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Abstract:  Assume that each object in a databaserhagrades, or scores, one for eachnefattributes. For
example, an object can have a color grade, that tells how red it is, and a shape grade, that tells how round it is.
For each attribute, there is a sorted list, which lists each object and its grade under that attribute, sorted by grade
(highest grade first). There is some monotaggregation functionor combining rule such as min or average,

that combines the individual grades to obtain an overall grade.

To determine the top objects (that have the best overall grades), the naive algorithm must access every object
in the database, to find its grade under each attribute. Fagin has given an algorithm (“Fagin’s Algorithm”, or FA)
that is much more efficient. For some monotone aggregation functions, FA is optimal with high probability in the
worst case.

We analyze an elegant and remarkably simple algorithm (“the threshold algorithm”, or TA) that is optimal in
a much stronger sense than FA. We show that TA is essentially optimal, not just for some monotone aggregation
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We distinguish two types of access: sorted access (where the middleware system obtains the grade of an
object in some sorted list by proceeding through the list sequentially from the top), and random access (where the
middleware system requests the grade of object in a list, and obtains it in one step). We consider the scenarios
where random access is either impossible, or expensive relative to sorted access, and provide algorithms that are
essentially optimal for these cases as well.
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1 Introduction

Early database systems were required to store only small character strings, such as the entries in a tuple
in a traditional relational database. Thus, the data was quite homogeneous. Today, we wish for our
database systems to be able to deal not only with character strings (both small and large), but also with
a heterogeneous variety of multimedia data (such as images, video, and audio). Furthermore, the data
that we wish to access and combine may reside in a variety of data repositories, and we may want our
database system to serve as middleware that can access such data.

One fundamental difference between small character strings and multimedia data is that multimedia
data may have attributes that are inherently fuzzy. For example, we do not say that a given image is
simply either “red” or “not red”. Instead, there is a degree of redness, which ranges between 0 (not at
all red) and 1 (totally red).

One approach [Fag99] to deal with such fuzzy data is to make use afgmegation functiort.
If 21,...,2, (each in the interval0,1]) are the grades of objed® under them attributes, then
t(x1,...,2,) is the (overall) grade of objed®.! As we shall discuss, such aggregation functions
are useful in other contexts as well. There is a large literature on choices for the aggregation function
(see Zimmermann's textbook [Zim96] and the discussion in [Fag99]).

One popular choice for the aggregation functiomiis:. In fact, under the standard rules of fuzzy
logic [Zad69], if objectk has grade:; under attributed; andzs under attributeds, then the grade under
the fuzzy conjunctiom; A A, is min(z1, z2). Another popular aggregation function is the average (or
the sum, in contexts where we do not care if the resulting overall grade no longer lies in the interval
[0, 1]).

We say that an aggregation functions monotonef t(z1,...,z,) < t(z},...,z},) whenever
x; < ) for everyi. Certainly monotonicity is a reasonable property to demand of an aggregation
function: if for every attribute, the grade of obje&t is at least as high as that of objet then we
would expect the overall grade & to be at least as high as thatBf

The notion of a query is different in a multimedia database system than in a traditional database
system. Given a query in a traditional database system (such as a relational database system), there is
an unordered set of answér®y contrast, in a multimedia database system, the answer to a query can
be thought of as a sorted list, with the answers sorted by grade. As in [Fag99], we shall identify a query
with a choice of the aggregation functiénThe user is typically interested in finding ttag £ answers
wherek is a given parameter (such &s= 1, k = 10, or £ = 100). This means that we want to obtain
objects (which we may refer to as the “tébjects”) with the highest grades on this query, each along
with its grade (ties are broken arbitrarily). For convenience, throughout this paper we will think of
as a constant value, and we will consider algorithms for obtaining thé eopswers in databases that
contain at least objects.

Other applications: There are other applications besides multimedia databases where we make
use of an aggregation function to combine grades, and where we want to find thatsgers. One
important example is information retrieval [Sal89], where the objé&cts interest are documents, the
m attributes are search terms, . .., s,,,, and the grade;; measures the relevance of documéntor

We shall often abuse notation and writg?) for the gradet(z1, . . ., <) Of R.

20f course, in a relational database, the result to a query may be sorted in some way for convenience in presentation, such
as sorting department members by salary, but logically speaking, the result is still simply a set, with a crisply-defined collection
of members.



search terns;, for 1 < ¢ < m. It is common to take the aggregation functioto be the sum. That is,
the total relevance score of documétitvhen the query consists of the search tegms. ., s,, is taken
tobet(zy,...,xm) =21+ + Ty

Another application arises in a paper by Aksoy and Franklin [AF99] on scheduling large-scale on-
demand data broadcast. In this case each object is a page, and there are two fields. The first field repre-
sents the amount of time waited by the earliest user requesting a page, and the second field represents
the number of users requesting a page. They make use of the product funetibrt (1, x2) = 122,
and they wish to broadcast next the page with the top score.

