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Abstract

Constructions ofk-wise almost independent permutations have been receiving a growing
amount of attention in recent years. However, unlike the case ofk-wise independent functions,
the size of previously constructed families of such permutations is far from optimal. This pa-
per gives a new method for reducing the size of families given by previous constructions. Our
method relies on pseudorandom generators for space-bounded computations. In fact, all we
need is a generator, that produces “pseudorandom walks” on undirected graphs with a consis-
tent labelling. One such generator is implied by Reingold’s log-space algorithm for undirected
connectivity [35, 36]. We obtain families ofk-wise almost independent permutations, with an
optimal description length, up to a constant factor. More precisely, if the distance from uni-
form for anyk tuple should be at mostδ, then the size of the description of a permutation in
the family isO(kn + log 1

δ ).

1 Introduction

In explicit constructions of pseudorandom objects, we are interested in simulating a large random
object using a succinct one and would like to capture some essential properties of the former. A
natural way to phrase such a requirement is via limited access. Suppose the object that we are
interested in simulating is a random functionf : {0, 1}n 7→ {0, 1}n and we want to come up with
a small family of functionsG that simulates it. Thek-wise independence requirement in this case
is that a functiong chosen at random fromG be completelyindistinguishablefrom a functionf
chosen at random from the set of all functions, for any process that receives the value of eitherf
or g at anyk points of its choice. We can also relax the requirement and talk aboutalmostk-wise
independence by requiring that the advantage of a distinguisher be limited by someδ.
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Families of functions that arek-wise independent (or almost independent) were constructed
and applied extensively in the computer science literature (see [3, 25]). There is a rather natural
construction that is optimal in terms of size: letG consist of all polynomials of degreek − 1
overGF [2n]. Then the description of eachf ∈ F is kn-bit long. It is easy to see that this is the
minimum number of bits needed.

Suppose now that the object we are interested in constructing is apermutation, i.e. a 1-1
function g : {0, 1}n 7→ {0, 1}n, which is indistinguishable from a random permutation for a
process that examines at mostk points (a variant also allows examining the inverse). In other
words, we are interested in families of permutations such that restricted tok inputs their output is
identical (or statistically close, up to distanceδ), to that of a random permutation. Fork = 2 the
set of linear permutations (ax + b wherea 6= 0) overGF [2n] constitutes such a family. Similarly,
there is an algebraic trick whenk = 3 (we learned it from Schulman, private communication in
[26], see also [40, 44]). Fork > 3 no explicit (non-trivial) construction is known fork-wiseexactly
independent permutations.

Once we settle onk-wise almostindependent permutations, with error parameterδ, then we
can hope for permutations with description lengthO(kn + log(1

δ
)) ∗; this is what a random (non-

explicit) construction gives (see Section 3.2). There are a number of proposals in the literature of
constructingk-wise almost independent permutations (see Section 4), but the description length
they obtain is in general significantly higher than this asymptotically optimal value. This paper
obtains the first construction ofk-wise almost independent permutations, with description length
O(kn + log(1

δ
)), for everyvalue ofk.

Motivation: given the simplicity of the question, and given how fundamentalk-wise indepen-
dent functions are, we feel that it is well motivated in its own right. Indeed,k-wise independent
permutations have been receiving a growing amount of attention with various motivations and
applications in mind. One motivation for this study is the relation betweenk-wise independent
permutations and block ciphers [14, 26].

In block-ciphers, modelled by pseudorandom permutations, the distinguisher is not limited
by thenumber of callsto the permutations but rather by its computational power. Still, the two
notions are related. On one hand, some constructions of pseudorandom permutations, and most
notably the Luby-Rackoff construction [20], imply explicit constructions ofk-wise almost inde-
pendent permutations [26] (see references therein). On the other hand, Hoory et al. [14] study a
construction in terms ofk-wise independence, partially with the motivation of understanding the
way “cryptographic” pseudorandomness may be obtained. Furthermore,k-wise independence is
sometimes sufficient for cryptographic applications, and may be easier to obtain (e.g. Pinkas [33]).
Below, we illustrate one such case (partially related to a motivating example given by Black and
Rogaway [6]).

Suppose that you want to permute the set of all credit card numbers to reduce fraud. You would
like to construct a permutation on the set of credit card numbers (of size roughly240, ignoring the
first 4 digits). Only trusted servers will have access to the permutation. The goal is that an adversary

∗The lower bound ofkn trivially follows as in the case of functions (simply since the output of a random permuta-
tion onk fixed inputs has entropy close tokn). If for no other reason,log(1

δ ) bits are needed to reduce roundoff errors.
This lower bound also follows for more significant reasons, unlessk-wise exactlyindependent permutations can be
constructed.

2



who sees a limited number of permuted credit card numbers and the original numbers (say its own
cards) would not be able to obtain information on any other card for which it sees only the permuted
value. Furthermore, we would like to spread the permutation among the trusted servers at low cost
(to save communication). This means, that the permutation should be represented by a small
number of bits. Note that for this range even under cryptographic assumptions there is no ready
made solution. For instance, DES is a permutation on264 values that is presumed pseudorandom,
at least for sufficiently weak machines. However, it is not clear how to use it in order to construct a
permutation on240 values. This example may also point out practical values for which an efficient
solution is needed. While our main interest is description length, we discuss time efficiency in
Section 6.

Our Technique and Main Results: we give a method for “derandomizing” essentially all pre-
vious constructions ofk-wise almost independent permutations. It is most effective, and easiest
to describe for permutation families obtained by composition of simpler permutations. As most
previous constructions fall into this category, this is a rather general method. In particular, based
on any one of a few previous constructions, we obtaink-wise almost independent permutations
with optimal description length, up to a constant factor.

Consider a family of permutationsF , with rather small description lengths. We denote byF t

the family of permutations obtained by composing everyt permutationsf1, f2, . . . , ft in F . Now
assume thatF t is a family ofk-wise almost independent permutations. The description length of
F t is t · s as we need to describet independent permutations fromF . We will argue that such
constructions can be derandomized in the sense thatit is sufficient to consider a subset of the
t-tuples ofF functions. This will naturally reduce the overall description length.

Our first idea uses generators that fool bounded space computations for the task of choosing
the subset ofF t , as we describe below. Pseudorandomness for space-bounded computation has
been a very productive area, see [27, 28]. Such pseudorandomness has been used before in the
context of combinatorial constructions where space is not anexplicit issue by Indyk [15] and by
Sivakumar [43].

