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1 Introduction

Barak et-al [1] formally defined the notion of obfuscation and proved an impossibility result
concerning a universal obfuscator by showing a family of functions that cannot be obfus-
cated. The functions that were shown to be “unobfuscatable” were built specifically for
this and thus the question remains whether specific (interesting) families of functions can
or cannot be obfuscated.

2 Password functions (Point functions)

Perhaps the most näıve and simple function that we would want to obfuscate is the password
function. This obfuscated program would allow anyone to check whether a given password
is correct without revealing anything about it.
For example, consider these two possible applications:

1. Content-Concealing Signatures: Suppose Alfred is writing a will. He would like
to deposit the will with his lawyer while keeping the contents secret. He would also
like for his heirs to able to read the will and to verify that it is indeed his. A possible
solution would be to write the will as the output of an obfuscated password function
and leave the password with his heirs.

2. Puzzle Application: Consider a puzzle (Crossword, Sudoku, etc.) published in some
newspaper. We would want to allow a potential solver to check his answer but we do
not want to reveal the solution itself. To do this we could use an obfuscated password
function with the solution of the puzzle as a password. A reader could easily verify
his solution but since the program is obfuscated he learns (almost) nothing more and
in particular cannot find the solution from the program.

Formally, for any n ≥ 1 and p ∈ {0, 1}n let Ip : {0, 1}n → {0, 1} be the following function:

Ip =

{
1 if x = p

0 otherwise

Let In = {Ip|p ∈ {0, 1}n} and I =
⋃

n≥1 In. Let us consider how we could obfuscate such a
function:
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Attempt 1

Given a one-way function f , our obfuscator works as follows:
y←f(p)
Output the following code:

If f(x) = y output 1
else output 0

At first glance this appears to achieve exactly what we wanted - given code to the obfuscated
program one cannot derive p (by the hardness of inverting f). However, our definition of
obfuscation is more robust and in particular requires not only that p not be recoverable, but
that nothing about p be recoverable. The “obfuscated” program suggested above completely
reveals f(p) and thus is not obfuscated in the robust sense we defined. This example
illustrates that every obfuscator must be randomized.

Attempt 2

We will show a construction of Canneti[2] which will obfuscate password functions based
on a standard cryptographic assumption.

DDH (Decisional Diffie Hellman) assumption

Let G be a cyclic group of prime order and let g be a generator for it. The decisional Diffie
Hellman assumption (DDH) is that there are families of groups as above for which:

(ga, gb, gab) ∼= (ga, gb, gc)

(where a, b, c ∈R {1, . . . , |G|}).

Claim 1 DDH implies that rp ∼= rx with r ∈R G and x ∈R {1, . . . , |G|} (for all p).

Sketch of Proof Assume to the contrary, we will show that we can decide DDH. We are
given (α, β, γ) and know that α and β are random elements in the group (random powers
of a generator) and that γ is either a random power of α or just a random element in the
group. By using the above we can check in which case we are and decide appropriately.

Consider the following obfuscator based on the above:
Choose r ∈R G
y←rp

Output the following code:
If rx = y output 1
else output 0

A potential adversary can see r and rp. However, since r is random, finding p from these
two with nonnegligible probability of success would mean being able to distinguish between
rp and rrandom.
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3 Obfuscating public point functions

Recall that if L ∈ NP, the witness relation1 RL is a polynomially-computable relation (i.e.,
RL ∈ P) and ∃w s.t. RL(x,w) ⇐⇒ x ∈ L. We consider the following function, known as
a public-point function:

fL
p,s(x) =

{
s if (p, x) ∈ RL

0 otherwise

Note that the definition differs from that of password functions in several respects:

• The output value is not 0/1 but 0/s.

• p is not secret, the goal of the obfuscation is to hide s rather than hide p. To illustrate
this we could replace the “return 0” in the otherwise clause by “return p”.

• The relation is no longer equality.

We will show that under a somewhat stronger definition of obfuscation, if this function can
be obfuscated, then many interesting families of standard cryptographic primitives cannot
be obfuscated (e.g. pseudo random functions, private key encryption schemes, signature
schemes). To show this, we require an obfuscator which is secure against auxiliary input to
the challenging algorithm.

Obfuscation w.r.t Auxiliary Input

We define such an obfuscator formally as:

Definition 2 A probabilistic algorithm O is called an Obfuscator with respect to dependent
auxiliary input for a class of circuits C = {Cn}n∈N if the following three conditions hold:

1. Functionality: For every circuit c ∈ C and for every input x: c(x) = (O(c))(x).

2. Polynomial Slowdown: There exists a polynomial p(·) such that for every circuit
c ∈ C, |O(c)| ≤ p(|c|).

3. Virtual Black-Box with auxiliary input: For any PPT algorithm A there exists
a negligible function µ(n) and a PPT simulator S s.t for any n ∈ N, any c ∈ Cn, any
z s.t. |z| ≤ poly(n) and any predicate π(c, z),

|Pr[A(O(c), z) = π(c, z)]− Pr[Sc(1n, z) = π(c, z)]| < µ(n)

Note the strengthening from the original definition of Barak et-al, with the addition of z in
the virtual black box property.

