Euclidean distance
between data points i and j; wii is set to 0. This constructs
the similarity matrix W = {wij }. To evaluate clusters we
define a saliency measure as follows. Every cluster S ⊆ V is
associated with a state vector u= (u1, . . . , uN) representing
the assignments of data points to a cluster S

ui =
{

1, i ∈ S,

0, i /∈ S.
(2)

The saliency associated with S is defined by the normalized-
cut cost

�(S)
def=

∑
i>jwij · (ui − uj )

2∑
i>jwij · ui · uj

, (3)

which sums the weights along the boundaries of S divided
by the internal weights. Clusters with small values of �(S)

are considered salient. In matrix notation � can be written as

�(S) = uTLu

1
2uTWu

, (4)

where L is the Laplacian matrix [4,1] whose elements are

lij =
{∑

k (k �=i)wik, i = j,

−wij , i �= j.
(5)

If we allow arbitrary real assignments to u, then the min-
imum of � can be obtained by the minimal generalized
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Fig. 2. Graph coarsening pseudo-code procedure.

eigenvector u of Lu=�Wu (� > 0). Our objective is to find
those partitions characterized by a small value of �.

Although an eigensolver, in particular an AMG eigen-
solver [6], can be applied to explicitly solve the gener-
alized eigenvalue problem, we solve the clustering prob-
lem by an AMG-like approach (see [3]) without explicit
computation of the eigenvectors. Our AMG-like procedure
seeks salient clusters by following the similarity of the data
points at different resolutions, from fine scales to coarser
ones. Moreover, to further separate clusters at all scales,
our AMG-like approach calculates and incorporates mul-
tiscale similarity features (e.g. density, shape, intrinsic di-
mensionality and orientation), which are called aggregative
properties. As a result a hierarchical pyramid of graphs is
constructed. Each node, at a certain scale, represents an
aggregate, which is a weighted collection of the original
data points. Each cluster S, which is a salient aggregate
(i.e., �(S) is low) emerges as a single node at a certain
scale.

3.1. Multiscale graph coarsening: weighted aggregation

Starting from the given graph G[0] = G, we recursively
coarsen the minimization problem, creating the sequence of
graphs G[1], . . . , G[k] of decreasing size. At each scale we
seek for nodes with low �. The salient aggregates, or clus-
ters, represented by low-� nodes, are considered as approx-
imate solutions to the minimization problem. As in the gen-
eral AMG setting, the choice of the coarse variables (“C-
points”), the design of the fine-to-coarse aggregation (or
coarse-to-fine interpolation), and the derivation of the coarse
problem are determined automatically, as described below.

Although the AMG approach can handle the full graph
G[0] = G as defined above, the complexity of the algorithm
is lowered by applying a dilution procedure which sets to
0 every wij that is relatively small. We first apply to G[0]
the k-nearest neighbors algorithm (KNN) [24] (typically
10�k�50). In addition to KNN we apply the following
edge dilution procedure [25]: for each pair of neighboring
nodes i and j we set wij to 0 in case wij /

∑
k:〈i,k〉wik < �

and wij /
∑

k:〈j,k〉wjk < � (or wij /maxk:〈i,k〉{wik} < � and
wij /maxk:〈j,k〉{wjk} < �), in our experiments � is set to 0.1.

The edge dilution procedure can be applied at each pyramid
level.

The construction of a coarse graph from a given one is
divided into three stages:

(1) A subset of the fine nodes is chosen to serve as the seeds
of the aggregates (the later being the nodes of the coarse
graph).

(2) The rules for interpolation are determined, thereby es-
tablishing the fraction of each non-seed node belonging
to each aggregate.

(3) The weight of the edges between the coarse nodes is
calculated.

Coarse nodes. The construction of the set of seeds C (“C-
points”) and its complement denoted by F, is guided by the
principle that each F-node should be “strongly coupled”
to C. To achieve this objective we start with an empty
set C, hence F = V , and sequentially (according to de-
creasing aggregate size defined in Section 3.2) transfer
nodes from F to C until all the remaining i ∈ F satisfy∑

j∈Cwij ��
∑

j∈V wij , where � is a parameter; in most
experiments � = 0.2.

