On the Compressibility oV'P Instances and Cryptographic
Applications

Danny Harnik Moni Naor

Abstract

We study compression that preservessbkitionto an instance of a problem rather than preserving
the instance itself. Our focus is on the compressibility\GP decision problems. We considafP
problems that have long instances but relatively short witnesses. The question is, whether one can effi-
ciently compress an instance and store a shorter representation that maintains the information of whether
the original input is in the language or not. We want the length of the compressed instance to be polyno-
mial in the length of thevitnessand polylog in the length of original input. We discuss the differences
between this notion and similar notions from parameterized complexity. Such compression enables
succinctly storing instances until a future setting will allow solving them, either via a technological or
algorithmic breakthrough or simply until enough time has elapsed.

We give a new classification ¢fP with respect to compression. This classification forms a strati-
fication of VP that we call the)’C hierarchy. The hierarchy is based on a new type of reduction called
W-reduction and there are compression-complete problems for each class.

Our motivation for studying this issue stems from the vast cryptographic implications of compress-
ibility. We describe these applications, for example, based owrdhgpressibility of SATWe say that
SAT is compressible if there exists a polynomp@l, -) so that given a formula consisting of clauses
over n variables it is possible to come up with an equivalent (w.r.t satisfiability) formula of size at
mostp(n,logm). Then given a compression algorithm for SAT we provide a construction of collision-
resistant hash functions froamyone-way function. This task was shown to be impossible via black-box
reductions [77], and indeed our construction is inherently non-black-box. A second application of a
compression algorithm for SAT is a construction of a one-way function from any samplable distribution
of AN'P instances that is hard on the average. Using the terminology of Impagliazzo [49], this would
imply that Pessiland=Minicrypt . Another application of SAT compressibility is a cryptanalytic
result concerning the limitation of everlasting security in the bounded storage model when mixed with
(time) complexity based cryptography. In addition, we study an approach to constructing an Oblivious
Transfer Protocol fronany one-way function. This approach is based on compression for SAT that also
has a property that we callitness-retrievability However, we manage to prove severe limitations on
the ability to achieve witness-retrievable compression of SAT.

1 Introduction

In order to deal with difficult computational problems several well-established options were developed,
including: approximation algorithms, subexponential algorithms, parametric complexity and average-case

*Department of Computer Science, Technion, Haifa, Israel. E-rhailnik@cs.technion.ac.il . This research was
conducted while at the Weizmann Institute, Rehovot.

fIncumbent of the Judith Kleeman Professorial Chair, Department of Computer Science and Applied Mathematics, Weizmann
Institute of Science, Rehovot 76100 Israel. Emaibni.naor@weizmann.ac.il

tResearch supported by a grant from the Israel Science Foundation. A short version of this paper appeared in FOCS 2006.

complexity. In this paper we explore our favorite approach for dealing with probleassponghem (hope-
fully without cluttering our desk or disk). We initiate the study of the compressibilit}/@f problems for
their resolution in some future setting and in particular the cryptographic significance of such compres-
sion. Rather than solving a given instance, we ask whether a shorter instance with the same solution can be
found efficiently. We emphasize that we are not interested in maintaining the information about the original
instance (as is the case in typical notions of compression), but rather maintaining the solution only. The
solution can possibly be much shorter than the input (as short as a yes/no answer), thus the potential of such
a compression is high.

While the question of compressibility is interesting with respect to problems both inside and\6##,of
our focus is mostly on a special case, that\6P problems that have long instances but relatively short
witnesses. An\VP languagel is defined by an efficiently computable relatiéh, such that an input (or
instance)r is in L if and only if there exists a witness such thatR (z,w) = 1. Throughout the paper,
an NP instance is characterized by two parameterandn: The length of the instance is denoted by
m and the length of the witness is denoted by:. The problems of interest are those having relatively
short witnesses, i.e. < m, but not too short: < 2™). Traditionally, the study afV’P languages evolves
around the ability or inability to efficiently decide if an instance is in the language or not, or to find a withess
w for an instancer € L within polynomial time. We introduce the question of compressibility of such
instances.

Example of Compressing SAT Instances: To illustrate the relevant setting, we use the well known exam-
ple of SAT. An instance& for SAT consists of a CNF formula overvariables and we define théte SAT

if there exists an assignment to thevariables that satisfies all the clausesbofWe begin with compress-
ibility with respect to decision, and discuss the search variant of compressibility later in the paper. In this
example we consider the question of compressibility of SAT instances to shorter SAT intances

Example 1.1 (Compression of SAT instances)

Does there exist an efficient algorithm and a polynomial-) with the following input and output?
Input: A CNF formula® with m clauses over variables.

Output: A formulaV of sizep(n,logm) such that¥ is satisfiable if and only i is satisfiable.

The idea is that the length df should not be related to the original length but rather to the number
of variables (or in other words, to the size of the witness). Typically, we think of the parametardn as
related by some function, and it is instructive (but not essential) to thimk a$ larger than any polynomial
in n. So potentially, the length oF can be significantly shorter than that®f

In general, one cannot expect to compress all the formulas, or else we would have an efficient algorithm
for all NP problems® However, once we restrict the attention to the case of a shorter witness, then com-
pression becomes plausible. Note tha®if= AP then compression becomes trivial, simply by solving the
satisfiability of® and outputtingl if ® € SAT and0 otherwise.

Motivation for Compression: Compressing for the future is an appealing notion for various settings.
There are numerous plausible scenarios that will give us more power to solve problems in the future. We

1This example comes only as an illustration. We later consider the more general question of compression to instances that are
not necessarily of the same language.

2Note that since our requirement for compression is only relevant for problems whgsen, an\"P-complete problem such
as 3-SAT (where all clauses have exactly 3 literals) is irrelevant for compressiarisaalready at mosP(n?) in such formulas.

3Suppose that every formula can be compressed by a single bit, then sequentially reapplying compression to the input will result
in a very short formula that may be solved by brute enumeration.

could potentially find out thaP = NP and solve all ouNVP problems then. We may have faster com-
puters or better means of computing such as quantum computers or some other physical method for solving
problems (see Aaronson [1] for a list of suggestions). Above all, the future entails lots and lots of time, a
resource that is usually scarce in the present. Saving the problems of today as they are presented is wasteful,
and compression of problems will allow us to store a far greater number of problems for better days.

Our interest in studying the issue of compression stems from the vast cryptographic implications of
compressibility. We demonstrate three questions in cryptography that compression algorithms would re-
solve (see Section 1.3). We are confident that the notion of compressibility will be found to have further
applications both within and outside of cryptography. For example, in subsequent works, Dubrov and Ishai
[26] show the relevance of the notion of compression to derandomization and Dziembowski [28] shows that
compression is related to the study of forward-secure storage (see Section 1.4 on related work). We note
that a notion similar to compression has been useful (and well studied) in the context of parameterized com-
plexity (see a comparison and discussion in Section 1.4). The concept of compression of problems is also
interesting beyond the confines &fP problems, and makes sense in any setting where the compression
requires much less resources than the actual solution of the problem.

1.1 Compression of NP instances

We define the notion of compression with respect to\&R languageL. We associate witll, a specific
fixed NP relation Ry, that defines it (as mentioned above) as well as a funetian that defines an upper
bound on the length of a potential witness for an instanteAt times, for simplicity, we abuse notations
and simply refer to the language and omit the reference to the underlying relatiBp. In essence, a
compression algorithm is a specialized Karp-reduction that also reduces the length of the instance.

Definition 1.2 (Compression Algorithm for NP Instances) Let L = (Rp,n(-)) be an NP language.
Denote bym andn the instance length and the witness length respectivetprpression algorithrfor L

is a polynomial-time maching along with a languagd.’ and a polynomiap(-, -) such that for all large
enoughm:

1. Forall z € {0,1}™ with parametem the length ofZ () is at mostp(n, log m).
2. Z(z) € L'ifand only ifz € L

The above definition is of aerrorlesscompression. We also consider a probabilistic variant calted

compressiorior some real functios : N — [0, 1]. The probabilistic definition is identical to the errorless

one except that is a probabilistic polynomial-time machine and the second property is augmented to:
2'. For large enough, for all = € {0, 1}™ with parametem it holds that:

Pr[(Z(z) e ') & (x € L)] > 1 —&(n)

where probability is over the internal randomness/f By default we require(-) to be negligible (i.e.,
e(n) =n—vW)5

The paper consists of two parfart | is a study of the concept of compressio’\dP instances from a
complexity point of view.Part Il introduces the cryptographic applications of compression algorithms.

“Typically, the lengthn is part of the description of the problem (e.g. for Clique, SAT, Vertex cover and others).
>Note that we can equivalently ask that the error be,zsay,%. This is because the error can be reduced to negligible, albeit at
the price of a worst compression rate (the polynomial-) grows). See Claim 2.24.

How much to compress: Definition 1.2 (of compression algorithms) requires a very strong compression,
asking that the length of the compression be polynomial andlog m. For the purposes of part | of the
paper (the complexity study), it is essential that the length of the compression be at least sub-polynemial in
in order to ensure that the reductions defined with respect to compressibility (See Section 2.2) do compose.
For clarity we choose a polynomial ing m, although this may be replaced by any sub-polynomial function
m'(.) (i.e., m’ = m°M)). We note that in many natural cases one can assume thalog m and then one

can replace the polynomiga(n, log m) in Definition 1.2 by a polynomial im alone (in Sections 1.4 and 2.1

we compare this definition to the notion pblynomial kernelization However, we choose not to restrict

the scope of our discussion by making this assumption. Moreover, for part Il (the applications) Definition
1.2 may be significantly relaxed, where even a compression to lemith for some constant suffices for

some applications.

The Complexity of L’: In Definition 1.2 there is no restriction on the complexity of the languageAll

that is required is that there is enough informatioix) to determine whether € L or not. However, itis
worth noting that if the compression is errorless then the langliagrist be in a class of nondeterministic-
time poly(m) that we denoteV'P(poly(m)). That is, languages that are verifiable in tijiéy(m) when
given a non-deterministic hint (in order fpoly(m) to be well defined we assume that the parametés

also encoded in the instangdx)). This fact follows simply from the definition of compressidhn some
cases it is essential to restritt to be in NP (poly(m)), such as when defining the witness-retrievability
property (Definition 1.6). Moreover, in some cases it is natural to further reéfrict actually be inV'P

(that is in N'P(poly(n,logm)). For instance, this is the case in the example for compression of SAT
(Example 1.1).

Paper organization: In the rest of the introduction we survey the results of this paper, including part |
(the complexity study) and part Il (the cryptographic applications). In section 1.4 we discuss related and
subsequent works. The main complexity study of the compressibility Bfproblems appears in Section

2. The Cryptographic applications are in Sections 3,5 and 6. In Section 3 we describe the application of
compression to constructing collision-resistant hash functions (CRH) from any one-way function. Section 5
presents the implication to the hybrid bounded storage model, while Section 6 discusses witness-retrievable
compression and its application to the construction of oblivious transfer (OT) from any one-way function.
We conclude with a discussion and some open problems (Section 7).

1.2 Part I: Classifying NP Problems with Respect to Compression

We are interested in figuring out whictiP languages are compressible and, in particular, whether impor-

tant languages such as SAT and Clique are compressible. For starters, we demonstrate some non-trivial lan-
guages that do admit compression (Section 2.1): we show compression for the well-kffeveomplete

problem of vertex cover and for anoth&fP-complete language known as minimum-fill-in. We show

a generic compression of sparse languages (languages containing relatively few words from all possible
instances). As specific examples we mention the language consisting of strings that are the output of a cryp-
tographic pseudorandom generator and also consider the sparse subset sum problem. In addition we show
compression for the promise problem GapSATowever, these examples are limited and do not shed light

®Suppose that there exists an errorless compression algafitfon L then definel’ to be the language of aff(z) such that
x € L. Then, for every € L' a verification algorithm takes as a nondeterministic witness a wahleng with a witness te € L
and verifies that indeegd = Z(z). ThusL' is in NP (poly(m)).

’I.e. a promise problem were either the formula is satisfiable or every assignment does not satisfy a relatively large number of
clauses.

on the general compression of oth€f™ problems. Moreover, it becomes clear that the traditional notions

of reductions and completenessAfP do not apply for the case of compression (i.e., the compression of

an N P-complete language does not immediately imply compression for AllBj. This is not surprising,

since this is also the case with other approaches for dealinghViRkhardness such as approximation algo-
rithms or subexponential algorithms (see for example [76, 51]) and parameterized complexity (see [24] and
further discussion in Section 1.4 on related work). For each of these approaches, appropriate new reductions
were developed, none of which is directly relevant to our notion of compression.

We introduce W-reductions in order to study the possibility of compressing various problexig.in
These are reductions that address the length of the witness in addition to membersiffidarmguage. W-
reductions have the desired property thdt WW-reduces td.’, then any compression algorithm fbtyields
a compression algorithm fdr. Following the definition of W-reductions we define also the corresponding
notion of compression-complete and compression-hard languages for a class.

The VC classification: We introduce a classification @ 7 problems with respect to compression. The
classification presents a structured hierarchyy@? problems, that is surprisingly different from the tradi-
tional view and closer in nature to thE hierarchy of parameterized complexity (see [24] and [34]). We call
our hierarchyC, short for “verification classes”, since the classification is closely related to the verification
algorithm of NP languages when allowed a preprocessing stage. We give here a very loose description
of the classes, just in order to convey the flavor of the classification. Formal definitions appear in Section
2.3. In the following definition, when we use the term “verification” we actually mean “verification with
preprocessing”:

e Fork > 2, the classVC;, is the class of languages that have verification that can be presented as
a depthk circuit of unbounded fan-in and polynomial size (polynomiakirandm). For exam-
ple, the language SAT is compression-complete for the dfgss Other examples include Integer-
Programming which resides WC,, ,, and Dominating-Set which is iWC3. Both of these are shown
to be compression-hard foiC,.

e V(C, is the class of languages that hdweal verification. That is, languages that can be verified by
testing only a small part (of sizevly(n,logm)) of the instance. This class contains many natural
examples such as the Clique language or Long-path.

e VCor is the class of languages that have verification that can be presented as then©O&Rril
instances of SAT (each of sizg. This class contains the languages that are relevant for the crypto-
graphic applications. The Clique language is compression-hard for this class (Claim 2.23).

e V(C is the class of compressible languages. In particular it includes vertex cover, sparse languages
and GapSAT.

We show that the classes described form a hierarchy (see Lemma 2.17 and Claim 2.22). That is:
VCo CVCor CVC1 CVCy CVC3...

We discuss some of the more interesting classes invVthaierarchy, classify some centtdl? problems
and mention compression-complete problems for the classes. The existence of a compression algorithm for
a complete problem for some class entails the collapse of the hierarchy up to that clag%jinto

In addition, we study the compression 8P searchproblems. That is, compressing an instance in a
way that maintains all the information about a witness for the problem. We show that the compression of a
class of decision problems also implies compression for the corresponding search problems. Formally:

5

Theorem 1.3 If a classVC;, has a compression algorithm, then for ahye VC;. there is a compression
algorithm for the corresponding search problem.

This theorem turns out to be useful for the cryptanalytic result regarding the bounded storage model we
present in Section 5.

1.3 Part ll: Implications to Cryptography

As the main motivation for the study of compression, we provide some strong implications of compress-
ibility to cryptography. The implications described are of contrasting flavors. On the one hand we show
constructions of cryptographic primitives using compression algorithms, while on the other hand we show
a cryptanalysis using compression algorithms. Alternatively, this shows that the incompressibility of some
languages is necessary for some applications. For simplicity, we discuss the implications with respect to
the compression of SAT. We note however, that the same statements can actually be made with compression
of languages from the cla3& o (see Definition 2.20). This class is the lowest class imatihierarchy,

and potentially easier to compress than SAT. Moreover, the instances that we need to compress for our ap-
plications are further limited in the sense that (i) the relevant instances have a witness to either being in the
language or to not being in the language and (ii) the (positive and negative) instances have a unigque witness.

Basing Collision-Resistant Hash Functions on Any One-Way Function: Collision-Resistant Hash func-

tions (CRH) are important cryptographic primitives with a wide range of applications, e.g. [70, 18, 57, 19,
65, 5]. Loosely speaking, a CRH is a family of length-reducing functions, such that no efficient algo-
rithm can find collisions induced by a random hash function from the family. Currently there is no known
construction of CRH from general one-way functions or one-way permutations, and moreover, Simon [77]
showed that basing CRH on one-way permutations cannot be achieved using “black-box” reductions. We
show how a general compression algorithm may be used to bridge this gap.

Theorem 1.4 If there exists an errorle§xompression algorithm for SAT then there exists a construction of
collision-resistant hash functions based on any one-way function.

The construction of the CRH in Theorem 1.4 (if the hypothesis were true) would be inherently non-black-
box and uses the program of the one-way function via Cook’s Theorem [17]. This is essential to the validity
of this approach, in light of the black-box impossibility result [77].

An interesting corollary of this result is a construction of statistically hiding bit commitment from any
one-way function. Moreover, the construction would require only a single round of interaction. Such a
construction was recently shown by [71, 44] but requires a large number of rounds of interaction.

Basing One-Way Functions on Hard Instances: The next application shows that compression may be
used in order to prove, in the terminology of [49], tHéssiland does not exist. Impagliazzo [49]
summarizes five possibilities for how the world may look like based on different computational assumptions.
Pessiland is the option where it is easy to generate hard on the average instances yet no one-way functions
exist (or in other words one cannot efficiently genesaalvedhard instances). We show that compression

may be used to overrule this possibility and place us in the settindiotrypt in which one-way
functions do exist. More precisely, given a language (not necessanlyfihthat is hard on the average for
non-uniform machines over a samplable distribution and a compression algorithm for a related language,

8The construction of CRH requires that the error probability of compression algorithm will be zero. This can be slightly relaxed
to an error that is exponentially smallin (rather tham).

one can construct a one-way function. A clean statement in the case that the languagéfsisrthe
following:

Theorem 1.5 let L € NP and letD be a samplable distribution such that any polynomial size circuit has
only negligible advantage in deciding membershigiaf samples drawn fror®. If there exists a compres-

sion algorithm for SAT then there is a construction of a one-way function. If in addition the compression is
errorless then there is also a construction of collision resistant hash functions.

This result also employs non-black-box techniques which are essential as it was shown that there is no
black boxconstruction of a one-way function from any hard on the average language (over a samplable
distribution). This was shown initially by Impagliazzo and Rudich (in unpublished work) and formally by
Wee [83].

On Everlasting Security and the Hybrid Bounded Storage Model: Thebounded storage mod@SM)

of Maurer [62] provides the setting for the appealing notioewdrlasting securit{3, 22]. Loosely speaking,

two parties, Alice and Bob, that share a secret key in advance, may use the BSM to encrypt messages in a way
that the messages remain secure against an adversary which has storage limitations (yet is computationally
unbounded), even if the shared secret key is eventually revealed.

