Today's Lecture - RFID

Part I: Technology and applications. Part II: Security and privacy aspects.

Barcode

- Automatic identification system.
- Components:
 - I. Tag
 - 2. Reader.
- Universal product code (UPC):
 - Product associated with code.
 - 2. Code linked with data record.

RFID (Radio Frequency Identification)

• "Wireless" identification system.

Tags

Small transponders - attached to physical objects.

2. May become most pervasive microchip in history.

• Readers

. Transceivers - read (write) data from tags.

2. Data associated with arbitrary data records.

"The Great Seal Bug"

- Wooden replica of the great seal of US.
- 1946 Given to US ambassador in moscow.
- Contained microphone and resonant cavity.
- Could be stimulated from outside radio signal.

RFID History

- 40's WW II Identify Friend or Foe (IFF), 1st paper
- 70's Theft prevention (EAS), agriculture (cattle), 1st patent
- 80's EZ-Pass, ski-passes, gasoline-pass...
- 1999 Auto-ID center.
 - I. 2003 Auto-ID labs and EPCGlobal Inc.
 - 2. Electronic Product Code (EPC) development.
- 2000's- dramatic increase in deployment...

Why Now?

- RFID has been around for 60 years.
- So why now?

Laundry Tags

Why Now?

- RFID has been around for 60 years.
- So why now?
- Advances in chip technology:
 - I. Cheap.
 - 2. Small.

Laundry Tags

Why Now?

- RFID has been around for 60 years.
- So why now?
- Advances in chip technology:
 - I. Cheap.
 - 2. Small.
- Vigorous standardization.

Laundry Tags

RFID vs. Barcode

RFID offers unique identification: . Electronic Product Code (EPC). 2. Records serial number of individual items. 3. Can track transaction history of any item. **RFID** enables automation: . Barcode requires human intervention. 2. RFID does not require line of sight contact. 3. Can scan hundreds of items per second.

The "Promise" of RFID

• RFID has the potential to revolutionize:

- I. Supply Chain Management
- 2. Inventory Control
- 3. Retail Systems
- 4. Payment systems
- 5. Access Control

- But progress is slower than predicted:
 - I. Logistical complications.
 - 2. Tag cost.

Economic Barriers

- Many kinds of RFID systems.
- Inverse correlation between:
 - Price.
 - 2. Size/Functionality.
- Wide deployment requires low cost:
 - . The threshold is 5c per tag not there yet.
 - 2. Currently readers cost 1000K+ too much.

Keychain Tag

Privacy Concerns

- Past applications in closed systems
- New applications affect individuals more
- Not clear what countermeasures should be incorporated into RFID systems
- Main concerns?

Privacy Concerns

- Past applications in closed systems
- New applications affect individuals more
- Not clear what countermeasures should be incorporated into RFID systems
- Main concerns?
 - I. Ability to read tag remotely
 - 2. Ability to link specific products/data to individuals
 - 3. May enable clandestine *tracking* and *inventorying*

Implantable Tag

Over-hype and Backlash

- Late 90's "RFID will solve everything."
- Early 2000's "RFID is the source of all evil."
- Truth is NOT somewhere in the middle.
 - . RFID capabilities over-estimated by everybody.
 - 2. Probably neither sinister or glamorous.
- The challenge: tell apart facts from fiction...

Applications

Tracking and Identification

- Large assets (railway cars, containers).
- Livestock (rugged tags).
- Pets (implanted tags).
- Supply-chain management (EPC)
- Inventory control (EPC)
- Retail checkout (EPC)
- Recycling and waste disposal

Payment/Stored-Value Systems

- Electronic toll systems
- Conctact-less credit cards (e.g. Amex Blue Card)
- Stored value systems (e.g. Exxon-Mobil Speedpass)
- Subway and bus passes
- Casino tokens and concert tickets

Access Control

- Building access with proximity cards
- Ski-lift passes
- Concert tickets
- Automobile ignition systems

Anti-Counterfeiting

- Casino tokens (e.g. Wynn Casino, Las Vegas)
- High-denomination currency notes
- Luxury goods, e.g. Prada
- Prescription drugs

Principles

RFID System Components

- Antenna + integrated circuitry
- Many variants:

 different power sources
 radio frequencies

- Three classes of tags: Active
 I. active battery, may initiate communication
 2. semi-passive battery, may not initiate comm.
 - 3. passive no battery, may not initiate comm.