The model: We assume that each database consists of a finite ebjeafts We shall typically take
N to represent the number of objects. Associated with each oBjecem fieldsz, ..., x,,, where
x; € [0,1] for eachi. We may refer tar; as theith field of R. The database is thought of as consisting
of m sorted listsl4, . .., L,,, each of lengthV (there is one entry in each list for each of tNeobjects).
We may refer tol; aslist i. Each entry ofL; is of the form(R, x;), wherexz; is theith field of R.
Each listL; is sorted in descending order by thevalue. We take this simple view of a database, since
this view is all that is relevant, as far as our algorithms are concerned. We are taking into account only
access costs, and ignoring internal computation costs. Thus, in practice it might well be expensive to
compute the field values, but we ignore this issue here, and take the field values as being given.

We consider two modes of access to data. The first mode of access is sorted (or sequential) access.
Here the middleware system obtains the grade of an object in one of the sorted lists by proceeding
through the list sequentially from the top. Thus, if obj&chas the/th highest grade in thah list, then
¢ sorted accesses to thih list are required to see this grade under sorted access. The second mode of
access is random access. Here, the middleware system requests the grade &f iolijeetth list, and
obtains it in one random access. If there aorted accesses andandom accesses, then therted
access cosb scg, therandom access coi rcg, and themiddleware cosis scg + rci (the sum of the
sorted access cost and the random access cost), for some positive cenrstamulsy.

Algorithms: There is an obvious naive algorithm for obtaining the topnswers. Under sorted
access, it looks at every entry in each of thesorted lists, computes (usingthe overall grade of every
object, and returns the tap answers. The naive algorithm has linear middleware cost (linear in the
database size), and thus is not efficient for a large database.

Fagin [Fag99] introduced an algorithm (“Fagin’s Algorithm”, or FA), which often does much better
than the naive algorithm. In the case where the orderings in the sorted lists are probabilistically indepen-
dent, FA finds the top answers, over a database wiXhobjects, with middleware cogt(N (" —1)/mg1/m),
with arbitrarily high probabilityy Fagin also proved that under this independence assumption, along
with an assumption on the aggregation function, every correct algorithm must, with high probability,
incur a similar middleware cost in the worst case.

We shall present the “threshold algorithm”, or TA. This algorithm was discovered independently
by (at least) three groups, including Nepal and Ramakrishna [NR99] (who were the first to publish),
Guntzer, Balke, and Kiessling [GBK0O], and oursel¢e&or more information and comparison, see
Section 10 on related work.

3We shall not discuss the probability model here, including the notion of “independence”, since it is off track. For details,
see [Fag99].

“0Our second author first defined TA, and did extensive simulations comparing it to FA, as a project in a database course
taught by Michael Franklin at the University of Maryland—College Park, in the Fall of 1997.



We shall show that TA is optimal in a much stronger sense than FA. We now define this notion of
optimality, which we consider to be interesting in its own right.

Instance optimality: Let A be a class of algorithms, IBtbe a class of databases, andles{.A, D)
be the middleware cost incurred by running algoritdnover databas®. We say that an algorithid
is instance optimal oveA andD if B € A and if for everyA € A and everyD € D we have

cost(B,D) = O(cos{ A, D)). 1)

Equation (1) means that there are consta@isdc’ such thatos{3, D) < c¢-cos{ A, D) + ¢ for every

choice of 4 € A andD € D. We refer toc as theoptimality ratio. Intuitively, instance optimality
corresponds to optimality in every instance, as opposed to just the worst case or the average case. FA
is optimal in a high-probability worst-case sense under certain assumptions. TA is optimal in a much
stronger sense: it is instance optimal, for several natural choicAsawfd D. In particular, instance
optimality holds wherA is taken to be the class of algorithms that would normally be implemented in
practice (since the only algorithms that are excluded are those that make very lucky guesses), and when
D is taken to be the class of all databases. Instance optimality of TA holds in this case for all monotone
aggregation functions. By contrast, high-probability worst-case optimality of FA holds only under the
assumption of “strictness” (we shall define strictness later; intuitively, it means that the aggregation
function is representing some notion of conjunction).

Approximation and early stopping: There are times when the user may be satisfied witap@n
proximatetop & list. Assumef > 1. Define af-approximation to the tog answerdor the aggregation
functiont to be a collection of objects (each along with its grade) such that for eaaimong thesé
objects and each not among thesg objects,0t(y) > ¢(z). Note that the same definition with= 1
gives the topt answers. We show how to modify TA to give sucl#-approximation (and prove the
instance optimality of this modified algorithm under certain assumptions). In fact, we can easily modify
TA into an interactive process where at all times the system can show the user its current view of the top
k list along with a guarantee about the degfieaf approximation to the correct answer. At any time,
the user can decide, based on this guarantee, whether he would like to stop the process.

