
Amortized Communication Complexity�Tom�as FederIBM Research DivisionAlmaden Research CenterMoni NaoryDept. of Applied Math and Computer ScienceWeizmann Institute
Eyal KushilevitzzComputer Science DepartmentTechnion - Israel Institute of TechnologyNoam NisanxComputer Science DepartmentHebrew UniversitySeptember 7, 1995AbstractIn this work we study the direct-sum problemwith respect to communication complexity: Considera relation f de�ned over f0; 1gn � f0; 1gn. Can the communication complexity of simultaneouslycomputing f on ` instances (x1; y1); : : : ; (x`; y`) be smaller than the communication complexity ofcomputing f on the ` instances, separately?Let the amortized communication complexity of f be the communication complexity of simul-taneously computing f on ` instances, divided by `. We study the properties of the amortizedcommunication complexity. We show that the amortized communication complexity of a relationcan be smaller than its communication complexity. More precisely, we present, a partial functionwhose (deterministic) communication complexity is �(logn) and its amortized (deterministic) com-munication complexity is O(1). Similarly, for randomized protocols, we present a function whoserandomized communication complexity is �(logn) and its amortized randomized communicationcomplexity is O(1).We also give a general lower bound on the amortized communication complexity of any functionf in terms of its communication complexity C(f): for every function f the amortized communicationcomplexity of f is 
�pC(f) � logn�.�An early version of this paper appeared in Proc. of 32nd IEEE Conference on the Foundations of Computer Science,October 1991, pp. 239-248.yMost of this work was done while the author was at the IBM Almaden Research center. e-mail:naor@wisdom.weizmann.ac.ilzResearch was supported in part by US-Israel BSF grant 88-00282. e-mail: eyalk@cs.technion.ac.il. Some of this workwas done while the author was at the Aiken Computation Lab., Harvard University.xResearch was supported by the Wolfson Research awards administered by the Israel academy of Sciences and Human-ities and by US-Israel BSF 89-00126. e-mail: noam@cs.huji.ac.il1



1 IntroductionA very basic question in the theory of computation is the direct-sum question: Can the cost of solving` independent instances of a problem simultaneously be smaller than the cost of independently solvingthe ` problems, say, sequentially? In this work we study the direct-sum question in the context ofcommunication complexity. This question was recently raised by Karchmer, Raz and Wigderson [7] aspart of a new approach for proving lower bounds on Boolean circuits using communication complexityarguments (as in [8, 18]). For a general survey on communication complexity, see [11]. Di�erent scenarioswhere the direct-sum question was investigated are [4, 6, 17, 20].Let f be a relation de�ned on f0; 1gn � f0; 1gn.1 Let f (`) be the extension of f to ` instances. Thecommunication complexity problem associated with f (`) is the following: Party P1 receives ` inputsx1; : : : ; x` and party P2 receives ` inputs y1; : : : ; y` (each of xi and yi is an n bit string). They need to�nd values z1; : : : ; z` such that for each i, the value zi satis�es the relation f(xi; yi). Denote by C(f)the communication complexity of f . Namely, the number of bits that the parties need to exchange, onthe worst-case input, in the best protocol for computing f . Similarly, denote by C(f) the amortizedcommunication complexity of f . Namely,C(f) = lim sup`!1 1̀C(f (`)):Clearly, C(f) � C(f) for every relation f . It was observed in [7] that when (non-partial) functionsare considered, an upper bound on C(f) which is signi�cantly smaller than C(f), implies that the ranklower-bound on C(f) [12] is not tight. This is because the rank of the matrix representing f (`) equalsthe rank of the matrix representing f , to the power of `.We present a partial function f , such that C(f) = �(logn) and C(f) = O(1). This proves thatcomputing a relation f on ` instances simultaneously may be easier than computing f on the ` instancesseparately. In [7], it was conjectured that C(f) can not be smaller than C(f) by more than an additivefactor of O(logn). We prove two weaker versions of this conjecture:� If one-way communication protocols are considered then any (partial) function f over f0; 1gn �f0; 1gn satis�es C1(f) � C1(f)� logn� O(1):� For general (two-way) protocols, any (non-partial) function f over f0; 1gn�f0; 1gn satis�es C(f) �pC(f)=2� log n� O(1):The proof of the �rst lower bound is via a reduction to an appropriate graph-coloring problem, andthen applying the results of Linial and Vazirani [10] on the chromatic number of product graphs. Thelower bound for general protocols is achieved by considering non-deterministic protocols and provingthat CN (f) � CN(f) � logn � O(1), and then applying a result of Aho, Ullman and Yannakakis1A relation de�nes for every input pair (x;y) a subset f(x; y) of a domain D. We will be interested in particular intwo special cases of relations: functions { where for each input pair (x; y) there is a unique value in f(x;y), and partialfunctions where for each input pair (x; y) either there is a unique possible value or all values in D are possible.2