Tags Can be Very Small

- As small as 0.05x0.05 mm
- But price per tag is still high
- Does not include antenna (6cm)...

Tags Can be Very Small

- As small as 0.05x0.05 mm
- But price per tag is still high
- Does not include antenna (6cm)...

Tag Comparison

Tag Type	Passive	Semi-Passive	Active
Power Source	Harvesting	Battery	Battery
Communication	Response only	Response only	Respond/Initiate
Max Range	10 M	> 100 M	> 100 M
Relative Cost	Least	More	Most
Example Applications	EPC Prox. Cards	Electronic Tolls Pallet tracking	Large-asset tracking Livestock tracking

Readers

- Ping or multi-round protocol.
- "Anti collision" protocols communicate with many tags in serial order
- Power passive tags w/ RF signal
 - I. induction
 - 2. capacitance

Databases

• May contain:

- . Product info tracking logs/sales data/exp. dates
- 2. Aggregated information about you...
- Object Naming Service (ONS):
 - I. Find database w/ some tag identification value
 - 2. Analogous to DNS

Operating Frequencies

- Various ranges of radio frequencies
- Each range determines:
 - operating range, power requirement, performance
 - physical dimensions of tag/antenna
 - regulations/restrictions

Foil Inlay Tag

Read Ranges

Frequency Range	Frequencies	Passive Read Distance	
Low Frequency (LF)	120-140 KHz	10-20 cm	
High Frequency (HF)	13.56 MHZ	10-20 cm	
Ultra-High Frequency (UHF)	868-928 MHz	3 meters	
Microwave	2.45 & 5.8 GHz	3 meters	
Ultra-Wide Band (UWB)	3.1-10.6 GHz	10 meters	

Features

Frequency	The good	The bad	Liquids /metals	Price
LF	 short range 	 low read rate short range	not affected	US\$1
HF	higher read ratelonger range	 heavily regulated 	affected	US\$0.50
UHF	high read ratelongest range	 high reader cost interferes with medical equip. 	severely affected	< US\$0.15
Microwave	smaller sizehigher read rate	 energy consumption interference w/ WiFi 		US\$25
UWB	 longest range (line of sight) 	• active or semi-passive	not affected	US\$5

Functionality

Class	Name	Memory	Power Source	Features
A	EAS	None	Passive	Article Surveillance
В	Read-only EPC	Read-Only	Passive	Identification Only
С	EPC	Read/Write	Passive	Data Logging
D	Sensor Tags	Read/Write	Semi-passive	Environmental Sensors
E	Motes	Read/Write	Active	Ad Hoc Networking

Standards and Patents

• EPC (UHF)

- ISO 11784, 11785, 18000-, 14223, 10536, 14443, 15693 (LF, HF, UHF, Microwave)
- ONS (not widely used)
- Over 1800 RFID related patents
- Over 5600 patents are backlogged

Challenges

• Technical:

- . environmental noise
- 2. interference
- 3. human elements
- Economic
- Security and Privacy

NEMA Enclosure With RFID Reader, PLC and Relays

Light Stack

RFID Antenna

Barcode Scanner RFID Antenna

-

I HE

100 E

Series.

Photo Optic

Challenges

• Technical:

- . environmental noise
- 2. interference
- 3. human elements
- Economic
- Security and Privacy

Part II: Privacy and Security

• Main focus on low-cost RFID (EPC):

. Present most challenges

2. Will be most pervasive

Privacy Concerns

• Tracking and inventorying:

- . Tags respond without alerting owner/bearer
- 2. Clandestine tracking is a plausible threat
- 3. Unique identifiers can determine what objects a person is carrying
- As of today, still of limited concern:
 - I. RFID infrastructure is scarce and fragmentary
 - 2. Tagging of individual items is still years away
 - 3. But might become serious threat in the future

- ...Big Brother's spychip?
- ...terrorist targeting device?
- ...work of the anti-Christ?

Notags.co.uk

RFID Kills.com

SpyChips Threat why christians should resist rfid and computer

TRACKING

WHY CHRISTIANS SHOULD RESIST RFID AND COMPUTER TRACKING

SPYCHIPS: HOW MAJOR CORPORATIONS AND GOVERNMENT PLAN TO TRACK YOUR EVERY MOVE WITH RFID.