However, if the parties do not meet in advance to agree on a secret key then everlasting security requires
high storage requirements from Alice and Bob [29], rendering encryption in this model less appealing.
Hoping to overcome this, it was suggested to combine the BSM with computational assumptions; we refer to
this as thénybrid BSM Specifically, the suggestion is to run a computational key agreement protocol in order
to agree on a shared secret key, and then run one of the existing BSM encryption schemes. Dziembowski
and Maurer [29] showed that this idea does not necessarily work in all cases, by showing an attack on a
protocol consisting of the combination of a specific (artificial) computational key agreement protocol with
a specific BSM encryption scheme.

We show that compression &f P instances can be used to attatkhybrid BSM schemes. Or in other
words, if a compression of SAT exists (even one that allows errors), then the hybrid BSM is no more powerful
than the standard BSM. One interpretation of this result is that in order to prove everlasting security for a
hybrid BSM scheme without further conditions, one must prove that there exists no compression algorithm
for SAT or at least make a reasonable incompressibility assumption regarding the resulting formulae. Note
however that a straightforward assumption of the form “this distribution on SAT formulae is incompressible”
is not efficiently falsifiable, in the sense of Naor [68], that is, it is not clear how to set up a challenge that
can be solved in case the assumption is false.

On Random Oracles: The authors of this paper show in [45] that if all parties are given access to a random
oracle, then there actually exists everlasting security in the hybrid BSM without an initial key and with low
storage requirements from Alice and BolFherefore, finding a compression algorithm for SAT would show

an example of a task that is achievable with random oracles but altogether impossible withotft Tres.

would constitute an argument against relying (blindly) on random oracles to determine whether a task is
feasible at all. This is different than previous results such as [5, 12, 41, 64, 6], which show specific protocols
that becomes insecure if the random oracle is replaced by a function with a small representation. Model

This does not contradict the compressibility of SAT, since the cryptanalytic result in the hybrid BSM model is not black-box
and thus is not preserved in the presence of a random oracle.

ONote that finding an algorithm that actually solves SAT would render more natural tasks (e.g., symmetric encryption) possible
in the random oracle model and impossible without it. Of course finding a compression algorithm seems more likely and does not
rule out (most of) cryptography.

separation results were discussed by Nielsen [73, 74] (for non-interactive non-committing encryption) and

Wee [82] (for obfuscating point functions), but the separations there are between the programmable and
non-programmable random oracle models. In contrast, the hybrid BSM result in [45] holds also if the oracle

is non-programmable.

Witness-retrievable compression and the existence of Minicrypt: The two top worlds that Impagli-
azzo considers in his survey [49] awnicrypt , where one-way functions exist but oblivious transfer
protocols do not exist (in this world some interesting cryptographic applications are possible, and in par-
ticular sharedkey cryptography exists) andryptomania where Oblivious Transfer (OT) protocols do
exist (and hence also a wide range of cryptographic applications like secure computatiombtiotey
cryptography). The last application we discuss is an attempt to use compression in order to prove that
Minicrypt=Cryptomania . Whether oblivious transfer can be constructed from any one-way function
is a major open problem in cryptography. Impagliazzo and Rudich [52] addressed this problem and proved
that key agreement protocols (and hence also oblivious transfer) cannot be constructed from any one-way
function using “black-box” reductions.

We explore an approach of using compression in order to bridge the gap between the two worlds. In
order to do so we introduce an additional requirement of a compression algorithm.

Definition 1.6 (Witness-retrievable Compression)Let Z, L and L’ define a compression algorithm as in
Definition 1.2 and let?;, and R;. be NP relations for L and L’ respectively. The compression is said to
be witness-retrievable with respect 1o, and R; if there exists a probabilistic polynomial-time machine
W such for every input:, if x € L then for every witness;, for = with respect toR;, it holds that
wy = W(wy, Z(z)) is a witness forZ(z) € L' with respect toR;,. We allow a negligible error in the
success ofV (where probability is over the internal randomnesszoand W).

Theorem 1.7 (Informal) If there exists a witness-retrievable compression algorithm for a certain type of
SAT formulas, then there exists an Oblivious Transfer protocol basedywone-way function.

As in the CRH construction (Theorem 1.4), the conditional construction of oblivious transfer in Theorem
1.7 is inherently non-black-box. Unfortunately we show that this approach cannot work with a compression
algorithm for thegeneralSAT problem, due to the following theorehh:

Theorem 1.8 If one-way functions exist then there is no witness-retrievable compression of SAT.

Furthermore, we also rule out the possibility of other types of witness-retrievable compression that may be
sufficient for Theorem 1.7. More precisely, the impossibility of witness-retrievable compression does not
change when allowing an error in the retrieval, or when dealing with a case where there is a unique witness
(see Corollary 6.7). These developments rule out basing the approach of Theorem 1.7 on the compression
of a general and standard language. The approach may still work out with a witness-retrievable compression
algorithm for the specific CNF formulas as constructed in the proof of Theorem 1.7.

Finally, we point out that almost all of the examples of compression algorithms in this paper (in Sections
2.1 and 2.10) are in fact witness-retrievable. This demonstrates that these examples fall short of the general
compression that we are seeking. In fact a major obstacle in achieving compression for problems such as
SAT seems to be that most natural approaches would be witness-retrievable.

"The first version of this paper [46] (dated Feb 17, 2006) did not contain this theorem and was hence more optimistic on the
possibility of finding a witness preserving compression algorithm for SAT.

1.4 Related Work

The relationship between compression and complexity in general is a topic that has been investigated since
the early days of Complexity Theory (i.e. Kolmogorov Complexity [60]). However, the feature that we are
studying in this work is compressibility with respect to $wution(witness) rather than the instance. This
distinguishes our work from a line of seemingly related works about notions of compression ([27, 78, 81] to
name a few), all of which aim at eventually retrieving the input of the compression algorithm.

There are several examples of other relaxations of solifiyproblems in polynomial time. Each of
these relaxations yields a corresponding classification§Bf These classifications, like ours, are sub-
tle and usually turn out to be different than the traditiaN&P classification. For example, Papadimitriou
and Yannakakis [75] introduce L-reductions and the classes MAX NP and MAX SNP, with respect to ap-
proximation algorithms. Impagliazzo, Paturi and Zane [51] define reductions with respect to solution in
sub-exponential time.

The classification most related to ours is thatpafameterized complexitfsee the monographs on
this subject by Downey and Fellows [24], Niedermeier [72] and Flum and Grohe [34]). Parameterized
complexity studies the tractability of problems when one of the parameters is considered to be fixed or very
small (this is called fixed parameter tractability (FPT)). One of the basic techniques of acquiring efficient
algorithms in this context is the method of “kernelization” thadyyield natural compression algorithms
(see examples in Section 2.1). The kernelization method first shrinks the instance to a smaller instance
whose size is only a function of the parameter and then solves it in brute force. However, in spite of
the similarities between kernelization and compression, there are important differences. At a high level,
kernelization is geared towards getting closer to a solution of the original instance. Our notion, on the
other hand, requires compression per se, disregarding whether it is much harder to solve the compressed
instance than the original one (in fact, in our main applications for constructing collision-resistant hashing
and one-way functions in Sections 3 and 4, the compressed instance never has to be solved). Indeed we
expect that new methods of compression that would resolve the problems we raise in this paper will utilize
this property (that the compressed instance is harder to solve). That being said, a version of this notion,
namelypolynomial kernelizatioris equivalent to deterministic compression to siz&y(n). The question
of polynomial kernelization has been raised independently from our work in the parameterized complexity
community (e.g. [34], Definition 9.1). See a further discussion on kernelization in Section 2.1. In addition,
due to the above mentioned similarities, ivefthierarchy of parameterized complexity is reminiscent of
the VC-hierarchy: both being defined by reductions to circuits of bounded depth. However, as discussed
above, our study of compression yields quite a different classification.

A related notion to parameterized complexity that is reminiscent of our wdirkited non-determinisin
which started with the work of Kintala and Fischer [58], see the survey by Goldsmith, Levy and Mund-
heck [40]. This was further studied by Papadimitriou and Yannakakis [76] who defined a few syntactic
classes within the class of polylog non-determinigo®G/N P and LOGSN P). The interesting point is
that several natural problems are complete for these classes. The notion of reduction used is the usual
polynomial reduction and hence the classifications arising from this study are very different frang our
hierarchy. A related classification is the EW-hierarchy defined by Flum, Grohe and Weyer [35]. This hierar-
chy is a similar to the Weft classification of parameterized complexity but limits the running time to be only
exponential in the witness length, thus being geared towards problems with polylogarithmic size parameters
(as iInLOGN P).

Subsequent Works: Dubrov and Ishai [26] discussed the compression of problems and showed that a
certain incompressibility assumption has an application to derandomization. Specifically they construct a
pseudorandom generator that fools procedures that use more randomness than their output length. Their

work was mostly conducted independently of ours, following conversations regarding an early phase of our
work. In addition, inspired by our CRH construction, they prove that any one-way permutation can either
be used for the above mentioned derandomization, or else can be used to construct a weak version of CRH.
Dziembowski [28] shows the relevance of our notion of witness-retrievable compression to achieving
forward-secure storageHe shows a cryptanalytic result of such compression. Furthermore, following our
approach for construction of OT from one-way functions, he shows that for every one-way function either
a specific storage scheme is forward-secure, or there exists an (infinitely often) OT protocol based on this
one-way function.
Recently some strong negative results about compression were shown. Fortnow and Santhanam [36]
show that an errorless compression algorithm for SAT (or even for the Elasg) entails the collapse of
the polynomial hierarchy. Chen andii\fer [15] notice that this generalizes to compression with a one-sided
error. These results limit the application to constructing collision resistant hash functions (Theorem 3.1).
The application may still be valid given a relaxed compression algorithm. For example, it suffices if the
compression is successful only on instances that either have a witness to being satisfiable or have a witness
to not being satisfiable. Note that the applications in Sections 4 and 5 allow an error in the compression.

2 Part l: On the Compression of /P Instances

Attempting to compresa/P instances requires a different approach than solitigproblems. Intuitively,

a solution for compression might arise while trying to solve the problem. While a full solution &f7an
problem may take exponential time, it is plausible that the first polynomial number of steps leaves us without
an explicit solution but with a smaller instance. Indeed, some algorithms in the parameterized complexity
world work like this (see some examples in the next section). On the other hand, we allow the possibility
that the compressed version is actually harder to solve (computational time-wise) than the original one (and
may require a somewhat longer witness altogether).

2.1 Examples of Compression Algorithms for some Hard Problems

We start by showing several examples of compression algorithms for problems that are conjectured not to
be inP. Two of these example ar€P-complete problems, while the third is taken from cryptography.

Vertex Cover: The well studiedVP-complete problem of vertex cover receives as input a gf@ph
(V, E) and asks whether there exists a subset of vertfcesV of size at mosk such that for every edge
(u,v) € E eitheru orv are inS. The parameters are the instance lengttwhich is at mosO(| E|log |V]),
and the witness length = k log |V|.

Claim 2.1 There exists a witness-retrievable compression algorithm for vertex cover.

Proof: We are following the parameterized complexity algorithm for vertex cover (presented in [24] and
attributed to S. Buss). If a vertex covérof sizek exists, then any vertex of degree greater thanust be

inside the sef5. The compression algorithm simply identifies all such vertices and lists them in the cover,
while removing all their outgoing edges (that do not need to be covered by other vertices). The graph left
after this process has maximal degkeend furthermore all edges have at least one end in the cover. Thus,
if the original graph has & vertex cover then the total number of edges left is at hégat mostk vertices

in the cover with at moskt edges each). If there are more thignedges then the answer to the problem

is NO, otherwise, such a graph can be represented by the list of all edges, whick%takes bits. The

10

compression can be made witness-retrievable since if we use the original labels of vertices to store the new
graph, then the original cover is also a cover for the new compressed graph.

It is in fact possible to get the compressed instance to be a grapRivittiges, rather thak? edges, as
shown in [14] and [16] (see [72] Chapter 7). It is interesting to note that we do not know of a compression
algorithm for the Clique problem or the Dominating Set problem, which are strongly linked to the vertex
cover problem in the traditional study #f P, and in fact, in Theorems 3.1, 5.2 and 6.1 we show strong
implications of a compression algorithm for these languages.

On parameterized complexity and compression: The use of an algorithm from parameterized complex-

ity for compression is not a coincidence. The “problem kernel” or "kernelization” method (see [24], Chapter

3 or [72] Chapter 7) is to first reduce the problem to a small sub-instance that, like compression, contains the
answer to the original problem. Then the algorithm runs in time that is a function only of the sub-instance,
e.g. exponential in this small instance size. As was discussed in Section 1.4, if the running time and output
size of the first reduction happens to be only polynomial in the parameter (a class formally defined in [8]),
then the first phase of the algorithm is a compression algorithm. Downey, Fellows and Stege [25] (Lemma
4.7) show that kernelization (with arbitrary functions of the witness) captures precisely fixed parameters
problems. Further restricting the attentiomptaynomial kernelizatiofe.g., [34], Definition 9.1) introduces

a question that is equivalent to deterministic compression tqsizgn,).

In this context, it is important to note that a compression algorithm for a langl@egenonecessarily
give a parameterized complexity algorithm for the same language. At first glance it seems that one can
first run the compression algorithm, and then solve the compressed problem by brute force, thus getting a
fixed parameter algorithm. However, such a strategy does not necessarily work, since in the compression
algorithm there is no restriction on the size of the witness of the compressed language, which may in fact
grow arbitrarily. Therefore solving the compressed problem by brute force may require a super-polynomial
time inm. The same holds also for definitions of polynomial kernelization in which one does not restrict the
witness size of the kernel(note that the witness can potentially be larger than the instance itself). Moreover,
even if the witness does not grow, in many cases the witness size depends on the instance size and not on the
parameter alone (e.g. in the Clique problem if the parameter is the cliqué Hiem the witness length is
n = klogm), in which case the above strategy is irrelevant with respect to the fixed parameter tractability
of such problems.

Chapter 7 of the monograph of Niedermeier [72] contains several examples of polynomial size kernel-
izations (e.g. for the languages 3-Hitting Set and Dominating Set on planar graphs). These algorithms yield
compression algorithms for the respective languages. We describe one additional example of a compression
algorithm that is derived in this manner.

Minimum Fill-In: The minimum fill-in problem is atlV’P-hard problem that takes as input a grapland

a parametek, and asks whether there exist at mbstdges that can be added to the graph that would turn it
into a chordal graph, i.e. one with no induced cycles of length more than 3. This problem has applications
in ordering a Gaussian elimination of a matrix.

Claim 2.2 The minimum fill-in problem with parametgémas witness-retrievable compression.

Proof: Kaplan, Shamir and Tarjan [54] prove that this problem is fixed-parameter tractable. Their algorithm
partitions the graph into two sets of nodésind B whereA is of sizek? and there are no chordless cycles
(i.e. an induced cycle of length greater than 3)dnthat contain vertices irB. The complexity of this
partition isO(k?|V||E|). They then prove that' has ak edge fill-in if and only if the graph induced by

has ak edge fill-in.

11

Thus the compression algorithm follows the same partitioning and stores only the graph induced by
the small setd. The new graph has at maist vertices and thus can be presented by gmliy (k) log | k|
bits. The fill-in for the new instance is exactly that of the original instance and thus the compression can be
witness-retrievable if the original labels of the vertices are used for the compressed graph aswell.

2.1.1 Sparse languages

We call a languageparseif the language contains only of a small fraction of the words of any given length.
More precisely:

Definition 2.3 (Sparse Language)Let L be an\P language with instance length and parameter. and
denoteL,,, = {z € {0,1}™ | x € L with witness of length< n}, thenL is sparse if there exists a
polynomialp(-) such that for all sufficiently large: (with corresponding) it holds that|L,, ,,| < 2p(n)

We show that all sparse languages can be compressed to a size that is dominated by the number of words
that are actually in the language. This is shown by a generic compression algorithm for any sparse language.
The idea is to apply a random (pairwise independent) hash function to the instance where the output of
the hash is of lengtp(n) and thus substantially smaller than The new language contains all words
that are hashed values of a word in the original language. We note that the compressed lahtjaage
NP (poly(m)) (recall that\"P(poly(m)) stands for nondeterministic-tim@ly(m)). In particular, it is not
necessarily witness-retrievable.

Rather than formally presenting the method for a general sparse language, we describe the method via a
sparse language that we call PRG-output. Note that for this language the method is witness-retrievable.

Example 2.4 (PRG-Output) Let G be a pseudorandom generator stretchingratit seed to ann bit
output (withm an arbitrary polynomial imn). Define the languageRG-outpubver inputsy € {0,1}"™ as

L = {y| there exists an: s.t. G(z) = y}

As long as the underlying PRG is secure then it is hard to decide whether an instance was taken randomly
from L(G) or from{0, 1}™. Yet this language has a simple compression algorithm. Note that simply saving,
say, the firsen bits of the instance is insufficient because if only differs fromG(z) in one bit, then this

bit may be anywhere in the bits.

Claim 2.5 There exists a witness-retrievable compression algorithm for PRG-output.

Proof: Let H be a family of almost pairwise independent hash functions frerhits to 2n bits. The
compression algorithm simply chooses a random H and outputsh(y), k). The new language 5, =
{(z, h)| there exists an s.t. h(G(z)) = z}.
Naturally, ify € L thenalsqh(y), h) € L, with the same witness (and thus the witness-retrievability).
On the other hand, iff ¢ L¢ then by the properties ¢f, for every seed: we have thaPr,[h(G(z)) =
h(y)] < O(272"), and by a union bound over all€ {0,1}", we getPr,[h(y) € L] < O(27™). Finally,
since there are almost pairwise independent hash functions whose description is oflengthog m (for
example see [66]), then the algorithm is indeed compressing. Note that the compression algorithm described
above is probabilistic and carries an error probabilitg o#(") and also that the compressed languatia
this case is iIVP (poly(m)). O

12

Sparse subset sum: We show another example of a compressible language called sparse subset sum that
is sparse in a different sense than that of Definition 2.3. While the generic compression for sparse languages
does not work for this language, it is compressible in its own right. Moreover, the compression algorithm
for sparse subset sum is better than the generic algorithm in the sense that the compressed language in the
specialized algorithm is inNP(poly(n,logm)) (or actually inA"P) rather than inV P (poly(m)).

Example 2.6 (Sparse Subset SumJhe languagsparse subset sutakes as input valuesry, . . . x,, each
in {0, 1}™ (with m >> n) and a target valugd” € {0,1}™. An input is in the language if there is a subset
S C [n] where} . x; = T (the sum is taken modulty).

Claim 2.7 There exists a witness-retrievable compression algorithm for sparse subset sum.