Claim 3 If L is NP-complete and fL
n = {fL

p,s} can be obfuscated (with respect to dependent
auxiliary input) then fL′

n can be obfuscated (with respect to dependent auxiliary input) for
every L′ in NP.

1Technically this isn’t well-defined, but we assume a “canonical” witness relation for any given NP-
complete language L
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Sketch of Proof Assume we can obfuscate fL
p,s for any (p, s), and assume we know how

to reduce L to L′ and RL to RL′ . The following program obfuscates fL′
p′,s:

Convert p′ to an instance p of L using a known reduction.
Generate an obfuscated program for fL

p,s

Output the following code:
Assuming the input parameter x′ is a witness for p′ ∈ L′, convert it into a
witness x for p ∈ L. (If it isn’t, this will convert garbage into garbage).
Run the obfuscated program for fL

p,s on x′.

High Pseudo Entropy Circuits

Definition 4

• A random variable X has min-entropy k (over a set S) if P[X = x] ≥ 1
2k for every

x ∈ S.

• A sequence (Xn) of random variables has superpolynomial min-entropy if its min-
entropy is greater than any polynomial p(n) as n→∞.

• A family {Cn}n∈N of circuits has pseudo-entropy at least p(·) if there is a sequence
of sets (In), where |In| is limited by a polynomial t, such that the random variable
Xn := Cn(i1), . . . , Cn(it(n)) where ij ∈ In is computationally indistinguishable from
a random variable with min-entropy p(n) (even for a distinguisher which has oracle
access to Cn(i) for i /∈ In).

• A sequence of circuits has superpolynomial pseudo-entropy if it has pseudo-entropy
at least p for every polynomial p.

The following claim (due to [3]) shows why we are interested in circuits with superpoly-
nomial pseudo-entropy:

Claim 5 The following are examples of circuits with superpolynomial pseudo-entropy:

1. Pseudorandom functions

2. The encryption function Ek in a private-key semantically secure encryption scheme

3. Randomized digital signatures, as long as each signature has min-entropy at least 1.

With this in mind, we can prove the theorem stated at the beginning of this section,
that if we can obfuscate public point functions then we cannot obfuscate many well-known
cryptographic primitives.

Theorem 6 Let
{
fK

pn,s

}
be a family of public point functions for an NP-complete language

K, such that |pn| = n. If there exists an obfuscator with auxiliary input that works on this
class of functions, then any family {Cn|n ∈ N} of circuits with superpolynomial pseudo-
entropy cannot be obfuscated.
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Sketch of Proof Fix an arbitrary polynomial p(·), and let t(·) be the polynomial whose
existence is guaranteed by the definition of superpolynomial pseudo-entropy. Let l(n) :=
t(n)− n, and let L be the following language:

L = {(In, C(In)) : |C| < l(n)}

(If C is circuit and A is a set, then C(A) := {C(a)|a ∈ A}).
We consider the family

{
fL

pn,s

}
, where pn = {(In, C(In)} and |In| = t(n). L is obviously

in NP , and therefore this family can be obfuscated. Now let ZC,s(V ) be the following
function, where V is a circuit:

ZC,s(V ) =

{
s if V (i) = C(i) for all i ∈ In
0 otherwise

Clearly, ZC,s is just fL
p,s, where p = C(In), so these functions can be obfuscated wrt

auxiliary input. To show that Cn cannot be obfuscated wrt auxiliary input, we will take
O(Z) as the auxiliary input. It now suffices to prove the following:

1. Given O(C) and O(Z), it is computationally easy to compute s; and

2. Given O(Z) and oracle access to C, it is computationally difficult to compute s (with
probability better than 1/2+negl).

The first part is trivial: s = Z(C), and obfuscation preserves functionality, so A(C,Z)
simply returns Z(C) which is always s.