The coarse problem. Each node in the chosen set C be-
comes the seed of an aggregate that will constitute one coarse
scale node. We define for each node i ∈ F a coarse neigh-
borhood Ni = {j ∈ C, wij > 0}. Let I (j) be the index in
the coarse graph of the node that represents the aggregate
around a seed whose index at the fine scale is j. The classical
AMG interpolation matrix P (of size N ×n, where n=|C|)
is defined by

PiI(j) =
{

wij /
∑

k∈Ni
wik for i ∈ F, j ∈ Ni,

1 for i ∈ C, j = i,

0 otherwise.
(6)

It satisfies u ≈ PU , where U = (U1, U2, . . . , Un) is the
coarse level state vector. PiI represents the likelihood of
i to belong to the I th aggregate. Following the weighted
aggregation scheme [2], the edge connecting two coarse ag-
gregates p and q is assigned with the weight

wcoarse
pq =

∑
k �=l

PkpwklPlq . (7)
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wcoarse
pq is also called the coupling weight between aggre-

gates p and q. Intuitively, the coupling weight between a pair
of coarse aggregates (left hand side of (7)) is the weighted
sum of the coupling weights between their sub-aggregates
(right hand side of (7)). Using the interpolation matrix P,
the saliency measure (4) can be written as

� = uTLu

1
2uTWu

≈ UTP TLPU

1
2UTP TWPU

. (8)

The right hand side of Eq. (8) determines a coarser graph
with n nodes whose similarity matrix is Wcoarse = P TWP .
Exploiting the sparseness of P, the elements of P TWP are
inexpensive to calculate. Lcoarse = P TLP is approximated
by a relation to W as in Eq. (5) [1].

This coarsening procedure is performed recursively. We
denote a coarse scale by s, and its predecessor finer scale by
(s−1). The scale index is attached to the graph notation, i.e.
a graph at scale s is denoted by G[s] = (V [s], W [s]), the ap-
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Fig. 3. Nested clusters. Each cluster discovered by our algorithm has a
different color.

Fig. 4. Manifold identification pseudo-code procedure.

propriate interpolation matrix between scale s and (s − 1) is
denoted by P [s−1][s] or P [s−1], and |V [s]| is denoted by N [s].
A summary of the coarsening procedure is given in Fig. 2.

3.2. Aggregative properties

Consider a specific clustering problem in which small
clusters are nested within larger clusters, as exemplified
in Fig. 3. Multiscale use of the densities may reveal the
nested structure and eventually cluster the data appropriately.
In Fig. 3 all the dense patches have similar average density,
yet in region A the patches are distributed sparsely, and in
region B they are more tightly packed. Hence, at a small
scale, the dense patches should be grouped together, yet on
a larger scale regions A and B should be partitioned into
different clusters as indeed achieved by our algorithm and
shown in Fig 3.

In the case of astrophysical flow simulations, where at a
given moment each star has a defined location as well as ve-
locity, an important example of aggregative property is the
average velocity of an aggregate. While the velocities of in-
dividual stars may be quite chaotic, their averages are signifi-
cant and intermediate-level aggregates with similar averages
(and other matching moments) should be grouped together
to give a coherent view of the flow. Since our weighted
aggregation framework allows to aggregate a variety of
multiscale properties, we call these properties aggregative
properties. In this framework, for each aggregate i emerging
at a certain scale s, we calculate a set of aggregative proper-
ties. An aggregative property can be expressed as a weighted
average over the aggregate i of a property that has first
appeared at a scale r (r �s). The scale s is termed the ag-
gregate scale and the scale r is called the property scale. At
each scale s the similarity matrix W [s], inherited from finer
aggregate scales (7), is modified by the similarities arising
from the set of aggregative properties obtained from multi-
ple property scales. In the scope of this work aggregative
properties of density, shape, dimensionality and orientation
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are computed and incorporated. The aggregative properties
are used to obtain partition into clusters that differ in density,
to separate background noise from clusters, and to resolve
intersecting clusters. Moreover, they are utilized to identify
the manifold that approximately span each aggregate. As
a straightforward aggregative property the reader may con-
sider the center of mass of an aggregate. For an original data
point the center of mass is simply its spatial coordinates (in
this case r = 0, s = 0). For an aggregate i at scale 1 the
center of mass is the weighted average of the spatial coordi-
nates induced by the data points associated with aggregate
i, the weights being the interpolation weights (in this case
r = 0, s = 1). Similarly, the center of mass of an aggregate
at scale s is a weighted average of the center of mass of its
sub-aggregates at scale (s −1) associated with it. This is ex-
actly the center of mass as if explicitly calculated from the
cloud of data points that assembles this aggregate.