Let g be the composition oft uniformly and independently selectedf1, f2, . . . , ft in F . Let
us also considerg′ which is the composition oft permutationsf ′

1, f
′
2, . . . , f

′
t in F , selected in

some other manner. Assume that the distribution ong′ is not k-wise almost independent. This
means that there arek inputsx1, x2, . . . xk such that the distributiong′(x1), g

′(x2), . . . g
′(xk) in not

close enough to uniform. That is, there exists a testT that distinguishesg′(x1), . . . g
′(xk) from

uniform. On the other hand, by our assumption,g(x1), . . . g(xk) is close to uniform, thereforeT
also distinguishesg′(x1), . . . g

′(xk) from g(x1), . . . g(xk). This translates to a test that distinguishes
the distribution off ′

1, f
′
2, . . . , f

′
t from uniform. The key observation is that the distinguisher uses

only spacekn as a branching program (i.e., it is of width2kn). Therefore, iff ′
1, f

′
2, . . . , f

′
t are

selected by a generator that fools space-kn computations then no such distinguisher exists andg′

is k-wise almost independent, with a shorter description length thant · s.
To complete this argument let us describe the small space distinguisher for the distribution

f ′
1, f

′
2, . . . , f

′
t . Consider a protocol fort parties, where partyi receiveshi as input and altogether

the parties want to distinguish the case that thehi’s are uniformly distributed from the case that
they are distributed according to the distributionf ′

1, f
′
2, . . . , f

′
t . Party i will only be allowed to

sendnk bits to partyi + 1. Such communication network is equivalent to a branching program of
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spacenk and the known pseudorandom generators for space bounded computations work against
distinguishers in this model. The distinguisher operates as follows. The first party appliesh1 to
x1, . . . xk and sends~z1 = (h1(x1), . . . h1(xk)). At its turn, partyi > 1 implieshi to the sequence
~zi−1 received from partyi− 1 to obtain~zi that it sends to partyi + 1. At the end, partyt evaluates
~zt and outputsT (~zt). We note the following facts: (1) Each~zi is kn-bit long and thus this is indeed
a spacekn distinguisher. (2) If thehi’s are uniformly distributed then~zt is distributed accord-
ing to g(x1), . . . g(xk). Otherwise it is distributed according tog′(x1), . . . g

′(xk). As T behaves
differently on these two distributions, we obtain the correctness of our small space distinguisher.

Given an “ideal” generator the fools space bounded computations and has optimal parame-
ters we could expect the method above to givek-wise almost independent permutations with de-
scription lengthO(nk + log(1

δ
) + s + log t). Based on previous constructions ofk-wise almost

independent permutations this implies description lengthO(nk + log(1
δ
)) as desired. However,

applying this derandomization method with currently known generators (which are not optimal)
implies description length(nk + log(1

δ
)) times poly-logarithmic factors.

This leads us to our second idea: to obtain families with description lengthO(nk + log(1
δ
))

we revise the above method to use a more restricted derandomization tool: we usepseudorandom
generators for walks on undirected labelled graphs. That is walks which are indistinguishable from
a random walk for any ‘consistently labelled graph’ and sufficient length. Such generators with
sufficiently good parameters are implied by the proof that undirected connectivity is in logspace of
Reingold [35], and made explicit by Reingold, Trevisan and Vadhan [36].

Adaptive vs. Static Distinguishers: Consider a distinguisher, trying to guess whether the per-
mutation it has is random or from the familyG. Assume further, that the distinguisher is allowed
to makek queries to the permutation. A natural issue, is whether these queries are chosen ahead of
time (statically) or adaptively, as a function of the responses the process receives. When consider-
ing perfectk-wise independent permutation there is no difference between the two cases, but when
considering almostk-wise independent permutations there could be a large difference†. Nonethe-
less, here we shall consider the static case. This is in general enough, for at least two reasons.
First, static indistinguishability up to distanceδ2−nk implies adaptive indistinguishability up to
distanceδ. Second, a result of Maurer and Pietrzak [22] shows that composing two independently
chosenk-wise almost independent permutations in the static case givesk-wise almost independent
permutations with adaptive queries with similar parameters‡.

Related Work: There are several lines of constructions that are of particular relevance to our
work. We describe them in more detail in Section 4. The information is summarized in Table 1.

Another notion which has been studied quite extensively in recent years is that ofmin-wise
independenceintroduced by Broder et al. [7]. Informally, a permutation family isk-restricted
min-wise independent (or simply min-wise independent, ifk = n), if for every distinctk elements,
each element is mapped to the minimum among the images of the elements, with equal probability.
The motivation for this notion stems from studying resemblance between documents on the Web

†One of our favorite examples is involutions (permutations where the cycle length is at most2). A random involu-
tion is almost pairwise for the static case withε = O(1/2n), but for the adaptive caseε = 1−O(1/2n).

‡Note that this is a case wherek-wise independence is different from cryptographic pseudorandomness, as was
demonstrated in recent papers by Myers and Pietrzak [23, 32].
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Table 1: Summary of Results and Previous Work onk-wiseδ-dependent Permutations.
Family Description Length Range of Queries
Feistel§ (Luby Rackoff) nk + O(n) k < 2

n
4
−O(1), δ = k2

2n/2

O(nk · log δ
δ0

) k < 2
n
4
−O(1), anyδ, δ0 = k2

2n/2

Simple3-Bit Permutations [9, 13, 14] O(n2k(nk + lg(1
δ
)) lg(n)) k ≤ 2n − 2

Thorp Shuffle [24, 26, 39] O(n45k log(1
δ
)) k ≤ 2n

Non-Explicit Constructions:
Probabilistic (Thm. 3.4) O(nk + log(1

δ
)) k ≤ 2n

Sample space existence (Thm. 3.5) O(nk) k ≤ 2n

This Work (Theorem5.9) O(nk + log(1
δ
)) k ≤ 2n

(see Broder et al. [8, 7]). This notion is weaker thank-wise independence. Another definition,k-
rankwise independence [16], demands that thek elements are mapped to any order with the same
probability. k-rankwise independence is stronger thank-restricted min-wise independence, but
weaker thank-wise independence. The best lower bound fork-restricted min-wise independence
is from [17] and is roughlynk/2. For a more extensive treatment we refer the reader to [7, 16, 17].

Organization

In Section 2 we provide notation and some basic information regarding random walks and the
spectral gap of graphs. In Section 3 we definek-wise δ-dependent permutation, argue the (non-
constructive) existence of small families of such permutations and study the composition of such
permutations. In Section 4 we discuss some known families of permutations. Section 5 describes
our general construction of a permutation family, and proves our main result. In Section 6 we
describe possible extensions for future research.

2 Preliminaries and Notation

• Let Pn be the set of all permutations over{0, 1}n. We will useN = 2n.

• Let x andy be two bit strings of equal length, thenx⊕y denotes their bit-by-bit exclusive-or.

• For anyf, g ∈ Pn denote byf ◦ g their composition (i.e.,f ◦ g(x) = f(g(x))).

• For a setΩ, denote byUΩ the uniform distribution on the elements ofΩ.

• Denote by[Nk] the set of allk-tuples ofdistinctn-bit strings.

§The first row is based on 4 rounds with the first and last being pair-wise independent [26]. Analysis of related
constructions [22, 30, 31] approachesk = 2n/2, but does not go beyond. It is possible to obtain anyδ′ ≤ δ by the
composition of independent permutations (which adds alog δ

δ′ multiplicative factor.)
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2.1 Random Walks

A random walk on a graph starting at a vertexv is a sequence of vertices,u0, u1, . . . whereu0 = v
and fori > 0 the vertexui is obtained by selecting an edge(ui−1, ui), uniformly from the edges
leavingui−1. Undirected graphs that are connected, regular, and have self-loops in each vertex,
have the property that a random walk on the graph (starting at an arbitrary vertex) converges to the
uniform distribution on the vertices. The rate of convergence is governed by the second largest (in
absolute value) eigenvalue of the graph. Below we formalize these notions.