For the second part, we assume towards contradiction that there is a PPT oracle machine
S1 such that

Pr[SC
1 (O(Z)) = s] ≥ 1

2
+ nonnegl

Let C ′ be a machine that, on input i, returns C(i) unless i ∈ In. Then we can replace S1

by an oracle machine that accepts C(In) as input, and has oracle access to C ′:

Pr[SC′
2 (O(Z), C(In)) = s] ≥ 1

2
+ nonnegl

Now, Z = fL
p,s, and we can replace this with Z ′ = fL

p′,s where p′ is completely random.
This is because otherwise we’d have a distinguisher between p and p′, and this is impossible
given the pseudo-entropy condition. Therefore

Pr[SC′
2 (O(Z ′), C(In)) = s] ≥ 1

2
+ nonnegl

We might as well let our algorithm have the whole circuit C now (and no oracle access),

Pr[S3(O(Z ′), C) = s] ≥ 1
2

+ nonnegl

and since Z ′ can be obfuscated wrt auxiliary input, we have the existence of a fourth
algorithm such that

Pr[SZ′
4 (C) = s] ≥ 1

2
+ nonnegl

This means that S4 can find, with noticable probability, a circuit C ′ of size < l(n) such that
C(I) = p′. However, since p′ is random and of size t(n), a counting argument shows that
this is impossible.
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4 Independent auxiliary input

The proof above relies on the fact that the auxiliary input can depend on the circuit C that is
obfuscated. it is possible to define a similar notion, that of obfuscation wrt independent
auxiliary input, where z must be chosen independently of C (and the result must hold
for randomly chosen C).

Definition 7 A probabilistic algorithm O is called an Obfuscator with respect to indepen-
dent auxiliary input for a class of circuits C = {Cn}n∈N if the following three conditions
hold:

1. Functionality: For every circuit c ∈ C and for every input x: c(x) = (O(c))(x).

2. Polynomial Slowdown: There exists a polynomial p(·) such that for every circuit
c ∈ C, |O(c)| ≤ p(|c|).

3. Virtual Black-Box with auxiliary input: For any PPT algorithm A there exists
a negligible function µ(n) and a PPT simulator S s.t for any n ∈ N and any z s.t.
|z| ≤ poly(n) and predicate π(c, z),

|Pr[A(O(c), z) = π(c, z)]− Pr[Sc(1n, z) = π(c, z)]| < µ(n)

(where the probability is over choosing a random c ∈ Cn and the random coin tosses of
A,O, S).

Obfuscation wrt independent auxiliary input is weaker than obfuscation wrt dependent
auxiliary input (as in the previous definition) not only in z not being dependent on c, but
also in requiring the virtual black box property for a random c and not every c. Note that
this definition is incomparable to the original definition of Barak et-al[1] since it is stronger
in allowing auxiliary input and weaker in requiring security only for random choices of c
(any not every c).

This definition, though weak, suffices for proving the following negative result[3]:

Theorem 8 Define CL(x,w) := C(x) if w is a witness for x (i.e., (x,w) ∈ RL), where L
is some NP language. The family of such functions cannot be obfuscated (wrt independent
auxiliary input) if

1. L is NP -complete;

2. C is of super-polynomial min-entropy; and

3. For random C and x, C(x) is unpredictable, even given access to C(x′) for every other
x′.

The proof is based on similar ideas.
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5 Hard-core predicates for languages

Definition 9 Let L be some NP-complete language, and let B(x, r) be some predicate whose
first parameter is a word in that language and whose second parameter is an random string
of the same length, i.e., x ∈ L and r ∈ {0, 1}|x|. B is a hard-core predicate for L if it is

1. Easy to compute given a witness: There exists a PPT algorithm that can compute
B(x, r) given (x,w) ∈ RL and r ∈ {0, 1}|x|; and

2. Hard to compute otherwise: There exists a PPT oracle machine such that given
oracle access to B(x, r) (or even to something that outputs B(x, r) with probability
1
2 +nonnegl(|x|) over random choice of r), it can compute a relevant w with probability
1
2 +nonnegl(|x|) (again, over random choice of r). (Assuming P 6= NP, this means that
there is no PPT algorithm that can compute B(x, r) with probability 1

2 + nonnegl(|x|)
from (x, r) and no witness).

Remark There is a similar notion of hard-core predcates in the world of one-way func-
tions: A hard-core predicate can be easily computed given (x, r) but not given f(x, r).
However, the two notions don’t necessarily have similar properties. As an example, any
one-way function can be converted into a one-way function with a hard-core predicate ([4]),
but there is no known similar result for the notion of hard-core predicates for NP languages.

Theorem 10 If the language L has a known hard-core predicate B, we can obfuscate (with
respect to auxiliary input) the function fL

p,s.

Sketch of Proof The following obfuscator works, albeit in exponential time:
Choose r ∈R {0, 1}|p|.
Find a witness w such that (p, w) ∈ RL. (This is the part that takes exponential time)
Calculate s′←B(p, r)⊕ s (We can calculate B(p, r) because we have w).
Output the following code:

If (p, x) ∈ RL output B(p, r)⊕ s′ (We can calculate B(p, r) because we have x)
else output 0
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