The following formulas are applied to compute the ag-
gregative properties. Let a property Q appear at the prop-
erty scale r, where its set of values is Q[r][r] = q[r] =
(q

[r]
1 , . . . , q

[r]
N [r]). Then the average of Q over aggregate k

at scale s is given by Q̄
[r][s]
k = ∑

jp
[r][s]
jk q

[r]
j /

∑
jp

[r][s]
jk ,

where p
[r][s]
jk is the (j, k) element in the product matrix

P [r][s] = P [r] · · · P [s−1], which is the fraction of aggregate
j at scale r in aggregate k at scale s. A fast computation
of an aggregative property can be achieved by utilizing the
following recursive relation:

Q[r][s] def= Q[r][s−1]P [s−1],
M [r][s] def= M [r][s−1]P [s−1], (s > r), (9)

where M [r][r] def= �1 = (1, . . . , 1) at length N [r]. Note that
M

[r][s]
k is the number of sub-aggregates at scale r that com-

pose the aggregate k at scale s. In particular, M
[0][s]
k , which

is the number of data points which compose aggregate k at
scale s, is called aggregate size. From these recursive rela-
tions one can then calculate the required weighted average:

Q̄
[r][s]
k = Q

[r][s]
k

M
[r][s]
k

. (10)

In this way the aggregative properties at each level s are
calculated from information already accumulated at the
immediately preceding level (s − 1).

The geometrical volume. Let xi = (x
(1)
i , . . . , x

(d)
i ) be

the coordinates of a data point i. The center of mass of
aggregate k at scale s is denoted by x̄k = (x̄

(1)
k , . . . , x̄

(d)
k )

and computed by Eq. (10), where r = 0 and Q[0][0] =
(x1, . . . , xN). The weighted covariance is the d × d matrix

�k =(x − x̄k)
T(x − x̄k), i.e., (�k)��=(x(�)x(�))k − x̄

(�)

k x̄
(�)
k ,

where (x(�)x(�))k is Q̄
[0][s]
k calculated by Eq. (10) with

Q[0][0] = (x
(�)

1 x
(�)
1 , . . . , x

(�)

N x
(�)
N ), (�, � = 1, . . . , d). PCA is

applied to find an eigenvector basis {�v(1)
k , . . . , �v(d)

k } of �k
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and its corresponding set of eigenvalues {�(1)
k , . . . , �(d)

k }.
The eigenvalues are used to approximate the geometrical
volume of a convex aggregate k at a scale r as follows:

V
[r][r]
k =

d∏
i=1

√
�(i)
k . (11)

The geometrical volume of a non-convex aggregate k at scale
s is approximated by the accumulated geometrical volume
of its sub-aggregates, i.e., the kth element of V [r][s]=V [r][r] ·
P [r][s]. The notions of convex and non-convex are explained
in the next section.

The density. The density h of an aggregate i at scale s is
defined by the ratio between the number of data points that
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Fig. 7. The clustering algorithm outline.

compose this aggregate and the accumulated geometrical
volume: h

[r][s]
i = M

[0][s]
i / V

[r][s]
i , where r is the scale at

which PCA is applied (typically r = 3).
The typical distance of a data point i is the average

Euclidean distance from its neighbors: bi = ∑
j :〈i,j〉‖x̄i −

x̄j‖/ni , where ni is the number of neighbors. The typical

distance b̄
[0][s]
i of an aggregate i at scale s is computed by

using Eq. (10), for Q[0][0] = (b1, b2, . . . , bN). The typical
distance is inversely related to the density.

3.3. Manifold identification

The aggregative properties are utilized to identify the man-
ifold that span an aggregate and to reveal the intrinsic di-
mensionality of the aggregate. The manifold identification
significantly affects the formation of clusters with similar
intrinsic dimensionality.

From a certain scale s (typically s=3) we examine for each
aggregate k a convexity measure: V

[r][s]
k /V

[s][s]
k . If the ratio

is less than c (in our experiments c = 1
2 ) then the aggregate

is considered as non-convex, otherwise it is convex. A type
of a manifold is defined directly for a convex aggregate and
indirectly (recursively) for a non-convex one. To characterize
the manifold type for a convex aggregate k, the definitions
below are used.

FVARk(i)
def= �(i)

k∑d
j=1�

(j)
k

, i = 1, . . . , d (12)

denotes the fraction of variance obtained in the direction of
�v(i)
k , relatively to the total variance attained in all principal

directions.

Definition 1. A convex aggregate k is defined as wide in
direction �v(i)

k if FVARk(i) > �/d , for a given � (typically
� = 0.5).

Definition 2. A convex aggregate is spanned by a 1D-
manifold if it is wide in l directions.

In case the examined aggregate is non-convex, the mani-
fold type is determined by its sub-aggregates (the finer level
aggregates which form it). The sub-aggregates of aggregate
k are scanned and if all of them have the same dimension-
ality l then the manifold type of aggregate k is defined to be
l. Otherwise, the manifold type of the aggregate is defined
to be heterogenous and identified as a junction. A manifold
identification pseudo-code is given in Fig. 4. Manifold iden-
tification results are demonstrated in Fig. 5 for three differ-
ent structures.