Definition 2.1 (Spectral Gap) Let G = (V, E) be a connected,d-regular undirected graph onn
vertices. Thenormalizedadjacency matrix ofG is its adjacency matrix divided byd. Denote this
matrix byM ∈ Mn(R). Denote by1 = λ1 ≥ λ2 ≥ . . . ≥ λn its eigenvalues. We denote byλ(G)
the second eigenvalue in absolute value. Namely,λ(G)=̇ max{|λ2|, |λn|}. Thespectral gapof G,
is defined bygap(G)=̇1− λ(G).

Definition 2.2 (Mixing Time) Let G = (V, E) be a connected, regular, undirected graph with
self-loops, onn vertices. LetM ∈ Mn(R) be the normalized adjacency matrix ofG. A random
walk on this graph is anergodic Markov chain, whose transition matrix isM . Its stationary
distribution π is the uniform distribution on the vertices. Forx ∈ V , define themixing time
of the walk starting fromx, by τx(ε) = min{n|‖Mn1x − π‖ ≤ ε}, where1x is the distribution
concentrated onx. The mixing time of the walk is defined byτ(ε) = maxx∈V τx(ε).

We have the following theorems, relating the mixing time of a walk with the spectral gap of
the graph.

Theorem 2.3 [41] Let G = (V, E), M , π be as in Definition 2.2. Letε > 0. Letλ be the second
largest eigenvalue ofG. Then

1

2

λ

1− λ
ln(

1

2ε
) ≤ τ(ε) ≤ 1

1− λ
ln(

|V |
ε

).

Usually, such a claim is used to bound the mixing time. However, we will be using construc-
tions with a proven mixing time. The construction itself may also provide a bound on the spectral
gap. In case it does not, we will be able to use Theorem 2.3 in order to bound the gap of the graph
from below. A simple calculation using Theorem 2.3 shows that

gap(G) = Ω(
ln( 1

2ε
)

τ(ε)
).

The following theorem will be useful for us. It shows, that the distance of a distribution induced
by a random walk, from its stationary distribution, is a sub-multiplicative function of the time. We
will use this result to obtain a composition theorem for families of permutations (Theorem 3.8).
Namely, if selecting one permutation from a family of permutations induces a distribution which
is δ-close to uniform, then composing two such permutations yields a distribution which isO(δ2)-
close to uniform.

Theorem 2.4 ([2] Chapter 2, Lemma20) Let G = (V, E), M , π be as in Definition 2.2. Define
d(t) = maxx∈V ‖M t1x − π‖. Then for alls, t ≥ 0, d(s + t) ≤ 2d(s)d(t).
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3 The Existence ofk-Wise δ-Dependent Permutations

In this section we definek-wiseδ-dependent permutations, discuss their existence, and show that
the distance parameterδ is reduced by the composition of such permutations. Most of this paper
concentrates on permutations over bit strings and we consider more general domains in Section 6.2

3.1 Definitions

The output of ak-wise almost independent permutation on anyk inputs isδ-close to random,
where “closeness” is measured by statistical variation distance between distributions.

Definition 3.1 (Statistical Distance)LetD1, D2 be distributions over a finite setΩ. The variation
distance betweenD1 andD2 is

‖D1 −D2‖ =
1

2

∑
ω∈Ω

|D1(ω)−D2(ω)| .

We say thatD1 andD2 are δ-close if‖D1 −D2‖ ≤ δ.

Remark 3.2 Note that if two distributions areδ-close then there is no distinguisher (not even an
inefficient one) that can distinguish the distributions with advantage better thanδ.

Definition 3.3 Let n, k ∈ N, and letF ⊆ Pn be a family of permutations (we allow repeti-
tions). Letδ ≥ 0. The familyF is k-wise δ-dependentif for everyk-tuple of distinct elements
(x1, . . . , xk) ∈ [Nk], the distribution(f(x1), f(x2), . . . , f(xk)), for f ∈ F chosen uniformly at
random isδ-close toU[Nk]. We refer to ak-wise0-dependent family of permutations ask-wise
independent.

We are mostly interested inexplicit families of permutations, meaning that both sampling uni-
formly at random fromF and evaluating permutations fromF can be done in polynomial time.
The parameters we will be interested in analyzing are the following:

Description Length The description length of a familyF is the number of random bits, used by
the algorithm for sampling permutations uniformly at random fromF . Alternatively, we
may consider thesizeof F , which is the number of permutations inF , denoted|F|. In all of
our applications, the description length of a familyF equalsO(log(|F|)). By allowingF to
be a multi-set we can assume without loss of generality that the description length is exactly
log(|F|).

Time Complexity The time complexity of a familyF is the running time of the algorithm for
evaluating permutations fromF .

Our main goal would be to reduce thedescription lengthof constructions ofk-wiseδ-dependent
permutations. Still, we would take care to keep the permutation efficient in terms of time complex-
ity. See additional discussion in Section 6.
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3.2 Non-Explicit Constructions

We show the existence ofnon-explicitfamilies of permutations that arek-wise almost independent.
Our goal in the other sections would be to obtain families of size which is as close as possible to that
obtained by the non-explicit arguments below. The first idea for showing the existence of families
of k-wiseδ-dependent is simply to consider a probabilistic construction, i.e. a random collection
of permutations of a certain size. The following theorem follows by the approximation method of
Azar, Motwani and Naor [4]. They provide ([4] Theorem 3.1) a general way to approximate an
arbitrary distribution over a finite setΓ. Their point is that the weighted average of for` different
weights can be approximated to withinε simultaneously by a sample space of sizeO( log `

ε2
) and

uniform distribution over the support. Consider the sample spaceΓ consisting of all permutations
andD is the uniform distribution. To specify the requirements ofk-wise δ-dependency we need
for all (x1, . . . , xk), (y1, . . . , yk) ∈ [Nk] an approximation that should be withinδ/|[Nk]|. We get
the following:

Theorem 3.4 Let n ∈ N. For all 1 ≤ k ≤ 2n andδ > 0 there exists a family of permutationsF
that isk-wiseδ-dependent and is of sizeO(nk22nk

δ2 ).

The existence (even with a non-explicit construction) ofexactk-wise family of permutations
is unknown. Nonetheless, we show that there exist a distribution on permutations, which isk-wise
independent and has a small support. The construction follows a result by Koller and Megiddo
[19], which we briefly describe below.

Their idea for constructing a small sample space for a given object was to consider the set of
constraints it induces in terms of values of subsets. Then argue that if a sample space satisfying
these constraints exists, then there exists an assignment where the number of non-zero points is no
larger than the number of constraints.

In the case ofk-wise independent permutations, we are defining a probability distribution over
permutationsπ, i.e. for each permutation we want to assign a probabilitypπ. For every twok-
tuplesx̄ = (x1, x2, . . . xk) ∈ [Nk] andȳ = (y1, y2, . . . yk) ∈ [Nk] we have the constraint that the
probability that the chosen permutationπ satisfiesyi = π(xi) for 1 ≤ i ≤ k is exactly1/

(
N
k

)
. Let

Cx̄,ȳ = {π|yi = π(xi) ∀1 ≤ i ≤ k}. One can write for each̄x, ȳ ∈ [Nk] this requirement as a
linear constraint in thepπ’s: ∑

π∈Cx̄,ȳ

pπ =
1(
N
k

) .

