
Foundations of Cryptography: Lecture 2

Lecture by Moni Naor, scribe notes by Yarden She�er

November 8, 2021

A brief review of the previous lecture

The fundamental idea of cryptography is that computational hardness can be good news: we can use the
computational intractability of certain problems to construct secure systems. We also gave an example for a
secure system that does not rely on the computational power of the adversary: the secret sharing protocol.
In the t-out-of-n secret sharing protocol there is a dealer that has a secret s and distributes shares a1, ..., an
among n users, such that an adversary, no matter how strong, cannot obtain information about the secret
unless they have t or more shares. Formally, for all secrets s1, s2, users i1, ..., it−1 the shares ai1 , ..., ait−1 are
distributed independently of whether s = s1 or s = s2.

Identi�cation & Authentication

Consider the problem of approving a single message. In the �single guard� setup from the previous lecture:
We have Alice and Bob sharing some secret setup, and an identi�cation step in which Alice sends information
to Bob and at which Eve can interfere (see Fig. 1). We have two requirements from the system:

� Completeness: If Eve does not interfere and Alice approves (sends the approve message) then Bob
should �accept�.

� Soundness: If Alice does not �approve� then, no matter what Eve does, Bob does not accept (except
with probability ε).

Quote Boaz Barak:

Alice Bob

Setup

Identi�cation

Eve

Figure 1: The single-guard problem

1

�When you see a mathematical de�nition that attempts to model some real-life phenomenon
such as security, you should pause and ask yourself: 1. Do I understand mathematically what
the de�nition is stating? 2. Is it a reasonable way to capture the real life phenomenon we are
discussing?�.

If one tries to see whether the above requirements �t what we would like from, say, a login system, then the
weakness of the above de�nition is that it makes the system susceptible to a �denial of service� (DOS) attack.
According to the de�nition it is perfectly �ne for Bob to shut down if Eve interferes.

A possible implementation of the protocol is that Alice and Bob agree on a prede�ned password x ∈R
{0, 1}` uniformly distributed. Then for a single guess of Eve the probability that she makes Bob accept is
at most 2−`. Assuming that Bob shuts down after a single failed attempts, then Eve has exponentially low
probability of making Bob accept. This allows, however, for Eve to mount a DOS attack by trying to guess
passwords until Bob is forced to shut-down (without such a mechanism on Bob's side, Eve can enter given
enough time).

It is worth to also consider, for example, the case in which Alice is a human choosing a password that
is easy to remember. The password is now distributed with some distribution over Γ ⊆ {0, 1}`. A useful
parameter to de�ne the quality of the password is the Shannon entropy of the distribution pX of possible
passwords, de�ned as

H1(X) = −
∑
x∈Γ

pX(x) log2 pX(x) .

Note that the Shannon entropy is not su�cient to say that our probability distribution is good as a password:
For example, for the probability distribution

p(x) =

{
1
2 + 2−`−1 x = 0`

2−`−1 x 6= 0`

the Shannon entropy would be high: H1 ≈ `+2
2 , but this would not be a good password (an adversary which

knows the probability distribution can crack the passwords with O(1) probability). A better characterization
is the min entropy

H∞(X) = max
x∈Γ

(− log2 pXx)

which represents the most probable guess for a password. Since the best strategy Eve can have is to guess
the password with maximal probability, her probability of cracking the password is 2−H∞(X).

The two-guards problem

Suppose that we have two guards, and Eve has the information available to the guards at setup (say, Eve
corrupted one of the guards, and Alice wants to pass through the other), see Fig. 2. Can we design a protocol
that will prevent Eve from breaking?

The solution we mentioned in the previous lecture is to use a one-way function f : {0, 1}n → {0, 1}n. At
setup Alice remembers x ∈ {0, 1}n and Bob knows the function f . During setup Alice computes y = f(x)
and gives y to Bob as a public key. The identi�cation is done by Alice sending x and Bob checking that
y = f(x). Note that this protocol relies on the fact that Eve is not all-powerful, otherwise she could just
invert f and obtain x ∈ f−1(y) given y. We recall the de�nition of a one-way function:

2

Alice

Bob 1

Bob 2

Setup

Setup

Identi�cation

Eve

Figure 2: The two-guards problem

De�nition (One-way function): f : {0, 1}n → {0, 1}n is a one-way function if f can be evaluated in
polynomial time and for any probabilistic-polynomial Turing machine M and any polynomial p(n) for large
enough n

Px∈{0,1}n,y=f(x)

[
M (y = f(x)) ∈ f−1(x)

]
≤ 1

p(n)
.