For scales at which aggregates become non-convex we de-
fine the notion of tips. Tips are those convex sub-aggregates
that form endpoints of the manifold that spans the aggre-
gate (see Fig. 6). Tips are currently defined only for 1D-
manifolds.

3.4. Algorithm outline

Aggregative properties of density and dimensionality are
used to affect the aggregation so that fine aggregates that
have similar dimensionality and density will merge to an
aggregate on a coarser scale. Each aggregative property, ob-
tained at a certain scale s, is formulated into a similarity
measure between aggregates, and used to modify the cou-
pling weights (7) between the aggregates at scale s. Those
similarity measures are usually an expression depending on
the difference between two aggregative properties (an abso-
lute value of the difference or the square of the difference).
The utilization of the similarity measures and the coupling
modification formulas are elaborated in Section 4. In addi-
tion to the bottom-up process, a top–down processes is used
to split and merge aggregates of fine scales to correct inac-
curate clustering which occurred during the bottom-up pro-
cess. A more elaborated description of the top–down process
is given in Section 4.4.

The clustering algorithm is summarized by an outline in
Fig. 7, with the following parameters. The top–down proce-
dure is performed at scale st (typically 6�st �9) down to
a finer scale (typically r = 2). The manifold identification
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is applied from scale rmn and on (typically rmn = 3). Ag-
gregative properties reflect their similarity by modifying the
coupling weights from scale sc and on (typically sc = 3).

4. Determining coherent clusters

In this work we have focused on several specific objec-
tives: to discriminate between clusters with different densi-
ties, to remove background noise that may incorrectly merge
with clusters, to isolate junctions (intersections) between
clusters, and to determine the different clusters that cross the
junction in terms of smooth continuation (i.e., the manifold
which is formed by each of the intersecting clusters has low
curvature). So far we have described the aggregative prop-
erties that are accumulated through the bottom-up weighted
aggregation. The way that we combine the aggregative prop-
erties to achieve those objectives is explained in this section.

4.1. The Mahalanobis distance

Given two aggregates k and l at scale s, with respective
centers of mass x̄k, x̄l and respective covariance matrices
�k, �l , the mutual Mahalanobis distance is computed as
follows. The Mahalanobis distance between x̄l and the
cloud of points in aggregate k is given by Mahal(l, k)=√

(x̄k − x̄l) · (�k)
−1 · (x̄k − x̄l)

T. Similarly Mahal(k, l) is
defined. The Mahalanobis distance can be considered as a
weighted Euclidean distance between a point and a cloud
of points, where the relevant axes are the principal direc-
tions of the cloud and the weights reflect the spread of the
data points on the principal directions. The mutual Maha-

lanobis distance is Mut_Mahal(k, l)
def= Max{Mahal(k, l),

Mahal(l, k)}. Starting from a certain scale s (typically s=3)
we bias the aggregation to preserve smooth continuation by
multiplying the coupling weights (7) between any two neigh-
boring aggregates k and l by exp(−cM · Mut_Mahal(k, l)),
where in our experiments cM is set to values between 1 and
10. Note that the use of the mutual Mahalanobis distance is
restricted to cases where both neighboring aggregates are
considered convex.

4.2. Completion probability and manifolds

The biasing by the mutual Mahalanobis distance promotes
continuation between two co-linear clouds of data-points.
To promote also smooth continuation upon constant curva-
ture, i.e. co-circularity, we rely on the elastica criterion. The
elastica criterion is used extensively in perceptual grouping
works (e.g. Refs.[26–28]). We exploit the elastica criterion
to support smooth continuation of aggregates and in partic-
ular to discriminate between clusters that cross a junction.

For two neighboring aggregates, the elastica criterion pro-
vides an estimation, called completion probability, that the
two aggregates form a smooth continuation. The comple-

tion probability described for the 2D case in images [26] is
generalized for 2D and 3D cases of scattered points.