These
(

N
k

)2
constraints plus the constraint

∑
π pπ = 1 completely characterizek-wise indepen-

dence. We know that there is an assignment satisfying all these constraints: simply make all
pπ = 1/N !. As Koller and Megiddo [19] argue, this means that there is also a non-negative as-
signment, where the number of non-zero values is at most the number of constraints; since it is
non-negative it defines a probability distribution. Unfortunately, we do not know how to construct
this distribution, or to sample from it in time polynomial inn andk. By the above discussion, we
have the following:

Theorem 3.5 (Existence ofk-wise Independent Distribution) There exists a distribution on per-
mutations which isk-wise independent (i.e. for anyk points the value of the chosen permutation
is uniform in[Nk]) and the size of the support of the distribution is at most22nk.
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3.3 Composition of Permutations

Some of the permutations families we will inspect require several compositions to get a distribution
close to uniform. In fact, as we argue below, composing permutations is an effective method for
reducing the distance parameterδ. This motivates the following definition.

Definition 3.6 Let F ⊆ Pn. The tth power ofF , denoted byF t ⊆ Pn, is { f1 ◦ . . . ◦ ft |
f1, . . . , ft ∈ F }.

Remark 3.7 LetF ⊆ Pn. Observe that|F t| = |F|t and that the time complexity ofF t is essen-
tially t times the time complexity ofF .

As Theorem 3.6 will show, starting with a familyF which isδ-dependent results inF t which is
only (O(δ))t-dependent. Therefore, increasing the description length and time complexity linearly,
pays off in an exponential decay of the error. We now state our composition theorem.

Theorem 3.8 LetF be ak-wiseδ-dependent family. Then,F2 is a k-wise2δ2-dependent family.
Furthermore, for everỳ ∈ N, F ` is ak-wise(1

2
(2δ)`)-dependent family.

The proof of Theorem 3.8 uses a certain type of graph which is associated with a permutation
family F . The graph, which we call acompanion graph, has a vertex for eachk-tuple of [Nk].
For every twok-tuples x̄ = (x1, x2, . . . xk) ∈ [Nk] and ȳ = (y1, y2, . . . yk) ∈ [Nk] and every
permutationσ ∈ F such thatyi = σ(xi) for 1 ≤ i ≤ k we have an edge in the companion graph
between̄x andȳ. This edge is labelled byσ. More formally:

Definition 3.9 (Companion Graph) LetF ⊆ Pn be a family of permutations. Fork ∈ N, define
the companion (multi-)graph ofF , GF ,k = (V, E) by:

• V = [Nk].

• E = { (i, σ(i)) | i ∈ [Nk], σ ∈ F }.

• Each edge(i, σ(i)) ∈ E is labelled byσ.

Remark 3.10 For an element̄x = (x1, . . . , xk) ∈ [Nk], and a permutationσ ∈ F , we abbreviate
σ(x̄) for (σ(x1), . . . , σ(xk)).

Observe, that a step on the companion graph is equivalent to evaluating a permutation fromF
on the elements of thek-tuple.

Proof: (of Theorem 3.6) LetF be ak-wise δ-dependent family. This means, that after taking
one random step on its companion graph, the distance from a uniform distribution isδ. Let d(t)
be as in Theorem 2.4. Thend(1) = δ, and since by Theorem 2.4,d(2) ≤ 2d(1)2 = 2δ2, we
conclude thatF2 is ak-wise 2δ2-dependent family. Applying Theorem 2.4 inductively we have
thatd(t) ≤ (1

2
(2δ)`). Therefore,F ` is ak-wise(1

2
(2δ)`)-dependent family. 2
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4 Short Survey of Explicit Constructions

As mentioned in the Introduction, fork = 2 the set of linear permutations is a good construction
(see also [26]), and fork = 3 using sharply 3-transitive permutation groups∗ (as suggested by
Leonard Schulman (private communication)) is a good construction. Unfortunately, from the clas-
sification of finite simple groups it follows that fork ≥ 6 there are nok-transitive groups over[n]
other than the symmetric groupSn and the alternating groupAn and there are only few such groups
for k = 4 andk = 5 (see [10, 37]). To conclude, fork ≥ 4 any small family ofk-wise independent
permutations isnota permutation group (i.e. is not closed under composition and inverse). This is
a major hurdle in providing efficient algebraic constructions ofk-wise independent permutations,
for k ≥ 4. Note also that from Theorem 3.8 (Composition Theorem) we can also conclude that
a (non-trivial) permutation group cannot even bek-wise δ-dependent for anyδ < 1/2: since the
error can be reduced sufficiently to implyk-transitivity and if the set of permutations is a group,
then it is preserved under composition.

There are no knownk-wiseexactlyindependent permutations, whether algebraic or not. The
rest of our discussion will therefore focus onk-wise almostindependent permutations. We now
survey some known constructions yieldingk-wise almost independent permutations with reason-
able parameters.

4.1 Feistel Based Constructions

In their famed work, Luby and Rackoff [20] showed how to construct pseudorandom permutations
from pseudorandom functions. The construction is based on theFeistel Permutation: For any
functionf ∈ {0, 1}n/2 7→ {0, 1}n/2 the Feistel Permutation is defined by(L, R) 7→ (R,L⊕f(R)),
where|L| = |R| = n/2. The construction uses a composition of several such permutations.

Naor and Reingold [26] construct a family ofk-wise δ-dependent permutations, where the
description of each permutation iskn + O(n) bits with δ = k2/2n/2 (note that the size is optimal
up to the additiveO(n) term). The analysis is useless whenk is larger than2n/4.

There are Feistel constructions ofk-wiseδ-dependent permutations, fork up to2n/2 (see Naor
and Reingold [26], Patarin [29, 30, 31], and Maurer and Pietrzak [21]).

The Feistel permutations approach yields succinctk-wiseδ-dependent permutation as long as
k is not too large andδ is not too small, and is probably the method of choice for this range. To
reduce the parameterδ one can use Theorem 3.8 and obtain a permutation with description length
O(kn log(1/δ) (or evenO(k log(1/δ)) for certain ranges ofk andδ). The Feistel method is not
known to be useful fork larger than2n/2.

∗A permutation group over the set[N ] = {1, 2, . . . , N} is a subgroup of the symmetric groupSn. A permutation
groupG over[n] isk-transitive if for every twok-tuples{x1, . . . , xk} and{y1, . . . , yk} of distinct elements of[n] there
exist a permutationπ ∈ G such that∀1 ≤ i ≤ k, π(xi) = yi. A permutation groupG over [n] is sharplyk-transitive
if for every two such tuples there exists exactly one permutationπ ∈ G such that∀1 ≤ i ≤ k, π(xi) = yi. A sharply
k-transitive permutation group is in particulark-wise independent. Indeed fork = 2, the linear permutations form a
sharply 2-transitive permutation group. Fork = 3, there are known constructions of sharply 3-transitive permutation
groups.

10



4.2 Card Shuffling

Consider a process for shuffling cards. Each round (shuffle) in such a procedure selects a permuta-
tion on the locations of theN cards of a deck (selected from some collection of basic permutations).
Starting at an arbitrary ordering of the cards, we are interested at the number of rounds it takes to
get the deck into a (close to) random ordering. In other words, a card shuffling defines a Markov
chain on the state of the deck, and the goal is to bound its mixing time.

