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a b s t r a c t

The ratio of the largest eigenvalue divided by the trace of a p × p random Wishart matrix
with n degrees of freedom and an identity covariance matrix plays an important role in
various hypothesis testing problems, both in statistics and in signal processing. In this
paper we derive an approximate explicit expression for the distribution of this ratio, by
considering the joint limit as both p, n → ∞ with p/n → c . Our analysis reveals that even
though asymptotically in this limit the ratio follows a Tracy–Widom (TW) distribution, one
of the leading error terms depends on the second derivative of the TW distribution, and is
non-negligible for practical values of p, in particular for determining tail probabilities. We
thus propose to explicitly include this term in the approximate distribution for the ratio.
We illustrate empirically using simulations that adding this term to the TW distribution
yields a quite accurate expression to the empirical distribution of the ratio, even for small
values of p, n.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Let x1, . . . , xn be n i.i.d. p-dimensional observations from either a real valued or a complex valued Gaussian distribution
N (0, Σ), where the population covariance matrix is assumed to be of the form Σ = σ 2Ip×p with an unknown scaling factor
σ 2. Denote the sample covariance matrix by

Sn =
1
n

−
i

xixHi (1.1)

and let ℓj denote its eigenvalues, sorted in decreasing order, ℓ1 ≥ ℓ2 ≥ · · · ≥ ℓp. In this setting, the matrix Sn, upon division
by the unknown factor σ 2, follows aWishart distribution with n degrees of freedom andwith an identity covariancematrix.
For ease of notation we denote its average trace by

T =
1
p

p−
j=1

ℓj =
1
p
Tr(Sn).

The focus of this paper is on the distribution of the ratio of the largest eigenvalue of Sn divided by its average trace, namely
the distribution of the following random variable,

U =
ℓ1

1
p

∑
j

ℓj
=

ℓ1

T
. (1.2)
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Note thatU is scale invariant and does not depend on the unknown noise level σ . Hence, for the rest of the paper, we assume
w.l.o.g. that σ = 1.

The randomvariableU plays a key role in various scale independent hypothesis testing procedures, both in some classical
problems in statistics as well as in somemodern applications in signal processing. Classical examples include testing for the
presence of interactions in multi-way data [8] and testing for equality of the population covariance to a scaled identity
matrix [11]. Some modern signal processing applications include testing for the presence of signals in cognitive radio as
well as non-parametric signal detection in array processing [3,2]. Normalized Wishart matrices (e.g., with trace equal to
one) are also a common model for random density matrices in quantum information channels, see for example [14,22,21].
Hence, the largest eigenvalue of such matrices also follows the distribution of U .

Regretfully, despite its importance there is no simple-to-compute expression for the exact distribution of U . Various
authors derived exact formulas for U in terms of high dimensional integrals or as inverses of certain Laplace transforms,
which could then be evaluated numerically for small values of p, see [5,19]. More recently, [12] developed asymptotic
expansions for tail probabilities of U by considering the extrema of certain random fields. The resulting expressions,
however, seem difficult to evaluate unless p is very small.

The difficulty in obtaining a simple closed form expression for the distribution of U is related, of course, to a similar
difficulty regarding simply the largest sample eigenvalue ℓ1. Whereas the exact distribution of ℓ1 also has no simple to
evaluate explicit expression, in the joint limit as both p, n → ∞ with p/n → c , various authors have shown that upon
proper centering and scaling [7,9],

Pr
[

ℓ1 − µnp

σnp
< s

]
→ TWβ(s) (1.3)

where TWβ denotes the Tracy–Widom distribution of order β , and β = 1, 2 for real valued or complex valued observations,
respectively. Moreover, for carefully chosen centering and scaling functions µnp and σnp, the convergence rate in Eq. (1.3) is
O(p−2/3). For real valued observations, suitable expressions for µnp and σnp are [13]

µnp =
1
n


n − 1/2 +


p − 1/2

2
, (1.4)

σnp =


µn,p

n


1

√
n − 1/2

+
1

√
p − 1/2

1/3

. (1.5)