Restricting random accessAs we shall discuss in Section 2, there are some systems where random
access is impossible. To deal with such situations, we show in Section 8.1 how to modify TA to obtain an
algorithm NRA (“no random accesses”) that does no random accesses. We prove that NRA is instance
optimal over all algorithms that do not make random accesses and over all databases.

What about situations where random access is not impossible, but simply expensive? Wimmers et al.
[WHRB99] discuss a number of systems issues that can cause random access to be expensive. Although
TA is instance optimal, the optimality ratio depends on the ragigcs of the cost of a single random
access to the cost of a single sorted access. We define another algorithm that is a combination of TA
and NRA, and call it CA (“combined algorithm”). The definition of the algorithm dependszgias.

The motivation is to obtain an algorithm that is not only instance optimal, but whose optimality ratio
is independent of/cs. Our original hope was that CA would be instance optimal (with optimality
ratio independent aofr/cs) in those scenarios where TA is instance optimal. Not only does this hope
fail, but interestingly enough, we prove that there does not exist any deterministic algorithm, or even
probabilistic algorithm that does not make a mistake, with optimality ratio independeft/of in

these scenarios! However, we find a new natural scenario where CA is instance optimal, with optimality
ratio independent ofr /cs.



Outline of paper: In Section 2, we discuss modes of access (sorted and random) to data. In Sec-
tion 3, we present FA (Fagin’s Algorithm) and its properties. In Section 4, we present TA (the Threshold
Algorithm). In Section 5, we define instance optimality, and compare it with related notions, such as
competitiveness. In Section 6, we show that TA is instance optimal in several natural scenarios. In the
most important scenario, we show that the optimality ratio of TA is best possible. In Section 6.1, we
discuss the dependence of the optimality ratio on various parameters. In Section 6.2, we show how to
turn TA into an approximation algorithm, and prove instance optimality among approximation algo-
rithms. We also show how the user can prematurely halt TA and in a precise sense, treat its current
view of the topk answers as an approximate answer. In Section 7, we consider situations (suggested
by Bruno, Gravano, and Marian [BGMO02]) where sorted access is impossible for certain of the sorted
lists. In Section 8, we focus on situations where random accesses are either impossible or expensive. In
Section 8.1 we present NRA (No Random Access algorithm), and show its instance optimality among
algorithms that make no random accesses. Further, we show that the optimality ratio of NRA is best
possible. In Section 8.2 we present CA (Combined Algorithm), which is a result of combining TA and
NRA in order to obtain an algorithm that, intuitively, minimizes random accesses. In Section 8.3, we
show instance optimality of CA, with an optimality ratio independent ©fcg, in a natural scenario.

In Section 8.4, we show that the careful choice made by CA of which random accesses to make is
necessary for instance optimaltiy with an optimality ratio independeag, 6és. We also compare and
contrast CA versus TA. In Section 9, we prove various lower bounds on the optimality ratio, both for
deterministic algorithms and for probabilistic algorithms that never make a mistake. We summarize our
upper and lower bounds in Section 9.1. In Section 10 we discuss related work. In Section 11, we give
our conclusions, and state some open problems.

2 Modes of Access to Data

Issues of efficient query evaluation in a middleware system are very different from those in a traditional
database system. This is because the middleware system receives answers to queries from various
subsystems, which can be accessed only in limited ways. What do we assume about the interface
between a middleware system and a subsystem? Let us conside? (NBE" 93] (“Query By Image
Content”) as a subsystem. QBIC can search for images by various visual characteristics such as color
and texture (and an experimental version can search also by shape). In response to a query, such as
Color="red’, the subsystem will output the graded set consisting of all objects, one by one, each along
with its grade under the query, in sorted order based on grade, until the middleware system tells the
subsystem to halt. Then the middleware system could later tell the subsystem to resume outputting the
graded set where it left off. Alternatively, the middleware system could ask the subsystem for, say, the
top 10 objects in sorted order, each along with its grade. then request the next 10, etc. In both cases, this
corresponds to what we have referred to as “sorted access”.

There is another way that we might expect the middleware system to interact with the subsystem.
The middleware system might ask the subsystem for the grade (with respect to a query) of any given
object. This corresponds to what we have referred to as “random access”. In fact, QBIC allows both
sorted and random access.

There are some situations where the middleware system is not allowed random access to some
subsystem. An example might occur when the middleware system is a text retrieval system, and the

5QBIC is a trademark of IBM Corporation.



subsystems are search engines. Thus, there does not seem to be a way to ask a major search engine on
the web for its internal score on some document of our choice under a query.