[1] which relates the non-deterministic communication complexity of a function with its deterministiccommunication complexity.We also study the direct-sum question with respect to randomized protocols. The only trivialupper bound on CR(f (`)) in this case is that for any (partial or non-partial) function f , CR(f (`)) =O(`�log `�CR(f)) (the log ` factor seems to be needed, since we are required to have a \good" probabilityof success on all ` instances simultaneously). For explicit functions we can do much better: We considerthe identity function (i.e., ID : f0; 1gn � f0; 1gn ! f0; 1g de�ned by ID(x; y) = 1 i� x = y). It is wellknown that CR(ID) = �(logn) [23]. We prove that CR(ID) = O(1).Organization: In section 2 the various notions of communication complexity and amortized communi-cation complexity are de�ned. In section 3 we exhibit a partial function whose amortized communicationcomplexity is smaller than its communication complexity. In section 4 we discuss the special case ofone-way communication protocols. In section 5 we prove our lower bound on the amortized communi-cation complexity, for the case of general protocols. In section 6 we present a function whose amortizedcommunication complexity is smaller than its communication complexity, when randomized protocolsare considered. Finally, in section 7 we mention some open problems.2 PreliminariesIn this section we give formal de�nitions for the various notions of communication protocols and com-munication complexity used in this work.Let D be a set, and let f be a relation de�ned over f0; 1gn � f0; 1gn such that for every (x; y) 2f0; 1gn�f0; 1gn it satis�es ; 6= f(x; y) � D. We say that f is Boolean if D = f0; 1g. We say that f is afunction, if for every (x; y), jf(x; y)j = 1, and it is a partial function if for every (x; y) either jf(x; y)j= 1or f(x; y) = D.Given a relation f and an integer ` � 1, we de�ne the relation f (`) over (f0; 1gn)` � (f0; 1gn)`, withrange D` as follows:f (`)((x1; : : : ; x`); (y1; : : : ; y`)) 4= f(z1; : : : ; z`) j z1 2 f(x1; y1); : : : ; z` 2 f(x`; y`)g :In what follows we de�ne the communication complexity of relations of the form f (`). Note howeverthat this covers the special case of f (1) � f .Two parties P1 and P2 wish to compute a possible value of f (`) on their input. The party P1 isgiven a n`-bit input x and the party P2 is given a n`-bit input y. We interpret x (resp. y) as consistingof ` pieces (or instances) x1; : : : ; x` (resp. y1; : : : ; y`) each of n bits. The parties exchange messages inrounds according to a deterministic protocol. That is, each message sent by a party Pi depends on itsinput, and the messages it received in previous rounds. The last message in the protocol is an `-tuplez = (z1; : : : ; z`) called the output of the protocol. We say that a protocol F computes the relation f (`)if for all inputs x and y the output z satis�es z 2 f (`)(x; y).The concatenation of all the messages exchanged in the protocol F on input (x; y) is denoted F(x; y).The (deterministic) communication complexity of the protocol F , denoted C(F), is the maximum3



jF(x; y)j over all (x; y). The (deterministic) communication complexity of the relation f (`), denotedC(f (`)), is the minimum of C(F), over all deterministic protocols F computing f (`).The amortized communication complexity of the relation f is de�ned asC(f) = lim sup`!1 1̀C(f (`)):We sometimes restrict the discussion to one-way protocols. In such protocols the communicationconsists of a single message: P1 sends a message to P2 and P2 has to compute the output. We denote byC1(F); C1(f) and C1(f) the analogous of C(F); C(f) and C(f) for the case that only one-way protocolsare considered.We also consider randomized protocols, in which each of the parties has, in addition to its input, astring of random coins (the random strings of the two parties are independent). A randomized protocolF computes the relation f (`) if for every input (x; y) the output z of F satis�es z 2 f (`)(x; y) withprobability � 34 . The notions of CR(F); CR(f (`)) and CR(f) are de�ned in a similar way, with respectto randomized protocols. That is, CR(F) is the maximal length of communication (over all inputs andall strings of random coins) in the protocol F ; CR(f (`)) is the minimum of CR(F) over all randomizedprotocols that compute the relation f (`); and CR(f) equals lim sup`!1 1̀CR(f (`)). We emphasize thatthe meaning of this de�nition is that when computing f (`) we require that with probability at least 3=4the output is correct for all ` instances simultaneously.It is also useful to consider a variant of the randomized model in which both parties have access toa public random string. The quantities Cpub(f (`)) and Cpub(f) are de�ned in a similar way.Finally, we give the de�nitions for the nondeterministic case. In a nondeterministic protocol forcomputing f (`) the parties are allowed to make \guesses" while choosing their messages. In any com-putation, the protocol gives either a correct value of f (`)(x; y) or \fail". The protocol is required tooutput a correct value of f (`)(x; y) in at least one computation on (x; y) (i.e., in this computation theoutput is correct for all ` instances). The nondeterministic complexity of a protocol F , CN(F), isde�ned as the maximum over all (x; y) and over all computations (\guesses") of F(x; y) (note that fornondeterministic protocols F(x; y) is not unique). The measures CN(f (`)) and CN (f) are de�ned withrespect to nondeterministic protocols.3 A Partial Function With a Low Amortized ComplexityIn this section we prove that (deterministic) amortized communication complexity can be substantiallylower than the corresponding communication complexity. We present a partial function f such thatC(f) = �(logn), while C(f) = O(1).We start with the de�nition of f : LetM = f0; 1; 2; : : : ; m�1g. Let t � 2, be a parameter. The inputof P1 is S, a subset of M of size t (the length of this input is n = t � logm bits). The input of P2 is x 2 S(the length of this input is logm < n bits). The parties wish to compute the rank of x in the subsetS (a number in the range 0; : : : ; t� 1). If x =2 S then any output (in the range 0; : : : ; t� 1) is allowed.Orlitsky [16] showed that the communication complexity of this function is C(f) = �(log t+log logm).4



The protocols we present make use of the following set of hash-functions suggested by Fredman,Koml�os and Szemer�edi [5]: Let p ' t2 logm be a prime. De�neH = nh : M ! f0; 1; : : : ; 2t2 � 1gk h(x) = (ax mod p) mod 2t2; 1 � a � p� 1o :We say that h 2 H is good for a set S �M if h is 1� 1 with respect to the elements of S. Otherwise,we say that h is bad for S. Fredman, Koml�os and Szemer�edi [5] proved the following property of thesehash-functions:Lemma 1: Let H be as above and let S be any subset of M of size t. Then, at least 12 of the functionsin H are good for S.We start by presenting the following protocol from [16] that meets the lower bound for computingf on a single instance (S; x). This protocol (which uses the above H) has the advantage that anappropriate generalization of it gives the amortized result.� P1 �nds a function h 2 H which is good with respect to S. It sends its name (O(log t+ log logm)bits) to P2.� P2 computes h(x) and sends this value (O(log t) bits) to P1.� Since h is good with respect to S, then if x 2 S the value h(x) determines x. (If x =2 S then eitherh(x) = h(s) for some s 2 S or not. For the correctness of the protocol it does not matter whichis the case.) Now P1 computes the value f(S; x) and sends it to P2 (O(log t) bits).We now show how to generalize the protocol in order to e�ciently compute the values f(S1; x1);f(S2; x2); : : : ; f(S`; x`) simultaneously. The main idea is formalized by the following claim:Claim 1: Let H be as above and let S1; : : : ; S` be any ` subsets of M of size t. Then, there exists aset L of log `+ 1 hash-functions h1; h2; : : : ; hlog`+1 2 H such that:� For every j (1 � j � log ` + 1), hj is good with respect to at least 12 of the Si's for whichh1; : : : ; hj�1 are all bad.In particular, it follows that for every Si (1 � i � `) there exists at least one hash-function in L,denoted hj(i), such that hj(i) is good for Si. The proof uses Lemma 1 and a simple counting argument:Proof: We show how to construct L iteratively. In the jth iteration we consider a matrix with allthe subsets Si for which h1; : : : ; hj�1 are bad as rows, and the hash functions in H as columns. The(S; h) entry in this matrix is 1 if h is good with respect to S, and 0 otherwise. By Lemma 1, at leasthalf of the entries in every row are 1's. Therefore, there exists a column in which at least half of theentries are 1's. We take the corresponding hash-function to be hj .The following protocol computes f on ` instances simultaneously:5