For the complex case, similar expressions appear in [6].
The results above imply that asymptotically U also follows a Tracy–Widom distribution. For a detailed proof we refer

the reader to [3,17]. Here we provide an intuitive explanation for this: In the joint limit p, n → ∞, p/n → c , we have that
µnp → (1 +

√
c)2 = O(1), whereas σnp = O


1

√
n p1/6


= O(p−1/2−1/6). In contrast, the denominator T = Tr(Sn)/p in the

definition of U , Eq. (1.2) is distributed as a χ2
βnp/βnp random variable, and thus has mean E[T ] = 1 and fluctuations of the

order O(1/
√
pn) = O(p−1). The key point is that asymptotically the fluctuations in T are negligible compared to those of ℓ1.

Combining these properties with Eq. (1.3), it then follows that as both p, n → ∞,

Pr
[
U − µnp

σnp
< s

]
→ TWβ(s). (1.6)

Indeed, based on this analysis some recent works use Eq. (1.6) either to set the threshold corresponding to a given false
alarm rate for various detection procedures, or to analyze them, see for example [3,10]. Since these thresholds depend on
tail probabilities of U , an interesting question is how accurate is the approximation in Eq. (1.6) for finite values of n and p,
and in particular for the setting common in some modern signal processing applications, where p = O(10) and n ≫ p.

Before providing a theoretical analysis of this question it is instructive to first look at some simulation results. In Fig. 1, we
compare the exact TW density with the empirical density of the largest eigenvalue ℓ1 and of the ratio U , both centered and
scaled by µnp and σnp as described above, for β = 1, p = 20 and n = 500. As shown in the figure, the empirical distribution
of ℓ1 is very well approximated by the limiting TW distribution. In contrast, approximating the distribution of U by the TW
distribution (Eq. (1.6)) is quite inaccurate for small and evenmoderate values of p. In particular, tail probabilitiesmay exhibit
relative errors of 100%, even for quite large values of p. As an example, at a false alarm of α = 1% which gives s = 0.4776 in
the complex case, with p = 20 and n = 500 we have 1 − TW2(s) = 0.01, whereas Pr


U−µnp

σnp
> s


= 0.0054.

In this paperwe elucidate the reason for this observed behavior, and propose a simple correction term to Eq. (1.6) suitable
for finite values of p, n and s. First, we show that even though the convergence rate in (1.6) is still O(p−2/3), there are two
main error terms in the difference

Pr
[
U − µnp

σnp
< s

]
− TWβ(s).

The first term is the approximation error already present in Eq. (1.3), namely Pr


ℓ1−µ

σ
< s


− TWβ(s). The second term

depends on the second derivative of TWβ(s). While asymptotically both terms are O(p−2/3), empirically the first term is
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Fig. 1. Comparison of Tracy–Widom density with empirical density of largest eigenvalue ℓ1 and of ratio U , after centering and scaling by µnp and σnp
respectively.

quite small even for small values of p. In contrast, for the second term we show theoretically that it is non-negligible, in
particular for tail probabilities, unless p ≫ 10.

This second term is the source of the relatively large difference between tail probabilities of U and of ℓ1. The main result
of this paper is the following explicit approximate formula for tail probabilities of U:

Pr
[
U − µnp

σnp
> s

]
≈ 1 − TWβ(s) +

1
2


2

βnp


µnp

σnp

2

TW′′

β(s). (1.7)

As shown in the simulation section, compared to the Tracy–Widom approximation, this formula provides a significantly
better fit to the empirical density of U , with an error comparable to that of Pr


ℓ1−µnp

σnp
< s


− TWβ(s). We remark that

our analysis is valid both for real and for complex valued data, β = 1, 2. This modified expression for the distribution
of U should be useful both for practitioners (to set the threshold for a required false alarm rate) as well as for theoretical
purposes. An example of the latter is the performance analysis of various detection tests in signal processing that depend
on the distribution of this random variable [15,16].