The probability is taken over both the distribution of passwords and the randomization of the algorithm.
It is not clear that one-way functions exists (we rely on the P 6= NP conjecture). We have, however, the

following:

Theorem: The two-guards identi�cation problem against a polynomial-time adversary has a solution if
and only if one-way functions exist.

One direction is relatively easy: if one way functions exist, then the above protocol is a good one. To
show this we use a reduction technique that will be prevalent throughout the course. We take an adversary
that can break the protocol and use it to break the one-way function. Formally, suppose Eve can break
protocol, that is she can take a public key y and output a guess x′. Eve wins if f(x′) = y. Eve breaking
the protocol means that her guess is correct w.p. ≥ 1/poly(n). Therefore, given the algorithm used by Eve
we can construct a machine that inverts the one-way-function f (see Fig. 3). That is, given y ∈ {0, 1}n we
simply feed Eve with the same y and output the result of Eve's guess for x′ ∈ {0, 1}n which, with probability
1/poly(n) satis�es f(x′) = y. This contradicts the assumption that f is a one-way function. Note that this
reduction is simple and does not involve any deterioration in the time and probability of success.

For the other direction, we �rst need to control the possible kinds of protocols Alice and Bob can use. In
general, Alice and Bob can use an interactive scheme during identi�cation, and this is indeed what they will
use in the multi-session case. However, we claim that, for this �single-session� protocol, for any interactive
scheme we can construct a non-interactive scheme with similar completeness and soundness. The way we
show this is by noticing that if Alice and Bob have an interactive scheme then Alice can send her state (as
a Turing machine) and Bob can use it to simulate the interaction. Since both or them are polynomial time
this gives the same completeness and soundness.

Now that we reduced the problem to a non-interactive scheme we can use the setup function as a one-way

3

Eve

One-way function inverter

x

y

x

y

Figure 3: Reduction from an e�cient adversary of the two-guards problem protocol to an inversion of the
one-way function f .

function. Suppose that for a given set of random bits |r| = poly(n) used in the setup

setup (r) = (y, x) .

We de�ne the candidate one-way function as fsetup(r) = {�rst output y of the setup function}.

De�nition: We say that a protocol has perfect completeness if for any choice of the random coins during
the setup and during the identi�cation phase, if Alice follows the protocol and Eve does not interfere then
Bob accepts.

Claim: With perfect completeness f is a one-way function.

Proof: We see that if f is not a one-way function, then Eve can obtain r ∈ f−1(y) with probability
1/poly(n). Eve can then generate x by applying setup (r). This entire process takes polynomial time assuming
the setup takes polynomial time.

We note that f is not necessarily a one-way function in the case where we have less-than-perfect com-
pleteness. For example, assume that the setup is given two random strings x1, x2 ∈R {0, 1}n, such that the
setup outputs x2 if x1 = 0n, and otherwise outputs f(x2) for some one-way function. In this case given
y, the function we generated by our setup scheme is not a one-way function since we can always invert to
r = (0n, y). However the protocol is still valid: the probability of deceit is the probability of inverting the
one-way function f plus 2−n.

The way to remedy this problem is to add a single bit to the one-way function candidate output, which
is one only if the setup is accepted, that is

f̃setup(r) = ({�rst output y of the setup function} , 1r is accepted) .

In this case f̃setup(r) = (y, 1) can indeed be inverted only with negligible probability. For any randomized

4

polynomial-time Turing machine M we then have

Pr∈{0,1}n
(
M
(
y = f̃setup(r)

)
∈ f̃−1

setup(y)
)
≤ Pr∈{0,1}n

(
M
(
y = f̃setup(r)

)
∈ f̃−1

setup(y) and r is accepted
)

+ P (r not accpeted)

The �rst term on the RHS is negligible by the assumption that no polynomial-time adversary can break the
protocol, while the second is negligible by the assumption that Bob accepts except with negligible probability.