The completion probability function in the 2D case es-
timates the probability that two neighboring aggregates k
and l, which are 1D-manifolds in R2, form a smooth 1D-
manifold (Fig. 8). The completion probability is based on
an energy function which is composed of two components.
The first component is the ratio of the distance r ′ between
the tips of the two aggregates and a radius of curvature 	,
defined by

	 =
(

L
(1)
k + L

(1)
l

2

)2/(
8 · L

(2)
k + L

(2)
l

2

)
,

where L
(1)
i and L

(2)
i are the length and width of aggregate

i, respectively (L(1)
i =

√
�(1)
i , L

(2)
i =

√
�(2)
i ), for i = k, l. The

ratio r ′/	 is denoted by Edist. The second component, de-

noted as E


ang , is a function of the angles 
k and 
l , where


i ∈ (−�/2, �/2) (for i=k, l), is the pitch angle of the first-
principal direction of aggregate i with the line connecting
the two centers of mass of the two aggregates. The square
difference between the two angles (
k − 
l )

2 reflects de-
viation from co-circularity, whereas their combined magni-
tude (
2

k + 
2
l ) reflects deviation from co-linearity. The en-

ergy of co-circularity and co-linearity is given by E


ang =

	
r

√

2

k + 
2
l − 
k · 
l , where r is the distance between the

centers of mass of the aggregates. The completion proba-
bility between aggregates k and l at scale s in the 2D case
is proportional to: G[s](k, l) = exp(−cd · (Edist(k, l))pd ) ·
exp(−cg · (E


ang(k, l))pg ), where cd , cg , pd and pg , are pre-
determined parameters (see Fig. 9 and Table 1). These pa-
rameters are quite robust for different data sets, yet, an au-
tomatic procedure to learn them may be developed in future
work.

The completion curve. Given a pair of aggregates k and
l that have high completion probability, a smooth comple-

φ
l

φ
k

r

Fig. 8. Completion between two aggregates in 2D. Each aggregate (ap-
proximated by a dashed ellipse) creates an angle 
i (i = k, l), between
its 1st principle axis and the line connecting the two centers of mass.
The completion curve is drawn between the two centers of mass.
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Fig. 9. Completion of 1D-manifolds in 2D. The thick lines are the 1st principal axis of each aggregate, the gray curve is the completion curve. The
parameters for each example are given in Table 1.

Table 1
A set of eight examples in 2D completion probability (see their display in Fig 9)

Exp 
k 
l L
(1)
k

L
(2)
k

L
(1)
l

L
(2)
l

r ′ r G(k, l)

A 0 0 2 0.08 2 0.08 0 4 1
B 0 0 2 0.08 2 0.08 0.5 4.5 0.96
C 0 0 2 0.08 2 0.08 3 7 0.57
D 30 30 2 0.08 2 0.08 3.5 7 0.24
E 30 −30 2 0.08 2 0.08 4.5 7 0.05
F 30 30 1 0.08 1 0.08 5.5 7 0.02
G 30 30 1 0.08 1 0.08 1.5 3 0.51
H 60 60 1 0.08 1 0.08 2 3 0.16

In all examples cg = 0.8, cd = 0.3, pd = 1.5, pg = 2; k denotes the left aggregate and l denotes the right one.

tion curve that connects them can be constructed. The cubic
spline approximates the elastica curve that minimizes the
average curvature between a given pair of points p1 and p2,
and their respective gradient values. In our context p1 = x̄k

and p2 = x̄l are the centers of mass of k and l, and the gra-
dient values are given by tan(
k) and tan(
l ), respectively
(see also Ref. [26])).

To encourage smooth continuation aggregation, the cou-
pling weight between aggregates k and l is replaced by
max{maxj {wkj }, maxj {wlj }} when G[s](k, l) > t for some
predetermined threshold 0� t �1. The completion probabil-
ity is measured between aggregates that are identified as
convex 1D-manifolds. In case the aggregates are identified
as 1D-manifolds but one of them is non-convex, the com-
pletion probability is measured between their convex tips
(see Section 3.3). The 3D case of completion probability is
explained in Appendix A.

4.3. Density

In many tasks the density of data points is a meaning-
ful criterion for separating clusters (e.g. Refs. [29,30]), and
detecting sparse background noise. The aggregative proper-
ties of density and typical distance (Section 3.2) are related
measures. Both measures are utilized at the bottom-up pro-
cess whereas the typical distance measure is also used in the
top–down refinement.

We have defined the density of aggregate i at scale s:
h

[r][s]
i =M

[0][s]
i /V

[r][s]
i , which is the ratio between the num-

ber of elements that compose the aggregate and its accumu-
lated geometrical volume. The variation of the density of an
aggregate i is also of interest and defined by: �2(hi)

[r][s] =
((h[r][s−2] − h

[r][s]
i )2), where h[r][s−2] denotes the density

of the sub-aggregates of aggregate i at scale s − 2. To sup-
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Fig. 10. Applying the density criterion. Dense regions are identified.
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Fig. 11. Bottom-up aggregation. Left to right: scales 4–7. A bottom-up aggregation without use of junction detection and resolution is demonstrated. The
two intersecting clusters are not separated.
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Fig. 12. Top–down junction resolving. Left to right: scale 8, coarsest scale of the first bottom-up process in which the junction aggregate has been
identified; scale 5, sub-aggregates of the junction neighbors are matched to each other by completion probability, and completion curves are drawn;
scale 2, fine aggregates are reclassified according to the completion curves; scale 6, coarsest scale of the second bottom-up process where the junction
is resolved and the two intersecting clusters are separated.