2. Distribution of the ratio of largest eigenvalue to the trace

We first introduce the following notation. Let Fnp(s) be the finite sample distribution function of the largest eigenvalue
ℓ1 properly centered and scaled by µnp and σnp such that the convergence rate in Eq. (1.3) is O(p−2/3). Similarly, let Hnp(s)
denote the distribution function of U , also centered and scaled by the same parameters. That is,

Fnp(s) = Pr
[

ℓ1 − µnp

σnp
< s

]
, Hnp(s) = Pr

[
U − µnp

σnp
< s

]
.

We also denote the respective densities by fnp(s) and hnp(s).
For our main result we first need the following lemma.

Lemma 1. In the joint limit as both p, n → ∞, p/n = c, not only does Eq. (1.3) hold, but also both

|F ′

np(s) − TW′

β(s)| → 0 and |F ′′

np(s) − TW′′

β(s)| → 0. (2.1)

In the Appendixwe outline the proof of this lemma for the complex valued case β = 2. The proof is similar to the proof of
convergence of Eq. (1.3), e.g., using the Fredholm determinant representation. We conjecture that the lemma holds also in
the real valued case β = 1. A proof in this case may be considerably more difficult as the distributions are now represented
by regularized determinants of operators with matrix kernels, so that even the proof of Eq. (1.3) is much more involved,
see [13].

Our main result regarding the distribution of the ratio of the largest eigenvalue to the average trace can be stated as
follows:

Theorem 2.1. Assume that in the joint limit as both p, n → ∞ with p/n → c, the following two conditions hold:

(i) uniformly in p and s,Hnp(s) is a smooth function with bounded third derivative, |H ′′′
np(s)| < C.

(ii) Eq. (2.1) holds.
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Then, in the joint limit as both p, n → ∞,

Hnp(s) − TWβ(s) =

Fnp(s) − TWβ(s)


−

1
2


2

βnp


µnp

σnp

2

TW′′

β(s) + o(p−2/3). (2.2)

As discussed above, condition (ii) indeed holds for β = 2. We conjecture it holds also for β = 1. Condition (i), which
seems a reasonable assumption, is required for our proof of the theorem. It remains an open question whether the theorem
can be proven without this assumption, or whether this assumption can be proven itself.

Before proving the theorem, let us discuss the two terms on the r.h.s. of Eq. (2.2). The first term is the error in
approximating the distribution of the largest eigenvalue ℓ1 by the TW distribution. While in principle this term is O(p−2/3),
empirically it has been shown to be very small even for small values of p, n, see [9,6,13]. Next, consider the second term,
in particular in the context of right tail probabilities, which are the most relevant for hypothesis testing applications. First,
note that as p, n → ∞, with p/n → c

2
βnp


µnp

σnp

2

=
2
β

(1 +
√
c)4/3

1
p2/3

(1 + o(1)).

Hence the second term on the r.h.s. of Eq. (2.2) is also O(p−2/3). Regarding the accuracy in approximating right tail
probabilities by the TW distribution, the key quantity to analyze is the relative size of this second correction term with
respect to the leading order term, 1 − TWβ(s). Since for s ≫ 1, 1 − TW(s) ∼ C exp(−as3/2)/s3/2 for some constants a, C ,
it follows that |TW′′(s)|/(1 − TW(s)) becomes increasingly large as s → ∞. However, even for small values of s the second
term in Eq. (2.2) is non-negligible, unless p ≫ 1. To see this, consider for example s = −0.2325, where 1 − TW2(s) ≈ 5%.
At this value of s, |TW′′

2(s)|/(1 − TW2(s)) ≈ 7. Furthermore, for n ≫ p, we have that 1
np (µnp/σnp)

2
≈ 1/p2/3. Hence, for the

second term in Eq. (2.2) to have at most a 10% relative error, namely

1
2

2
βnp


µnp

σnp

2
|TW′′

2(s)|
1 − TW2(s)

≤ 0.1

we need p & (35)3/2 ≈ 200. To correct for these potentially large relative errors, our proposed approximation for tail
probabilities of the ratio is thus

Pr
[
U − µnp

σnp
> s

]
≈ 1 − TWβ(s) +

1
2


2

βnp


µnp

σnp

2

TW′′

β(s). (2.3)

Simulation results shown in Fig. 2 and summarized in the tables below illustrate that Eq. (2.3) indeed provides a muchmore
accurate fit to the empirical distribution of U .