Proof: To compress an instance of sparse subset sum simply pick a large random2prirneP <
22ntlogm gnd store the numbers = x; mod P (for everyi € [n]), the targetl = T mod P and

P (the idea of picking a primé> and working modulaP has been useful various applications, e.g. in the
Karp-Rabin string matching algorithm [56]). The compressed instance is of léhgtm + logm)) and

the compressed language is also subset sum (mdeuldf there exists a sef for which) ", ¢2; = T
then also) ,.qy; = Tp mod P (hence the witness-retrievability). On the other hand, we want that if the
original instance was not in the language then for any subgewill hold that > ;¢ v; # T'p. In order to
getd " ,.qyi = Tpitisrequired thai is a divisor ofD =)", _¢ x; —T. HoweverD has at mosin/n prime
divisors that are greater thah, while the primeP is taken from a range containii@(22"m /n) primes (we
assumen > logm in the calculations). Therefore, for evesyit holds thatPrp(}", g yi = Tp] < 272"
and by a union bound over all seisthe probability of an error is bounded By™. O

2.2 W-Reductions and Compression-Completeness

The few examples of compression that we have showed clearly indicate that the sii@yprbblems with
respect to compression gives a distinct perspective, different from the traditional stidg.of he reason

is that the typical Karp-reduction betwe@iP problems does not distinguish between the length of the
witness and the length of the instance. For example, when reducing SAT to the Clique problem, one builds
a large graph from a CNF formula and asks whether or not it has a Clique ¢f.sktewever, in this new
instance, the witness si%ds a polynomial inm (the length of the SAT formula) rather than(the number

of variables in the formula). Thus, it is not clear how to use a compression algorithm for Clique to get a
compression algorithm for SAT.

W-reductions and compression-completeness:In order to show that a compression algorithm fgr
implies a compression algorithm fdr, a more restricted type of reduction is needed. We call thig-a
reductionand it is similar to a Karp-reduction but imposes an extra property on the length of the witness.

Definition 2.8 (W-Reduction) For two NP languagesl and L’ we say thatl, W-reduceso L’ if there
exist polynomialg; and p; and a polynomial-time computable functigrnthat takes an instance for L
and outputs an instancg(z) for L’ such that:

1. f(z) € L' ifand only ifx € L.

2. If z is of lengthm with witness length, then f(x) is of length at mosp; (m) with witness length at
mostps (n, logm).

12The witness for Clique is a choice bivertices from the graph.

13

We first note that this reduction composes, that is:
Claim 2.9 If L W-reduces td.’ and L’ W-reduces td.” thenL W-reduces td.”.
We next claim that W-reduction indeed fulfills its goal with respect to compression:

Claim 2.10 Let L and L' be NP languages such that’ W-reduces tal.. Then given a compression
algorithm for L, one can obtain a compression algorithm fdr

Proof: Suppose that is an instance for languad€ of lengthm with witness lengtlh. The compression
algorithm for L’ runs as follows: First use the W-reductionfcand get an instancg(z) for L, and then
run the compression algorithm fdron f(z). By the properties of the reductiof{z) is of lengthm’ <
p1(n, m) with witness length’ < ps(n,logm). The outcomeZ(f(x)) of the compression is therefore of
lengthpoly(n’,log m’') = poly(n,logm). Furthermore, ifL” is the language thaf compresses to, then
Z(f(x)) € L"ifand only if f(z) € L which in turn happens if and only if € L. Thus the combined
process gives a compression algorithm for instancds.of O

We remark that in the complexity discussion of compression we choose to ignore the issue of witness-
retrievability. Nevertheless, in order for the W-reduction to relay this property, the reduction itself must also
have a withess-retrievability property. That is, given a witnedsr « € L then one can efficiently compute
w’ for f(x) € L' (without the knowledge aof). We define complete problems with respect to compression:
these are defined similarly to the standard notion, but with respect to W-reductions.

Definition 2.11 (Compression-Complete)A problemL is compression-complete for clagsf:
1. LecC
2. ForeveryL’ € C the languagd.’ W-reduces td..

A language is calledompression-harébr classC if requirement 2 holds (requirement 1 may or may not
hold).

The relevance of compression-complete problems is stated in the following simple claim.

Claim 2.12 Let L be compression-complete for clagghen given a compression algorithm fby one can
obtain a compression algorithm for ariy € C.

The proof follows directly from the definition of completeness and Claim 2.10.

2.3 The)VC Classification

We now introduce the new classification arising from the study of compressibilt§y/problems. For this

we define a series ¥ P languages. Some notation: bgiacuit of depth & we mean a depth alternating
AND-OR circuit where the fan-in of the gates is bounded only by the size of the circuit and negations are
only on the input variables (no NOT gates).

Definition 2.13 (Depth, CircuitSAT)

For anyk > 2 consider the\/P problem calledDepth,CircuitSAT:

Input: a circuit C of sizem and depth at most overn variables.

Membership: C € Depth,CircuitSAT if there exists a satisfying assignment'to

14

The next language, LocalCircuitSAT, is a less natural one. It is designed to capture computations that
do not need to access the whole input, but can rather check only a sub-linear fraction of the input (a good
example is verifying that a set of vertices in a graph is indeed a Clique)x beta string of lengthn. If
I = (i1,...,i,) is alist ofn locations inx then we denote by(7) the values ofr at these locations.

Definition 2.14 (LocalCircuitSAT)
Input: A string of lengthm and a circuitC overn + n - log m variables and of sizén + n - logm).13
Membership: (z,C) € LocalCircuitSAT if there exists a ligtof n locations inz such thatC'(z(1),I) = 1.

We can now introduce our classification/8fP problems:

Definition 2.15 (TheVC classification of AP problems) Consider NP problems wheren denotes the
instance size and denotes the witness size. We define the dldgsfor everyk > 0. The definition is
divided into three cases:

e k= 0: The classV(is the class of all languages that admit compression algorithms. There are two
possible versions here, one considering errorless compression and the other allowing probabilistic
compression with errors. We typically refer to the later, depending on the context.

e k= 1: The classVC; is the class of all languages that W-reduce to LocalCircuitSAT.
e k> 2: The classVC;, is the class of all languages that W-reduce to DeflincuitSAT.

For any functionk(m, n) (wherek(m,n) < m) also defineVCy,,) as the class of all languages that
W-reduce to Dept}y,,, ,, CircuitSAT. Finally, defin&’C = VC,, (the class fork(m,n) = m).

A first observation is that simply by definition, the languages LocalCircuitSAT and PDEptuitSAT are

compression-complete for their respective classes. The most notable example of a complete language is for

the class’C = NP where the complete problem is CircuitSAT (satisfiability of a polynomial size circuit).
When discussing a W-reduction to a depthircuit, we can actually assume without loss of generality

that the top gate of this circuit is an AND gate (as we will show in the next claim). An immediate corollary

is that SAT (that is, satisfiability of CNF formulas) is compression complete for the ¥lass Formally,

let Depth,CircuitSAT 4y p denote the language DeptircuitSAT when restricted to circuits where the top

gate is an AND gate.

Claim 2.16 For anyk > 2, we have that a language € VC,;, if and only if L W-reduces to the language
Depth, CircuitSAT, v p.

Proof: We show that any instance that contains a circuit where the top gate is an OR W-reduces to an
instance with top gate AND. We prove this first for> 3. Denote the input circuit by’ = \/; A, Cj

where eaclt’; ; is a top OR deptlik — 2) circuit. If C' is satisfiable the\, C; ; is satisfiable for at least one
choice ofj. Add to the witness the indexof this satisfiable sub-circuit {s given by the boolean variables

i1, ..., ip Where(is logarithmic inpoly(m, n)). For eachy, denoteC’;, = Cj, Vi V... V i}’ , whereiJ
denotes @ j. Notice thath’-ﬁt is always satisfied fof # ¢, and forj = i is satisfied if and only it”; ; is
satisfied. Thus the circuit can now be written@s= /\ it Cj’.,t that is satisfiable if and only if the original
circuit was. The top OR gate @ is therefore removed in the new instanicewhile adding only a small

number of variables, thus the input to the circuit withess remains of prdg(n, log m) as required.

3The choice of the circuit to be of size’ (over n’ variables) is arbitrary and other polynomial functions suffice as well.
Furthermore, such a circuit of small size may be meaningful since not all the variables have to be used and some might be just
dummy variables.

15

In the caseé: > 3, the depth of the new instance becomes 1. In the case that = 2, the bottom level
that included only variables is transformed into an OR of variables, thus the new circuit is simply a CNF
formula (and the depth remaiks=2). O

The VC Hierarchy: TheVC classification indeed defines a hierarchical structure. That is:
VCy CVC1 CVCy CVC3--- CVC.

And in general, for every two polynomially bounded functidris, m), £(n, m) such that for alk, m we
havek(n,m) < {(n,m) thenVCi(m,n) C VCi(m,n). FurthermoreC = NP by the definition of
NP. These observations follow trivially by the definitions, the only non-trivial part being the fact that
VC; C VC,, that is proved next.

Lemma 2.17 VC; C V(s

Proof: We need to show a W-reduction from LocalCircuitSAT to SAT. The input is therefore a long string
2 and small circuitC' on n + nlogm variables. Letiq,...i,, denote the potential locations in the string
that the circuitC receives as inputs. Also define the variables..., y, to indicate the values of in the
corresponding locations (thatgs = x;, for ¢ € [n]). Thus the circuiC runs on the variableg,, ..., v, and

the bits ofiq, ..., 7.

We first note that” is of sizep(n,logm) = (n + nlogm) and may be reduced (via Cook’s Theorem
[17]) to a CNF formula®¢ over O(p(n,logm)) variables and of siz&(p(n,logm)) that is satisfiable if
and only ifC is satisfiable.

Thus we have a CNF formula over the variablgs..., y,, i1, ...i,, and some extra variables. This for-
mula’s satisfiability will be equivalent to the membership of the LocalCircuitSAT instance if we manage to
force the variables of to take the valueg, = z;,. This is done by adding additional clauses to the CNF
in the following manner: For simplicity we describe this only igr where the same is repeated for every
othery, for ¢t € [n]. Define for eacly € [m] a formula®; = (y1 = z;) V (i1 # j). Notice that®;, = 1 if
and only ify; = z;,. Denote the bits of; by iy 1, ...,41 ¢ whered = [logm]. An alternative way to write
®; is as the following CNF (recall that denotes & j):

;= (y VI Vil V..V z'{f}d) ATV Vil V.V z'{?jd)

Finally, to forcey; = x;, we simply take the new CNF to e~ A /\je[m] ®;. The same is repeated to force
yr =z, forallt € [n]. O

2.4 The)VC Classification and Verification with Preprocessing

We now discuss th®C hierarchy from a different angle, that of the verification complexity of a language.
This approach, though slightly more cumbersome than the definition via W-reductions, gives more intuition
as to what it means to be in a claBs;. The new view defines th®C hierarchy with respect to the
verification algorithm forZ, that is, the efficient procedure that takes a witnedsr - € L and verifies that
it is indeed a true witness. We point out that the nature of verification algorithms may vary when discussing
different NP problems. For example, in theClique problem the verification algorithm needs to check
only O(k?) edges in the graph, and thus can read only a sub-linear part of the instance. In SAT, on the other
hand, all the clauses in the formula must be checked when verifying a witness.

Simply looking at the verification algorithm of a language is not sufficient. For starters, classification
according to verification does not distinguish between probleny® that are trivially compressible and

16

NP-complete languages. Instead, we consider the notion of verification with preprocessing. This is the
process for verifying that € L when given a witness, that also allows a preprocessing stage to the instance.
Formally:

Definition 2.18 (Verification with Preprocessing) Let L be anN'P language with instances of length
and witness length. A pair of polynomial-timealgorithms(P, V') are called averification with prepro-
cessindor L if the following two step verification holds:

1. Preprocessing:P gets an instance and outputs a new instande(z).

2. Verification: There exists a polynomial-, -) such thatr € L if and only if there exists a witness
of length at mosp(n, log m) such thatV' (P(z),w) = 1.

Notice that when allowing for preprocessing, then all probleni8 imve a paif P, V') whereP solves the
problem and stores the answer whifesimply relays this answer. Thus when considering the complexity
of V in this definition, then easy problems indeed have very low complexity.

The VC Classification via Verification with Preprocessing: An alternative and equivalent way to view
the classes in thEC hierarchy is based on the verification algoritiirin a verification with preprocessing
pair (P, V). The problems are divided into two families:

e Theclas3/C; is the set of the languages that have very efficient verificationpilg(n, log m) rather
thanpoly(n, m)). We assume random access to the instance (suppose that the verification algorithm
is a RAM), thus such a verification algorithm only accesses a sub-linear fraction of the instance.

e The languages whose verification is not very efficient (run in faig(n, m)). This family is further
classified into sub categories. The cl®gk, is the class of languages where the verification algorithm
V has a representation as a depgbolynomial size circuit (polynomial in. andm).

This definition is equivalent to the definition via W-reductions since the W-reduction to the complete
problem can simply be viewed as the preprocessing stage. In the other direction, every preprocessing stage
is actually a W-reduction to the language defined/by

It is interesting to note that Buss and Islam [9] give an alternative view with similar flavor té/éfe
hierarchy of parameterized complexity. They call it “prepare, guess and check” in which they essentially
add a preprocessing phase to a previous approach of Cai and Chen [11].

2.5 Within VC; - The ClassVCor

Arguably, the most interesting class in the hierarchy is the bottom ¢léss It contains many natural
problems such as Clique or small subset-$tiiat only test local properties of the input. Furthermore, it is
presumably the easiest to find compression algorithms for. We further refine our hierarchy within the class
VC; by introducing another class, the clagSyr. Consider the languageR(L) that take a large OR of

small instances of a languade Formally:

Definition 2.19 (OR(L))
Let L be anN\P language. Define the languaggR(L) as follows
Input: m instanceseq, ..., x,, to the languagd., each of length.

¥This problem takesn values and a target value and asks if there is a small {§izeibset of the values that adds up to the
target.

17

Membership: (z1, ..., z»n) € OR(L) if there exists € [m] such thatz; € L.

Specifically the languag@ R(Circuit SAT) is defined as:
Input: m circuits C4, . . ., C,, where each circuit is of size.
Membership: (Cy, ..., Cy,) € OR(CircuitSAT) if at least one of then circuits is satisfiable.

This language is used to define the following class:
Definition 2.20 The class/Cor, is the class of all languages that W-reduced® (Clircuit SAT).

We first note that in each of the small instances, the instance length and witness length are polyno-
mially related. So unlike the general case where we focused only on short witness languages, when talking
aboutOR(L), any languagé. € NP \ P is interesting. For example, the langua@&(3 — SAT) is not
trivially compressible. Moreover, it is compression-completelf6p r.

Claim 2.21 Let L be anyN'P-complete language, thenR(L) is compression-complete foiCo .

Proof: The W-reduction fronO R(C'ircuitSAT) to OR(L) simply runs the standard Karp reduction from
CircuitSAT to L for each of then circuits independently. The witnhess for each circuit was of length at most
n and is now of sizey(n) for some polynomiap. In addition the witness contains an index of the instance
of L that is satisfied, thus the total witness length(ig) + logm. O

For example, the proble@®R(Clique) that getsn small graphs (oven vertices) and asks whether at
least one of the graphs hasized clique (wheré = O(n)) is also compression-complete f3€o x.

Claim 2.22 VCor C V(1

Proof: This is best seen by W-reduci@R(Clique) to LocalCircuitSAT. Given graphé&:, ..., G, for
OR(Clique), generate the instanae= G4, ..., G,,, and a circuitC' that receives the locations of a clique in

one of the graphs and checks whether they are indeed the edges in these locations form a clique (all belong
to the same graph and are the edges induceld\myrtices). The size of the circuit jgn, log m) for some
polynomialp since it checks only locations inthat belong to one graph (of sizg. Finally, addp(n, log m)

dummy variables to the circuit so that the ciratiihas size equal to the number of input variables (this is a
technical requirement in the definition of LocalCircuitSAT)

FurthermoreVCy C VCor, Since any compressible language can be W-reduced by the compression
algorithm to a language with instance spe:, log'm) and this instance can be reduced to CircuitSAT and
viewed as an OR of a single small circuit and hence ¥y . Note that here too, one may need to add
dummy variables to make the circuit of the same size as its input. Altogether we have that:

VCo C VCor C VC;.

Finally, we show a language that is compression-hardViopr. This claim is also relevant to our
cryptographic applications (in Sections 3, 4, 5 and 6):

Claim 2.23 Clique is compression-hard faf/Cor.

Proof: The languag® R(Clique) W-reduces to Clique simply by taking one graph that is the union of all
the small graphs in th@ R(Clique) instance. Clearly there is a clique in the union if and only if there is a
clique in at least one sub-graphd

18

A similar claim is true for all problems involving searching for a connected subgraph oh.Sizex
graph of sizen as long as the problem of deciding whether a graph of giz¢ contains such a subgraph
is NP-Hard for some polynomial(-). This is true, for instance, for the problem of whether there is a path
of lengthn.

2.6 The)C Classification and some\ P Problems

In general, most of th¥'C classification focuses on W-reductions to defpttircuits. The reasoning for this

is that there is a certain tradeoff between depth and the number of variables. More precisely, we can reduce
the depth of a verification circuit, but only at the price of adding additional variables (this is done using
methods from Cook’s Theorem [17] and requires adding a variable for each gate in one intermediate level
of the circuit). Since the number of variables is the focal point when discussing compression (as it coincides
with the witness size), then depth turns out to be central in our classification.

Given our current state of knowledge, there are a few plausible views of the world. Thentpoint
scenarios are (i) there is compression for every languagé’n(as would be implied by a compression
algorithm for CircuitSAT), (ii) there is only compression for a few select problems, such as the examples in
section 2.1. A third option is that there is a compression algorithm for some compression-complete problem
in the hierarchy (say fov'Cy), which would imply the collapse of all the classes beld@. to VCy.

We will briefly go over a few key classes in the hierarchy and a few examples of nAt@aroblems
and their classification (as we know it) within th& hierarchy. We note that all the statements in this
section apply also to compression with possible error (negligibig).in

The classVCy: Currently we know that this class contains all the languag@s languages that are already
compressed by definition (such&SAT), and the languages that we showed compression algorithms
to (Vertex cover, PRG-output and Minimume-fill-in).

The classVCpr: This class contains all languag@s(L) for an NP languagel.. One natural example is
the OR(SAT) problem which is actually a depth 3 circuit where the fan-in at the two bottom levels
is bounded by: and only the top gate is allowed to be of greater fan-in. Some important languages in
this class are those that need to be compressed in the cryptographic applications in Sections 3, 5 and
6.

The classVC;: Since we are only interested in problems where the witnessnsiganuch smaller than
the instance sizer, then many natural problems with this restriction ar&@y. For example, graph
problems that ask whether a small graph can be embedded in a large graph ax&allTie Clique
problem (with a clique of size), or Long-Path (a path of lengththat does not hit any vertex twice)
are such small graph embedding problems. Small Subset-Sum is another natural langd@ge in
This language receives a setrafvalues and a target sum and asks whether there is a smalhjsize
subset for which the values add up exactly to the target sum (see also footnote in Section 2.5).