The riffle shuffle models one of the most common “real life” shuffling techniques. Loosely,
in each shuffle, the deck is split roughly in the middle, into two sides. Then, cards are dropped
sequentially, from both sides, and form a new deck. (The mathematical model for this shuffle is
due to Gilbert, Shannon and Reeds.) Aldous and Diaconis [1] provide a convenient implementation
which we shall now describe. Let us view the deck of cards as the set ofn-bit strings, where each
card is a string in{0, 1}n. One round of the shuffle consists of two stages: assign and reorder.
In the assign stage, each of theN = 2n cards is assigned a random bit0 or 1. In the reorder
stage, the cards assigned with0 are placed at the top, while preserving their internal order. After
O(log N) = O(n) such rounds, the deck is close to uniform, see [1].

The random bits cost of this procedure is quite high. We would need2n bits per round, total of
O(n2n) bits. Observe, that this is of the order of the number of bits needed to select a permutation,
uniformly at random (and certainly much more than desired fork-wise independent permutations).
An even more troubling difficulty with using this shuffle, is that it is not “oblivious” in the sense
that the location of each card is determined by looking at many random bits. For instance, if the
ith card is assigned a value of0, it can still be in any of the firsti position after the reorder stage,
depending on how many of the firsti − 1 cards are also assigned a0. As we shall see below, this
does not completely preclude the applicability of such a process for generatingk-wise independent
permutations, but a more straightforward idea is to use an oblivious shuffle.

Oblivious Card Shuffling: Call a shuffleobliviousif the location of a card, after each round, is
easy to trace and is determined by only a few random bits, sayO(1). An excellent example is the
Thorp Shuffle[45]. Here the deck is divided into two halves, and these two halves are interleaved
in a more local manner than in the riffle shuffle. In the Thorp shuffle, each time we pick one card
from each half. With equal probability, the card from the first half is dropped first, and otherwise
the card from the second half is dropped first. This means, that the location of a card, after one
round, depends on a single bit. It is therefore oblivious, in the sense described above. It was
conjectured in [1] that the mixing time of the Thorp Shuffle isO(n2), but the problem remained
open for many years. Recently Morris [24] provided the firstpoly(n) bound on its mixing time.
More formally

Definition 4.1 (Thorp Shuffle) Let n ∈ N. Given a deck of2n cards, one stage of the shuffle is
determined by2n−1 bits that we will view as a random functiong : {0, 1}n−1 7→ {0, 1}. View
the location of each card as ann-bit string according to the lexical order. Card at location(σ, x)
whereσ ∈ {0, 1} andx ∈ {0, 1}n−1 moves to location(x, σ ⊕ g(x)).

Theorem 4.2 [24] The mixing time for the Thorp shuffle isO(n44).

An “old” proposal by the second author [39, page 17], [26] for the construction ofk-wise al-
most independent permutations was to utilize oblivious card shuffling procedure. The idea is the
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following: when using such a card shuffle to construct ak-wise almost independent permutation,
all we care for is the final locations ofk cards. If we replace the random functiong by ak-wise
independent function, then this will not change the distribution on thek final locations. There-
fore, the obliviousness of card shuffles is useful when constructingk-wise almost independent
permutation, in terms of both the description length and time complexity.

Implementing permutations via the riffle shuffle: Even though the riffle shuffle isnotoblivious
there is a way of using it to constructk-wise almost independent permutations. The idea is to
generate the choices for each position in arange-summablemanner: there should be an efficient
way to determine the number of ’1’s in a given range (for a given1 ≤ x ≤ N how many ’1’ where
chosen for the cards in[1 . . . x]). We need the choices and random variables of the range-sum to be
k-wise independent. Once this property exists, then the result is indistinguishable from a random
riffle for any process that examines the location of at mostk cards.

There is a construction satisfying these properties based on a ’divide-and-conquer’ tree. This is
described in [11] (due to Naor and Reingold) and [12]. The advantage of this construction over the
Thorp shuffle is the lower round complexity,O(n2) vs. O(n44). Both are amenable to the random
walk derandomization.

4.3 Simple3-Bit Permutations

A very intriguing method for generatingk-wise δ-dependent permutation was explored first by
Gowers [13] and then (with some variation) by Hoory et al. [14] and Brodsky and Hoory [9]. The
idea is to pick a few bit positions, three to be concrete, which are the only bits the permutation is
going to change. The three bits that are changed define a small sub-cube (with eight elements).
To completely define the permutation, select a random permutation on this small sub-cube.† This
is reminiscent of a shuffle, but here we invest only a few bits in each round. Therefore, the shuf-
fle cannot converge quickly to a random permutation. What this line of research shows is that a
composition of not too many simple permutations still yields ak-wise almost independent permu-
tation. This approach is treated more formally in the Section 5.4 and it works very well with the
derandomized walk approach, since the underlying set of permutations considered is the simplest
and hence the description length of simple permutations is quite short.

5 Main Results

In this section we give a method for reducing the description length of previous constructions of
k-wise δ-dependent permutations. As discussed in the introduction, this method is particularly
suited to constructions based on composition of permutations. We apply this method to the simple
3-bit permutations of [9, 13, 14] to obtaink-wiseδ-dependent permutations with description length
O(nk + log(1

δ
)).

†In the Hoory et al. variation the permutation is selected in a more restricted manner: Only a single bit is changed
as a random function of the other bits.
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5.1 Permutation Families and Random Walks on Graphs

Recall from Section 3.3 that we associate with a familyF of permutations acompanion graph
(Def. 3.9) by connecting ak-tuples tox̄ to σ(x̄) for σ ∈ F . All of the families of permutations
of Section 4 are closed under taking an inverse of a permutation and always include the identity
permutation. We summarize the properties of the companion graph that we need in the following
proposition:

Proposition 5.1 LetF ⊆ Pn be a family of permutations, which is closed under taking an inverse
and contains the identity permutation. Letk ∈ N. Then, the companion graphGF ,k, is an undi-
rected,|F|-regular, with self-loops. Furthermore, the companion graph is consistently labelled
graph, in the sense that for every vertexv, every two incoming edges intow have distinct labels.

Assume thatF is such thatF t is a family ofk-wiseδ-dependent permutations. We claim that
the distribution over the vertices we reach by taking a walk of lengtht, starting at any vertex of
GF ,k, is δ-close to uniform. Simply, traversing an edge labelledπ from the vertex̄x is the same as
applying the permutationπ on x̄ (i.e., it reaches vertexπ(x̄)). Takingt random edges is the same
as applying the composition oft randomly chosen permutations. If there is any starting pointx̄
that does not yield an end-point that isδ-close to uniform, then this̄x is a witness to the nonk-wise
δ-dependency ofF t.

Derandomizing the familyF t will mean that instead of composing independently chosen per-
mutations fromF , we will select the permutations with some dependencies. Equivalently, we will
take a pseudorandom walk instead of a random one. The seed of the pseudorandom generator will
be required to be sufficiently small and the number of labels the generator outputs will not be too
large. Such a generator was given by Reingold, Trevisan and Vadhan [35, 36].