Proof. The proof consists of two main steps. First, we show that the density fnp(s) is approximately given by a convolution
of hnp(s) with a Gaussian. In the second step we approximately invert this deconvolution, showing that the overall error is
o(p−2/3).

The starting point for our analysis is the well known fact that the two random variables U and T are independent, see for
example [8], Eq. (5.4), or [2]. Thus, suppressing the dependence on p, n, their joint density can be written as

f (u, t) = h(u)g(t).

Next, recall that the random variable T follows a χ2
βnp/(βnp) distribution. Hence its density g(t) is known explicitly,

g(t) = βnp
1

2βnp/20


βnp
2

 (βnpt)βnp/2−1e−βnpt/2
= Cβ,n,p

e−η(t−1−ln t)

t

where η = βnp/2 and Cβ,n,p = ηηe−η/0(η).
Finally, to relate the distribution of U to that of ℓ1 we consider the following equality,

Pr[ℓ1 < x] =

∫ px

0
Pr

U <

x
t


g(t)dt. (2.4)

Note that the upper limit of integration is px since by definition Pr

U < 1

p


= 0. At this point it is convenient to perform a

change of variables x = µnp + σnps. The equation above can then equivalently be written as

Fnp(s) = Pr
[

ℓ1 − µnp

σnp
< s

]
=

∫ p(µnp+sσnp)

0
Hnp


s
t

+
µnp

σnp

1 − t
t


g(t)dt.
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a b

c

Fig. 2. Comparisonof empirical tail probabilities for the ratioU vs. theoretical approximation, Eq. (2.3),with t(α) = µnp+s(α)σnp and t̃(α) = µnp+s̃(α)σnp .

Furthermore, upon differentiation w.r.t. s, and using the fact that

Hnp


s
t

+
µnp

σnp

1 − t
t

 
t=p(µnp+sσnp)

= Pr
[
U <

1
p

]
= 0

we obtain a similar equation for the densities,

fnp(s) =

∫ p(µnp+sσnp)

0
hnp


s
t

+
µnp

σnp

1 − t
t


g(t)dt.

According to assumption (ii), Eq. (2.1), the left hand side converges to TW′

β(s). We thus study the behavior of the integral
on the r.h.s. as both p, n → ∞. In this limit, g(t) becomes increasingly concentrated around a value of 1 with fluctuations
of the order of ϵ = 1/

√
η. Hence, as in Laplace’s method for the asymptotic expansion of integrals, we make the change of

variables t = 1 + ϵz, keeping in mind that ϵ → 0 as n, p → ∞. Note that via a Taylor expansion,

exp(−η(t − 1 − ln t)) = exp


−
z2

2


exp


−

ϵ

3
z3

(1 + ϵθ(z))3


where θ(z) ∈ [0, z]. In addition, from the asymptotics of the Gamma function we have that

Cβ,n,p =
1

√
2πϵ

(1 + O(ϵ2)).

Thus,

fnp(s) =
1

√
2π

∫ (pµnp+psσnp−1)/ϵ

−1/ϵ
hnp


s

1 + ϵz
− ϵ

µnp

σnp

z
1 + ϵz


exp


−

z2

2


×

1
1 + ϵz

· exp


−
ϵ

3
z3

(1 + ϵθ(z))3


dz(1 + O(ϵ2)).
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Note that the lower and upper limits of integration converge to ±∞ as ϵ → 0. Furthermore, since the Gaussian function
decays exponentially fast, up to exponentially small errors in p, n, we have that

fnp(s) =

∫
∞

−∞

hnp


s − ϵ

µnp

σnp
z − ϵsz + O


µnp

σnp
ϵ2


e−z2/2

√
2π

dz(1 + O(ϵ)). (2.5)

We remark that up to now, the above algebraic manipulations were nothing but the approximation, for large values of k, of

a χ2
k /k random variable by 1 +


2
k Z where Z ∼ N(0, 1).