Dominating Set: The problem asks, given a graph, whether there is a get@ftices such that all the graph
is in its neighbor set. Dominating set is in the cla&% as implied by the following verification: the
witness is a sef and the algorithm tests thatvertexv 3 vertexu € S such that(u, v) is in the
graph. They translates to and AND gate and tHdranslates to an OR gate. Finally, testing that an
edge is in the graph requires an AND over th@og m) bits representing this edge. In total, this is a

1t is interesting to note that whereas the problem of finding a path of lemg¢hfixed parameter tractable [2], Feige and
Kilian [32] give indications that the Clique problem is hard for sma(via subexponential simulations). This illustrates that such
differences in parameterized complexity are not necessarily preserved in the classification of compression.

19

depth 3 circuit. Note that a straightforward verification of vertex cover will also yield a depth 3 circuit.
However, while vertex cover is compressible an¥@y, for dominating set we are unaware of a better
method. In addition, dominating setdesmpression-hard fovC». This is seen by a standard reduction
of SAT to dominating set in which a SAT formula withvariables andn clauses is transformed into

a graph withm + 3n vertices with the property that the graph has a dominating set of:sittehe

SAT formula is satisfiablé®

Weighted-SAT: Given a CNF formula of lengthn the problem asks if it has a satisfying assignment of
weight at mostk (at mostk variables are assigned the vallle Unlike our previous discussions
of SAT, the number of variables here is only boundedmbyand the short witness simply consists
of the list of all variables that receive the valugthat is, the witness is of length = klogm).

This problem, with constant clause size, serves as the basic complete problem for the parameterized
complexity clasd¥[2], which is at the bottom of the W-hierarchy (see [24]). However, with regards

to compressibility, we only know how to place it in the cla&,. This is shown by the following
verification procedure (using the same logic as with Dominating-Set): For every witness (likg
algorithm tests that clause either3 a variabler € C such thatr € L or 3 a negated variable

Z € C such thatr ¢ L. The verification ofr € L adds up to total deptB by testing thally € L

such thatr = y (wherex = y is tested by an AND over the bits afandy). On the other hand,
verifying thatr ¢ L requires total depth as it runsvy € L we haver # y. The overall depth is thus
dominated by the negated variables and is thus

OR of (large) instances: Consider the Or of CNF formulas over few variables (each CNF formula may be
large, unlike in the languag@ R(S AT") where the CNF formulas are considerably smaller than the
fan-in of the OR gate). In other words, instances of this language are depth three circuits where the
top gate is an Or gate. Yet the language is actually@dn, as implied by Claim 2.16.

Integer Programming (IP): An instance of integer programming consists of a listofinear constraints
on n integer variables with the goal of maximizing a linear target function over thegariables
(under the list of constraints). Unlike its counterpart of linear programming, where the variables may
take real values and is polynomial-time solvable, integer programmingfshard even when the
variables are restricted to taking only the valdesd1 (one of Karp’s original problems [55]). Thus,
the decision variant of integer programming, where the number of constraints is much larger than the
number of variables, is interesting with respect to compression. First, compressing itis at least as hard
as compressing SAT: given a SAT instance withariables andn constraints it is simple to come up
with a corresponding IP instance with variables andn constraints, i.e. IP i¥C,-hard. On the other
hand, a straightforward verification of a witness for this problem takes the proposed assignment for
then variables and checks if it satisfies each of the constraints. The verification of a linear constraint
can be achieved in logarithmic depth ¢if), placing IP inVCy(n) for k(n) = Q(logn). We are
unaware of a (significantly) better classification (of lower depth) for integer programming.

2.7 On Reducing the Error in Compression Algorithms

The error of a compression algorithm can be reduced substantially at the expense of a worse compression
rate (the output length of the compression algorithm will be longer). The idea is simply to run and store the

81n a nutshell, the reduction creates a triangle for each variabté the formula. One of the nodes of the triangle is identified
with the positive variable and another with its negation while the third is connected only to the other two. In addition, a vertex is
created for each clause in the formula. Now, each literal is connected with all of the clauses that it appears in. The generated graph
has a dominating set of sizeiff the formula is satisfiable.

20

outcome of many executions of the compression, each time with a fresh and independent randomness. For
example, by storing independent executions and using a Chernoff bound we arrive at the following claim:

Claim 2.24 LetZ be a compression algorithm for languagevith outcome lengtp(n, log m) andg, § > 0
be such that (i) if: € L thenZ(x) € L’ with probabilityq, and (i) if z ¢ L thenZ(x) ¢ L’ with probability
g + 4. Then there is a compression algorittth with error 2-8%n) and outcome lengthp(n,logm).

Note that this technique is limited by the growth of the output and, in particular, one cannot use this
method to achieve an error that is exponentially smalhirather tham).

2.8 On Compression of Search Problems

So far, theNP problems that we discussed were all decision problems, that is, they ask if, and are

answered by YES or NO. When considering a spedifie relation R;, associatedwitil, then the above

decision problem has a natural search problem associated with it, which is to actually find a withess to

with respect to the relatioR,. A solution to such a problem is anbit string rather than just a single bit.
Loosely speaking, a compression algorithm for the search instance should produce a shorter output that

contains enough information about some witness for the original problem.

Definition 2.25 (Compression for search problem)A compression algorithm for alV’P search problem
L (with respect taR;) is a pair of algorithms(Z, E) with a polynomialp(-, -), whereZ is a polynomial-
time compression algorithm anfd is an unbounded extraction algorithm. Given an instanaeéth witness
parametem we should have that:

1. Z(z) is of length at mosp(n, logm).

2. If x € L and there is a witness of length thenE(Z(x)) = w wherew is a witness tac € L with
respect taRy,.

Itis natural to consider the relationship between the difficulty of decision and search for a given problem, as
was done in other settings such as average-case complexity by Ben-David et al. [7]. We show that for any
problem a compression for the decision variant also yields a compression for the searchwéhauat,an
increase in thd/C' hierarchy.

Theorem 2.26 For any k& < 1, if the classVC has a compression algorithm, then there is a compression
algorithm for the search problem of a relatid®y;, of L € VCy.. This is true also foldCpog.

Note that Theorem 2.26 holds also when a small error in the compression is allowed. The error in the
resulting compression for search algorithm grows by a polynomial factor (by fattavith respect to the
error of the underlying compression for decision algorithm. This follows in a straightforward manner from
the proof (by a union bound).

The technique of the proof below also comes in handy in proving Theorem 5.4, regarding the application
of the ability to compress, say SAT, to cryptanalysis in hybrid bounded storage model. In the following
proof, a withess ta: € L refers to a witness according to the specific relafibnassociated withi.

Proof: Given an instance to a languagé., for anyi € [n], consider theV'P problemL; that asks whether
there exists am bit witnessw to = € L such thaty; = 1 (the " bit of w is 1). The languagé; is alsoin
VC}, since its verification circuit is the same as the onelfavith an additional AND to the variable; (this
AND gate is incorporated into the top level AND of the circuit thus the depth rentdins

21

Our first attempt is to compress the instander every: € [n] with respect to the languade (denote
such a compression ;. (x)). Thus we stor&Z . (z) for all i € [n], which amounts ta - p(n, log m) bits,
for some polynomiap(n,logm) (this is also inpoly(n,logm)). Now suppose that there is onlysangle
witnessw to x; then one can extraet bit by bit, by solving the compressed instance of each bit. However,
this fails whenw is not the only witness, and we might obtain inconsistent answers for the different bits.

The natural idea now is to use the reduction of Valiant and Vazirani [80] to a unique witness, as was
done by Ben-David et al. [7] for showing that average NP being in BPP implies also a randomized search
algorithm for average NP. The idea is to choose a pairwise-independent hash flarttiadiis appropriately
shrinking, and add to the language the requirementittal = 0. We use the following lemma:

Lemma 2.27 ([80]) Let L be an /NP language and for every denote byiV, the set of all witnesses to
x € L. Let/ be such thag’ < |[W| < 21, LetH, - be a family of pairwise independent hash functions
with A : {0,1}" — {0, 1}**2 for all h € Hy,o. Then
P, [[{w : w € Wy andh(w) = 0} = 1] > %

Let H be a family of pairwise independent hash functions. ConsideMiRdanguagel.”* whose elements
are of the form(x, h) whereh € H maps strings of length to some shorter length. We have thiath) €
L™ if there is a witnessy for z € L andh(w) = 0. We note that this language is alsoli€;, since
the additional requirement tha{w) = 0 can be verified efficiently ovet variables (the hash functidn
computation is efficient). By Cook’s theorem this computation may be represented as a CNF fggmula
over these variables plus oniyly(n) additional variables. Thus adding the requirement of the hash does
not add to the depth of the verification circuit fbr This is easy to fod’C;,, and forVC g note that we can
add (conjunction) the CNF formulg, to each instance of CircuitSAT, while keeping the problewity .

Now, if we enumerate on all values &fthen with probability at Iea%, for the correct we will get that
L™ has a unique witness; storitfy » (, h) for all i suffices to maintain the information about this witness.
This can be repeated sufficiently lmany times (6Hy.) times), so that with overwhelming probability one
of the attempts will indeed give a unique witness. However, this solution is also insufficient, since we have
stored a list ofD(n?) compressed value®(n) repetitions for each value éfe [n]) with the guarantee that
with overwhelming probability one of them is a witness igrout we do not known which one (recall that
we cannot store the original instance and thus cannot verify that a witness is correct).

Our final attempt succeeds in reducing the list of potential withesses into a unique and true witness. This
compression is as follows: Denote ly the language that asks whether there exists ait withessw to
x € L such thatw; = 0 (similar to L; but with w; negated). The compression of an instamde the search
problemL goes as follows:
For everyl € [n] repeat the following: times:

e Chooseh € Hyyo.
e Foralli € [n] storeZ;+(z,h) andZ;» (x, h).

The extraction procedure is as follows: For@a#indh € H,. -, solve all the compressed instance pairs.
For every palﬂLH (x,h) andZLH (z, h), if both are negative or both are positive, then ignore all values that
are compressed with this OnIy if for all 7 we have that exactly one of the instances being correct, then
output thei*” bit of w according to the result.

The above algorithm indeed compresses, since it only adds a factdrtofthe overall storage. With
probability at least — 22(") at least one of the choseérs is successful in leaving exactly one witness to
x € Ly, and this witness will be extracted. Finally/ifdid not leave exactly one witness, then this will be

22

identified: If there are no witnesses th&p (x, h) andZ» (x, h) will both be negative for ali. If there is
more than one witness, then for at least one choigeboth Z, (x, h) andZ s, »y Will be positive. O

2.9 On Maintaining Other Information

We have seen that compression may maintain much more than just a yes/no answer. A natural question to
ask is what other types of information may be maintained through compression algorithms. The following
are some examples:

Number of withesses:The compression described above actually maintains an approximation of the num-
ber of witnesses t@ € L (with respect taR;). Once the choseh is too large, there will be a sharp
drop in the probability of having a witness and this can be observed when extracting the withesses
and indicate what is the riglt

An almost random witness: The compression above also outputs a witness that is almost uniformly
distributed overV,.. Or more accurately, the probability of getting each witness is bounded by a
constant timeg /|WW,|.

On maintaining all witnesses: As opposed to maintaining a single witness or the number of witnesses,
a compressed instance cannot always maintain the information abadfithe witnesses of an input
instance. This is shown by the following simple information theoretic argument: encodelain
string s with a DNF circuitC' by constructing for each positiof € [m] a formulaC; on logm
variables. Ifs[j] = 1 then takeC; to be circuit that is satisfied iff the variables encode the index
J. If s[j] = 0 thenCj is the non-satisfiable circui; = 0. The circuitC is formed by taking an
OR of all these circuits@ = \/je[m} Cj). The satisfying assignments 6f correspond exactly to
the 1I's in s. ConsiderC as an input to the language as CircuitSATSuppose that there exists a
compression algorithm that maintains all of the witnesses of a cittuih particular, this means that
them bit string s may also be extracted from the compressed instance. But this is clearly impossible
information theoretically, sincex random bits may not be representedgoyy (n,logm) < m bits.

So we conclude that if our goal is come up with a compression algorithm for SAT then we must come
up with a way of losing information about the withesses.

In the examples of compression that we have seen in Section 2.1, the compression algorithms for
vertex cover, PRG-output and Minimum fill-in actually maintain all the witnesses. On the other hand,
the compression for GapSAT (which we will see in Section 2.10) does not necessarily maintain this
information, as it is based on sampling.

2.10 Speculation on Compression

We give two arguments that may be viewed as evidence to the existence and non-existence of compression
respectively.

An Optimistic View - Compression of a promise problem and the PCP Theorem: Consider the promise
problem GapSAT that takes as input a CNF form@ilaf sizem overn variables and the guarantee that
either® is satisfiable or it is at mogt — ﬁ)-satisfiable (no assignment satisfies more tfian %) of its
clauses). The task is to decidedifis satisfiable or far from satisfiable.

YThe circuitC is actually an instance for the langua@®(C'ircuitSAT).

23

Such a problem has a simple and witness-retrievable compression. The idea is to@hogsandom
clauses fromp and take the AND of these clauses to be the compressed fodmdihis compression works
because if® is far from satisfiable then for every assignment the formule satisfied with probability
at most2—2" (I does not contain one of théﬁm unsatisfied clauses). Taking a union bound over all
assignments, we get that with probability — 27") the formula¥ has no satisfying assignment. On the
other hand, ifb is satisfiable then the same assignment also satikfiaad hence the witness-retrievability).

Note that our definition of GapSAT is robust in the sense that GapSAT is compressible whenever the gap is
(1- ﬁ) for every choice of a polynomial-).

Tﬁe above simple compression algorithm is especially interesting in light of the PCP Theorem. One way
to view the PCP Theorem is as an efficient reduction from an instance of SAT to an instance of GapSAT.
Thus one can hope to combine the PCP reduction with the above compression and get a compression for
general SAT. However, reducing general SAT to GapSAT via the PCP is not a W-reduction as the witness
size grows to the order of the instance size. For starters, the PCP Theorem is typically defined over 3-CNF
formulas, and the reduction of a general sizeCNF to a 3-CNF add®)(m) variables. In order for this
approach to achieve compression for SAT, we require a new PCP Theorem that is actually a W-reduction.

GapSAT is just one example of a gap problem that admits compression. For instance, one can consider
the promise problem GapClique where a graph of sizeither has a Clique of size./n or contains no
Clique of sizen. As in the case of GapSAT, GapClique is compressible by sampling a subset of its vertices.
Thus, coming up with a W-reduction from a genefal, m’)-Clique problem (the graph of size’ either
contains a clique of size’ or not) to(n, m)-GapClique would enable the compression of Clique. We view
finding PCPs that are also W-reductions as a major research direction, especially in light of the recent new
proof to the PCP Theorem of Dinur [23].

This connection to succinct PCPs was subsequently studied by Forthow and Santhanam [36]. They
derive negative results on PCPs from the negative results on compression.

A Pessimistic View - On Oblivious Compression: We have seen in Section 2.9 that it is impossible to
maintain all of the information in an instance when compressing it and some information is necessarily lost
(for example the list of all witnesses cannot be kept). On the other hand, we show that if compression exists
then it is not likely to lose too much information about the original instance. Such a result would entail the
collapse of the polynomial hierarchy to its second level. More formally:

Let Z be a compression algorithm for SAT. We consider it as a two input algorithm taking a formula
® and local randomness € {0,1}. Denote byZ(®,U,) the random variable taking the output Bf
with fixed input® and randomr € {0,1}". Let X be a distribution over formulas. The random variable
Z(X,Uy) denotes the output df under a choice of randomand a randon® from the distributionX.

The compressioty is said to bes-obliviousif for every m, n there exists a samplable distributid
over satisfiable formulas of length and withn variables, such that for every satisfiable instaf@c@vith
parametersn andn) the distributionZ (®, U,) and the distributior? (X, U,) aree-statistically close.

Claim 2.28 If there exists am-oblivious compression for SAT (with< %), then the polynomial hierarchy
collapses to its second level.

Proof: We show that if oblivious compression of SAT instances exists then Co<SAIM. Consider
the following interactive proof that an instandeZ SAT. The verifier chooses a random satisfiable formula
¥ € X randomness € U, and flips a random coin. If ¢ = 0 then the verifier sends = Z(®, r) to the
prover, ifc = 1 he sendg = Z (W, r). The prover then answetsif the compressed instance is satisfiable
ando0 otherwise. The verifier accepts if the prover’'s answer equals hisanitl rejects otherwise.

24

Completenesdf indeed® ¢ SAT, then the prover will be able to tell whether the verifier used a eeH0
or ¢ = 1, simply by testing the satisfiability @gfand replying correctly.
SoundnessSuppose thad € SAT, then by the obliviousness property Bfthe messagé is from nearly
the same distribution whether= 0 or ¢ = 1 and the prover is bound to error with probabilﬁwr E.
It should be noted also that the above impossibility result does not rely on the fact that the algorithm
actually compresses but rather on the obliviousness property.

We note that the negative result of Fortnow and Santhanam [36] regarding deterministic compression of
SAT can be viewed as a further development of these ideas.

Part Il: Cryptographic Applications

3 Basing Collision-Resistant Hash Functions on Any One-Way Function

Loosely speaking, a family of length-reducing functigtiss called collision-resistant hash functions (CRH)

if no efficient algorithm can find collisions induced by a random member of the family. That is, no PPTM
can find for a randomly chosénc H, a pair of input strings: andz’ such thate # 2’ buth(z) = h(z').

In addition we want (i) An efficient algorithm faamplingfrom H using (possibly secret) randomness (the
secret coins approach is potentially more powerful than when only public coins are used [48]) and (ii) An
efficient evaluation algorithm that given the descriptionhoE H andz producesh(x). As mentioned

in the introduction, CRHs have wide cryptographic applications, see discussion and formal definitions in,
for example, [53]. We are interested in basing CRH on as general assumption as possible. There is no
known construction of CRH from general one-way functions or one-way permutations. Moreover, Simon
[77] showed that basing CRH on one-way permutations cannot be achieved using black-box reuctions
We show that compression can be used to bridge this gap.

Theorem 3.1 If there exists an errorless compression algorithm for SAT, or for any problem that is compression-
hard for VCor, then there exists a construction of a family of Collision-Resistant Hash functions (CRH)
based on any one-way function.