� P1 �nds a set L of log `+1 hash functions as above, and sends the names of functions in L to P2.In addition, for every 1 � i � `, it sends the index j(i).� P2 computes hj(i)(xi), for every i, and sends it to P1.� Since hj(i) is good with respect to Si, the party P1 knows the value of xi for every 1 � i � ` andthus can compute f(S1; x1); : : : ; f(S`; x`).The correctness of the protocol is obvious. For every i such that xi 2 Si it computes the correct answer(and if xi =2 Si then any answer is good). We now analyze its complexity:Claim 2: The above protocol can be implemented so that the number of bits exchanged is O(` � log t+log ` � (log t + log logm)).Proof: To specify the names of functions in L, P1 uses O(log ` � (log t+ log logm)) bits. In addition,for specifying all the indices j(i), P1 needs only O(`) bits (which is better than the obvious O(` log `)bits). This is because h1 is good for about 12 of the sets, h2 is good for about 14 of the sets etc. Therefore,by using, say Hu�man coding, we get that O(`) bits are enough. In the second step P2 sends the resultsof applying hj(i) on xi, for every i, which requires O(` � log t) bits.Take, for example, t = 2 and recall that in this case the length of the input satis�es n = 2 logm,we get that the number of bits exchanged in this protocol is O(` + log ` � log n). Thus, we proved thefollowing theorem:Theorem 1: There exists a (partial) function f with communication complexity C(f) = �(logn),and amortized communication complexity C(f) = lim sup`!1 1̀C(f (`)) = O(1).4 One-Way CommunicationIn this section we deal with one-way communication protocols. We show that if we restrict the discussionto the computation of relations using one-way protocols then we can still \save" bits by computing fon many instances simultaneously. In fact, the partial function f of the previous section yields suchan example: take t = 2 and assume that Si = fyi1; yi2g where 0 � yi1 < yi2 � m � 1. As stated before,C(f) = �(log n) (and clearly C1(f) � C(f)). On the other hand, a slight modi�cation of the previousprotocol gives C1(f) = O(1): P1 sends together with the list L of hash functions also hj(i)(yi1) andhj(i)(yi2) for 1 � i � `. Now P2 can decide whether xi = yi1 or xi = yi2.On the other hand, we can prove that for every (partial) function f no more than logn bits canbe saved: C1(f) � C1(f)� logn � O(1). We start with a simple theorem, which claims that if f is anon-partial function then essentially nothing can be saved. That is, C1(f) �= C1(f).Theorem 2: Let f be a (non-partial) function de�ned on f0; 1gn�f0; 1gn. Then, C1(f)�1 � C1(f) �C1(f). 6



Proof: De�ne the following relation on the inputs of P1: x1 � x2 if f(x1; y) = f(x2; y) for everyy. Clearly � is an equivalence relation. Denote by Class(f) the number of equivalence classes of the� relation. It can be easily veri�ed that for computing f the party P1 must use Class(f) di�erentmessages (i.e, C1(f) is exactly dlogClass(f)e). This is true, since P1 can send on input x the index ofequivalence class for which x belongs. From this information P2 can easily compute f(x; y) (by choosingarbitrary x0 from that equivalence class and computing f(x0; y)). On the other hand, if for two inputsx; x0 in di�erent equivalence classes P1 sends the same string then by the de�nition of the relation �there exists y such that f(x; y) 6= f(x0; y). If P2 holds y as his input then clearly the protocol is wrongfor at least one of f(x; y) or f(x0; y). Similar arguments show that for computing f (`) the party P1must use Class(f (`)) = Class(f)` di�erent messages. As this number of strings is enough, the theoremfollows.The above example shows that this result cannot be extended to partial functions. The key pointis that for partial functions � is not necessarily an equivalence relation. However, in the following weshow that this example is optimal in a sense. More precisely, we prove for every partial function f thatC1(f) cannot be smaller than C1(f) by more than an additive factor of O(logn).Theorem 3: Let f be a (partial) function de�ned over f0; 1gn � f0; 1gn. Then C1(f (2)) � 2C1(f)�logn �O(1).Proof: The idea of the proof is to reduce the problem of the one-way communication complexityof a function to an appropriate graph-coloring problem,2 and then to use results of Linial and Vazirani[10] on this problem.We construct a graph Gf = (V;E) as follows: Each vertex corresponds to x 2 f0; 1gn. There is anedge between x and x0 if there exists y such that f(x; y) \ f(x0; y) = ; (this happens if and only ifjf(x; y)j = jf(x0; y)j = 1 and f(x; y) 6= f(x0; y)). Intuitively, there is an edge between x and x0 ifP2 should be able to distinguish between these two inputs in order to compute the output correctlywhen it holds input y. Similarly, we de�ne a graph Gf (2) ; its vertices correspond to pairs (x1; x2) 2f0; 1gn � f0; 1gn. There is an edge between x = (x1; x2) and x0 = (x01; x02) if there exists y = (y1; y2)such that f (2)(x; y) \ f (2)(x0; y) = ; (this happens if and only if either jf(x1; y1)j = jf(x01; y1)j = 1 andf(x1; y1) 6= f(x01; y1), or if jf(x2; y2)j = jf(x02; y2)j = 1 and f(x2; y2) 6= f(x02; y2)).The number of di�erent messages used by the optimal one-way communication protocol for f is exactlythe chromatic number of Gf (denoted �(Gf )): If we have a legal coloring of Gf then this coloringde�nes a one-way communication protocol for computing f : P1 sends the color c of its input x. Thiscolor together with P2's input y determine z 2 f(x; y). To see this, �x a y and consider all the verticescolored by c. If for all these vertices, the corresponding x satis�es f(x; y) = D then any z 2 D willdo. If for some x, jf(x; y)j = 1 then we take z = f(x; y). For any other x0 colored by c since there isno edge between x and x0 it follows from the construction that z 2 f(x0; y). On the other hand, every2Similar reductions appear in [16, 21]. In these works the two parties have an input (x;y) in some domain A and P1 hasto transmit its input x to P2. This problem corresponds in our setting to the problem of computing the speci�c functionf which is de�ned as f(x; y) = x if (x; y) 2 A and f(x;y) = D otherwise.7