Next, recall that in the joint limit p, n → ∞, with p/n → c , we have that ϵ = O(p−1) whereas ϵ
µnp
σnp

= O(p−1/3), so that

the latter is the leading order correction term inside the parentheses in Eq. (2.5) above. Denoting δp = ϵ
µnp
σnp

, up to order

O(p−1) terms, we have that

fnp(s) =

∫
∞

−∞

hnp(s − δpz)
e−z2/2

√
2π

dz. (2.6)

This equation shows that the density of the largest eigenvalue, fnp(s), is approximately the convolution of the required
density of the ratio, hnp(s), convolved with a Gaussian. The required solution is thus the inverse operation, e.g., a
deconvolution.

To perform the deconvolution and obtain an expression for hnp(s) and thus for Hnp(s) it is convenient to work in Fourier
space. Since both fnp and hnp are probability density functions, their Fourier transforms arewell defined.Weuse the following
definition of the Fourier transform, ĝ(ω) =


g(x)e−iωxdx, and denote by ˆtw(ω) the Fourier transform of the Tracy–Widom

density. Conveniently, the convolution operator translates into multiplication in Fourier space, and the Fourier transform of
a Gaussian is again a Gaussian. Therefore,

f̂np(ω) = ĥnp(ω)e−δ2pω2/2 (2.7)

or equivalently ĥnp(ω) = eδ2pω2/2 f̂np(ω). Simple algebraic manipulations give

ĥnp(ω) =


1 +

1
2
δ2
pω

2


ˆtw(ω) +


1 +

1
2
δ2
pω

2


(f̂np(ω) − ˆtw(ω)) + q̂(ω) (2.8)

where

q̂(ω) =


eδ2pω2/2

− 1 −
1
2
δ2
pω

2

f̂np(ω)

=


1 − e−δ2pω2/2

−
1
2
δ2
pω

2e−δ2pω2/2

ĥnp(ω). (2.9)

Taking an inverse Fourier transform of Eq. (2.8) gives that

hnp(s) = tw(s) −
1
2
δ2
p tw

′′(s) +


1 −

1
2
δ2
p
d2

ds2


(fnp(s) − tw(s)) + q(s) (2.10)

where q(s) is the inverse Fourier Transform of q̂(ω). Integrating from −∞ to s gives

Hnp(s) = TW(s) −
1
2
δ2
pTW

′′(s) +

[
1 −

1
2
δ2
p
d2

ds2

]
(Fnp(s) − TW(s)) + Q (s), (2.11)

where

Q (s) = Hnp(s) −

∫
∞

−∞

Hnp(s + δpz)
e−z2/2

√
2π

dz +
1
2
δ2
p

∫
∞

−∞

H ′′

np(s + δpz)
e−z2/2

√
2π

dz. (2.12)

Since δ2
p = O(p−2/3), Eq. (2.1), implies that the term δ2

p
d2

ds2
[Fnp(s) − TW(s)] = o(p−2/3) and is thus negligible w.r.t. the term

δ2
pTW

′′(s) in Eq. (2.11). To conclude the proof we thus need to show that the last term Q (s) is also o(δ2
p) = o(p−2/3). To this

end, we expand Hnp(s + δpz), as well as H ′′
np(s + δpz) in a Taylor series,

Hnp(s + δpz) = Hnp(s) + δpzH ′

np(s) +
1
2
δ2
pz

2H ′′

np(s) +
1
6
δ3
pz

3H ′′′

np(s + δpθ1(z))

H ′′

np(s + δpz) = H ′′

np(s) + δpzH ′′′

np(s + δpθ2(z)).
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Table 1
Results of 5·106 simulations for real valued data, β = 1.