One additional complication we can add is the case in which Bob is randomized. This can also be remedied
by running poly (n) instances of Bob and taking a cuto� of 2/3 probability. In this case we can de�ne the
one-way function as f (r) =

(
y, 1r is accepded w.p.≥ 2/3

)
. f can now be calculated in poly (n) steps by running

setup (r) to obtain y and running Bob k times to obtain an estimate of the probability of acceptance. Since
the probability that 1r is accepded w.p.≥ 2/3 is estimated incorrectly decreases exponentially with k the required
runs of Bob to obtain f with good probability is O (1).

Finding one-way functions

Claim: If P = NP then one-way functions do not exist.
The proof is based on a �search to decision� reduction. We consider the NP decision problem of given

y ∈ {0, 1}n and x1, ..., xi ∈ {0, 1} are xi+1, ..., xn ∈ {0, 1} s.t. f(x = (x1, ..., xn)) = y. This problem is clearly
in NP as if the answer is yes one can give x as a witness. If P = NP we can decide for this answer in
polynomial time. Therefore, for any given y ∈ {0, 1}n one can work bit-by-bit, reconstructing x1 by asking
the decision problem with i = 1, then work on for i = 2, 3... Since each decision is made in polynomial time,
the full retrieval of x is also done in polynomial time.

We see that to �nd one-way functions we need to consider problems that are conjecturally in NP\P .
Examples are:

� Subset sum: We have 0 ≤ a1, ..., an ≤ 2m − 1, and there is a target T . Is there a subset s1, ..., sn s.t.∑
i,si=1

ai = T mod 2m.

The corresponding one-way function is

f(a1, ..., an, s1, ..., sn) = (a1, ..., an, T) .

� Discrete log, factoring, Goldreich's one-way function: next week.

Theorem (without proof): If one-way functions exist, for any NP-complete language L there are polynomial-
time samplable distributions D0, D1, where given xR ∈ Db it is hard to guess b and x ∈R D0 ⇒ x /∈ L, x ∈R
D1 ⇒ x ∈ L.

Levin's Universal one-way function

It is possible to �nd a function that is �complete� for one-way functions? The universal one-way function is
a one-way function such that if there exists a one-way function then this function is a one-way function. We
will see a construction, but one which is useless in practice.

5

We begin with the observation that if there exists a one-way function f calculable in p (n) time for any
polynomial p, there exists a one-way function f ′ running in n2-time. This is done by de�ning

f ′(x1, x2) = (f(x1) , x2)

where x1 ∈ {0, 1}m , x2 = {0, 1}p(m)
and n = p (m) + m. f ′ can be calculated in quadratic time and is a

one-way function.
To construct the universal one-way function we use a combiner. That is, for two one-way functions

f1, f2 : {0, 1}n → {0, 1}n the combiner outputs f such that

f(x = (x1, x2)) = (f1(x1) , f2(x2)) := f1(x1) ||f2(x2) .

Claim: If either f1 or f2 are one-way functions then so is f .

Proof: If we can invert f in polynomial time we can invert, e.g., f1 in polynomial time by feeding the
f -inverting machine with (f1(x1) , 0n) and take the �rst n bits in x ∈ f−1(f1(x1) , 0n). Thus if f is not
one-way then so are f1, f2.

The universal one-way function is then the combined version of the list of one-way functions listed ac-
cording to the length of the Turing machine generating them. Let M1, ...,Mlog n be the list of the �rst log n
Turing machines (in lexicographic order). De�ne

f(x = (x1, ..., xlog n)) = M1 (x1) || · · · ||Mlog n (xlog n)

for xi ∈ {0, 1}n. Mi (xi) is de�ned to return the result of Mi on xi after 2n2 steps. Then, assuming that
one-way functions exist, one of Mi (x) is one-way, and so f is one-way.

References

[1] Leonid A Levin. One way functions and pseudorandom generators. Combinatorica, 7(4):357�363, 1987.

6