protocol induces a legal coloring of Gf where the color of every x is the message P1 sends on it. Thisis because for ever x; x0 on which the same message m is sent by P1 and for every y, there is a z thatP2 outputs. The correctness of the protocol guarantees that z 2 f(x; y) and z 2 f(x0; y) and thereforef(x; y) \ f(x0; y) 6= ;. Hence, there is no edge between x and x0 so the coloring is legal. Similarly, thenumber of di�erent messages used by the optimal one-way communication protocol for f (2) is exactly�(Gf (2)) (again, �x (y1; y2) and argue about each coordinate separately the existence of z1 and z2 asneeded).Now, we de�ne the product operation on graphs: Given G1 = (V1; E1) and G2 = (V2; E2) the verticesset of the product G1 � G2 is V1 � V2. The edge set includes all the edges ((v1; v2); (u1; u2)) such that(v1; u1) 2 E1 or (v2; u2) 2 E2. (In the terminology of [10] this is called inclusive-product). It is easy toverify that Gf (2) = Gf �Gf .Using this reduction to the graph-coloring problem we can now prove the theorem: it is enough to provethat for every f , �(Gf (2)) � �2(Gf )cn , for some constant c. This is proved in [10, Theorem 1].The statement of [10, Theorem 1] is more general than what we used and allows not only productsof a graph G by itself but products of any two graphs. In particular, it says that for any two graphsG1; G2 such that jV1j � jV2j, the chromatic number satis�es �(G1 � G2) � �(G1)�(G2)c log jV1j . Thus, by thesame proof as above, we get:Theorem 4: Let n � m. Let f be a (partial) function de�ned over f0; 1gn � f0; 1gn, and let gbe a (partial) function de�ned over f0; 1gm � f0; 1gm. Let f � g be de�ned in the obvious way over(f0; 1gn� f0; 1gm) � (f0; 1gn � f0; 1gm) (each party receives two instances; one is an n-bit string andthe other is an m-bit string). Then, C1(f � g) � C1(f) + C1(g)� log n� O(1).Therefore, we haveCorollary 5: Let f be a (partial) function de�ned over f0; 1gn � f0; 1gn. Then C1(f) � C1(f) �C1(f)� log n�O(1).Proof: The �rst inequality is obvious. For the second inequality, we will prove (by induction) thatC1(f (`)) � `C1(f)� (` � 1) logn � (`� 1)c (for some constant c), which implies the corollary. This iscertainly true for ` = 1. For a general ` we can write C1(f (`)) = C1(f � f (`�1)). By Corollary 4 this isat least C1(f) + C1(f (`�1))� logn � c. Now, by the induction hypothesis C1(f (`�1)) � (`� 1)C1(f)�(`� 2) logn � (`� 2)c which gives us what we need.For additional examples of partial functions with C1(f) signi�cantly smaller than C1(f), we showthat for every graph G with 2n vertices there exists a (partial) function f such that G = Gf . Label thevertices of G by strings in f0; 1gn and de�ne a function f as follows: for every x, f(x; x) = 1. For everyedge (x; y) 2 E de�ne f(x; y) = 0. For all the other pairs f(x; y) = D. It can be easily veri�ed thatG = Gf . This implies that from every graph G with 2n vertices, such that �(G � G) �= �2(G)cn , we canconstruct a partial function f such that C1(f (2)) �= 2C1(f)� log n�O(1). Examples of such graphs aregiven in [10, Theorem 2]. 8



5 Lower Bound for General ProtocolsIn order to prove lower bounds on C(f) for a speci�c relation f , we may use traditional techniques. Forexample, consider the identity function (i.e., ID(x; y) equals 1 if x = y, and 0 otherwise). It is easy toverify that C(ID) = C(ID) = n (as in [23]). In this section we give a general lower bound on C(f) interms of C(f), for any (non-partial) boolean function f .To this end, we �rst discuss the amortized non-deterministic communication complexity of relations.We start with some de�nitions and notations that are used in the proof. Given a relation f de�nedover f0; 1gn�f0; 1gn, and ` � 1, we denote by Mf (`) the matrix representing the relation f (`). That is,each row of Mf (`) corresponds to an input x = (x1; x2; : : : ; x`) of P1, and each column corresponds toan input y = (y1; y2; : : : ; y`) of P2. The entry (x; y) of Mf (`) contains the set f(x; y) (a subset of D`). Amonochromatic rectangle of Mf (`) is a set R = Rx � Ry � f0; 1gn � f0; 1gn such that we can associatewith R an output vector zR 2 D`, in a way that every input (x; y) 2 R satis�es zR 2 f(x; y). We denoteby N(f (`)) the minimal number of monochromatic rectangles needed to cover (possibly with overlaps)all the entries of Mf (`) . Since any nondeterministic protocol for computing f (`) induces such a cover,logN(f (`)) � CN(f (`)). The next theorem claims that N(f (2)) cannot be much smaller than N2(f).Theorem 6: Let f be a relation de�ned over f0; 1gn � f0; 1gn. Then, for some constant c,N(f (2)) � N2(f)c � n :For the proof of this theorem, we need the following claim, provided by the proof of [10, Theorem 1]:Claim 3: Let A be an ` � d matrix whose entries assume k values and such that ` � d. Let k1 bethe minimal size of a set T � f1; 2; : : :kg that covers all the rows of A. That is, for every row i thereexists a column j such that the value Ai;j belongs to T . Similarly, let k2 be the minimal size of a setthat covers all the columns. Then k1 � k2 � c0 � log ` � k.Proof: Consider an optimal cover of Mf (2) , with k = N(f (2)) monochromatic rectangles, denoted byR1; R2; : : : ; Rk. We show how to coverMf with m monochromatic rectangles, where m2 � c �n �N(f (2))for some constant c. This implies that N2(f) � c � n �N(f (2)).Consider the following 22n�22n matrix A (this is not Mf (2)): each row of A corresponds to an input(x1; y1) and each column to an input (x2; y2). Every entry ((x1; y1); (x2; y2)) of A contains an elementt in f1; 2; : : :kg such that ((x1; x2); (y1; y2)) belongs to Rt. (If ((x1; x2); (y1; y2)) belongs to more thanone rectangle, then we choose one of them arbitrarily). Apply Claim 3 to the matrix A described above,and assume without loss of generality that k1 � k2; we get that k21 � c �n �k. Let T be a set of k1 valuesthat covers the rows. We now prove that this implies that Mf can be covered with k1 monochromaticrectangles.Associate with every entry (x; y) in Mf an element of T that appears in the row (x; y) of A (if thereis more than one possibility, then choose one arbitrarily). Now we extend this to (possibly overlapping)9