Proof: Let (CommIT,VERIFY) be a statistically binding computationally hiding commitment scheme
based on the one-way functigh(see, for instance, [37] for formal definitions of commitments). Recall
that the protocol ©MmIT takes from the sender a stritgand randomness and after an interaction the
receiver gets a commitmenat The polynomial-time algorithm ¥RIFY takes the commitment and a
possible opening to valug’ with randomness’ and verifies thats’, ' are consistent witlr. One could
take for example the commitment scheme of Naor [67] based on the one-way fufi¢floim our setting
we can work under the assumption that the sender (in the commitment) is honest, and in such a case, the
commitment may be achieved without interaction atall

The CRH construction is inspired by the approach of Ishai, Kushilevitz and Ostrovsky [53] for construct-
ing collision-resistant hash functions from Private Information Retrieval (PIR). A high level description is:

18simon’s black-box impossibility result [77] is actually stated for phsblic coins version of CRH rather than tsecretcoins
variant that we discuss. However this separation also holds for the case of secret coins (as pointed out in [48]).

19To be more exact, the commitment of [67] can be based on the pseudorandom generagiadfddal. [47] which in turn can
be based on the functigh

201 the scheme of Naor [67], the receiver is required to provide the sender with a (public) random string. Certainly, an honest
sender can generate this string by himself without harming the properties of the commitment. Thus in such a setting, the sender can
generate the commitment without interaction.

25

choose a hash function from a naive hash family with no computational hardness guarantees; in the con-
struction below we use the selection function, i.e. a random positibhe new hash function is defined by

a computationally hiding commitment to the naive hash function, and the output of the new hash function is
a compression maintaining the information of the committed naive hash function when applied to the input
(i.e. compression of the formula that checks that the value is what it claimed to be). Intuitively, finding a
collision would require guessing with non-negligible advantage the naive hash function (the pQsifioa

actual construction is given in Figure 1.

CRH family H;:

Description of the hash function: Let Z be a compression algorithm for SAT. A function in the
CRH collection is denoted, ., and defined by a commitmentto a valuei € [m], and
randomness for Z. The commitment uses security parameter

Inputto h,,,: astringz € {0,1}™
The CNF formula @, is defined as follows:

e Denote by \ERIFY, the algorithm \ERIFY with the inputo fixed. That is, \ERIFY,
takes as inputg andr and accepts if and only if they form a legal opening of the
commitments (and in particular this means that= 7).

D
(%]

e Translate \ERIFY, into a CNF formulad, (using Cook’s reduction) over the variabl
y1, ..., y¢ Of y, the bits ofr and dummy variables added in the reduction.

e For everyj € [m] define the claus€’; , = (y{1 % ng V..V ygf) if 2; = 0 (wherey"
denoteg andy' denoteg)) andC; , = 1if z; = 1.
o Set
oo =Ds A [\ Cja
j€[m]

The hash function:
ha’,rz (73) = Z((I)J,:m TZ)

Figure 1: The construction of Collision-Resistant Hash from any one-way function.

By the compressing properties Bfwe get thath, ., indeed shrinks its input (note that shrinkage by a
single bit allows further shrinking by composition). We also have that sampling from H can be done
efficiently (with secret coins).

As for collisions, letr # =’ be two strings in{0, 1}™ that form a collision, i.e.ks.,, () = hor, (2').

This equality implies, by the property of the compression, dhat is satisfiable iff®, .. is satisfiable (here

we use the fact that the compression is errorless). Due to the binding property of the commitment we have
that any assignment satisfyidg, must havey = i (recall that: is the index that is a commitment to).

Thus the first part of, ., is only satisfied whery = i. But the second part is only satisfieduif = 1,
thus®, , is satisfied if and only ifc; = 1. We get thatd,, , is satisfiable if and only if; = 1 and®, ./ is
satisfiable if and only if; = 1. Therefore it must be the case that= z/, since otherwise one of them is

26

0 and the other one isand the satisfiability o, . is different than that o®,, ... But for somej we have
xj # m; and for thatj we deduce that is not a commitment tg.

Suppose now that we have an efficient procedure that finds a collisaoid 2’ for a given(o, rz) with
relatively high probability (an inverse polynomial ir). Whenever the procedure indeed finds a collision,
pick anyj such thatz; # a:; For thisj we can deduce that is nota commitment tgj. This procedure
can be used to break the hiding properties of the commitment scheme, since it yields an efficient method
that distinguishes the commitment value from random with advaritage given (the real) and a random
onei’ € [m] in a random order, run the above procedure to obfaitf j equals one of the two valugs
or ¢/, then guess this one as the random one and otherwise flip a coin. This contradicts our assumptions on
building blocks (namely, the one-way function).

To prove the result when using compression for any language that is compression-heédfgra
similar construction is defined based on the OR of small circuits rather than CNF formulas: For every
Jj € [m] let Cy; be the circuit that outputs one if and only if there exists randomnessch thato is
consistent with(j,) (that iso is a possible commitment to the vali@sing randomness. LetC, , be the
circuit that takes the OR of all’; ; such thatr; = 1 and letZ be a compression algorithm for the language
OR(CircuitSAT). We defineh, ., (x) = Z(Cy 4, 77). The proof is identical to the case of SATD

Note that instead of an errorless compression we can do away with an error probability slightly smaller than
27™. That is, for allz we want the probability tha? (®, ., 7z) preserves the satisfiability df, , to be at
leastl — 2=™*“ where the probability is over andrz andu ~ log m. In this case we can argue (using a
union bound) that with probability at leakt- 27" no z exists violating the preservation of satisfiability.

We also note that the construction is inherently non-black box as it uses the code of the one-way function
(via the commitment) in the application of Cook’s Theorem. This is essential for the validity of the whole
approach in light of the black-box impossibility of Simon [77]. Theorem 3.1 implies the following corollary:

Corollary 3.2 Ifthere exists an errorless compression algorithm for SAT or for any problem that is compression-
hard forVCor, then there exigdtatistically hiding, computationally binding commitmeschemes based on
any one-way function. The scheme requires two rounds of interaction.

The corollary follows since CRH imply statistically hiding bit commitment, see Naor and Yung [70] (and
Damgard, Pedereson and Pfitzman [19] for commitment to many bits). Until recently, the known minimal
assumptions for constructing statistically hiding bit commitments were the existence of one-way permuta-
tions [69] and the more general one-way functions with known pre-image size [43]. Since the publication
of the earlier version of this paper statistically hiding bit commitments based on any one-way function were
shown to exist [71, 44]. However, all of these protocols [69, 43, 44] require many rounds of interaction — at
least linear in the security parameter (this was shown to be an inherent limitation of the technique [33, 42]).
The commitments based on CRHSs, on the other hand, are non-interactive, at least after the initial phase
where the functioh € H is chosen. Such a non-interactive CRH also allows for commitment schemes with
very low communication [57].

4 Basing One-Way Functions on Hard Instances
In this section we consider a method for constructing one-way functions from problems that are hard on the

average over a samplable distribution. We start by defining the notion of hardness that we discuss. Denote
by (x € L) the boolean value which corresponds to whethirin L or not.

27

Definition 4.1 A languagelL is hard for polynomial-size circuits over a distributi@nif for every family of
polynomial-size circuit§C,, }, for every polynomiap(-) and for all large enough, it holds that:

Pr,.pum[Co(z) = (x € L)) < = + ——

1 1
2 pn)

Let L be a language (not necessarilyNfiP). Recall that the languageR(L) with parametersn and
n is defined as follows:

OR(L)pmn = {(z1,...,2m) | Vilz;| < nand3isuch that; € L}.

The following theorem demonstrates how compressioW&f(L) can be used to construct one-way
functions.

Theorem 4.2 Given a languagéd. that is hard for polynomial size circuits over a samplable distributidn
and a compression algorithid for OR(L),

1. If Z is errorlesghen there is a construction of collision resistant hash functions.

2. If Z allows a negligible error (negligible im) there is a construction of a one-way function.

Note that there is no restriction on the complexity of recogniZingther than it being hard for circuits over
a samplable distribution. In particulérneed not be ioVP at all. If L does happen to be iNP, then the
above statement can use a general compressiow6Ha-complete language.

Corollary 4.3 let L € NP be hard for polynomial size circuits over a samplable distributi@r(as in
Definition 4.1). If there exists a compression algorithm for SAT, or for any problem that is compression-
hard forVCor, then there is a construction of a one-way function. If the compression is errorless then there
is also a construction of collision resistant hash functions.

Proof: (of Theorem 4.2) The proof follows by defining a family of hash functibpdased on a compression
algorithm. The claim is that, in the errorless cake,is a family of collision resistant hash functions (see
Section 3). IfZ is error prone then we define a modified haghand prove that it is a family adistributional
collisions resistant hash functions. That is, it is hard to fimdradomcollision for h/s. This implies that

ks naturally defines a distributional one-way function, which, in turn, implies the existence of one-way
functions.

We begin by proving the statement in the case of errorless compression. Define a family of hash func-
tionshg as follows. Each hash function is defined$y= (o9, 01,...,0% 0l), a2m-tuple of instances of
lengthn from the domain of the distributioP. Let Z be a compression algorithm for the langu&gg(L).

Define the hash functiohg(x) = Z(o7",...,0%"). Suppose there exists an efficient proceddrehat

finds collisions forhg over randomS € D?™. More precisely, there exists a polynomidl) such that for
infinitely manyn,

1
Prgepem[A(S) = (z,2") such thate # 2" andhg(z) = hg(2')] > m

Denote byDj the restriction of the distributio® to instances ¢ L. Note thatD, is not necessarily
samplable. We show that if there exists a proceduthat finds collisions ove$ € D2™ (rather tharD?™)
then A can be used to break the hardness of the langliageer D. To complete the proof we then show
that if A is successful oveb?™ then it is also successful ové2™.

28

Lemma 4.4 Let A be an efficient algorithm ang(-) be a polynomial such that for infinitely many

ProcpgnlA(S) = (x,2') such thatr # o’ andhs(z) = hs(a')] > p(ln),

then there exists a family of polynomial-size circit$ such that for infinitely many,

—_

1
+

Proep|CA(0) = (0 € L)] > CRIETO

Proof: (of lemma 4.4) By the assumption the proceddréinds a collision with probability at Ieaspt(ln—)

(overD2™). Therefore, there exists an indéx [m] such that4 finds a collisionr, 2’ such thaty; # =/ (x
andz’ differed on the*” bit) with probability at Ieas;wf(—n) (since every collision must differ in at least one
bit). This index: is used in the reduction described next.

The strategy of>'4 for determining membership ib is as follows: Given an input drawn from the
distributionD, create @m-tuple S by puttingo in the*" pair in S (for example, define! = o) and fill
the other entries by random instances from the distribulpnThe non-uniform hint is used to determine
and to supply the random samples fr@m. Now run the algorithmA on the tupleS and retrieve a collision
z,z' (if Awas successful). if; # x}. then answes ¢ L. Otherwise, answer according to a random coin
flip.

Under the restriction that ¢ L, the tupleS is distributed precisely as the distributi®?$™. Therefore,
with probability at Ieas% the algorithmA returns a collision withe; # «/ and C4 answers correctly
thato ¢ L.

On the other hand, under the restriction that L, the algorithmA cannot return a collision with
x; # 2. This is due to the fact that the outcome/gf(z) corresponds to whethéei*,...o%") is in
OR(L) or not (by the correctness of the compression algorithm). But membersbiR{i) is determined
solely by theit” pair (all of the other pairs are not ih), and more precisely by the value of the bjt
Therefore, a collision can only occur if the bit is the same in: andz’. Thus, in this case the procedure
C4 answers “not in L” with probability exactly.

Altogether, the procedur@“ answers correctly whenevey # x, (happens with probabilit%) and

with probability 3 otherwise. This amounts to a success probability ef ﬁ(n).

It is left to show that4 is as successful oB?™ as it is onD2™. For this we define an event under which
A'is considered successful. In our case it is the casesitihanning onS returns a collision undéig (i.e.,
A(S) = (z,2") such thatr # 2’ andhgs(z) = hg(z')). We say that an algorithm’s success carfiieiently
verifiedif there exists a polynomial-time computable relati®rsuch thatR(A(S), S) = 1 if and only if A

was successful 0f. This is clearly the case with collision finding since one can verify efficiently whether
the two outputs ofA are distinct and collide undérs. We conclude the first part of the theorem using the
following claim:

Claim 4.5 Let A be a polynomial time algorithm whose success can be verified efficiently @hdiet D,
be defined as above. Then for every polynom(gl and all large enoug:

[Prg._p2m[A succeeds o8] — Prg_p2m[A succeeds o8] < o)
p\n

Proof Sketch: Claim 4.5 is proved by a standard hybrid argument (see e.qg., [37], Section 3.2.3). Namely,
one can use a distinguisher betweBf™ and D3™ in order to distinguish betwee® and Dy. This in

29

turn is enough to break the hardnessiobver D. Note that non-uniformity is used in the reduction (for
constructing hybrid distributions) and so this only achieves a contradictibmsihard againston-uniform
adversaries (circuits) even if the distinguisher betwBéft andD3™ is actually uniform. O

This concludes the proof for the errorless case. We now turn to the case of error-prone compression. In
this case we also incorporate the stringf random coins used b¥ into the hash. Define

Ry(z,r) = (Z (o, ... omm),T).

Unlike the errorless case, we do not know thatforms a CRH family (since the errors may form
collisions that are easy to find). Rather, we first show tais a family ofdistributional collision resistant
hash functions (DCRH) (a similar primitive was defined in [26]). Loosely speaking, this is a family such
that for a randomly chosen hash in the family, no efficient algorithm can fraddomcollision of the hash.

A DCRH is useful since such a family translates toodlection of distributional one-way functionghich

in turn imply the existence of standard full-fledged one-way functions. A distributional one-way function
is a function for which it is hard to find emndominverse of an output element (rather than just a single
pre-image as in standard one-way functions). This notion was defined by Impagliazzo and Luby [50], who
showed that the existence of distributional one-way functions implies the existence of standard one-way
functions. We use a straightforward generalization of distributional one-way functions to collections rather
than a single function.

Note, however, that we only show thia, is a DCRH whenS is sampled according to the distribution
D3™. In particular, the key to the hash function cannot necessarily be sampled in an efficient manner.
This eventually translates to a one-way function over a domain that might not be efficiently samplable.
Unfortunately, one cannot apply Claim 4.5 to show thiaforms a DCRH also whef is taken frompD?™,
since the property of finding emndomcollision is not efficiently verifiable. Instead, we first construct a
collection of one-way functions (via distributional one-way functions) in which the keys are chosen from
D2™, and then apply Claim 4.5 to show that the one-wayness holds also for a collection chosé@¥from
(using the fact that finding a single inverse is an efficiently verifiable property).

More formally, as in the case of CRH, a collection of functions consists of algorithms for sampling a
key S and evaluating a hash functidr}, over the generated key (in our context we only require that the
evaluation algorithm be efficient). For a fixed k8y suppose thak’y takes inputs of lengti. For every
such keysS define the distributios over pairs(y, y') such thaty € Uy, andy’ is taken uniformly from
the collection of the siblings of (that is, from the sef{y’ | h's(y) = his(y')}). A collection is said to
be adistributional collision resistant hash family (DCRH) if for every efficient algorithmA and every
negligible functiore(-) the probability over the keyBrg[A(.S) is (n)-close toCs] is negligibly small (i.e.,
n—°M). We will first show thath'y as defined above is a DCRH whéhis sampled fromDZ™. This is
implied directly from the following lemma (proof appears after the proof of Theorem 4.2):

Lemma 4.6 Let A be an efficient algorithny 4(-) be a negligible function ang(-) be a polynomial such
that for infinitely manyn:

i 1
Prgepan [A(S) is e4(n)-close toCs] > ot

then there exists an efficient circ@t* such that for infinitely many,

1
+

1
Proep|CA(0) = (0 € L)] > SR

30

We now show that a DCRH implies a collection of distributional one-way functions and start by defining
this notion. As before, a collection of functions consists of algorithms for sampling & kgiven security
parameter) and evaluating a keyed functijgnover the generated key (where the sampling algorithm is
not necessarily efficient in our case). A collection is said taliséributional one-way if the probability
Prs[(A(fs(Up), S), fs(Up)) is e(n)-close to(Uy, fs(Uy))] is negligibly small (i.e.n=°(). The distribu-
tions are taken over the choice of the inputinand the random coins of.

Claim 4.7 Any DCRH also forms a collection of distributional one-way functions.

Proof Sketch: This is shown by demonstrating that a proceddréor breaking the distributional one-
wayness offs can be used to break the distributional collision-resistance of this function. Define the proce-
dure B4 as follows: (i) choose a randome U, (ii) computez’ = A(fs(x), S) and (iii) if 2 # 2’ then out-
put(z, z’), otherwise repeat from (i). If, for a give$), the procedurel is such that A(fs(Uy), S), fs(Uy))
is e-close to(Uy, fs(Uy)) then the output oB4 ise-close toCg. O

We now use the result of [50] that constructs standard one-way function from a distributional one-way
function. The same transformation holds also for collections of functions (the notion that we use), since
the proof holds separately for each function in the family. Thus we derive standard collections of one-way
functions (for definition, see e.g., [37]).

Lemma 4.8 (From [50], Lemma 1) If there is a collection of distributional one-way functions then there is
a collection of one-way functions.

At this point we have a collection of one-way functiofig in which the keysS is sampled from the
distribution D™, (which is not necessary efficiently samplable). We can now apply Claim 4.5 to show
that this holds also whef is sampled from the distributio®?™ (which is efficiently samplable). We use
the fact that the success of an adversary in finding an inverge(af) is efficiently verifiable (unlike the
success in finding eandominverse). The final step is a standard transformation from a collection of one-
way function to a single one-way function (e.g., see [37], Section 2.7.4, Exercise 18). This concludes the
proof of Theorem 4.2 O

Proof: (of Lemma 4.6) The proof resembles that of the errorless case (Lemma 4.4) and in fact the circuit
C4 is essentially the same circuit (barring the minor technicality of ignoring ihart of the inputs).
Recall that the construction in Lemma 4.4 identifies an indéor which a collision withz; # z/ is
found with probability at Ieas%. Given an instance € D it generates &m-tuple S with o in thei'®
pair and the rest filled with random instances frd In Lemma 4.4 when one was given a collision with
x; # x;, we could immediately deduce that¢ L. This is not the case when an error is allowed, since for
all we know, the algorithm might always return am, =, » such thatZ with randomness errs on either:
or z’. What we show is that ifd returns a collision according to the required distributin then with all
but negligible probability this collision is a “good” collision (good in the sense fhagrrs on neither), in
which case we can safely deduce that;it~ « theno ¢ L.

Claim 4.9 Let Z be a compression algorithm f@? R(L) with error probabilitys 7 then for anyS € D?™,
Pr(; 2 mcg[Zr €1rs on eitherz or z'] < 2e.