β = 1
p = 10
n = 100

s(α) Pr


ℓ1−µ

σ
> s(α)


Pr
 U−µ

σ
> s


s̃(α) Pr

 U−µ

σ
> s̃(α)


α = 10% 0.4501 0.0969 0.0600 0.1624 0.0937
α = 5% 0.9793 0.0479 0.0243 0.6015 0.0470
α = 1% 2.023 0.0097 0.0031 1.4303 0.0104

Inserting these expansions into Eq. (2.12) gives that

Q (s) = δ3
p

∫
∞

−∞

[
1
6
z3H ′′′

np(s + δpθ1(z)) +
1
2
zH ′′′

np(s + δpθ2(z))
]
e−z2/2

√
2π

dz.

Finally, using assumption (i) that |H ′′′
np(s)| is bounded it follows that |Q (s)| ≤ Cδ3

p = o(p−2/3). �

Remarks. (i) Eq. (2.6) shows that the density of the ratio U is approximately a deconvolution of the density of the largest
eigenvalue ℓ1 with aGaussian. Since deconvolution is in general an ill-conditioned inverse operation, some a priori regularity
conditions, such as the condition that |H ′′

np(s)| ≤ C must be imposed on the solution to prove the Theorem.
(ii) The deconvolution Eq. (2.6), or its equivalent in the Fourier space, Eq. (2.7), may also be used to numerically compute the
distributionHnp(s), given an accurate approximation of Fnp(s), simply by computing f̂np(ω) and performing an inverse Fourier
transform of Eq. (2.7). Rather than using the TW approximation, the exact distribution Fnp may be accurately evaluated
numerically for finite values of p, n, via its Fredholm determinant representation by the methods developed in [4], for
example.
(iii) Note that Eq. (2.2) implies that to leading order in p,

E[U] = E[ℓ1]

where the latter may be approximated by µn,p + aβσn,p, with aβ the mean of a TW-distributed random variable. The reason
is that by definition

E[U] = µnp + σnp

∫
∞

−∞

Pr
[
U − µnp

σnp
> s

]
ds

and the integral of the correction term containing TW′′(s) vanishes, as TW′(s) vanishes as s → ±∞.
(iv) A final remark on universality and non-Gaussianity is in place: As proven in [20,18], under certain regularity conditions
on the underlying distribution, the largest eigenvalue of a sample covariance matrix of non-Gaussian multivariate random
variables asymptotically also follows a TW distribution. However, for a finite and relatively small number of dimensions p
considered here, the deviations in the distribution of ℓ1 from the TW distribution may be quite significant. Hence, Eq. (1.3)
itself may potentially be not very accurate for tail probabilities, and may be much larger than the difference between the
distribution of the two random variables ℓ1 and U .

3. Simulation results

In Tables 1 and 2 and in Fig. 2 we present simulation results for the empirical tail probabilities Pr


ℓ1−µ

σ
> s(α)


and

Pr
U−µ

σ
> s(α)


, where TW(s(α)) = 1 − α, for various values of α, p, n.

We compare the empirical probability of U to the theoretical formula in Eq. (2.3). In addition, we use Eq. (2.3) to find
a modified threshold s̃(α), such that 1 − Hnp(s̃(α)) = α. As seen in the simulations and predicted by our analysis, the
TW distribution is a relatively poor approximation for tail probabilities of the random variable U , whereas Eq. (2.3) is far
more accurate.

All simulationswere performed inMatlab. The TWdistribution and densitywere computed numerically using the RMLab
package by Dieng.1 The derivative of the TW density, tw′(s), was computed numerically via a standard central differencing
scheme with 1s = 10−3. This provided sufficient accuracy for our purposes. We remark that if needed, more accurate
numerical methods for evaluating the TW distribution and its derivatives are available, see e.g. [4].
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Table 2
Results of 5·106 simulations for complex valued data, β = 2.