Our measure of cost corresponds intuitively to the cost incurred by the middleware system in pro-
cessing information passed to it from a subsystem such as QBIC. As before, if thesmeed accesses
andr random accesses, then tinéddleware costs taken to bescg + rcg, for some positive constants
cs andcg. The fact thats andcy may be different reflects the fact that the cost to a middleware system
of a sorted access and of a random access may be different.

3 Fagin’s Algorithm

In this section, we discuss FA (Fagin’s Algorithm) [Fag99]. This algorithm is implemented in Garlic
[CHS™95], an experimental IBM middleware system; see [WHRB99] for interesting details about the
implementation and performance in practice. Chaudhuri and Gravano [CG96] consider ways to simulate
FA by using “filter conditions”, which might say, for example, that the color score is at least 0.2. FA
works as follows.

1. Do sorted access in parallel to each of theorted listsL;. (By “in parallel”, we mean that we
access the top member of each of the lists under sorted access, then we access the second member
of each of the lists, and so of.ait until there are at leagt “matches”, that is, wait until there
is a setH of at leastk objects such that each of these objects has been seen in eacholishe

2. For each objecR that has been seen, do random access to each of thé,listdind the:th field
Z; of R.

3. Compute the gradéR) = ¢(z1, ...,z ) for each objeci? that has been seen. LEtbe a set
containing thet objects that have been seen with the highest grades (ties are broken arbitrarily).
The output is then the graded ¢, t(R)) | R € Y}.7

It is fairly easy to show [Fag99] that this algorithm is correct for monotone aggregation funttions
(that is, that the algorithm successfully finds the topnswers). If there ar® objects in the database,
and if the orderings in the sorted lists are probabilistically independent, then the middleware cost of FA
is O(N(m=1/mE1/m) with arbitrarily high probability [Fag99].

An aggregation function is strict [Fag99] ift(x1,...,z,) = 1 holds precisely whem; = 1 for
everyi. Thus, an aggregation function is strict if it takes on the maximal value of 1 precisely when each
argument takes on this maximal value. We would certainly expect an aggregation function representing
the conjunction to be strict (see the discussion in [Fag99]). In fact, it is reasonable to think of strictness
as being a key characterizing feature of the conjunction.

Fagin shows that his algorithm is optimal with high probability in the worst case if the aggregation
function is strict (so that, intuitively, we are dealing with a notion of conjunction), and if the orderings

8Itis not actually important that the lists be accessed “in lockstep”. In practice, it may be convenient to allow the sorted lists
to be accessed at different rates, in batches, etc. Each of the algorithms in this paper where there is “sorted access in parallel”
remain correct even when sorted access is not in lockstep. Furthermore, all of our instance optimality results continue to hold
even when sorted access is not in lockstep, as long as the rates of sorted access of the lists are within constant multiples of
each other.

"Graded sets are often presented in sorted order, sorted by grade.



in the sorted lists are probabilistically independent. In fact, the access pattern of FA is oblivious to the
choice of aggregation function, and so for each fixed database, the middleware cost of FA is exactly the
same no matter what the aggregation function is. This is true even for a constant aggregation function;
in this case, of course, there is a trivial algorithm that gives us thé: tapswers (any: objects will

do) with O(1) middleware cost. So FA is not optimal in any sense for some monotone aggregation
functionst. As a more interesting example, when the aggregation function is max (which is not strict),

it is shown in [Fag99] that there is a simple algorithm that makes at méssorted accesses and no
random accesses that finds the kognswers. By contrast, as we shall see, the algorithm TA is instance
optimal for every monotone aggregation function, under very weak assumptions.

Even in the cases where FA is optimal, this optimality holds only in the worst case, with high proba-
bility. This leaves open the possibility that there are some algorithms that have much better middleware
cost than FA over certain databases. The algorithm TA, which we now discuss, is such an algorithm.

4 The Threshold Algorithm

We now present the threshold algorithm (TA).

1. Do sorted access in parallel to each of theorted listsL;. As an objectR is seen under sorted
access in some list, do random access to the other lists to find thegraflebject i in every
list ;.2 Then compute the grad¢R) = t(z1, ..., x,,) of objectR. If this grade is one of thé
highest we have seen, then remember obfeend its grade(R) (ties are broken arbitrarily, so
that onlyk objects and their grades need to be remembered at any time).

2. Foreachlisi;, letz; be the grade of the last object seen under sorted access. Defiheesield
valuer to bet(z,,...,z,,). As soon as at leagtobjects have been seen whose grade is at least
equal tor, then halt.

3. LetY be a set containing theobjects that have been seen with the highest grades. The output is
then the graded s¢{R,t(R))|R € Y}.