5.2 Pseudorandom Walk Generators

We now discuss generators for pseudorandom walks on graphs. We will refer to graphs with the
following parameters:

Definition 5.2 (Parameters for a Graph) Let G = (V, E) be a connected, undirectedd-regular
graph, onm vertices. ThenG is an(m, d, λ)-graph ifλ ≤ λ(G).

Definition 5.3 (Pseudorandom Walk) LetG = (V, E) be ad-regular graph where for each node
its d outgoing edges take distinct labels in[d]. LetA be a distribution over

~a = a1, a2, . . . a` ∈ [d]`.

We say thatA is δ-pseudorandom forG, if for everyu ∈ V , the distribution on the possible end
vertices of a walk inG, which starts fromu, and follows the edge labels in~a is δ-close to uniform
when~a is distributed according toA.

Note that ifG is an(m, d, λ) graph,λ is sufficiently smaller than1 and the walk is sufficiently
long, then we expect a (truly) random walk to end in vertex that is close to being uniformly dis-
tributed no matter where the walk started. We are now ready to state the parameters of a previously
known construction of pseudorandom walk generators.
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Theorem 5.4 [35, 36][Pseudorandom Walk Generator] For everym, d ∈ N, δ, ε > 0, there is a
pseudorandom walk generatorPRG = PRGm,d,δ,ε : {0, 1}r → [d]`, with the following parame-
ters:

• Seed lengthr = O(log(md/εδ)).

• Walk length̀ = poly(1/ε) · log(md/δ).

• Computable in spaceO(log(md/εδ)) and timepoly(1/ε, log(md/δ)).

such that for every consistently labelled(m, d, 1 − ε)-graph G, the output ofPRG(Ur) is δ-
pseudorandom forG, whereUr is the uniform distribution on{0, 1}r.

Remark 5.5 The generator of Reingold, Trevisan and Vadhan [36] is more general as it also ap-
plies to regulardirectedgraphs (where the in-degree and out-degree of each vertex equals some
fixed d). Here, only undirected regular graphs are relevant. Furthermore, the time-complexity of
the generator is only implicit in [36].

5.3 Derandomizing Compositions of Permutation Families

We now describe our main construction which consists of applying the pseudorandom walk gen-
erators for the companion graph of a family of permutationsF . Our starting point is any family of
permutationsF whereF t (for t not too large) isk-wise almost independent. By Proposition 5.1,
the companion graphGF ,k, is regular and consistently labelled. As argued following Proposi-
tion 5.1, ifF t is k-wise almost independent then the random walk onGF ,k has small mixing time.
By Theorem 2.3, this implies a bound on the eigenvalue gapε of GF ,k. Therefore, Theorem 5.4
gives us a pseudorandom walk generator forGF ,k (PRG = PRGm,d,δ,ε with m = |[N ]k|, d = |F|,
ε comes from the analysis ofF andδ from how close to uniform we want the result to be). We
now use each seeds ∈ {0, 1}r of the pseudorandom generatorPRG to define a new permutation
σs, which is the composition of the permutations fromF thatPRG(s) generates. The set of all
possible seeds defines our new familyF ′. Theorem 5.6 formalizes this approach:

An advantage we have, which affects the parameters of our results (especially the description
length), is that the efficiency of the generator of [36] depends on the spectral gap of theinitial
graph. Since we are using families of permutations for which the companion graph is known to be
of good expansion, we manage to achieve non-trivial parameters in the families we construct.

The following theorem describes the family of permutations we achieve.

Theorem 5.6 LetF ⊆ Pn be a family of sized = |F|, andGF ,k be its companion graph. Suppose
that gap(GF ,k) = ε, whereε may be a function ofn andk. Then, there existsF ′ ⊆ Pn, such that
F ′ is ak-wiseδ-dependent family, with the following properties.

• The description length ofF ′ is O(nk + log( d
εδ

)).

• If the time complexity of any permutation inF is bounded byξ(n, k), then the time complex-
ity ofF ′ is poly(1/ε, n, k, log(d

δ
)) · ξ(n, k).
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Proof: We apply Theorem 5.4 on the companion graph ofF . Following Proposition 5.1 we
know thatGF ,k fits the requirements of Theorem 5.4. Letr = O(log(2nk·d

εδ
)) and` = poly(1/ε) ·

log(2nk·d
δ

) be as in Theorem 5.4. For a strings ∈ {0, 1}r, we defineσs ∈ Pn as follows. Let
~w = PRG2nk,d,δ,ε(s) ∈ [d]`. Then ~w = τ1, τ2, . . . , τ`, where for all1 ≤ i ≤ `, τi ∈ F . We let
σs = τ` ◦ . . . ◦ τ1.

Next define a permutation familyF ′ ⊆ Pn by

F ′ = {σs | s ∈ {0, 1}r }.

We now show thatF ′ is ak-wiseδ-dependent family. By Theorem 5.4, for any starting vertex
u ∈ V (GF ,k), the pseudorandom walk starting atu and following the labels ofPRG2nk,d,δ,ε(Ur)
reaches a vertex that isδ-close to uniform. Observe that picking a randomσs ∈ F ′ and applying
it to any valueA ∈ V (GF ,k) = [Nk] is exactly as taking a random walk onGF ,k according to the
output ofPRG2nk,d,δ,ε with a random seeds. Therefore, the output of a uniformσs on any such
A ∈ [Nk], is δ-close to uniform. We can conclude thatF ′ is k-wiseδ-dependent.

The description length ofF ′ is |r| = O(log(2nkd
εδ

)) = O(nk + log( d
εδ

)). The time complexity
of F ′ depends on the time complexity of running the generator, and of running permutations from
F . This can be bounded bypoly(1/ε, n, k, log(d

δ
)) · ξ(n, k). 2

For simplicity, we assumed in the above theorem that the boundε on the eigenvalue gap is
given, rather than deducing it by Theorem 2.3 (as in the discussion before the theorem). But
in principal what this theorem tells us is that instead of taking truly independent choices inF t it
alwaysmakes sense (from description length point of view) to usePRG to define the permutations
that are composed.

5.4 Particular Derandomization –3-bit Permutations

We now provide a formal definition and analysis of simple3-bit permutations, mentioned in Sec-
tion 4.3.

Definition 5.7 (Simple Permutations) [14] Let w ≤ n. For i ∈ [n], J = {j1, . . . , jw} ⊆ [n] r
{i}, and a functionf ∈ {0, 1}w → {0, 1}, denote byσi,J,f the permutation

σi,J,f (x1, . . . , xn)=̇(x1, . . . , xi−1, xi ⊕ f(xj1 , . . . , xjw), xi+1 . . . , xn)

The following simple permutation familyFw is defined by

Fw = {σi,J,f |i ∈ [n], J ⊆ [n] r {i}, |J | = w, f ∈ {0, 1}w → {0, 1}}.

We denote byF2 the simple permutations familyFw for w = 2.

Theorem 5.8 [9] For all 2 ≤ k ≤ 2n−2,F2
t isk-wiseδ-dependent , fort = O(n2k(nk+log(1

δ
))).

Furthermore,gap(GF ,k) = Ω( 1
n2k

).