Fig. 13. Four types of resolved junctions. Junctions are resolved and the desired clustering is obtained by using the top–down process.
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Fig. 14. Inaccurate bottom-up clustering and cured top–down clustering. Left to right: scale 9 after first bottom-up process obtained with misclassifications;
scale 7, by applying top–down density refinement the background noise is separated from the clusters; scale 9, after first bottom-up process; scale 7,
after applying top–down density refinement.

port aggregation between aggregates with similar density
the coupling weight between any two aggregates k and l at
scale s is multiplied by

exp(−cdens · |h[r][s]
k − h

[r][s]
l |

(�(hk)
[r][s] + �(hl)

[r][s]))
, (13)

where cdens is a non-negative constant; in our experiments
cdens is set around 10. Some examples are given inFig. 10.

4.4. Top–down

In addition to the bottom-up process, a top–down process
is performed to cure incorrect cluster partitions, according
to global features which are detected only on coarse (top)
scales. The junction resolving top–down process is used
to determine the different manifolds that cross a junction,
which has already been detected and isolated during the
bottom-up process. The top–down process is based on the
information obtained from the manifold identification: the
junction and the orientation of manifolds. This high-level
information obtained at a coarse scale s is used to modify
the coupling weights at a finer scale r. Then the modifica-
tion is followed by a second bottom-up process starting at
scale r. An incorrect clustering result obtained from the ini-
tial bottom-up aggregation is demonstrated in Fig. 11. The
outline of the junction top–down resolution is as follows
(see Fig. 12 for illustration):

• For all neighboring aggregates of a suspected junction
aggregate i at scale s:

(1) match a neighbor with high completion probability,
and compute their completion curve (Section 4.2).

(2) strengthen coupling weights between r-scale sub-
aggregates of aggregate i which reside close to the
completion curve.

• weaken coupling weights between junction r-scale sub-
aggregates which do not reside on the same completion
curve.

• detect the exact intersection domain: strengthen coupling
weights between sub-aggregates that reside on more than
one curve, weaken all their other coupling weights.

• Perform bottom-up aggregation starting at scale r.

A set of identified junction examples and their resolving is
shown in Fig. 13.

The density refinement top–down process is used to de-
tect and separate background noise which may mistakenly
merge with clusters. The density refinement reflects the
density information which is obtained at a coarse scale
s and modifies the coupling weights at a finer scale r.
Examples for inaccurate bottom-up clustering and cured
top–down clustering are given in Fig. 14. The outline of
the density refinement top–down procedure is given below:

• For aggregates i at scale s:
(1) compute typical distance b̄

[0][s]
i and standard deviation

�(bi)
[0][s] (Section 4.3).

(2) for all r-scale sub-aggregates j of i:
for all k s.t. wjk > 0:
if (b̄[0][r]

j < b̄
[0][s]
i − �(bi)

[r][s] or

b
[0][r]
j > b̄

[0][s]
i + �(bi)

[r][s]):
weaken the coupling weight w

[r]
jk , according to the typical

distance.
• Perform bottom-up aggregation from scale r.

5. Complexity

The high complexity of a clustering algorithm can be
a significant barrier when the datasets are large. Also, the
preprocessing of calculating the local similarities between
the data points can be expensive if done naively. In the
scope of this paper, we do not intend to solve efficiently
the preprocessing. We use the KNN procedure to obtain
a bounded number (5�k�40) of local similarities (neigh-
bors) per a data point. In low dimension KNN has complex-
ity of O(N log N ), whereas in high dimension the complex-
ity is O(N2), where N is the number of data points.
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Fig. 15. Clustering CDM simulation. Left to right: a sample sub-cube of 20 000 CDM particles, top and side views. Clustering of the data when utilizing
the density and Mahalanobis features, top and side views.

Table 2
Clustering a CDM simulation sample: identifying manifolds

Cluster no. 1 3 13 14 15 21

Manifold type 2D 2D 3D 2D 2D 3D
Visual detection Dense plane Dense plane Noise Lower plane Dense plane Noise

The manifold type of selected aggregates shown in Fig. 15 is determined and compared to the visual detection of the shape patterns.