We now show that TA is correct for each monotone aggregation funttion
Theorem 4.1: If the aggregation functionis monotone, then TA correctly finds the fopnswers.

Proof: LetY be as in Part 3 of TA. We need only show that every membéf bhs at least as high a
grade as every objeetnot inY'. By definition ofY’, this is the case for each objecthat has been seen
in running TA. So assume thatwas not seen. Assume that the fields&rex, ..., z,,. Therefore,
x; < z;, for everyi. Hencet(z) = t(xq1,...,zm) < t(zy,...,z,,) = 7, Wwhere the inequality follows
by monotonicity oft. But by definition ofY’, for everyy in Y we havet(y) > 7. Therefore, for every

in Y we havet(y) > 7 > t(z), as desired

We now show that the stopping rule for TA always occurs at least as early as the stopping rule for
FA (that is, with no more sorted accesses than FA). In FAR i6 an object that has appeared under

8t may seem wasteful to do random access to find a grade that was already determined earlier. As we discuss later, this is
done in order to avoid unbounded buffers.



sorted access in every list, then by monotonicity, the grade igfat least equal to the threshold value.
Therefore, when there are at leasbbjects, each of which has appeared under sorted access in every
list (the stopping rule for FA), there are at leasbbjects whose grade is at least equal to the threshold
value (the stopping rule for TA).

This implies that for every database, the sorted access cost for TA is at most that of FA. This does
not imply that the middleware cost for TA is always at most that of FA, since TA may do more random
accesses than FA. However, since the middleware cost of TA is at most the sorted access cost times a
constant (independent of the database size), it does follow that the middleware cost of TA is at most a
constant times that of FA. In fact, we shall show that TA is instance optimal, under natural assumptions.

We now consider the intuition behind TA. For simplicity, we discuss first the case vkherel,
that is, where the user is trying to determine the top answer. Assume that we are at a stage in the
algorithm where we have not yet seen any object whose (overall) grade is at least as big as the threshold
valuer. The intuition is that at this point, we do not know the top answer, since the next object we see
under sorted access could have overall gradend hence bigger than the grade of any object seen so
far. Furthermore, once we do see an object whose grade is atrlethgh it is safe to halt, as we see
from the proof of Theorem 4.1. Thus, intuitively, the stopping rule of TA says: “Halt as soon as you
know you have seen the top answer.” Similarly, for gengrahe stopping rule of TA says, intuitively,
“Halt as soon as you know you have seen the kggnswers.” So we could consider TA as being an
implemenation of the following “program”:

Do sorted access (and the corresponding random access) until you know you have seen thekop
answers.

This very high—level “program” is &nowledge—based prograffHMV97]. In fact, TA was de-
signed by thinking in terms of this knowledge-based program. The fact that TA corresponds to this
knowledge—based program is what is behind instance optimality of TA.

Later, we shall give other scenarios (situations where random accesses are either impossible or
expensive) where we implement the following more general knowledge—based progam:

Gather what information you need to allow you to know the topk answers, and then halt.

In each of our scenarios, the implementaiton of this second knowledge-based program is different. When
we consider the scenario where random accesses are expensive relative to sorted accesses, but are not
impossible, we need an additional design principle to decide how to gather the information, in order to
design an instance optimal algorithm.

The next theorem, which follows immediately from the definition of TA, gives a simple but impor-
tant property of TA that further distinguishes TA from FA.

Theorem 4.2: TA requires only bounded buffers, whose size is independent of the size of the database.

Proof: Other than a little bit of bookkeeping, all that TA must remember is the currerit tdypects and
their grades, and (pointers to) the last objects seen in sorted order in each list.

By contrast, FA requires buffers that grow arbitrarily large as the database grows, since FA must
remember every object it has seen in sorted order in every list, in order to check for matching objects in
the various lists.



There is a price to pay for the bounded buffers. Thus, for every time an object is found under sorted
access, TA may dow — 1 random accesses (whereis the number of lists), to find the grade of the
object in the other lists. This is in spite of the fact that this object may have already been seen in these
other lists.

5 Instance optimality

In order to compare instance optimality with other notions from the literature, we generalize slightly the
definition from that given in the introduction. Lét be a class of algorithms, and IBtbe a class of

legal inputs to the algorithms. We assume that we are considering a particular nonnegative performance
cost measureos{ A, D), which represents the amount of a resource consumed by running the algorithm
A € AoninputD € D. This cost could be the running time of algorithdnon inputD, or in this paper,

the middleware cost incurred by running algoritbhover databas®.