Evaluatingσi,J,f ∈ F2 takesO(n) time. The size ofF2 is O(n3), and the size ofF2
t is

O(n3)t = nO(n2k(nk+log( 1
δ
))). It follows thatF2

t has description lengthO(n2k(nk+log(1
δ
)) log(n)),

and time complexityO(n3k(nk + log(1
δ
))).

Combining Theorems 5.8 and 5.6 we obtain the main result of this paper:
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Theorem 5.9 There existsF ⊆ Pn, such thatF is k-wiseδ-dependent.F has description length
O(nk + log(1

δ
)), and time complexitypoly(n, k, log(1

δ
)).

Proof: Consider the permutations familyF2. The size ofF2 is d = O(n3), and the spectral gap
of its companion graph isε = Ω( 1

n2k
). Applying Theorem 5.6 onF2, we get a permutations family

F ′, whose description length isO(nk + log( d
εδ

)) = O(nk + log(1
δ
)).

Since the time complexity of any permutation inF2 is O(n), it follows that the time complexity
of F ′ is poly(n, k, log(1

δ
)). 2

6 Discussion and Further Work

6.1 Time Complexity of the Construction

The focus of this paper is the description length ofk-wise almost independent permutations. Still
our derandomization preserves the time-complexity of the permutations up to factors that are poly-
nomial in the original time complexity and in the description length (nk + log(1

δ
)). One disad-

vantage of the approach of using a pseudorandom walk generator for derandomization is that we
replace a permutation composed of` simple permutations with another permutation composed of
`′ � ` simple permutations (this disadvantage is somewhat less extreme when using the more
efficient pseudorandom walk generator recently given in [38]). In this respect it is better to deran-
domize using generators against general space-bounded computations (such as the Nisan genera-
tor [27]) as explained in the introduction. While this approach is slightly sub optimal in terms of
description length (using currently known generators) it is quite efficient in terms of time complex-
ity.

A more subtle concern in terms of time complexity is the following: Can we havek-wise almost
independent permutations where the time complexity is independent ofk (as the description length
is larger thannk this only makes sense if we allow direct access to this description). Note that even
for k-wise independent functions this issue is not completely resolved; the basic construction based
on polynomials is expensive and more efficient constructions have longer descriptions (some lower
and upper bounds are given by Siegel [42]). Assume now that we are starting with a construction
of k-wise almost independent permutations that has this strong efficiency requirement. When
derandomizing with a generator against space bounded computations, the only additional cost is the
evaluation of the generator. In order for our derandomization to preserve such strong efficiency we
need a pseudorandom generator with ‘random access’ properties. In such a generator, evaluating
the ith bit of its output, does not entail computing all bits up toi. More specifically, it should be
possible to compute each bit in time that is independent ofk and only depends onn. Also note
that since the only additional costs are in the evaluation of the pseudorandom generator, one can
first “decompress” the succinct description of the derandomized permutations in order to speed
up future computations (this may be useful in case storage is not expensive but randomness and
communication are).
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6.2 Permutations over Other Domains

An issue that we did not explore so far, is constructingk-wise independent permutations over
domains that are not powers of2. This problem was raised by Bar-Noy and S. Naor inspired by
the needs of [5]. As was pointed out by Black and Rogaway [6], the credit card problem described
in the introduction is in fact one on a domain size that isnota power of2. Black and Rogaway [6]
suggested several methods, for obtaining a pseudo-random permutation on domain sizeM , that is
not a power of2, from a pseudo-random permutation on domain sizeN , that is a power of2 (say
N = 2dlogMe). The most relevant method for our purposes is the ‘cycle walking’ one, where the
idea is to construct a permutation on[M ] elements by iterating a permutation on[N ] until it lands
in the firstM values of[N ]. In more details, letπ′ : [N ] 7→ [N ]. Thenπ : [M ] 7→ [M ] is defined
for x ∈ [M ] by π(x) = π′(i)(x) wherei ≥ 1 is the smallest value such thatπ′(i)(x) ∈ [M ].

When one translates this construction tok-wise almost independent permutations, then the
requirement on the underlying permutationπ′ is, that it should bek′-wiseδ′-dependent for some
k′ ≥ k (we will see the requirement onδ′ momentarily), since some of the evaluations ofπ require
more than a single call toπ′. Note also that this mapping requires thatπ′ be immune to adaptive
attacks. In general, consider the ‘bad’ case for ak tuplex1, x2, . . . xk in [M ]: the evaluation ofπ
onx1, x2, . . . xk requires more thank′ calls toπ′. If M/N ≥ 1/2, then the probability that this bad
case happens, is proportional to an exponential ink′ − 2k, by a Chernoff bound. Conditioned on
the event that the bad case didnothappen, then the distribution ofπ onx1, x2, . . . xk is δ′-far from
uniform on[Mk]. Hence, the resulting set of permutations isk-wiseδ-dependent forδ that is larger
thanδ′ by an additive factor, which is exponential isk′ − 2k.

This analysis means, that for largek it is relatively easy to get a small error, by takingk′ to be,
say,2k, without significantly increasing the family size. However, whenk is small, the resulting
error is too large. In this case, as before, the derandomized walk method is applicable for reducing
the error, since Theorem5.6 does not require the domain size to be a power of2.

6.3 Further Questions

One interesting question is whether it is possible to ‘scale down’ a construction fork-wise inde-
pendent permutations onn bits to one onn′ ≤ n bits. Whenn′ is very close ton then some of the
techniques described in the previous section (such as cycle walking) are relevant, but they become
inefficient whenn− n′ is larger than logarithmic. This is most relevant in the computational pseu-
dorandomness setting: is it possible to obtain from a block-cipher on large blocks (e.g. 128 bits) a
block-cipher on small blocks (e.g. 40 bits), while maintaining the security of the former.

Finally, there is no strong reason to suppose that explicit small families (or distributions) of
exactk-wise independent permutation do not exist and Theorem3.5 hints to their existence. So
how about finding them?

Acknowledgments

The authors are grateful to Ronen Shaltiel for his invaluable collaboration during the early stages
of this work, and thank Danny Harnik, Asaf Nussboim and Adam Smith for useful comments.

17



References
[1] D. Aldous and P. Diaconis,Shuffling cards and stopping times, American Mathematical Monthly,

vol. 93, 1986, pp. 333–348.

[2] D. Aldous and J. A. Fill,Reversible markov chains and random walks on graphs,
http://www.stat.berkeley.edu/users/aldous/RWG/book.html .

[3] N. Alon and J. Spencer,The Probabilistic Method, Wiley, 1992.

[4] Y. Azar, R. Motwani and J. Naor,Approximating Probability Distributions Using Small Sample
Spaces, Combinatorica 18(2), 1998, pp. 151–171.

[5] A. Bar-Noy, J. Naor and B. Schieber,Pushing Dependent Data in Clients-Providers-Servers Systems,
Wireless Networks 9(5), 2003, pp. 421–430.

[6] J. Black and P. Rogaway,Ciphers with Arbitrary Finite Domains. Topics in Cryptology - CT-RSA
2002, Lecture Notes in Computer Science, vol. 2271, Springer, 2002, 114–130.

[7] A. Z. Broder, M. Charikar, A. M. Frieze and M. Mitzenmacher,Min-wise independent permutations,
Journal of Computer and System Sciences, 60(3), 2000, pp. 630–659 (preliminary version STOC
2000).