rectangles in the obvious way. Namely, for every t 2 T the rectangle R0t includes every (x; y) with valuet, and if (x; y) and (x0; y0) are in R0t then also (x0; y) and (x; y0) are in R0t.Clearly, these are k1 rectangles and they cover Mf . What we still have to prove is that any suchrectangle R0t is monochromatic. That is, there exists a z such that for all (x; y) 2 R0t it satis�esz 2 f(x; y). By the construction, if (x; y) and (x0; y0) both have the value t, then there exist x2; y2; x02and y02 such that both ((x; x2); (y; y2)) and ((x0; x02); (y0; y02)) belong to Rt. Since Rt is monochromatic, wecan associate with Rt a vector (z1; z2) with whom all pairs in Rt \agree". This, in particular, implies thatz1 2 f(x; y) and z1 2 f(x0; y0). In addition, since Rt is a rectangle it also contains ((x; x2); (y0; y02)) and((x0; x02); (y; y2)) which implies that also z1 2 f(x; y0) and z1 2 f(x0; y). Therefore R0t is monochromatic.To conclude, we can cover Mf with no more than qc � n �N(f (2)) monochromatic rectangles, whichcompletes the proof of the theorem.Again, the above theorem (using [10]) can be generalized to prove the following:Theorem 7: Let n � m. Let f be a relation de�ned over f0; 1gn � f0; 1gn, and let g be a relationde�ned over f0; 1gm� f0; 1gm. Then, N(f � g) � N(f) �N(g)c � n :It follows that N(f (`)) � N `(f)(cn)`�1 . We now focus our attention on the case where f is a (non-partial)function. For this case we can apply known relations between deterministic and nondeterministiccommunication complexity [1]:Claim 4: Let f : f0; 1gn � f0; 1gn ! f0; 1g, be a (non-partial) function. Then, C(f) � 2 log2N(f).Using Theorem 6 and Claim 4 we get the desired lower bound:Corollary 8: Let f : f0; 1gn � f0; 1gn ! f0; 1g, be a (non-partial) function. Then, C(f) � C(f) �pC(f)=2� logn� O(1).Proof: Clearly, C(f) � C(f). For the other inequality we writeC(f (`)) � logN(f (`))� ` logN(f)� ` logn� O(`)� ` � �qC(f)=2� logn �O(1)�By the de�nition of C(f) the result follows.We do not know how to extend the above result to general relations or even to partial functions.Our proof method fails in these cases as the gap between deterministic and nondeterministic complexitymay be exponential (examples of such partial functions can be constructed based on results is [19]).10



6 A Function With Low Amortized Randomized ComplexityIn this section we consider amortized randomized communication complexity. Clearly, for every relationf , CR(f) � C(f) � n. However, unlike the deterministic case, we do not know whether CR(f) � CR(f)for all relations f . If f is a (partial) function then 1̀ � CR(f (`)) is O(CR(f) � log `), as we can computef separately for each instance. We do this O(log `) times and take the majority as the output (theO(log `) factor seems to be needed, since we require the protocols for computing f (`) to be correct withhigh probability on all ` instances simultaneously). For speci�c relations we can do much better. Weconsider the identity function ID(x; y). It is known that CR(ID) = �(logn) (see [23]). We show thatthe amortized complexity of ID, with respect to randomized protocols, is CR(ID) = O(1). Moreover,the probability of error in our protocol for ID is much less than a constant: it goes down exponentialwith p`. (This can actually be improved to exponential in `.)For simplifying the presentation of the protocols we �rst assume that the two parties have a wayof agreeing on a random string with no cost in communication. This can be thought as protocols inthe public-coins model. After presenting the protocols we describe how the parties can agree on suchstrings while preserving both the communication complexity and the correctness of the protocols.The following protocol computes the identity function on a single pair of inputs, (x; y):� The parties agree on a random string b 2 f0; 1gn.� P1 computes hb; xi, the inner product of b and x (mod 2), and P2 computes hb; yi.� The parties exchange the bits hb; xi and hb; yi. If the bits are equal they output \equal" (x = y),otherwise they output \not-equal" (x 6= y).The number of bits exchanged in the protocol is O(1). If x = y it is always correct, while if x 6= y itis correct with probability 12 (which can be improved to any other constant advantage while preservingthe O(1) complexity).Suppose now that the two parties P1 and P2 wish to compute the identity function on ` inputpairs (x1; y1); (x2; y2); : : : ; (x`; y`): Consider the protocol where P1 and P2 amortize the �rst step in theabove protocol while exchanging the bits hb; xii and hb; yii, for all 1 � i � `. Such a protocol givesa \good" success probability for computing each of the f(xi; yi) separately, while what we want is a\good" probability of computing f on all ` instances simultaneously. A possible idea is to decrease theerror probability on each (xi; yi) to 1poly(`) by choosing k = O(log `) vectors bi's. Formally,Protocol multi compare:1. The parties agree on k random strings b1; b2; : : : ; bk 2 f0; 1gn.2. For i = 1; 2; : : : ; k :(a) P1 computes ui = hbi; x1i; hbi; x2i; : : : ; hbi; x`i:P2 computes vi = hbi; y1i; hbi; y2i; : : : ; hbi; y`i:11