"Mark of the Beast"

"And he causeth all, both small and great, rich and poor, free and bond, to receive a mark in their right hand, or in their foreheads. And that no man might buy or sell, save he that had the mark, or the name of the beast, or the number of the beast. Here is the wisdom. Let him that hath understanding count the number of the beast for it is a human number. His number is - 666." - Revelation 13:16-18

The argument:

- RFID will replace currencies/credit cards and serve as identification.
- Since tags are used as identification, they should be implanted.
- The ideal location for the implant is the forehead or the hand.

A similar argument has been made against bar-codes...

Current Areas of Concern

- Toll payment transponders
- Euro bank-notes
- Libraries
- Supermarket cards
- Passports (US)

▶ The contactless chip can be integrated into either the cover page or the data page.

RFID Passports?

- What biometrics are stored on passports?
- Why? Who is authorized to read it?
- How can the data be abused?
- Revocation? What if I lose my passport?
- Why wireless? Why not contact?

What About Cell Phones?

What About Cell Phones?

- Require special equipment for reading
- Cell phones have computing power
- Bluetooth, WiFi concerns similar to RFID

Security Concerns

- Privacy is not the only concern
- Also relevant:
 - . Military intelligence
 - 2. Corporate espionage
- RFID authentication:

- . protect against misbehaving (cloned) tag
- 2. FDA called for using RFID in pharmaceutical industry
- 3. Cloning is hard to prevent on EPC tags...

Attacks on RFID

Some possible attacks:

- I. Sniffing/eavesdropping
- 2. Tracking
- 3. Spoofing/cloning
- 4. Replay
- 5. Denial of service

• Big question: do the attacks scale up?

ExxonMobil SpeedPass

Skimming Equipment

Cracking the TI DST

Buying gas with a clone

Images courtesy of rfidanalysis.org

Proximity Card Attack

MIT RFID Proximity Card

A proximity card emulator

Modeling the Adversary

- What does it mean to violate security/ privacy?
 - I. Doesn't require to define what is privacy...
 - 2. May be application dependent
- Power of the adversary:
 - Access to the system reader/tag
 - 2. Not always in range only occasionally

Reading Ranges

- Nominal reading range.
- Rogue scanning range.
- Tag-to-Reader eavesdropping range.
- Reader-to-Tag eavesdropping range.
- Detection range.

Tag

Tag-to-reader range

Reader

Reader-to-tag range

- Backwards one-time pad
- Used in EPCGlobal Class-I, Gen-2

Other Countermeasures

- RFID blocker (human body...)
- Destroy at checkout (or "kill")
- Restrict access to ONS
- "re-labeling"
- Cryptography

Blocker Tags

- Juels, Rivest & Szydlo (2003)
- Device for enhancing personal privacy
- Injects itself in anti-collision protocol to restrict access to tags a person carries
- An idea is to put blocker tags in bags
- Not a commercial product

Privacy Bits

- Juels and Brainard
- Tag responses contain an access control policy: "It's okay/not okay to read me"
- Readers may choose to obey policy
- Corrupt readers risk being caught

Destroy at Checkout

- EPC enables to "kill" tag
- Removable RFID price tag works well
- Only addresses individual privacy issues
- Does not allow end-user applications
- "sleep" instead of "kill?"

Back-End Access Control

- Object Naming Service (ONS) -- look up ID numbers and returns product codes
- Why not restrict access to ONS?
- Still allows tracking of predictable tags
- Centralized lookups are too slow
- Could change tag IDs. How to manage?

Cryptography

- Use secure authentication protocols
 Problems:
 - . Hard to find source of randomness
 - 2. Very low computing capabilities
 - 3. Moore's law in conflict w/ large scale economics

Cryptography Costs

- Standard DES and AES take 4-20K gates
- SHA-I hash function takes ~20K gates
- Most tags couldn't even hold an RSA key
- Some hope: Low-cost AES, ECC, NTRU, lowcost authentication (more later)

Hash-Based Schemes

- Several ideas rely on one-way functions
- Access Control (aka Hash Locks): Reader locks tag with H(x), unlocks with x
- Private Identification: Tag sends (r, H(ID,r)), reader hashes its IDs
- How do we build cheap one-way functions?

Low Cost Protocols

- Juels and Weis (05) propose several authentication protocols
- Extremely hardware efficient
- Based on protocols for human identification (Hopper-Blum).
- Rely on hardness of learning parity w/ noise

Conclusion

- Over-hype.
- Lots of privacy issues
- We barely scratched the surface:
 - I. Talked only about tags and readers
 - 2. What about infrastructure?
- Large scale is a dominant factor:
 - I. Key/PIN management
 - 2. ONS management