[8] A. Z. Broder S. C. Glassman, M. S. Manasse and Geoffrey Zweig,Syntactic clustering of the Web,
Computer Networks 29, 1997, pp. 1157–1166.

[9] A. Brodsky and S. Hoory,Simple Permutations Mix Even Better, Arxiv math.CO/0411098.

[10] P. J. Cameron,Finite permutation groups and finite simple groups, Bull. London Math. Soc., vol. 13,
1981, pp. 1–22.

[11] A. C. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan and M. Strauss,Fast, small-space
algorithms for approximate histogram maintenance, Proc. of the 34th Annual ACM Symposium on
Theory of Computing, 2002, pp. 389–398.

[12] O. Goldreich, S. Goldwasser and A. Nussboim,On the Implementation of Huge Random Objects,
Proc. 44th Annual IEEE Symposium on Foundations of Computer Scienc, 2003, pp. 68–79.

[13] W. T. Gowers,An almostm-wise independent random permutation of the cube, Combinatorics, Prob-
ability and Computing, vol. 5(2), 1996, pp. 119–130.

[14] S. Hoory, A. Magen, S. Myers and C. Rackoff,Simple permutations mix well, The 31st International
Colloquium on Automata, Languages and Programming (ICALP), Lecture Notes in Computer Sci-
ence 3142, Springer, 2004, pp. 770–781.

[15] P. Indyk,Stable Distributions, Pseudorandom Generators, Embeddings and Data Stream Computa-
tion, Proc. 41st Annual IEEE Symposium on Foundations of Computer Scienc, 2000, pp. 189–197.

[16] T. Itoh, Y. Takei and J. Tarui,On permutations with limited independence, Eleventh Annual ACM-
SIAM Symposium on Discrete Algorithms, 2000, pp. 137–146.

[17] T. Itoh, Y. Takei and J. Tarui,On the sample size ofk-restricted min-wise independent permutations
and otherk-wise distributions, Proc. of the 35th Annual ACM Symposium on Theory of Computing,
2003, pp. 710–719.

[18] E. Kaplan, M. Naor and O. Reingold,Derandomized Constructions of k-Wise (Almost) Independent
Permutations, The 9th International Workshop on Randomization and Computation (RANDOM), Lec-
ture Notes in Computer Science 3624, Springer, 2005, pp. 354–365.

[19] D. Koller and N. Megiddo, Constructing small sample spaces satisfying given constraints,SIAM J.
Discrete Math., vol. 7(2), 1994, pp. 260–274.

18



[20] M. Luby and C. Rackoff,How to construct pseudorandom permutations and pseudorandom functions,
SIAM J. Comput., vol. 17, 1988, pp. 373–386.

[21] U. M. Maurer and K. Pietrzak,The Security of Many-Round Luby-Rackoff Pseudo-Random Permu-
tations, Advances in Cryptology - EUROCRPYT ’2003, Lecture Notes in Computer Science 2656,
Springer, pp. 544–561.

[22] U. M. Maurer and K. Pietrzak,Composition of Random Systems: When Two Weak Make One Strong,
First Theory of Cryptography Conference, TCC 2004, Lecture Notes in Computer Science 2951,
Springer, pp. 410–427.

[23] S. Myers,Black-Box Composition Does Not Imply Adaptive Security, Advances in Cryptology -
EUROCRYPT ’2004, Lecture Notes in Computer Science, vol. 3027, Springer, pp. 189–203.

[24] B. Morris, On the mixing time for the Thorp shuffle, Proc. of the 37th Annual ACM Symposium on
Theory of Computing, 2005, pp. 403–412.

[25] R. Motwani and P. Raghavan,Randomized Algorithms, Cambridge University Press, New York
(NY), 1995.

[26] M. Naor, O. Reingold,On the Construction of Pseudorandom Permutations: Luby-Rackoff Revisited,
J. of Cryptology, vol. 12(1), Springer-Verlag, 1999, pp. 29–66.

[27] N. Nisan,Pseudorandom generators for space-bounded computation, Combinatorica 12(4), 1992,
449–461.

[28] N. Nisan and D. Zuckerman,Randomness is Linear in Space, J. Comput. Syst. Sci. vol. 52(1), 1996,
pp. 43–52.

[29] J. Patarin,Improved security bounds for pseudorandom permutations, Proc. 4th ACM Conference on
Computer and Communications Security, 1997, pp. 142–150.

[30] J. Patarin,Luby-Rackoff: 7 Rounds Are Enough for2n(1−ε) Security. Advances in Cryptology -
CRYPTO 2003, Lecture Notes in Computer Science 2729, Springer, pp. 513–529.

[31] J. PatarinSecurity of Random Feistel Schemes with 5 or More Rounds, Advances in Cryptology -
CRYPTO’2004, Lecture Notes in Computer Science 3152, Springer, pp. 106–122.

[32] K. Pietrzak, Composition Does Not Imply Adaptive Security, Advances in Cryptology -
CRYPTO’2005, Lecture Notes in Computer Science 3621, Springer, pp. 55–65.

[33] Benny Pinkas,Communication preserving cryptographic protocols, PhD dissertation, 1999, Weiz-
mann Institute of Science.

[34] E. G. Rees,Notes on Geometry, Springer, Berlin, 1983.

[35] O. Reingold,Undirected ST-Connectibvity in Log-Space, Proc. of the 37th Annual ACM Symposium
on Theory of Computing, 2005, pp. 376–385.

[36] O. Reingold, L. Trevisan, S. Vadhan,Pseudorandom Walks in Biregular Graphs and the RL vs. L
Problem, ECCC, TR05-022, 2005.

[37] D. J. S. Robinson,A course in the theory of groups – 2nd ed., New York : Springer-Verlag, 1996.

[38] E. Rozenman and S. Vadhan,Derandomized Squaring of Graphs, The 9th International Workshop on
Randomization and Computation (RANDOM), Lecture Notes in Computer Science 3624, Springer,
2005, pp. 436–447.

[39] S. Rudich,Limits on the provable consequences of one-way functions, PhD Thesis, 1988, U. C. Berke-
ley.

19



[40] A. Russell, H. Wang,How to fool an unbounded adversary with a short key, Advances in Cryptology
- EUROCRYPT’2002, Lecture Notes in Computer Science 2332, Springer, 2002, pp. 133-148.

[41] A. Sinclair, Improved bounds for mixing rates of Markov chains and multicommodity flow, Combina-
torics, Probability and Computing, vol. 1(4), 1992, pp. 351–370.

[42] A. Siegel,On Universal Classes of Extremely Random Constant-Time Hash Functions, SIAM Journal
on Computing 33(3), 2004, pp. 505–543.

[43] D. Sivakumar,Algorithmic derandomization via complexity theory, Proc. of the 34th Annual ACM
Symposium on Theory of Computing, 2002, pp. 619–626

[44] M. Saks, A. Srinivasan, S. Zhou, and D. Zuckerman,Low discrepancy sets yield approximate min-wise
independent permutation families, Information Processing Letters, vol. 73, 2000, pp. 29–32.

[45] E. Thorp,Nonrandom shuffling with applications to the game of Faro, Journal of the American Statis-
tical Association, vol. 68, 1973, pp. 842–847.

20