(b) The parties exchange the vectors ui and vi (each of them is an `-bit string) using a procedureexchange(ui; vi).(c) For 1 � j � `, if the j-th bits of ui and vi are di�erent then the parties P1 and P2 replace xjand yj (respectively) by xj = yj = 0n, where 0n denotes a string of n zeros. (The motivationfor this step will become clear while making the analysis below.)3. The output for the j-th pair (xj ; yj) is \equal" (xj = yj) if and only if for every 1 � i � k thej-th bits of ui and vi are equal.The probability that the protocol will err on any pair is at most `2�k . The only problem withthis protocol is that if k = O(log `), and if the procedure exchange, in step (2b), is implemented ina naive way (i.e., P1 sends ui to P2, and P2 sends vi to P1) then the communication complexity ofthe protocol is O(` log `) (i.e., O(log `) invocations of the procedure exchange, each requires O(`) bits).This complexity is more than what we are aiming for.The main idea for reducing the communication complexity is the following: even if a vector bi doesnot recognize all the pairs such that xj 6= yj , we expect that it does recognize a constant fraction ofthem. At each time that the parties recognize such a pair, they replace it by xj = yj = 0n (step (2c)),therefore the expected Hamming distance between the vectors ui and vi in the above protocol decreasesfrom round to round. We present an implementation of the procedure exchange(u; v) that uses thisproperty: It enables the parties to exchange ui and vi (step (2b)) in a cost that depends on the Hammingdistance between the vectors; Namely, the smaller the Hamming distance, the lower the communicationcomplexity. This will give us the desired complexity.We start with a simple case where the parties P1 and P2 receive, in addition to the input vectorsu; v 2 f0; 1g` respectively, a bound d such that u and v are promised to be at Hamming distance at mostd. The following deterministic protocol exchanged(u; v) enables each party to learn the value of the otherparty, by exchanging O(log �d̀�) bits (we assume that d � `=4, otherwise the parties simply exchangetheir inputs). The protocol is due to Brandman, El-Gamal and Orlitsky (in [15]), Witsenhausen andWyner [22] and Karchmer and Wigderson [9]:Protocol exchanged(u; v):� The parties consider the graph with 2` nodes corresponding to the strings in f0; 1g` and edgesbetween nodes which are at Hamming distance at most 2d. The parties �x a coloring of the graph.(An e�ective coloring can be constructed using linear error correcting codes such as BCH.)� P1 sends P2 the color of u and P2 sends the color of v under the coloring. Since the Hammingdistance between u and v is bounded by d and since there is at most one member of every colorclass at distance d from v (as we have a legal coloring of vectors with Hamming distance � 2d)then P2 can identify u. Similarly, P1 can identify v.The degree of every node in this graph is less than 2d � �2̀d�. Therefore there exists a coloring of thegraph with that many colors. Since the communication in this protocol consists of names of colors thenO(log �2̀d�) = O(log �d̀�) bits are communicated. 12



The protocol exchanged above assumes that we have an upper bound on the Hamming distancebetween u and v. In our case (step (2b) of the protocol multi compare), a good bound on the distancebetween ui and vi is not knows. If we use the protocol exchanged with the wrong bound d then it mayfail. Therefore, we generalize the protocol exchanged to a (randomized) protocol exchange (which infact uses exchanged as a procedure). This generalized protocol can work in the case that a good boundd is not known. The expected number of bits exchanged is still only O(log ��̀�) bits, where � is theactual Hamming distance between u and v. We use this protocol to implement step (2b) of the protocolmulti compare.Protocol exchange(u; v):1. The parties agree on k random \test strings" c1; c2; : : : ; ck 2 f0; 1g`.2. For d = 21; 22; 23; : : : ; 2log`(a) P1 and P2 engage in exchanged(u; v). Denote the output of P1 by v0 and the output of P2by u0.(b) Test step: P1 and P2 test whether u0 = u by comparing the inner product of the \test strings"c1; c2; : : :ck with u and u0; this is done in a bit by bit manner, quitting early if they discoveran error and going to the next d. If all the k bits are equal the protocol terminates (i.e., theparties assume that d is correct, and therefore u0 = u and v0 = v).By the analysis of the protocol exchanged made above, the number of bits required in step (2a)is O(log �d̀�) if d � `=4 and O(`) otherwise. If u0 6= u then the expected number of bits exchanged inthe test step is O(1). If u0 = u then the number of bits exchanged in the test step is k, however thishappens only once (note that once we reach d such that d � � then the deterministic sub-protocolexchanged (step (2a)) always stops and with the correct values). Therefore, the expected number ofbits communicated is O(k +Plog�i=1 log �2̀i�). For computing the overall number of bits communicatedwe need the following technical claim:Claim 5: For any D � `=2, logDXi=1 log 2̀i! is O(log �D̀�).Proof: We claim that for all 1 � k � `=8 we have �2̀k� � �k̀�3=2: we know that�2̀k��k̀� = (`� k)(`� k � 1) � � �(`� 2k + 1)2k(2k� 1) � � �(k + 1) � `(`� 1) � � �(`� k + 1)2k(2k � 1) � � �(k + 1)2k � `(`� 1) � � �(`� k + 1)k! � 2k � 2k = �k̀�4k :In addition, we have that �k̀� � ( k̀ )k � 8k (for the last inequality we use the assumption k � `=8)and hence �2̀k� � �k̀�2=4k � �k̀�3=2. Therefore every term (except perhaps the last two) in the sumPlogDi=1 log �2̀i� is at least at 3=2 times the preceding term, and the sum is bounded by some constanttimes the largest term which is log �D̀�. 13