By the assumption ol we get that with probability at Iea% the algorithmA returns a collision
with z; # 2/ and by Claim 4.9 we have that with all but probabit¥y,; + € 4 (a negligible probability) this
collision implies thatr ¢ L (recalle 4 is the statistical distance of the output of a succesdfédom Cg).
Thus the circuitC4 distinguishes between € L ando ¢ L with advantage at Iea% —ez— % (and

in particular with advantag%). This concludes the proof of Lemma 4.60

31

Proof: (of Claim 4.9) When sampling frorfs, the first value(z,) in the collision is simply taken ac-
cording to the uniform distribution. In particularis sampled independently efand by the definition of
compression, for every, at most arx z fraction of ther’s yield an error. Moreover, when ignoring the first
pair, the second valug@’, r) is also uniformly distributed. This is because the probability of getting a value
(«',r) as the second element in a collision is the probability of hitting a sibling/of-) (according tah’)

as the first element and then the probability of choosing it out of all siblings. Denote the siblind set-pf

by Sib,) and the combined length’| + || by £. Then the probability of gettingz’, r) is Iszb;ij’)' for
hitting Sib(,/ timesm for hitting («/, r) within the set. Thus each element appears as the second
element with probability217. Therefore, the probability of,. having an error on at least one of the values in
the collision is at mos2e; (by a union bound). O

5 On Everlasting Security and the Hybrid Bounded Storage Model

The bounded storage modeintroduced by Maurer [62], bounds tlspace(memory size) of dishonest
players rather than their running time. The model is based on a long random7RBtohtengthm that is

publicly transmitted and accessible to all parties. Security relies on the assumption that an adversary cannot
possibly store all of the strin@ in his memory. The requirement is that the honest parties Alice and Bob
can interact using a small local storage of siz@vheren is significantly smaller tham) while security is
guaranteed against an eavesdropper Eve with a much larger, yet bounded storage space.

This model has enjoyed much success for the task of private key encryption. It has been shown that Alice
and Bob who share a short private key can exchange messages secretly using only a very small amount
of storagé!, while an eavesdropper who can store up to a constant fractid® @.g. %m bits) learns
essentially nothing about the messages (this was shown initially by Aumann and Rabin [4] and improved in
[3, 22, 30, 61] and ultimately in Vadhan [79]). These encryption schemes have the important property called
everlasting securityput forward in [3, 22]). Once the broadcast is over & no longer accessible then
the message remains secure even if the private key is exposed and Eve gains larger storage capacity.

In contrast, the situation is less desirable when Alice and Bob do not share any secret information in
advance. The solution of Cachin and Maurer [10] for this task requires Alice and Bob to use storage of size
at leastn = Q(y/m), which is not so appealing in this setting. Dziembowski and Maurer [29] proved that
this is also the best one can do.

The Hybrid Bounded Storage Model: The inability to achieve secure encryption in the bounded storage
model with memory requirements smaller than= /m has lead to the following suggestion that we call
thehybrid BSM Let Alice and Bob agree on their secret key using a computationally secure key agreement
protocol (e.g. the Diffie-Hellman protocol [21]). The rationale being that while an unbounded eavesdropper
will eventually break the key, if this happens after the broadcast had already occurred, then the knowledge
of the shared key would be useless by then (this should be expected from the everlasting security property
where getting the shared key after the broadcast has ended is useless). This hybrid model is very appealing
as it attempts to achieve everlasting security by adding assumptions on the ability of an adversary that has a
strict time limit Assumptions of this sort are generally very reasonable since all that we require is that the
computational protocol is not broken in the short time period between its execution and the transmission of
‘R. For instance, an assumption such as the Diffie Hellman key agreement [21] cannot be broken within half
an hour, can be made with far greater degree of trust than actually assuming the long term security of this
protocol.

2Lplice and Bob only require, = O(£ + logm + log é) bits of memory to exchange drbit message with errar.

32

Somewhat surprisingly, Dziembowski and Maurer [29] showed that this rationale may fail. They in-
troduce a specific computationally secure key agreement protocol (containing a non-natural modification
based on private information retrieval (PIR) protocols). If this key agreement protocol is used in the hybrid
BSM setting with a specific private key scheme, then the eavesdropper can completely decrypt the encrypted
message. However, their result does not rule out the possibility that the hybrid idea will work with some
other key agreement protocol. For instance, using the plain Diffie Hellman key agreement may still work.

In this work we show that if compression of SAT exists then there exists an attack on the everlasting
security ofanyhybrid BSM scheme.

5.1 Two Possible Models

The notation we use for the storage bounds of the honest partigsaadn g (respectively) and for Eve’s
bound it ismg. For simplicity we taker4 = ng = n and use an abuse of notations by setting = m
(where actually it should be thatp = m).

We define the hybrid BSK# as a setting where the running time of the eavesdropper Eve is polynomially
bounded up until and during the broadcastyfand unbounded after that. We discuss two variants of a
BSM scheme. We first discuss these in the standard BSM where the eavesdropper is unbounded over time,
and then compare them to the hybrid setting where computational restrictions are imposed:

e The Basic BSM SchemeThe basic scheme allows interaction only up to the start of the broadcast
of R (after that only the encrypted message is sent). Thus the key is fully determined by the time the
broadcast has ended. Such a scheme is fully breakable in the standard (non-hybrid) BSM (without an
initial secret key) since the unbounded adversary can find some randomness consistent with Alice’s
view, and simulates Alice’s actions and thus recover the encrypticii kBgsic schemes in the hybrid
BSM are interesting as they include any combination of a key agreement protocol with a private key
scheme (such as the one described by [29] and [45]). We show that if sufficiently strong compression
exists then there exist attacks on any such scheme.

e The General BSM SchemeAlice and Bob interact both befoendafter the broadcast &. Dziem-
bowski and Maurer [29] show that such a scheme is breakable unles$2(,/m) (without initial
secret keys). For the hybrid BSM, we show that if compression exists then there exists an attack on any
such scheme as long as> Q(y/m/p(n,logm)), for some polynomiap (related to the polynomial
of the compression algorithm and to the running time of the protocol that Alice and Bob use).

Thus we prove that if compression of SAT (or of aW§ o r-hard language) is feasible then the hybrid BSM
is essentially no more powerful than the standard BSM.

5.2 The Basic Hybrid BSM

Definition 5.1 (Basic hybrid BSM scheme)A basic hybrid BSM scheme consists of the following: Alice
and Bob with storage bound run a protocolII that is polynomial inn (this could be a key agreement
scheme with security paramete}. Denote byI" the transcript of this protocol. Alice and Bob use their
respective views of the protocHl (i.e. the transcriptl” and their local randomness) to agree on at most
locations of bits from the broadcast strirfg) that they should store. They store these bits and then use the
stored bits to generate an encryption K§y(the scheme requires that they agree on the samekey).

22The hybrid BSM model and notions of everlasting security in this model are formally defined in [45].

Zsince Alice must be able to decrypt the message then simulating Alice with any randomness that is consistent with the transcript
must output the same key.

2The discussion is also valid if the parties are required to reach an agreement with all but negligible probability.

33

We show that sufficiently strong compression of SAT can be used to break any hybrid BSM scheme. For
such a scheme to be secure it is required that thekkegmains secret in presence of an eavesdropper that
runs in polynomial time up until and during the broadcast, but is unbounded after it. We refer the reader to
[46] for rigorous definitions of security (the attack presented below is not sensitive to the actual definition).

For the discussion here tak€ to be a one bit key. The general idea is that while the eavesdropper may
not figure out in time what locations to store, he can use this transcript to save a relatively short (compressed)
CNF formula whose satisfiability coincides with the value of the keylater, when he is given unbounded
computational power, he will be able to extract this bit from the compressed formula.

Theorem 5.2 If there exists a compression algorithm for SAT or for any compression-hard language for
VCor, wWith polynomialp;, then any basic hybrid BSM scheme can be broken using memorylog m)
(wherep, is a polynomial related tp; and the running time of the protocHl).

Proof: Denote the locations of the bits that Alice and Bob storeby..,i,,. Consider the algorithniy’
that takes the transcriffi; and the broadcast strirfg as inputs and Alice’s local randomness, and locations
i1, ..., 1, @S a witness. The algorithm should check if the witness and inputs are indeed consistent with one
another (for exampld, should verify that a key agreement with the randomness of Alice, the tran®cript
indeed chooses the indicés ..., i, to store) and output if and only if they are consistent and generate an
encryption keyK = 1. The main observation is that théP language defined by this relatidnis in VC.
Thus, if SAT has a compression algorithm then there is also a compression algorithm foy@ll (fom
Lemma 2.17) including the language definediby

The attack of the eavesdropper Eve is as follows: Eve generates the verification pfogradnfeeds
the instancéT’, R) to the compression algorithm for the languageBy the properties of the compression,
the output is a CNF formula that is satisfiable if and onlyif= 1. The length of the output is of some
polynomial lengthps(n,logm). If the polynomialp, is sufficiently small then the compressed instance is
shorter than Eve’s space boué@h, and he stores this output. Finally, at a later stage, Eve can use her
unbounded powers to solve the compressed problem and retrieve #ie bit

We note that a slightly more involved argument works also with compressioider. The idea is to
use independent compression for the/it ;) for every; € [n]. Every suchR(i;) may be presented as the
OR of m circuits of sizep(n) each, for some polynomial O

5.3 The General Hybrid BSM

The general scheme is like the basic one but the encryptiokkisynot necessarily fully defined by the end
of the broadcast. In addition, the parties are allowed to interact after the broadcast is over. We note that the
bounded storage key exchange scheme of Cachin and Maurer [10] requires such late interaction.

Definition 5.3 (General hybrid BSM scheme) The general hybrid BSM scheme consist of the following:
Alice and Bob with storage boundengage in a protocoll; that runs in time polynomial im. Denote

by T the transcript of this protocol. Each of the two parties Alice and Bob uses its respective view of the
protocolll; to determine at most locations in the broadcast string and stores the bits in these locations.
After the broadcast they interact in a second protddgl(with transcript7y) at the end of which they both
agree on encryption kel (with all but negligible error probability).

Theorem 5.4 If there exists a compression algorithm for SAT or for any compression-hard language for
VCor With compressiop; (n, log m), then there exists an attack on any general hybrid BSM scheme where
n? > m/pa(n,logm) (Wherep, is a polynomial related tg; and the running time of the protochl,).

34

Proof: Denote byAr, the set of all possible random strings of Alice that are consistent with the transcript
T, (recall thatT’ is executed in full before the string is broadcast and thereforer, is fully determined by
T1). Letsq = Sa(T1, R,74) denote the bits that Alice stores at the end of the broadcast when running with
randomness 4, transcript7; and broadcast strin®. Finally, denote byS 4(77, R) the random variable
that isS4 (71, R, r4) for a uniform choice of-4 € Ar,. Thatis,S (731, R) is distributed over all possible
s4's that Alice may store when running with transcrifit and broadcast string. Similarly we denote by
S5 (T1, R) the corresponding possible view of Bob.

The proposed strategy for Eve is to starendependent samples from the random varighléT’, R).
For this purpose we denote By (7, R) (for any R andT7) the random variable that consistsrofnde-
pendent samples &4 (77, R). An important observation due to Maurer [63] is that the uncertainty of Eve
regarding the underlying key is upper bounded by the mutual information between the views of Alice and
Bob given Eve’s view. Formally, the relevant quantity/{S 4(7,R); Sg(T1,R) | Se(11,R)). The suc-
cess of Eve’s strategy follows from the two lemmata below, the first due to Dziembowski and Maurer [29]
and the second due to Maurer [63]: .

Lemma 5.5 ([29]) LetS4(T1,R),Sp(T1,R) andSg(T1, R) be defined as above. Then:
I(SA(Ty,R);SE(T1,R) | SE(T1,R)) < n?/m

Lemma 5.6 ([63], Theorem 3)LetV 4, V andV g be random variables denoting the respective views of
Alice, Bob and Eve. LdK 4 = K4(V 4) andKp = Kp(V) be procedures of Alice and Bob to extract a
mutual secret key from their respective views, suchkat K4 = Kp with all but negligible probability.
ThenH (K) < I(V4;Vp | Vg).

A strategy for an eavesdropper is therefore to stor@dependent samples of the random variable
SA(T1,R). Lemmata 5.5 and 5.6 assert that Eve’s entropy of the encryptiorkkeyat mostn? /m in
such a case. A crucial point is that an encryption key that has entropy significantly loweér(finam Eve’'s
point of view) can be predicted with high probability by an unbounded Eve, rendering the scheme insecure.
Thus if an eavesdropper hé@¥m) storage capacity then the scheme is insecure as lon§asO(m).?°

Lemma 5.5 was used in [29] in a setting where the eavesdropper is unbounded and can hence sample the
random variabl& 4 (73, R). However, in our setting the eavesdropper is computationally bounded and does
not have the power to generate this distribution. Instead, we use compression to store information about
samples oB 4 (71, R) to be extractedfterthe broadcast is over (when the eavesdropper is computationally
unbounded).

The main idea is to use compression for search problems, as was discussed in Section 2.8. Define the
NP languagel. 4 as follows:

Ly ={(T1,R)|3 withessw = (r4,s4) suchthat4 € Ap, andsg = Sa(T1,R,ra)}

The first thing to note is thak 4 is in VCog. This is shown once more by the same argument as in
Theorems 5.2 or 3.1, and based on the fact that the proléca$é polynomial-time inn. Once this is
established, then given a compression algorithmJi6p z we invoke Theorem 2.26 to get a compression
algorithm to the search problem associated with Running this compression once, allows us to extract
a witness tal 4 and in particular to get one samplg of a consistent view of Alice. Running thistimes
supposedly gives samples of such a view, which suffices to break the scheme by Lemma 5.5.

ZWhen consideringqi4 andnp that are not necessarily identical, the actual requirement is for Eve torstosamples of
Sa(T1,R) (each sample is of length4). Subsequently the scheme is insecure as longiasns < O(mg).

35

However, in order to invoke Lemma 5.5, we need the samples to be taken according to the distribution
Sa(T1,R), which is defined by a uniform distribution over € Ar,. We will show that while sampling
via the compression of search problems does not give the desired distribution exactly, it is still sufficiently
close to be useful.

A closer inspection of our compression for search technique from Section 2.8 shows that we do not
necessarily sample uniformly fromd7,. However, we do sample close to uniformly, in the sense that no
element inA7, gets more than double the probability of another elemert;in We then show that taking
a constant times many samples as was originally needed guarantees that amongst the stored bits we have
random samples of the random variaBlg(T}, R), and thus we have stored enough bits fr@to break
the scheme.

Recall from Section 2.8 that the compression algorithm for search problems chooses a random pairwise-
independent hash functignand saves only a witne$s,, s4) that isuniquelyhashed to the value by h.

Sincer 4 fully determiness 4 (when givenl; andR), then without loss of generality we view the witness
simply asr4. Furthermore, assume w.l.0.g. that is of lengthn. Suppose that € [n] is such thaR’ <
|Ap,| < 2¢F1. Let H,, 2 be a family of pairwise independent hash functions viith{0, 1} — {0, 1}¢+2

for all h € Hy4o. Then for everyr4 € Ap, the probability that a randorh € H, o uniquely maps-4 to
zerois at most~“+2) (sincePryeyy, ,, [h(ra) = 0] = 2~ (“+2)). By the pairwise independencefit holds
that for all othen”, € Ar, with /y # r4 we have thaPrye,,, [h(r"y) # Olh(ra) = 0] = 1 —2- (2 By

a union bound over all', € Ap, with /, r4, combined with the probability that(r) = 0, we get:

. 1
Pryen, ., [h uniquely maps-4 to 0] > 27 (+2).. 5= 9~ (t+3),

Altogether, for allr4 € Az, it holds that
272 > Prjeyy, , [h uniquely maps 4 to 0] > 273,

Thus whenever the output éfis indeed of lengtlf + 2, the probability of sampling4 € Az, is almost
uniform (up to a factor of for each elementf is no Since we repeat the compression for every choice of
¢ € [n], then in particular samples are stored for the corfect

By Lemma 2.27 we know that at Iea§lof the repeated compressions indeed store information about a
valid witness (a sample ofy € Ar,). Thus, choosing, sagn independent € H,,, guarantees at least
n samples (by a Chernoff bound, as the choices are independent). But as mentioned above, these samples
are just close to uniform ovetr, rather than truly uniform. The solution is to simply run more instances of
this process, say, f@5n independent choices &f € H,, . This would guarantee that with overwhelming
probability, at leasBn of these choices have a valid withess. We show that from these slightly biased
samples we can extraattruly uniform samples of witnesses.

This last argument follows by a method for generating uniformly distributed samplesAm@mAt a
first stage3n samples are taken using the unique hashing method. Now a diluting second stage is in order
run to extract the actual samples: Suppose that the least likely element to be sampled gets prahability
For any element 4 that is sampled with probability, ,, keep the sample with probabili% and delete

it otherwise. Thus every element is eventually chosen with the same probahilityand since’”p”M > %
TA

then at least samples are eventually chosen (with overwhelming probability). Note that the diluting stage is
not necessarily efficiently computable. However, the probahilitycan be computed using the adversaries
unbounded running time, since these probabilities are fully defined by the traricvipiich can be stored

2Note that the almost uniformity of the samples actually holds for every choice of the pardniBterefore, this property can
be relied on even if the correct choicetis unknown.

36

in its entirety (as it is of length polynomial im). Therefore an unbounded eavesdropper may indeed extract
n uniform samples from her view. O

Note: In the two models that we consider we limit the honest parties to access and store ataousil

bits from the broadcast strin§. This is in contrast to storing some function Bf with a bound on the
function’s output length (an ability that the adversary is entitled to). This is a legitimate requirement as the
honest parties should run algorithms that are considerably more efficient than the adversary’s. It should be
noted, however, that our Theorems (5.2 and 5.4) hold also if the honest players can store functions, albeit
they then call for a compression algorithm for allgtP (rather than just for the lowest cla¥€ o r).

6 On Witness Retrievable Compression and Public Key Cryptography Based
on Any One-Way Function

6.1 On Oblivious Transfer from any One-Way Function

As mentioned in the introduction, whether one-way functions are sufficient for public key cryptography
is a long standing open problem. In fact, many researchers view the black-box impossibility result of
Impagliazzo and Rudich [52] as an indication that general one-way functions are insufficient for public
key cryptography. We now describe an approach to bridging this gap using witness-retrievable compression
of a specific language. More precisely, we demonstrate a construction of an oblivious transfer protocol (see
definition in, for instance [38]) from any one-way function using such a compression algorithm.

Theorem 6.1 There exists a distributio®® over CNF formulas such that given a witness-retrievable com-
pression algorithm for formulas from the distributi@hone can construct an Oblivious Transfer (OT) from
any one-way function.

Proof: The construction actually builds a Private Information Retrieval (PIR) protocol, and then uses the
construction of Di Crescenzo, Malkin and Ostrovsky [20] to build an OT protocol from the PIR protocol.
Recall that a PIR protocol has a sender with a database ofisaed a receiver that chooses to learn one
entry from the database (see precise definition in, e.g [20]). It is required that the receiver learns the bit of
his choice, but a computationally bounded sender learns essentially nothing about this choice. In addition,
the total communication should be strictly smaller than

Let f be a one-way function and takK€omMIT, VERIFY) to be a commitment based on the one-way
function f (as in Section 3). In this proof we work under the assumption that the parties are semi-honest
(that is, the parties follow the protocol as prescribed and are only allowed to try and infer extra information
from the transcript of the protocol). The semi-honest assumption is justified by the compiler of Goldreich,
Micali and Wigderson [39] that showed how to transform a semi-honest protocol into one against malicious
parties (again, the only needed cryptographic assumption is the existence of a one-way function). Consider
the protocol in Figure 2.