We say that an algorithi8 is instance optimal oveA andD if B € A and if for every4 € A and
everyD € D we have
cos(B,D) = O(cos(A, D)). 2

Equation (2) means that there are constariisdc’ such thatos{3, D) < c¢-cos{ A, D) + ¢ for every
choice of A € A andD € D. We refer toc as theoptimality ratio. It is similar to the competitive ratio

in competitive analysis (we shall discuss competitive analysis shortly). We use the word “optimal” to
reflect that fact thaB is essentially the best algorithm

Intuitively, instance optimality corresponds to optimality in every instance, as opposed to just the
worst case or the average case. There are many algorithms that are optimal in a worst-case sense, but
are not instance optimal. An example is binary search: in the worst case, binary search is guaranteed to
require no more thatog N probes, forV data items. However, for each instance, a positive answer can
be obtained in one probe, and a negative answer in two probes.

We consider a nondeterministic algorithm correct if on no branch does it make a mistake. We take
the middleware cost of a nondeterministic algorithm to be the minimal cost over all branches where it
halts with the togk answers. We take the middleware cost of a probabilistic algorithm to be the expected
cost (over all probabilistic choices by the algorithm). When we say that a deterministic algdtithm
is instance optimal oveA andD, then we are really comparin§ against the best nondeterministic
algorithm, even ifA contains only deterministic algorithms. This is because for dach D, there is
always a deterministic algorithm that makes the same choicé&® asmthe nondeterministic algorithm.

We can view the cost of the best nondeterministic algorithm that produces thatswers over a given
database as the cost of the shortest proof for that database that these are really:thesoprs. So
instance optimality is quite strong: the cost of an instance optimal algorithm is essentially the cost of the
shortest proof. Similarly, we can vied as if it contains also probabilistic algorithms that never make

a mistake. For convenience, in our proofs we shall always assumA ttattains only deterministic
algorithms, since the results carry over automatically to nondeterministic algorithms and to probabilistic
algorithms that never make a mistake.

The definition we have given for instance optimality is formally the same definition as is used in
competitive analysiBEY98, ST85], except that in competitive analysis, (1) we do not assum&that
A, and (2)cos( A, D) does not typically represent a performance cost. In competitive analysis, typically
() D is a class of instances of a particular problem,Ali¥s the class of offline algorithms that give a



solution to the instances i, (c) cos(.4, D) is a number that represents the goodness of the solution
(where bigger numbers correspond to a worse solution), an8l {gla particular online algorithm. In

this case, the online algorithiffi is said to becompetitive The intuition is that a competitive online
algorithm may perform poorly in some instances, but only on instances where every offline algorithm
would also perform poorly.

Another example where the framework of instance optimality appears, but again without the as-
sumption thatB € A, and again whereos{.A, D) does not represent a performance cost, is in the
context ofapproximation algorithm$Hoc97]. In this case, (d) is a class of instances of a particular
problem, (b)A is the class of algorithms that solve the instancd3 exactly (in cases of interest, these
algorithms are not polynomial-time algorithms), ¢os{ A, D) is the value of the resulting answer when
algorithm A is applied to inpu®, and (d)B is a particular polynomial-time algorithm.

Dagum et al. [DKLROQ] give an interesting example of what we would call an instance optimal al-
gorithm. They consider the problem of determining the mean of an unknown random variable by Monte
Carlo estimation. In their case, (B)is the class of random variables distributed in the intejval],

(b) A is the class of algorithms that, by repeatedly doing independent evaluations of a random variable
and then averaging the results, obtain an estimate of the mean of the random variable to within a given
precision with a given probability, (Qos{(.4, D) is the expected number of independent evaluations of
the random variabl® under algorithmA, and (d)B is their algorithm, which they call.A for “ap-
proximation algorithm”. Their main result says, in our terminology, that is instance optimal ovek

andD.

Demaine et al. [DLMOQ] give an example of an algorithm that is close to instance optimal. They
consider the problem of finding the intersection, union, or difference of a collection of sorted sets. In
their case, (ap is the class of instances of collections of sorted setsA (B)the class of algorithms that
do pairwise comparisons among elementsc@si.4, D) is the running time (number of comparisons)
in running algorithmA on instancéD, and (d)B is their algorithm. In a certain sense, their algorithm is
close to what we would call instance optimal (to explain the details would take us too far astray).