The complexity of our multiscale clustering algorithm is
O(N ). At each scale s of the pyramid four steps are ap-
plied: the computation of coupling weights, the computa-
tion of the aggregative properties, the modification of W [s]
according to the aggregative properties, and the choice of
coarse representative for the next scale. Each of these steps
has O(N [s]) complexity. Therefore, O(N [s]) operations are
done at each scale s. A single graph coarsening step pro-
duces a coarse graph with about half the number of nodes
of the finer graph. Thereby the complexity of one bottom
up process is O(N + N/2 + N/4 + · · ·) = O(N). The com-
plexity of a top–down process starting at a top (coarse)
scale s is influenced only by the number of operations per-
formed on the fine scale r (O(N [r])). Thus, the top–down
process complexity is at most O(N). Therefore, the total
complexity of the algorithm is linear in the size of the
dataset.

6. Clustering of astrophysical data

The fast growth of exploratory tools in astrophysics
yielded massive datasets awaiting to be explored. Some of
the underlying tasks in this field are the exploration of the
different structures that galaxies and clusters of galaxies
form both in real observations and in simulated models.
This may serve as a key for determination of the underlying
astrophysical model parameters that explain observations.
The cold and dark matter (CDM) is assumed to be the
major fraction of the universe mass. Cosmological simu-
lations of the universe evolution are based on applying a
dynamical model on CDM particles. As time evolves, CDM
particles form peculiar structures such as filaments, sheets

and spherical clusters, i.e. different manifold types. We use
our algorithm in this context to demonstrate its capabili-
ties of detecting structures in such datasets. We also use
our algorithm to infer the fitting between an astrophysical
model and real observations by comparing the distribution
of different manifold types.

6.1. Cold and dark matter

The algorithm is applied on a sample of a 3D simulation
which contains 20 000 CDM particles (Fig. 15). The parti-
cles positions are the input data points for our algorithm.
The advantages of using the aggregative properties and the
manifold identification for discovering interesting structures
are demonstrated in this example. In this dataset (Fig. 15) a
dense plane, that is composed of dense cores, is sought to
be separated from the surrounding sparse noise. Below the
plane there is a sparser plane that is almost orthogonal to it.
We have used KNN with k =40. The use of the density fea-
ture and the Mahalanobis distance successfully detected the
structures in the data. Table 2 demonstrates a comparison
between our visual detection of structures and the manifold
identification of our algorithm.

6.2. Comparison of a CDM model with a real observation

The use of our algorithm to compare an astrophysical
model with a real observation is demonstrated. Specifically,
we have checked a null hypothesis which claims that the
multiscale distribution of manifolds of different dimension-
ality in an observation data set is similar to the distribu-
tion in 22 model-based realization data. We have used as an
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Fig. 16. Clustering an ‘X’ shape. Left to right: SL, SPC, KEM—a bad execution, FMSC.

Fig. 17. Clustering two intersecting circles. Left to right: k-means, SC, KEM, FMSC.

Fig. 18. Clustering two dense clusters with noise. Left to right: SL (two small clusters are indicated by arrows), k-means (k = 3), SPC, FMSC.

observation the 2dF galaxy red-shift survey (2dF) and 22

CDM model realizations (i.e. those are 22 data sets of a
CDM model simulations). The model and observation have
been already found similar with respect to density based cri-
teria [31,32].

The probability of an aggregate to be an iD-manifold; i =
0, 1, 2, 3, is computed at each scale s (denoted by �s

i (�j ))
for each model realization �j , j = 1, . . . , 22, and for the
2dF dataset. Sparse clusters whose manifold cannot be iden-
tified, due to small number of galaxies belonging to it, are
also counted and considered as 0D-manifolds. The aver-
age probability for a manifold of type i over all model re-
alizations is computed (denoted by E{�s

i }), i.e. E{�s
i } =∑22

j=1�
s
i (�j )/22 is the average fraction, over all 22 model

realizations, of the clusters found at scale s, whose manifold
is an id-manifold. The standard deviation of this measure is
also computed (denoted by �s

i ). The standardized variable
matrix 4 × 8 which measures the deviation of the 2dF man-

ifold distribution from the model manifold distribution at 8
different scales of our algorithm is computed as Z(i, s) =
(E{�s

i }−�s
i (2dF))/�s

i /
√

22. For all i and s Z(i, s) values
satisfy |Z(i, s)| < 1.59, which confirms with a 95% confi-
dence interval that the observation is fitted by the model.