β = 2
p = 10
n = 100

s(α) Pr


ℓ1−µnp
σnp

> s(α)


Pr


U−µnp
σnp

> s


s̃(α) Pr


U−µnp
σnp

> s̃(α)


α = 10% −0.5969 0.0969 0.0602 −0.8042 0.0966
α = 5% −0.2325 0.0474 0.0237 −0.5087 0.0486
α = 1% 0.4776 0.0092 0.0028 0.0287 0.0113

Appendix. Proof of Lemma

We provide an outline of the proof of the Lemma. For simplicity, we prove only convergence of the density of the largest
eigenvalue ℓ1 to the TW density. The proof for convergence of its derivative is similar. Furthermore, we present the proof
only for the complex case β = 2.

Our analysis follows the notation and proof of convergence of Eq. (1.3) as described in [1]. Let X be an n × pmatrix with
i.i.d. complex Gaussian N(0, 1) entries, and letW = 1/nX∗X be the sample covariance matrix (a scaledWishart matrix). Let
I = [s, s′] be a finite interval. The starting point of the analysis is the Fredholm determinant representation

Fnp(I) = Pr[no eigenvalues ofW in µnp + σnpI] = det(I − KpχI) (A.1)

where χI is the indicator function for the interval I , and Kp is an operator with corresponding kernel

Kp(x, y) =

p−
j=1

φj(x)φj(y)

where φj are scaled Laguerre polynomials. Eq. (A.1) can also be written as

Pr[no eigenvalues ofW in µn,p + σn,pI] = ∆I(Kp) =

p−
k=1

(−1)k

k!
∆k,I(Kp) (A.2)

where

∆k,I(K) =

∫
I
· · ·

∫
I

k
det
i,j=1

K(xi, xj)
k∏

i=1

dxi.

Using the asymptotics of the Laguerre polynomials, it is possible to show that [9]

lim
n,p→∞

Pr[no eigenvalues ofW in [s, s′]] = det(I − K̄χ[s,s′]) = ∆I(K̄)

where K̄ is the limiting operator corresponding to the Airy kernel, and further one may take the limit s′ → ∞, thereby
proving Eq. (1.3).

We now consider the density of the largest eigenvalue ℓ1. Taking the derivative with respect to s in Eq. (A.2) gives

∂

∂s
∆[s,s′](Kp) =

p−
j=1

(−1)k

k!
k
∫ s′

s
· · ·

∫ s′

s

k
det
i,j=1

Kp

xi, xj

 
x1=s

k∏
i=2

dxi.

We note that each of the terms in the sum above is known as a Fredholm adjugant, see [1].
We now claim that in the joint limit as both p, n → ∞, the finite kernel Kp can be replaced by the limiting kernel K̄ . To

this end, we use Lemma 3.4.2 from [1]: For any two kernels, F(x, y) and G(x, y), k
det
i,j=1

F(xi, xj) −
k

det
i,j=1

G(xi, xj)
 ≤ k1+k/2

‖F − G‖∞ max(‖F‖∞, ‖G‖∞)k−1.

This lemma implies that ∂

∂s
∆k,[s,s′](F) −

∂

∂s
∆k,[s,s′](G)

 ≤ k1+k/2 max(‖F‖∞, ‖G‖∞)k−1
|s′ − s|k−1.

It also implies that for the limiting kernel K̄ , the order of differentiation and summation in ∂
∂s∆[s,s′](K̄) can be switched,

∂

∂s
∆[s,s′](K̄) =

−
k

(−1)k

k!
∂

∂s
∆k,[s,s′](K̄)
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as the sum of differentiated terms converges uniformly in s. Hence, ∂

∂s
∆[s,s′](Kp) −

∂

∂s
∆[s,s′](K̄)

 ≤


∞−
k=1

k1+k/2

(k − 1)!
max(‖Kp‖, ‖K̄‖)k−1

|s′ − s|k−1


‖Kp − K̄‖∞. (A.3)

Note that the sum is convergent. Hence, if ‖Kp − K̄‖∞ → 0 then the difference above converges to zero. Indeed, as shown
in [9], there is uniform convergence of the kernel Kp to the limiting Airy kernel K̄ on compact sets. Furthermore, the bounds

|Kp(x, y)| ≤ Ce−(x+y), |K̄(x, y)| ≤ Ce−(x+y)

for all x, y > s imply that one can take the limit s′ → ∞. This yields, dds Fnp(s) − TW′