6 Instance Optimality of the Threshold Algorithm

In this section, we investigate the instance optimality of TA. We begin with an intuitive argument that
TA is instance optimal. 1fA4 is an algorithm that stops sooner than TA on some database, héfore
finds k objects whose grade is at least equal to the threshold valtien.4 must make a mistake on

some database, since the next object in each list might have gyradeach list;, and hence have grade
t(zy,...,z,,) = 7. This new object, whicbd has not even seen, has a higher grade than some object in
the topk list that was output by, and saA4 erred by stopping too soon. We would like to convert this
intuitive argument into a proof that for every monotone aggregation function, TA is instance optimal
over all algorithms that correctly find the tépanswers, over the class of all databases. However, as we
shall see, the situation is actually somewhat delicate. We first make a distinction between algorithms that
“make wild guesses” (that is, perform random access on objects not previously encountered by sorted
access) and those that do not. (Neither FA nor TA make wild guesses, nor does any “natural” algorithm
in our context.) Our first theorem (Theorem 6.1) says that for every monotone aggregation function, TA
is instance optimal over all algorithms that correctly find the cggnswersand that do not make wild
guessesover the class ofll databases. We then show that this distinction (wild guesses vs. no wild
guesses) is essential: if algorithms that make wild guesses are allowed in tha disatgorithms that
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an instance optimal algorithm must compete against, tlo@igorithm is instance optimal (Example 6.3

and Theorem 6.4). The heart of this example (and the corresponding theorem) is the fact that there may
be multiple objects with the same grade in some list. Indeed, once we restrict our attention to databases
where no two objects have the same value in the same list, and make a slight, natural additional restric-
tion on the aggregation function beyond monotonicity, then TA is instance optimabth\edgorithms

that correctly find the tog answers (Theorem 6.5).

In Section 6.2 we consider instance optimality in the situation where we relax the problem of finding
the topk objects into findingapproximatelythe topk.

We now give our first positive result on instance optimality of TA. We say that an algoritkes
wild guessef it does random access to find the grade of some olijéntsome list before the algorithm
has seetR under sorted access. That s, an algorithm makes wild guesses if the first grade that it obtains
for some objectR is under random access. We would not normally implement algorithms that make
wild guesses. In fact, there are some contexts where it would not even be possible to make wild guesses
(such as a database context where the algorithm could not know the name of an object it has not already
seen). However, making a lucky wild guess can help, as we show later (Example 6.3).

We now show instance optimality of TA among algorithms that do not make wild guesses. In this
theorem, when we takP to be the class of all databases, we really mean Eni the class of all
databases that involve sorted lists corresponding to the arguments of the aggregation fuliéti@me
takingk (where we are trying to find the tdpanswers) and the aggregation functido be fixed. Since
we are taking to be fixed, we are thereby taking the numbeof arguments of (that is, the number
of sorted lists) to be fixed. In Section 6.1, we discuss the assumptions dnaltn, are constant.

Theorem 6.1: Assume that the aggregation functibis monotone. Leb be the class of all databases.
Let A be the class of all algorithms that correctly find the toanswers fort for every database and
that do not make wild guesses. Then TA is instance optimalloeed D.

Proof: Assume thatd € A, and that algorithmA4 is run over databas®. Assume that algorithm
A halts at depthi (that is, if d; is the number of objects seen under sorted access t fist 1 <

i < m, thend = max; d;). Assume that4d sees: distinct objects (some possibly multiple times). In
particular,a > d. SinceA makes no wild guesses, and seedistinct objects, it must make at least
sorted accesses, and so its middleware cost is atdeastWWe shall show that TA halts gB by depth

a + k. Hence, the middleware cost of TA is at m@st+ k)mcs + (a + k)m(m — 1)cg, which is
amcgs + am(m — 1)cg plus an additive constant éfncg + km(m — 1)cg. So the optimality ratio of
TA is at most@nestamim=bcr _ p, oy (m — 1)cp/cg. (Later, we shall show that if the aggregation

ac

function is strict, thensthis is precisely the optimality ratio of TA, and this is best possible.)

Note that for each choice af, the algorithm TA sees at leagtobjects by deptld’ (this is because
by depthd’ it has madend’ sorted accesses, and each object is accessed atmises under sorted
access). Let” be the output set a#l (consisting of the tog: objects). If there are at mostobjects
that.4 does not see, then TA halts by depth- k (after having seen every object), and we are done. So
assume that there are at least 1 objects thatd does not see. Sinéé is of sizek, there is some object
V that.A does not see and that is notin

Let 74 be the threshold value when algorith#nhalts. This means that if; is the grade of the last
object seen under sorted access toilfstr algorithm A, for 1 < i < m, thent4 = t(x4,...,z,,). (If
list 7 is not accessed under sorted access, weitake1.) Let us call an objecR bigif t(R) > 74, and
otherwise call objeck small

10



We now show that every membe@rof Y is big. Define a databag®’ to be just likeD, except that
objectV has grade, in theith list, for1 < i < m. PutV in list i below all other objects with grade
z; inlist ¢ (for 1 < i < m). Algorithm A performs exactly the same, and in particular gives the same
output, for database® andD’. Therefore, algorithrd hasR, but notV, in its output for databasp’.
Since the grade df in D’ is 74, it follows by correctness aofl that R is big, as desired.