7. Comparison of algorithms

Several clustering algorithms and our fast multiscale clus-
tering algorithm (FMSC) were applied to examples which
are reported in relevant literature and to the CDM exam-
ple. The algorithms compared are single-linkage [7] (SL),
k-means [33], SPC [12] (also known as the granular magnet
method), spectral clustering (SC) [5], connectivity-kernel
clustering (CKC) [10], an algorithm that uses the k-means
algorithm with the expectation maximization (EM) algo-
rithm [34] (KEM), and our FMSC. In all examples the data
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Fig. 19. Clustering dense spirals cluttered with noise. Left to right: k-means (k = 4), CKC: (the figure is taken from http://www.inf.ethz.ch/personal/
befische/ nips03/), FMSC.

Fig. 20. Clustering a CDM example. Left to right: k-means k = 4, k-means k = 30, FMSC.
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surface. 2� is the roll angle difference.

points which belong to the same cluster are displayed in the
same color. In Figs. 16 and 17 we demonstrate our detec-
tion of a junction, and the separation between the clusters
that cross the junction. It may be required that connected
components will be clustered as one cluster. Such a task can
be achieved by our algorithm (as shown in Fig. 11) as well

as by other algorithms. However, our intention is to demon-
strate how FMSC uses the manifold identification and the
orientation of aggregates to separate clusters even when am-
biguity in cluster assignment exists, i.e a junction. In Figs.
18 and 19 we compare the performance of different algo-
rithms in separating dense clusters from noise. Of particular

http://www.inf.ethz.ch/personal/befische/nips03/
http://www.inf.ethz.ch/personal/befische/nips03/
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interest is the comparison demonstrated in Fig. 19, where we
detected curved and elongated clusters and separated them
from noise. In Fig. 20 we have found some of the underly-
ing structures, yet some improvement in the use of aggrega-
tive properties is required in order to separate the whole
dense plane in this sample. The k-means results shown in
Fig. 20 have completely misclassified the dense clusters.
Some of the other algorithms run out of memory resources
when tested on the CDM example. Indeed, the compar-
isons manifest the need for aggregative properties in order
to achieve desired clustering.

8. Conclusions

We presented a novel multiscale clustering algorithm,
inspired by AMG. Our AMG-like approach discovers the
desired aggregation of the data set by following the sim-
ilarities between the data points at different resolutions,
using a bottom-up weighted aggregation process. More-
over, to achieve coherent clusters at all scales, our approach
uses multiscale similarity features and incorporates mani-
fold identification processes. The algorithm detects clusters
that are distinguished by their multiscale nature, separates
between clusters with different densities and identifies and
resolves intersections between clusters. The flexibility of
our algorithm which allows to combine other statistics, i.e.
additional multiscale similarity features, along with its low
complexity, offer a powerful tool for exploring massive
data sets.
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Appendix A. Completion probability in 3D

In the 3D case of completion probability there are two
situations: 1D-manifolds and 2D-manifolds in R3 space. In
the 1D-manifold case (Fig. 21) two angles are defined: the
pitch angle 
 between the Z = 0 plane and the first prin-
cipal axis, and the yaw angle � between the Y = 0 plane
and the 1st principal axis. The completion probability func-
tion reflects co-circularity and co-linearity for both angles:

G[s](k, l)=exp(−cd ·(Edist(k, l))pd −cg ·((E

ang(k, l))pg +

(E
�
ang(k, l))pg )). In the 2D-manifold case (Fig. 21) the ag-

gregates manifold structure is approximated by a plane.
Given aggregates k and l, two angles are considered: the
aggregate’s roll angle difference (2�), and their pitch an-
gles (
). The roll angle difference is measured as the angle
formed between the directions of the intersection lines of
the aggregate’s manifolds with the X = 0 plane and X = r

plane, respectively, (the lines are denoted by I (k) and I (l)

where I (l) is located at l center). We then fix the Z = 0
plane to intersect X = 0 where the bisector of the direc-
tions of I (k) and I (l) lays. The pitch angle of an aggre-
gate k (denoted by 
(k)) is measured as follows: the in-
tersection I (y, k) of Y = 0 with the planar manifold of k
is computed. 
(k) is the angle between I (y, k) and the X-
axis. Similarly, I (y, l) and 
(l) are computed. The proba-
bility function G reflects co-circularity and co-linearity of
the pitch angles, the difference in the roll angle 2�, and the
distance between the two aggregates: G[s](k, l)= exp(−cd ·
(Edist(k, l))pd − cp · (E


ang(k, l))pg − cr · |�|p�), where cd ,
cp, and cr are predefined parameters. 	 is computed by us-

ing 	 with L
[1]
i equal to the length of I (p+, i), and L

[2]
i

equal to
√

�(3)
i , for i = k, l. In 3D, the completion curve

of 1D-manifolds considers two angles: the yow and pitch
angles, whereas in 2D-manifolds interpolation of the two
planes via the cubic spline creates the completion surface
(Fig. 21).
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