37

Protocol PIRy:
Alice’s input: database of m bits. LetD[i] denote theth bitin D.
Bob’s input: indexi € [m]. Denote the bits of by i1, ..., i.
1. Bob commits to i: Bob commits to: with randomnessrg, Alice receivesoc =
CoMMIT (¢, 7R).
2. Alice computes®: The CNF formula® is defined as follows:

e Denote by \ERIFY, the algorithm \ERIFY with the inputo fixed. That is, \ERIFY,,
takes as inputs andr and accepts if and only if they form a legal opening of the
commitmentz (and in particular this means that= 7).

¢ Translate \ERIFY, into a CNF formulab, (using Cook’s reduction) over the variabl
x1, ..., ¢ Of z, the bits ofr and dummy variables added in the reduction.

D
(7]

e For everyj € [m] define the claus€’; = (x{_l % 1:%2 ViV 1{4) if D[j] = 0 (where
zY denotest andz! denotest) andC; = 1if D[j] = 1.
e Set
=0, N)\ C
j€[m]
3. Alice Compressesb: Let (Z, W) be a witness-retrievable compression algorithm for GNF
formulas of the form ofb. Alice runs¥ = Z(®) and send¥’ to Bob.

4. Bob checks witness:Note that Bob knows the witness toEXIFY, and can compute a
witnessw for ®,. Bob checks ifi¥ (w, ¥) is a satisfying assignment far. If it is Bob
outputsl, otherwise he outputs

Figure 2: The construction of a PIR protocol from any one-way function.

It remains to show that the protocBI/ R is indeed a PIR protocol. Due to the fact that the commitment
is binding (up to a negligible error), an assignment satisfydggmust haver = ¢ (recall that: is the
index that Bob committed to). Thus the first part dfis only satisfied when: = 4. But the second
part is only satisfied ifD[z] = 1, thus® is satisfied if and only ifD[;] = 1. By the property of the
compression algorithm, alsb is satisfiable iffD[:] = 1. Hence, using the witness-retrievable properties of
the compression, Bob figures out whether or ¥ids satisfiable, and learns the @] (up to a negligible
error).

The second property is that the sender Alice learns no computational information about Bob’s choice.
This follows directly from the guarantees of the commitment scheme (note that Bob does not send any
information outside of the commitment). The third and final requirement regards the length of the commu-
nication. But the length of the communication is a fixed polynomiai(im) (depending on the commitment
protocol and the parameter of the compression algorithm). So choosing a large enough databases with
m > p(n) guarantees a non trivial PIR protocol and hence an OT protodol.

Note that the OT protocol derived in Theorem 6.1 is a one-round protocol (that is, one message sent
from the receiver followed by one message from the sender). This follows from the construction of the PIR
protocol and the construction of [20] that preserves the number of rounds. One implication of this fact is that
such an OT protocol may be used to construct a two round key agreement scheme, that in turn maybe used

38

to construct a public key encryption. In general, this is achieved by fixing the first message of the protocol
to be as the public key. Formally:

Corollary 6.2 If there exists a witness-retrievable compression algorithm for a specific type of SAT in-
stances, then based on any one-way function one can construct a public key encryption scheme (PKE) that
is semantically secure against chosen plaintext attacks.

6.2 On the Limitation of the Witness Retrievability Property

Witness-retrievable compression is defined (Definition 1.6) as a compression with an additional PPT algo-
rithm T such that for every witness, for Ry, it holds thatw, = W (w,, Z(z)) is a witness folZ(z) € L'.

Recall that nearly all of the examples of compression algorithms (in Sections 2.1 and 2.10) are in fact
witness-retrievable (the exception being compression of general sparse languages, Definition 2.3). This
property is essential to the success of the construction of the OT protocol in Theorem 6.1 (without it the
receiver would have to run in time that is super-polynomial). In this section we show that if one-way func-
tions exist then a compression algorithm for SAT cannot be witness-retrievable (this regards the general
language SAT rather than a specific distribution of instances as generated in Theorem 6.1). Moreover, this
statement also holds for other general languages mentioned in Theorem 6.1 (that are potentially easier to
compress than SAT). In particular, there is no witness-retrievable compression for the Clique language or
for the languag® R(S AT) (that is complete fov’Cpr). We give the formal statements below with respect

to the languag® R(S AT') and deduce the statements for SAT and Clique as corollaries.

We also rule out other natural definitions of witness-retrievability that would have been sufficient for
the proof of Theorem 6.1 to go through. Suppose we relax the witness-retrievability requirement to hold
only with some probability, then we show that if one-way functions exist then this probakhilityas to be
very low, at most an inverse polynomial in. Such a low probability of success n®t sufficient for the
OT construction in Theorem 6.1 to follow (we note though, that withess-retrievability with this low success
probability is still sufficient for the cryptanalytic result in [28]). We then show that the same situation also
holds for languages that are guaranteed to lhangue witnesse@.e. unique-SAT and uniqué-R(SAT)).

This is of relevance since the instances being compressed in the proof of Theorem 6.1 all have at most a
single witness’

We emphasize again that the OT construction may still be successful under the compression of formulas
of the specific type that are generated in the proof. However, we cannot generalize this method to work with
compression of a more standard language.

On the Impossibility of Perfect Witness Retrieval: Recall that the languag@R(SAT') takes as an
input a list ofm CNF formulas (each of length) and accepts if at least one of the formulas is satisfiable.
Consider the following way of generating an instanc®dat(SAT'). Takem bit commitmentsry, ..., oy,
each with security parameter(see proof of Theorem 3.1 for definition and discussion of commitments in
our context). For each commitmeny, generate using Cook’s Theorem a CNF formplathat is satisfiable

if and only if o; is a commitment td. As an instance aD R(S AT') we take the OR of thex CNF formulas
Goys - Do, We denote this instance y(oq,...,0,,). Denote byw,, a satisfying assignment faf,,
(such an assignment can be generated by an openingmthe valuel). The assignment,, also serves as

a witness forp(oy, . ..,om) € OR(SAT). Our first impossibility result is for compression OfR(SAT)

with errorless witness-retrievability.

2"The relevant instances in Theorem 6.1 actually have a unique witness only if there exists a commitment scheme that has only
a unigue opening As this is not necessarily the case when given any one-way function, we consider for simplicity the case of
one-way permutations (that guarantee a unique opening commitment scheme).

39

Lemma 6.3 If one-way functions exist then there is no witness-retrievable compressiOmigy AT") with
perfect withess-retrieval.

Proof: The proof follows by showing that a witness-retrievable compres&idor OR(SAT') can be
used to transmit am bit string between two parties with sub-linear communication. As a setup stage, the
receiver generates random commitments td andm random commitments t0 and sends them to the

sender. Denoted these by, ..., ol) and(c?,..., oY) respectively.
For every stringr € {0, 1}™ denotep, = ¢(o7',...,o%m) (wherer; denotes the” bit of x). In order

to send stringe € {0,1}™ the sender sends(¢,) to the receiver. We claim that the receiver can, with
overwhelming probability, learn the string thus contradicting the fact that the message sent is significantly
shorter tharm. Note that the receiver knows witnesses for all i and that a witness fas, € OR(SAT)
consists of a Witnesmvgil of agbgil that is included inp,. The receiver extracts as follows:

Procedure Rec on input Z(¢,):
e Foreveryi € [m]:

1. Runw = W(Z(¢y),w,1)
2. If wis a witness foZ(¢,) then sety; = 1, otherwise, seg; = 0.

e Outputy = y1, ..., Ym.-

Denote byX; the random variable of th&" bit of = and byY; the random variable of the corresponding
output of Rec. We view the process as a channel between a sender who holds the random v&fiables
X1, ..., X, to areceiver who gets the random variablés- Y1, ..., Y;,, and claim that with overwhelming
probabilityY = X.

If X; = 1thenthe opening of! should yield a witness faZ (¢,.), from the perfect witness-retrievability,
and thusy; = 1. We should show that iX; = 0, then indeed’; = 0 (up to a negligible error). Note that
X is uniformly distributed ovef0, 1}, whereasy” is determined by the random choice of commitments
(o1,...,0L)and(cy,...,0Y,), the random coins af andWW and the random variabl¥.

r¥'m rYm

Claim 6.4 Let X andY be the random variables described above. Then for everym] (possibly related
to m, n) and every polynomia}(-) and all sufficiently larger,
1
Prly; =1X; =0 < —.
I T
Note that the Claim 6.4 holds also if the underlying witness-retrieval algorithm is non-perfect. This will be
used in the proof of Lemma 6.5.

Proof: Suppose that the claim is false, that is, for safftg, for infinitely manyn» and some (possibly
related ton), Pr[Y; = 1|.X; = 0] > 1/q(n). For simplicity we first deal with the case thai[Y; = 1| X; =
0] = 1. In other wordsWW (Z(¢,), w,1) always outputs a witness faf(¢,,). Consider the two distributions
Lo and/L; on lists ofm — 1 commitments:

¢ Distribution £y is defined by a random and independent choice:6f 1 commitments td).

e Distribution £; is defined by first choosing at random a strivig V3, ..., V,,—1 € {0,1}~! and
then generating: — 1 independent commitments g, V5, ..., V1.

40

¢, From the hiding property of commitment schemes it holds that these two distributions are indistinguishable,
i.e. given a listL of m — 1 commitments, no computationally bounded distinguisher can tell with non-
negligible bias whethef. was generated by, or £;. We will show that if the premise of the claim is
false, it is possible to distinguish the two distributions (without knowledge of the openings to any of the
commitments in the list).

Given a listL of m — 1 commitments, the distinguisher generatésand o} and the corresponding
witnesses. He then generates a formglay addings? to the it position in the listZ, and runs the
compression ow. The distinguisher then runs = W (Z(¢),w,:1) and checks whetheo is a witness to
Z(¢). By the assumptiony will indeed be a witness every time thais satisfiable. On the other hand,
cannot be a witness if is not satisfiable, simply by the properties of the compression. Thusisfindeed
a witness forZ(¢) then it must be thab € OR(SAT) and there is some commitmenttadn the list and
thus L was generated fromi,. Otherwise, it means that ¢ OR(SAT') and the original list was front,
(ignoring the negligible probability thal; generates a list containing only commitment§)o

Now if Pr[Y; = 1|X; = 0] > ﬁ for some polynomial(-), then the distinguisher follows the same
procedure with the difference that:

o If w=W(Z(¢p),w,1) is awitness foZ (¢) then output’;.
e If wis not a witness flip a coin and output eith&y or £, accordingly.

In casew was indeed a withess, the distinguisher is guaranteed to be correct. Therefore, the above procedure
gives an advantagg% in distinguishing betweeify and £, contradicting the hiding properties of the
commitment scheme D

Note that the distribution€, and £, will be useful also in the discussion of the unique withesses case
(Lemma 6.6). O

On Non-PerfectWitness Retrievability: We now show that the witness-retrieval procedure is possible
only if its success probability is sufficiently low (we denote the success probablllm) We upper
bound the success probability by a function of the rate of compression that the algaridumeves (we
denote byp(n, m) the polynomial that bounds the length of the outpufZof.e. the compressed instance).

Lemma 6.5 Suppose one-way functions exist and supposé that’) is a witness-retrievable compression
for OR(SAT') such that for every with parametersn, n the following holds:

1. The compression parametef(¢)| < p(n, m)

2. The success probability &F is at least—— (™) where probability is over the random coins Bfand
W as well as the choice of the witness.

Theng(n,m) > Q(p(;”m)).

Proof: The proof uses the same setting as in the proof of Lemma 6.3. Once more, the sender sends a
compressed valug (¢,) to the receiver that runs the proceddtec and we view this process as a channel
between a sender who holds the random variaBdles- X1, ..., X,, to a receiver who gets the random
variablesY = Y1, ..., Y,,. Only this time if X; = 1 it is not guaranteed that al3¢ = 1 (since the witness-
retrievability is no longer perfect) Instead, our assumption on the success probabllifytrainslates to

Pr[=1|X;,=1]> () for a randomi. SinceX; is a uniformly distributed bit the®r[Y; = 1] >

27 for a random.
q(n,m)

41

In addition, Claim 6.4 states that for every holds thatPr[Y; = 1 | X; = 0] € neg(n). Thus, ifY; =1
thenX; = 1 with overwhelming probability and therefofé(X; | Y; = 1) € neg(n) for everyi (where H
denotes the Shannon entropy). We use the above mentioned facts to provide an upper bound on the average
entropy ofX; (average ovei) when givenY”:

E(H(X; | V)] = EPr(Y = DH(X; | Y= 1) + Pr(Y; = 0)H(X; | Y; = 0)
1 1
= 2q(n,m) neg(n) + (1= 2q(n, m)) .
1
1- 2q(mm) + neg(n)

The first inequality is true sincH (X; | Y; = 0) < 1 for everyi. We deduce an upper bound on the entropy
of X when givenY:

1

H(XY) < ZH(XZ. 1Y) =mE;[H(X; | Y)] <m(l— 2q(nm)

1

+neg(n))

Hence, when the receiver get$¢,) (and can generafg), the receiver’s entropy ok deteriorates by

m

H(X)—H(X|Y) >

).

q(n,m)

This can only happen if the sender sent at Ié]a(sqt(nm—m) bits to the receiver, and thygn, m) > Q(q(;”m))
as required. O

Note that the construction of OT protocols from one-way functions in Theorem 6.1 requires that the
compression ratg(n, m) < O(m!'~¢) for some constant > 0. Thus, when put in the context of con-
structing OT protocols, the above lemma states that a useful compression algorithR(f6¥17") cannot
have witness-retrievability with probability that is better tk(a(‘u#). In order to achieve non-trivial PIR
protocols (via Theorem 6.1), one would require witness-retrievability with a better success probability.

On Witness Retrieval with a Unique Witness The limitations on witness-retrievability hold also when

there is only a single witness, which is the case in our cryptographic applications. For this we consider
the promise problenOR(SAT)Y that isOR(SAT) with a guarantee that every instance has at most one
satisfying assignment. We generate the interesting instan@®& 5 AT)V as above, from sets of commit-
ments. In this case the set of commitments should be such that at most one of the commitments is to the
valuel. For simplicity we also assume that each commitment has a unique opening (this may be achieved
using one-way permutation), so overall such instances have the unique witness property.

Lemma 6.6 Suppose one-way permutations exist and suppose #at’) is a witness-retrievable com-
pression forO R(SAT)Y such that for every input with parametersn, n the following holds:

1. The compression parameten&(¢)| < p(n,m)

2. The success probability &F is at least
random coins o and V.

q(nlm) for a polynomialg(-, -) where probability is over the

Thenq(nlm) - W € neg(n).

42

Proof: Suppose that there is a witness-retrievable compregsioi’) for OR(SAT)Y that succeeds
with probablllty FIORAE In similar fashion to the proof of Claim 6.4 we will show that in such a case
one can eff|C|enty distinguish if a list o — 1 commitments was generated by the distributi&nor
by the distributionZ,. Recall that the distributior is a random choice ofn — 1 commitments td)
while the distributionZ, is a choice ofn — 1 random commitments (commitments to eitfiesr 1). The
distinguisher works without knowledge of the openings to any of the commitments, thus contradicting the
hiding properties of the commitment scheme.

The distinguisher generates a random commitmaénto 1 along with its witnessu,1. Now, given a
list L of m — 1 commitments, the distinguisher creates an instanbyg addings! in a random position in
the list L, and runs the compression @n The distinguisher then tries to retrieve a witnes/t{@) using
the openingu, 1. In the case thak € £, theng is an instance oD R(SAT)Y and thus by the assumption
the distinguisher will retrieve a witness with probability at Ie%%ﬁ). On the other hand, i € £, then
the instance is a general instance 61 R(SAT) (without the promise of the unique witness). Lemma 6.5
states that there existsgafor which the witness-retrieval succeeds with probability at nﬁ%@ A more
careful inspection of the proof of Lemma 6.5 shows that this statement also holds for a randomly chosen
¢ (generated by choosing random commitments not all of which are®p. Thus, if L € £, then the
witness-retrieval succeeds gnwith probability at mosw (with probability taken over the choice of
L e £1 and the randomness of the distinguisher). Overall, the distinguisher accepts with probability at
Ieastq = when L is from £, and at moslp(”—m when L is from £;. So if - nm) — M is larger
than a pofynomlal fraction im, then this procedure has a distinguishing advantage bet\&@eamd L1,
contradicting the security of the commitment schemeg.

All our results have been stated for the languaye(SAT'). However, they may be applied for other
languages such as SAT and Clique. In particular, we get the statement with respect to SAT as a corollary
(since a compression for SAT can be used as a compressi@gnAo6 AT') via the same reduction as in
Lemma 2.17).

Corollary 6.7 Suppose one-way functions exist and(l8t1/') be a witness-retrievable compression for
S AT (or for Unique-SAT), such that for every inpuitvith parametersn, n the following holds:

1. The compression parametef(¢)| < p(n, m)

2. The success probability &F is at least—— (™) where probability is over the random coins Bfand
W as well as the choice of the witness.

Theng(n,m) > Q(p(;”m)).

7 Discussion and Open Problems

7.1 Discussion - A Unified Perspective of the Applications

In sections 3,4 and 6 we presented three separate applications of compression that have a similar flavor: A
CRH from one-way functions using perfect compression (Section 3), a CRH/one-way function from hard-
on-average language using perfect/imperfect compression (Section 4), and PIR/OT from one-way function
using witness-retrievable compression (Section 6). These constructions have a common underlying prin-
ciple and can be viewed as variants on this main theme. The basic observation is that compression of
OR(L), whereL is a "hard on average” language, can be used to construct private information retrieval
(PIR) protocols in which the receiver is unbounded. This construction follows by generalizing a standard

43

approach in the design of PIR protocols (e.g. [59]). In this method the receiver generates a sequence of
commitments hiding the characteristic vector of its selection, and the server computes an encoding of the
XOR (alternatively, OR) of all of the committed values which correspond to the 1-entries of the database.
When decoded, this value amounts to the bit that the receiver was seeking. The non-triviality in the PIR
protocol stems from the fact that the length of the latter encoding can be made shorter than the length of
the database. Typically this is achieved by using homomorphic properties of specific commitment schemes.
In our case, this is achieved via the compressio®&f L) (whereL is the language defined by the com-
mitment scheme). Thus the use of compression here can be viewed as a relaxation of the traditional use of
homomaorphic commitments.