2(s)
 → 0. �

References

[1] G.W. Anderson, A. Guionnet, O. Zeitouni, An Introduction to RandomMatrices, Cambridge University Press, 2009.
[2] O. Besson, L.L. Scharf, CFAR matched direction detector, IEEE Trans. Signal Process. 54 (7) (2006) 2840–2844.
[3] P. Bianchi, M. Debbah, M. Maida, J. Najim, Performance of statistical tests for source detection using randommatrix theory, IEEE Trans. Inform. Theory.

(2009) (in press).
[4] F. Bornemann, On the numerical evaluation of distributions in randommatrix theory, Markov Process. Related Fields (2010) (in press).
[5] A.W. Davis, On the ratios of the individual latent roots to the trace of a Wishart matrix, J. Multivariate Anal. 2 (1972) 440–443.
[6] N. El Karoui, A rate of convergence result for the largest eigenvalue of complex white Wishart matrices, Ann. Probab. 34 (2006) 2077–2117.
[7] K. Johansson, Shape fluctuations and randommatrices, Comm. Math. Phys. 209 (2) (2000) 437–476.
[8] D.E. Johnson, F.A. Graybill, An analysis of a two-way model with interaction and no replication, J. Amer. Statist. Assoc. 67 (1972) 862–868.
[9] I.M. Johnstone, On the distribution of the largest eigenvalue in principal component analysis, Ann. Statist. 29 (2001) 295–327.

[10] S. Kritchman, B. Nadler, Non-parametric detection of the number of signals, IEEE Trans. Signal Process. 57 (2009) 3930–3941.
[11] W.J. Krzanowski, Principles of Multivariate Analysis, Oxford University Press, 1988.
[12] S. Kuriki, A. Takemura, Tail probabilities of the maxima of multilinear forms and their applications, Ann. Statist. 29 (2) (2001) 328–371.
[13] Z. Ma, Accuracy of the Tracy–Widom limit for the largest eigenvalue in white Wishart matrices, Bernoulli (2008) (in press).
[14] C. Nadal, S.N. Majumdar, M. Vergassola, Statistical distribution of quantum entanglement for a random bipartite state, 2010. arXiv:1006.4091.
[15] B. Nadler, Detection of signals by information theoretic criteria: accurate performance analysis and an improved estimator, IEEE Trans. Signal Process.

58 (5) (2010) 2746–2756.
[16] B. Nadler, F. Penna, R. Garello, Performance of eigenvalue-based signal detectors with known and unknown noise level (in preparation).
[17] I. Nechita, Asymptotics of random density matrices, Ann. Henri Poincaré 8 (2007) 1521–1538.
[18] S. Peche, Universality results for the largest eigenvalues of some sample covariance matrix ensembles, Probab. Theory Related Fields 143 (2009)

481–516.
[19] F.J. Schuurmann, P.R. Krishnaiah, A.K. Chattopadhyay, On the distributions of the ratios of the extreme roots to the trace of the Wishart matrix, J.

Multivariate Anal. 3 (4) (1973) 445–453.
[20] A. Soshnikov, A note on universality of the distribution of the largest eigenvalues in certain sample covariance matrices, J. Stat. Phys. 108 (2002)

1033–1056.
[21] P. Vivo, Largest Schmidt eigenvalue of entangled random pure states and conductance distribution in chaotic cavities, 2010, arXiv:1009.1517.
[22] K. Zyczkowski, H.J. Sommers, Induced measures in the space of mixed quantum states, J. Phys. A 35 (2001) 7111–7125.

http://arxiv.org/1006.4091
http://arxiv.org/1009.1517

	On the distribution of the ratio of the largest eigenvalue to the trace of a Wishart matrix
	Introduction
	Distribution of the ratio of largest eigenvalue to the trace
	Simulation results
	Acknowledgments
	Proof of Lemma
	References