Therefore the expected number of bits exchanged is O(k+log ��̀�) if � � 2̀ and O(k+log � ``=2�) oth-erwise. The error probability in each round is bounded by 2�k and therefore the total error probabilityis bounded by log ` � 2�k .As mentioned, we now use the procedure exchange described above to implement step (2b) ofthe protocol multi compare. The analysis of the protocol multi compare is as follows: let Di be therandom variable counting the number of indices 1 � j � ` such that hbi; xji 6= hbi; yji but hb1; xji =hb1; yji; : : : ; hbi�1; xji = hbi�1; yji. In other words Di is distance between ui and vi (recall, that if forsome i0 < i, hbi0; xji 6= hbi0; yji then both xj and yj are replaced by 0n and therefore the j-th coordinateof ui and vi must be the same).The expected number of bits exchanged in an execution of the protocol given thatDi = d is boundedby c �Pki=1 �k + log �d̀�� for some constant c. For any set of inputs, the expected value of Di+1 giventhat Di = d and that procedure exchange does not fail is bounded by 1=2d. Therefore, conditioned onthat exchange does not fail, E[Di] � ` � 2�i and for all 0 � m � i we have Prob[Di > `2m�i] < 2m: Ifexchange does fail at some round, then at most ` � k bits are exchanged as result. The expected totalnumber of bits exchanged is therefore at mostE[c � kXi=1 k + log D̀i!!] + Prob[ exchange fails] � ` � k � c � k2 + k � ` log `2�k + c � kXi=1E[log D̀i!]� c � k2 + k � ` log `2�k + c kXi=1 i�1Xm=0 2�m log ``2m�i! � c � k2 + k � ` log `2�k + c kXs=1 log ``2�s! kXt=0 2�t� c � k2 + k � ` log `2�k + 2c kXs=1 log ``2�s!which by Claim 5 is O(k2 + k � ` log `2�k + `). If k is �(p`), then the expected number of bitscommunicated is O(`).As for correctness, if xj 6= yj then with probability at most 2�k we have that for all 1 � i �k; hbi; xji = hbi; yji. Therefore the probability that for some j, and for all 1 � i � k we have thathbi; xji = hbi; yji is bounded by 2̀k . In addition there is the probability of failure each time we invokeexchange(u; v). This probability is at most log `2k . Thus the probability of error in our protocol is boundedby `+k log `2k . Therefore, if k = p`, then the probability of error is at most 2�
(p`). To summarize wehaveLemma 2: The protocol described above computes in the public coins model the identity functionon ` instances while maintaining that the number of bits communicated is O(`) and the probability oferror on any instance is at most 2�
(p`).Newman [14] has considered the public-coins model vs. the private coins model. He showed thatCR(f) = O(Cpub(f) + logn), which in particular impliesCR(f (`)) = O(Cpub(f (`)) + log `n):14



Clearly, CR(f (`)) � Cpub(f (`)) = O(` � log ` � Cpub(f)):All together we have the following:Theorem 9: Let f : f0; 1gn� f0; 1gn ! f0; 1g be a (partial) function. Then1. CR(f) = �(Cpub(f)).2. For every su�ciently large `, 1̀ � CR(f (`)) = O(log ` � Cpub(f)).In particular, this Theorem together with Lemma 2 give:Theorem 10: CR(ID) = O(1).Note however that Newman's method is non-constructive in nature. In the rest of this section weturn to the question of constructively converting the protocols described above to run in the privatecoins model. We describe a way for the parties to agree on the random strings (i.e., the bi's and ci's)with not much additional cost in the communication.We �rst describe how to agree on a single string bi. A collection of vectors Bm � f0; 1gm is called"-biased if every x 2 f0; 1gm satis�es Prb2Bm(hb; xi = 0) = 12 � ". In [13] and [3] the existence andconstruction of such sets which are of size polynomial in m (and thus each of them can be representedby O(logm) bits) is shown. For our purposes it is su�cient to take " to be say 1=4. Fix Bn and B`, two"-biased probability spaces. P1 selects bi 2 Bn by choosing log jBnj random bits and sends those bits toP2. They can both compute bi. Clearly, if x = y then hbi; xi = hbi; yi while if x 6= y then hbi; xi 6= hbi; yiwith probability at least 1=4. In order to pick k strings b1; b2; : : : ; bk the party P1 samples k times Bnusing O(k � logn) bits altogether. He sends those bits to P2. The probability that multi compare errsis at most ` � (34)k and the expectation of Di is at most ` � (34)�i.The strings c1; c2; : : : ; ck are selected similarly from B` using O(k log `) bits. Note however thatstep (1) in protocol exchange(u; v) should not be repeated, i.e. c1; c2; : : : ck are chosen once and forall at the beginning of the protocol multi compare. In the public coins model there is no reason fordoing that; we can allow the parties to use new strings c1; : : : ; ck each time that step (2b) of exchangeis executed. However, the �xed choice of c1; : : : ; ck makes the conversion to the private coins modeleasier. Choosing the ci's once and for all, using "-biased spaces, has the property that in protocolexchange(u; v), in case u0 6= u the expected number of bits exchanged is O(1). Also the probability oferror is at most (34)k. Thus the analysis of Lemma 2 still applies and we get that the probability oferror is at most 2�
(p`) and the number of bits exchanged is O(`+p` logn).For values of ` which are around log n we would like to replace the termp` logn withp`+log n. Thiscan be done by sampling the bi's via a random walk in an expander �a la Ajtai, Koml�os and Szemer�edi[2] (in such a case the bi's are not independent): The elements of Bn are mapped to nodes of a constantdegree expander G. Then, a random walk of length k in G is generated, and the vectors b1; b2; : : : ; bkare the vectors corresponding to the nodes of the walk. The number of bits required to specify the walk15