The result of Section 3 follows from this general scheme combined with the observation that PIR with an
unbounded receiver implies CRH (via the reduction of [53]). Section 6 observes that the receiver in the PIR
protocol can be made efficient if the underlying compression is witness-retrievable. The results of Section 4
follow by further observing that the CRH construction doesn’t require the committed vector to be known to
anyone, and moreover this construction remains collision resistant even if the committed vector is uniformly
random (otherwise one could break the semantic security of the commitment). Thus the commitments can
be replaced by random instances of a hard-on-average language. When compression is imperfect, the CRH
is relaxed to a distributional variant which still implies a one-way function.

7.2 Future Directions and Open Problems

The issue of compressibility and the corresponding classification introduced in this work raise many open
problems and directions. The obvious one is to come up with a compression algorithm for a problem
like SAT or Clique (or somé&’Cor-complete or hard problem). Note that the new impossibility results of
Fortnow and Santhanam [36] do not rule out the possibility of error prone compression for these languages.
We have seen compressibility of some interesfifif languages and hence the question is where exactly is
boundary between compressibility and incompressibility. We tend to conjecture that it is in the low levels
of theVC hierarchy. We view PCP amplification methods such as the recent result of Dinur [23] as potential
leads towards achieving compression. This is because these results show a natural amplification of properties
on a graph, and could potentially be combined with a simple compression of promise problems (such as the
example for GapSAT in Section 2.10). The main issue is doing the PCP amplification without introducing
many new variables. Due to the recent results of [36] and [15] the underlying PCP in such an approach must
also introduce some level of errors.

In particular, the following task would suffice for achieving non-trivial compression: given CNF formu-
lae 91 andg, (not necessarily with short withesses) come up with a CNF formuleat is (1) satisfiability
of the new formula coincides with very high probability with the satisfiabilitypefv ¢2 and (2) shorter
than the combined lengths of and¢, ; By shorter we mean of lengtfi — €)(|¢1| + |¢2]). The reason
this is sufficient is that we can apply it recursively and obtain non-trivial compressianA96 AT"), which
implies the cryptographic applications.

Short of showing a compression for general complexity classes, it would be interesting to come up with
further interesting compression algorithms as well as to obtain more hardness results. For instance, is Clique
or any other embedding problem complete ¥, ? Is there a natural and simple complete problem for
VC1? Also, theVC hierarchy is by no means the ultimate classification with respect to compressibility. One
can hope to further refine this classification, especially within the confin®g of Moreover, it would be
interesting to find connections of th& hierarchy to other classifications (e.g., in the style of Feige [31] for
average case complexity and approximation algorithms and Chen et al. [13] for parameterized complexity
and subexponential algorithms).

Regarding the cryptographic application of getting a CRH from one-way functions (Theorem 3.1), one

44

issue is how essential is the requirement that the compression will be errorless (this question is even more
interesting due to the new impossibility results of [36]). We know that this requirement can be relaxed to
hold with an error that is exponentially small in. However it is unknown whether a CRH can be con-
structed from any one-way function using a compression algorithm that errs with probability that is, say,
exponentially small im andlog m. Note that using typical amplification techniques for CRH is unsuccess-
ful. For example, taking a concatenation of several independently chosen hash functions on the same input
fails, since reducing the adversary’s success probability to allow using the a union bound requires using
too many (2(m)) independent functions for the overall hash to still be shrinking. Another question in this
regard is whether compression of languages outsid€Bfis possible. For example, applications such as
the construction of a CRH (in sections 3 and 4) can work also with compression of the langdgel)
(which may not have a short witness) BIOR(L) (not in N"P) rather tharOR(L).

Especially in light of the apparent hardness of compression, it is valuable to understand what are the im-
plications ofincompressibility We have seen the necessity of incompressibility for the security of schemes
in the hybrid bounded storage model. Other examples are the previously mentioned works of Dubrov and
Ishai [26] regarding derandomization and Dziembowski [28] with respect to forward-secure storage. In order
to gain confidence in an incompressibility assumption when used in a cryptographic setting it is important
to come up with arefficiently falsifiableassumptioff of this nature (see [68]).

Finally we feel that we have just scratched the surface of an important topic and in the future there will
be other implications of compressibility or the impossibility of compression, whether in cryptography or in
other areas.

Acknowledgements: We thank Yuval Ishai for many helpful comments and specifically for pointing out
that the CRH construction does not require witness-retrievability. We are also grateful to Alon Rosen, Ronen
Shaltiel and Gillat Kol for their comments on the presentation and Hovav Shacham for conversations regard-
ing witness-retrievable compression. Finally we thank the anonymous referees for FOCS and SICOMP, Salil
Vadhan and Mike Langston for their helpful comments and suggestions and to Mike Fellows for pointing
out some references.

References

[1] S. Aaronson. NP-complete problems and physical reait6ACT News36(1):30-52, 2005.
[2] N. Alon, R. Yuster, and U. Zwick. Color-codinglournal of the ACM42(4):844—-856, 1995.

[3] Y. Aumann, Y.Z. Ding, and M.O. Rabin. Everlasting security in the bounded storage nig##. Transactions
on Information Theory48(6):1668-1680, 2002.

[4] Y. Aumann and M.O. Rabin. Information theoretically secure communication in the limited storage space model.
In Advances in Cryptology — CRYPTO '99, Lecture Notes in Computer Scieoicene 1666, pages 65—79.
Springer, 1999.

[5] B. Barak. How to go beyond the black-box simulation barrier.4Bnd IEEE Symposium on Foundations of
Computer Scieng@ages 106—-115, 2001.

[6] M. Bellare, A. Boldyreva, and A. Palacio. An uninstantiable random-oracle-model scheme for a hybrid-
encryption problem. IrAdvances in Cryptology — EUROCRYPT 2004, Lecture Notes in Computer Science
volume 3027, pages 171-188. Springer, 2004.

2An efficiently falsifiable assumption is one for which it is possible to create verifiable challenges so that if the assumption is
false then the challenges can be solved.

45

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

S. Ben-David, B. Chor, O. Goldreich, and M. Luby. On the theory of average case complégitynal of
Computer and System Sciences (JC8&):193-219, 1992,

K. Burrage, V. Estivill-Castro, M. Fellows, M. Langston, S. Mac, and F. Rosamond. The undirected feedback
vertex set problem has a poly() kernel Rarameterized and Exact Computation, Second International Workshop
(IWPEC 2006), Lecture Notes in Computer Scienvodume 4169, pages 192—-202. Springer, 2006.

J. Buss and T. Islam. Simplifying the weft hierarcfiyneoretical Computer Sciencgs1(3):303-313, 2006.

C. Cachin and U. Maurer. Unconditional security against memory-bound adversaelvadnces in Cryptology
— CRYPTO '97, Lecture Notes in Computer Scierotume 1294, pages 292—-306. Springer, 1997.

L. Cai and J. Chen. On the amount of nondeterminism and the power of verifyiAdl Journal of Computing
26(3):733-750, 1997.

R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisitaatnal of the ACM
51(4):557-594, 2004.

J. Chen, B. Chor, M. Fellows, X. Huang, D. Juedes, I. Kanj, and G. Xia. Tight lower bounds for certain parame-
terized NP-hard problems$nformation and Computatiqr201(2):216-231, 2005.

J. Chen, |. Kanj, and W. Jia. Vertex cover: Further observations and further improvedoemtsal of Algorithms
41(2):280-301, 2001.

Y. Chen and M. Miller. SAT is unlikely to be compressible. Manuscript, 2007.

B. Chor, M. Fellows, and D. Juedes. Linear kernels in linear time, or how to/sawors inO(nz) steps. In
WG 04, Lecture Notes in Computer Scienedume 3353, pages 257-269. Springer-Verlag, 2004.

S.A. Cook. The complexity of theorem-proving procedure8rthACM Symposium on the Theory of Computing
pages 151-158, 1971.

I. Damgard. A design principle for hash functions. Aalvances in Cryptology - CRYPTO '89, Lecture Notes in
Computer Sciencerolume 435, pages 416—-427. Springer, 1989.

I. Damcard, T. Pedersen, and B. Pfitzmann. On the existence of statistically hiding bit commitment schemes and
fail-stop signatures. IAdvances in Cryptology - CRYPTO '93, Lecture Notes in Computer Sc¢ierlaene 773,
pages 250-265. Springer, 1993.

G. Di Crescenzo, T. Malkin, and R. Ostrovsky. Single database private information retrieval implies oblivious
transfer. InAdvances in Cryptology — EUROCRYPT '2000, Lecture Notes in Computer Soieharee 1807,
pages 122-138. Springer, 2000.

W. Diffie and M.E. Hellman. New directions in cryptographifEE Transaction on Information Theqrg2:644—
654, 1976.

Y.Z. Ding and M.O. Rabin. Hyper-encryption and everlasting securityAnnual Symposium on Theoretical
Aspects of Computer Science (STACS), Lecture Notes in Computer Settuce 2285, pages 1-26, 2002.

I. Dinur. The PCP theorem by gap amplification.38th ACM Symposium on the Theory of Compytpages
241-250, 2006.

R. Downey and M. FellowsParameterized Complexity Springer-Verlag, 1999.

R. Downey, M. Fellows, and U. Stege. Parameterized complexity: a systematic method for confronting com-
putational intractability. IfContemporary Trends in Discrete Mathematics, AMS DIMACS Proceedings,Series
volume 49, pages 49-100, 1999.

B. Dubrov and Y. Ishai. On the randomness complexity of efficient sampling8tim ACM Symposium on the
Theory of Computingpages 711-720, 2006.

C. Dwork, J. Lotspiech, and M. Naor. Digital signets: Self-enforcing protection of digital informatio28tin
ACM Symposium on the Theory of Computinages 489-498, 1996.

46

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]
[38]
[39]

[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

S. Dziembowski. On forward-secure storage. Aldvances in Cryptology — CRYPTO ’'06, Lecture Notes in
Computer Scienge&olume 4117, pages 251-270. Springer, 2006.

S. Dziembowski and U. Maurer. On generating the initial key in the bounded-storage modelvdnces in
Cryptology — EUROCRYPT '2004, Lecture Notes in Computer Scigntene 3027, pages 126—137. Springer,
2004.

S. Dziembowski and U. Maurer. Optimal randomizer efficiency in the bounded-storage mimlehal of
Cryptology 17(1):5-26, 2004.

U. Feige. Relations between average case complexity and approximation comple8dyh BKCM Symposium
on the Theory of Computingages 534-543, 2002.

U. Feige and J. Kilian. On limited versus polynomial nondeterminisfrhe Chicago Journal of Theoretical
Computer Sciengd 997(1):1-20, 1997.

M. Fischlin. On the impossibility of constructing non-interactive statistically-secret protocols from any trapdoor
one-way function. Infopics in Cryptology - CT-RSA 2002, The Cryptographer’s Track at the RSA Conference
pages 79-95, 2002.

J. Flum and M. GroheParameterized Compleixity Theory. Springer, 2006.

J. Flum, M. Grohe, and M. Weyer. Bounded fixed-parameter tractabilitycasich nondeterministic bits. 181st
International Colloquium on Automata, Languages and Programming (ICALP) 2004, Lecture Notes in Computer
Sciencevolume 3142, pages 555-567. Springer, 2004.

L. Fortnow and R. Santhanam. Infeasibility of instance compression and succinct PCPs for NP. Electronic
Colloquium on Computational Complexity (ECCC), TR07-096, 2007.

O. Goldreich.Foundations of Cryptography. Cambridge University Press, 2001.
O. Goldreich.Foundations of Cryptography - Volume 2 Cambridge University Press, 2004.

0. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their validity, or all languages in NP
have zero-knowledge proof systendsurnal of the ACM38(1):691-729, 1991.

J. Goldsmith, M. Levy, and M. Mundhenk. Limited nondeterminiShGACT News27(2):20-29, 1996.

S. Goldwasser and Y. Tauman Kalai. On the (in)security of the Fiat-Shamir paradigdthlfEEE Symposium
on Foundations of Computer Scienpages 102-111, 2003.

I. Haitner, J. Hoch, O. Reingold, and G. Segev. Finding collisions in interactive protocols — a tight lower bound on
the round complexity of statistically-hiding commitments4Bth IEEE Symposium on Foundations of Computer
Sciencepages 669—-679, 2007.

I. Haitner, O. Horvitz, J. Katz, C. Koo, R. Morselli, and R. Shaltiel. Reducing complexity assumptions for
statistically-hiding commitment. I1Advances in Cryptology — EUROCRYPT "2005, Lecture Notes in Computer
Sciencevolume 3494, pages 58—77. Springer, 2005.

I. Haitner and O. Reingold. Statistically-hiding commitment from any one-way functioB9tim ACM Sympo-
sium on the Theory of Computingages 1-10, 2007.

D. Harnik and M. Naor. On everlasting security in thgbrid bounded storage model. BBrd International
Colloquium on Automata, Languages and Programming (ICALP) 2006, Part Il, Lecture Notes in Computer
Sciencevolume 4052, pages 192—-203. Springer, 2006.

D. Harnik and M. Naor. On the compressibility of NP instances and cryptographic applicatioBgectronic
Colloquium on Computational Complexity (ECCC), TR06;(ZD6.

J. Hastad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from any one-way function.
SIAM Journal of Computing?9(4):1364—-1396, 1999.

47

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]
[68]

C. Hsiao and L. Reyzin. Finding collisions on a public road, or do secure hash functions need secret coins?
In Advances in Cryptology — CRYPTO '04, Lecture Notes in Computer Sciesloene 3152, pages 92-105.
Springer, 2004.

R. Impagliazzo. A personal view of average-case complexitylOth Annual Structure in Complexity Theory
Conferencepages 134-147. IEEE Computer Society Press, 1995.

R. Impagliazzo and M. Luby. One-way functions are essential for complexity based cryptograp@sh IREE
Symposium on Foundations of Computer Sciepages 230-235, 1989.

R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential complex@th lEEE
Symposium on Foundations of Computer Sciepages 653-663, 1998.

R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way permutati@ist ACM
Symposium on the Theory of Computipgges 44—61, 1989.

Y. Ishai, E. Kushilevitz, and R. Ostrovsky:. Sufficient conditions for collision-resistant hashirgndiheory
of Cryptography Conference — (TCC '0%plume 3378 oLecture Notes in Computer Scienpages 445-456,
2005.

H. Kaplan, R. Shamir, and R. Tarjan. Tractability of parameterized completion problems on chordal, strongly
chordal, and proper interval graptBLAM Journal of Computing?8(5):1906—-1922, 1999.

R. Karp. Reducibility among combinatorial problems.Complexity of Computer Computations, edited by
R. Miller and J. Thatcher, New York: Plenum Pregages 85-103, 1972.

R. Karp and M. Rabin. Efficient randomized pattern-matching algoritiBid. Journal of Research and Devel-
opment31(2):249-260, 1987.

J. Kilian. A note on efficient zero-knowledge proofs and argument24th ACM Symposium on the Theory of
Computing pages 723-732, 1992.

C. Kintala and P. Fischer. Refining nondeterminism in relativized polynomial-time bounded computakis.
Journal of Computing9(1):46-53, 1980.

E. Kushilevitz and R. Ostrovsky. Replication is not needed: Single database, computationally-private information
retrieval. In38th IEEE Symposium on Foundations of Computer Scjgragges 364—-373, 1997.

M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and Its Applications , 2nd Edition Springer
Verlag, 1997.

C. Lu. Encryption against space-bounded adversaries from on-line strong extralmareal of Cryptology
17(1):27-42, 2004.

U. Maurer. Conditionally-perfect secrecy and a provably-secure randomized ciptmal of Cryptology
5(1):53-66, 1992.

U. Maurer. Secret key agreement by public discusdiBBE Transaction on Information Theqr§9(3):733-742,
1993.

U. Maurer, R. Renner, and C. Holenstein. Indifferentiability, impossibility results on reductions, and applications
to the random oracle methodology. The 1st Theory of Cryptography Conference — (TCC,'@dlume 2951 of
Lecture Notes in Computer Scienpages 21-39, 2004.

S. Micali. CS proofs. I185th IEEE Symposium on Foundations of Computer Scjqrages 436-453, 1994.

J. Naor and M. Naor. Small-bias probability spaces: Efficient constructions and applic&iémd.Journal on
Computing 22(4):838—-856, 1993.

M. Naor. Bit commitment using pseudorandomneksirnal of Cryptology4(2):151-158, 1991.

M. Naor. On cryptographic assumptions and challengesiAdvances in Cryptology — CRYPTO '03, Lecture
Notes in Computer Scienceolume 2729, pages 96—109. Springer, 2003.

48

[69] M. Naor, R. Ostrovsky, R. Venkatesan, and M. Yung. Perfect zero-knowledge arguments for NP using any
one-way permutationJournal of Cryptology11(2):87—108, 1998.

[70] M. Naor and M. Yung. Universal one-way hash functions and their cryptographic applicatio@4.stiihnCM
Symposium on the Theory of Computipgges 33-43, 1989.

[71] M. Nguyen, S. Ong, and S. Vadhan. Statistical zero-knowledge arguments for NP from any one-way function.
In 47th IEEE Symposium on Foundations of Computer Scjerages 3—-14, 2006.

[72] R. Niedermeierlnvitation to Fixed Parameter Algorithms. Oxford University Press, 2006.

[73] J.B. Nielsen. Separating random oracle proofs from complexity theoretic proofs: The non-committing encryption
case. InAdvances in Cryptology — CRYPTO '02, Lecture Notes in Computer Sciarioee 2442, pages 111—
126. Springer, 2002.

[74] J.B. Nielsen. On protocol security in the cryptographic model. BRICS Dissertation Series DS-03-8 August,
2003.

[75] C. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexity classe20thrACM
Symposium on the Theory of Computipgges 229-234, 1988.

[76] C. Papadimitriou and M. Yannakakis. On limited nondeterminism and the complexity of the V-C dimension.
Journal of Computer and System Sciences (J(3%2):161-170, 1996.

[77] D. Simon. Finding collisions on a one-way street: Can secure hash functions be based on general assumptions?
In Advances in Cryptology — EUROCRYPT ’1998, Lecture Notes in Computer Sciahame 1403, pages
334-345. Springer, 1998.

[78] L. Trevisan, S. Vadhan, and D. Zuckerman. Compression of samplable sourtieEElIConference on Compu-
tational Complexitypages 1-14, 2004.

[79] S.Vadhan. Constructing locally computable extractors and cryptosystems in the bounded storagéomnod|.
of Cryptology 17(1):43-77, 2004.

[80] L. Valiant and V. Vazirani. NP is as easy as detecting unique solutitimsor. Comput. Sgi47(3):85-93, 1986.

[81] H. Wee. On pseudoentropy versus compressibilitylHEE Conference on Computational Complexjigges
29-41, 2004.

[82] H. Wee. On obfuscating point functions. &7th ACM Symposium on Theory of Computipgges 523-532,
2005.

[83] H. Wee. Finding pessiland. Fheory of Cryptography Conference — (TCC '0&)lume 3876 otecture Notes
in Computer Sciencgages 429-442. Springer, 2006.

49