is O(log jBnj+k) which is O(logn+k). (See e.g. [13] for details.) As before, P1 selects the random bitsand sends them to P2, so that they both agree on the same sequence. If x 6= y then the probability thathbi; xi = hbi; yi for all 1 � i � k goes down exponentially in k. The strings c1; c2; : : : ; ck are selectedsimilarly in B` using O(k + log `) bits.To conclude, we have a randomized protocol, in the private coins model, for computing the identityfunction on ` instances with probability of error at most 2�
(p`) and expected complexity of O(`+log n),which is O(`), for ` su�ciently large. With a \small" additional error the protocol can be converted toa protocol that uses O(`) bits in the worst case. This gives a constructive proof for Theorem 10.7 Open ProblemsWe conclude this work by mentioning some open problems:� In [7] it was conjectured that for any relation f , the communication complexity, C(f), can not besmaller than C(f) by more than an additive factor of O(logn). The examples given in our paperdo not contradict this conjecture. On the other hand, according to the best lower bound we areable to prove (Corollary 8), even for (non-partial) functions a quadratic gap between C(f) andC(f) is possible (and the gap may be even bigger for general relations). Therefore, the main openproblem is to try to close this gap by either improving the lower bound (in particular, trying toextend it to relations), or presenting relations with more than O(logn) di�erence between C(f)and C(f). (Presenting other relations with O(logn) di�erence between C(f) and C(f) may alsobe interesting).� Another open problem is trying to achieve similar lower bounds for the randomizedmodel. Namely,can one prove a lower bound on CR(f) in terms of CR(f) ? In the randomized case, it is also notknown whether CR(f) � CR(f), for every relation f .� In the case of partial functions f , one can consider a weaker de�nition for the correctness of aprotocol for computing f (`): The protocol is required to succeed in computing f (`)(~x; ~y) only iffor all i (1 � i � `) we have jf(xi; yi)j = 1 (otherwise, there is no requirement). In such a modelwe think of inputs such that f(xi; yi) = D as \illegal". Clearly, proving upper bounds under thisde�nition is easier, while proving lower bounds is harder.8 AcknowledgmentsWe thank Mauricio Karchmer and Avi Wigderson for raising the question and for helpful discussions,and Amos Beimel, Benny Chor, Alon Orlitsky and Steve Ponzio for many interesting comments onearlier versions of this paper. Finally, we thank an anonymous referee for his very helpful commentsand criticism. 16



References[1] Aho A., J. Ullman, and M. Yannakakis, \On Notions of Information Transfer in VLSI Circuits",Proc. of 15th ACM Symposium on Theory of Computing, 1983, pp. 133-139.[2] Ajtai M., J. Koml�os, and E. Szemer�edi, \Deterministic Simulation in LOGSPACE", Proc. of 19thACM Symposium on Theory of Computing, 1987, pp. 132-140.[3] Alon N., O. Goldreich, J. H�astad and R. Peralta, \Simple construction of almost k-wise independentrandom variables", Proc. of 31st IEEE Symposium on Foundations of Computer Science 1990, pp.544-553.[4] Bshouty, N. H., \On The Extended Direct Sum Conjecture", Proc. of 21th ACM Symposium onTheory of Computing, 1989, pp. 177-185.[5] Fredman M., J. Koml�os, and E. Szemer�edi, \Storing A Sparse Table with O(1) Access Time",Journal of the Association for Computing Machinery, Vol 31, 1984, pp. 538{544.[6] Galibati G., and M. J. Fischer, \On The Complexity of 2-Output Boolean Networks", TheoreticalComputer Science, Vol 16, 1981, pp. 177{185.[7] Karchmer M., R. Raz, and A. Wigderson, \On Proving Super-Logarithmic Depth Lower Boundsvia the Direct Sum in Communication Complexity", Proc. of 6th IEEE Structure in ComplexityTheory, 1991, pp. 299{304.[8] Karchmer M., and A. Wigderson, \Monotone Circuits for Connectivity Require Super-LogarithmicDepth", Proc. of 20th ACM Symposium on Theory of Computing, 1988, pp. 539-550.[9] Karchmer M., and A. Wigderson, private communication.[10] Linial N., and U. Vazirani, \Graph Products and Chromatic Numbers", Proc. of 30th , IEEESymposium on Foundations of Computer Science, 1989, pp. 124-128.[11] Lov�asz, L., \Communication Complexity: A Survey", in Paths, Flows, and VLSI Layout, editedby B. H. Korte, Springer Verlag, Berlin New York, 1990.[12] Mehlhorn, K., and E. Schmidt, \Las-Vegas is better than Determinism in VLSI and DistributedComputing", Proc. of 14th ACM Symposium on Theory of Computing, pp. 330-337, 1982.[13] Naor J., and M. Naor, \Small-Bias Probability Spaces: E�cient Constructions and Applications",SIAM J. on Computing, vol 22, 1993, pp. 838{856.[14] Newman, I., \Private vs. Common Random Bits in Communication Complexity", InformationProcessing Letters 39, 1991, pp. 67-71. 17



[15] Orlitsky, A., \Communication Issues in Distributed Communication", PhD thesis, Stanford Uni-versity, 1986.[16] Orlitsky, A., \Two Messages are Almost Optimal for Conveying Information", Proc. of 9th Sym-posium on Principles of Distributed Computing, 1990, pp. 219-232.[17] Paul W., \Realizing Boolean Function on Disjoint Sets of Variables", Theoretical Computer Science2, 1976, pp. 383-396.[18] Raz R., and A. Wigderson, \Monotone Circuits for Matching Require Linear Depth", Proc. of 22ndACM Symposium on Theory of Computing, 1990, pp. 287-292.[19] Razborov A., \Applications of Matrix Methods to the Theory of Lower Bounds in CommunicationComplexity", Combinatorica, 10(1), 1990, pp. 81-93.[20] Q. F. Stout, \Meshes with multiple buses", Proc. of 27th IEEE Symposium on Foundations ofComputer Science, 1986, pp. 264-273.[21] Witsenhausen, H. S., \The Zero-Error Side Information Problem and Chromatic Numbers", IEEETransactions on Information Theory, 1976, pp. 592-593.[22] Witsenhausen, H. S. and A. D. Wyner, \Interframe Coder for Video Signals", United States Patentnumber 4,191,970, 1980.[23] Yao, A. C., \Some Complexity Questions Related to Distributed Computing", Proc. of 11th ACMSymposium on Theory of Computing, 1979, pp. 209-213.

18