There are now two cases, depending on whether or not algostisses every member of its output
sety.?

Case 1:Algorithm A sees every member &f. Then by depthi, TA will see every member of .
Since, as we showed, each membel ois big, it follows that TA halts by deptd < a < a + k, as
desired.

Case 2:Algorithm A does not see some memheof Y. We now show that every objeét’ that
is not seen by4d must be big. Define a databa®® that is just likeD on every object seen hy. Let
the grade of/ in list i be z;, and putV in list i below all other objects with grade; in list i (for
1 < ¢ < m). Therefore, the grade df in databasé’ is 74. SinceA cannot distinguish betweeh
andD’, it has the same output db andD’. Since.A does not seé? and does not se&’, it has no
information to distinguish betweeR and R’. Therefore, it must have been able to givein its output
without making a mistake. But i’ is in the output and ndt’, then by correctness of, it follows that
R’ is big. SoR’ is big, as desired.

Since A seesu objects, and since TA sees at least k objects by deptla + k, it follows that by
deptha + &, TA sees at leagt objects not seen hyl. We have shown that every object that is not seen
by A is big. Therefore, by deptt + k&, TA sees at least big objects. So TA halts by depth+ £, as
desired

The next result is a corollary of the proof of Theorem 6.1 and of a lower bound in Section 9 (all
of our results on lower bounds appear in Section 9). Specifically, in the proof of Theorem 6.1, we
showed that under the assumptions of Theorem 6.1 (no wild guesses), the optimality ratio of TA is at
mostm + m(m — 1)cr/cs. The next result says that if the aggregation function is strict, then the
optimality ratio is precisely this value, and this is best possible. Recall that an aggregation fargtion
strict if ¢(z1,...,x,) = 1 holds precisely when; = 1 for everyi. Intuitively, stricthess means that
the aggregation function is representing some notion of conjunction.

Corollary 6.2: Lett be an arbitrary monotone, strict aggregation function witharguments. LeD be
the class of all databases. Latbe the class of all algorithms that correctly find the topnswers fort
for every database and that do not make wild guesses. Then TA is instance optimalaowdD, with
optimality ratiom + m(m — 1)cr/cs. No deterministic algorithm has a lower optimality ratio.

Proof: In the proof of Theorem 6.1, it is shown that TA has an optimality ratio of at mostm (m —
1)cr/cg for an arbitrary monotone aggregation function, The lower bound follows from Theorem 9.1.
|

We cannot drop the assumption of strictness in Corollary 6.2. For example, let the aggregation
function be max (which is not strict). It is easy to see that TA halts afreunds of sorted access, and

°For the sake of generality, we are allowing the possibility that algorithman output an object that it has not seen. We
discuss this issue more in Section 6.1.
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Figure 1: Database for Example 6.3

its optimality ratio ism (which, we might add, is best possible for maX).

What if we were to consider only the sorted access cost? This corresponds todaking. Then
we see from Corollary 6.2 that the optimality ratio of TAris Furthermore, it follows easily from the
proof of Theorem 9.1 that if the aggregation function is strict, ang; it= 0, then this is best possible:
no deterministic algorithm has a lower optimality ratio thart!

What if we were to consider only the random access cost? This corresponds todaking. In
this case, TAis far from instance optimal. The naive algorithm, which does sorted access to every object
in every list, does no random accesses, and so has a sorted access cost of 0.

We now show that making a lucky wild guess can help.

Example 6.3 Assume that there a= + 1 objects, which we will call simplyt; 2, ..., 2n+1, and there
are two listsL; and L, (see Figure 1). Assume that in li5t, the objects are in the ordér2, ..., 2n +
1, where the tomm + 1 objectsl,2,...,n + 1 all have grade 1, and the remainingobjectsn +

2,n + 3,...,2n + 1 all have grade 0. Assume that in list, the objects are in the reverse order
2n+1,2n,...,1, where the bottom objectsl, ..., n all have grade 0, and the remaining- 1 objects
n+1,n+2,...,2n + 1 all have grade 1. Assume that the aggregation function is min, and that we

are interested in finding the top answer (iles 1). Itis clear that the top answer is object 1 with
overall grade 1 (every object except object 1 has overall grade 0).

An algorithm that makes a wild guess and asks for the grade of object in both lists would
determine the correct answer and be able to halt safely after two random accesses and no sorted ac-
cesses? However, letA be any algorithm (such as TA) that does not make wild guesses. Since the

10Note that the instance optimality of TA, as given by Theorem 6.1, holds whether or not the aggregation function is strict.
For example, the instance optimality of TA as given by Theorem 6.1 holds even when the aggregation function is max. This is
in contrast to the situation with FA, where high-probability worst-case optimality fails when the aggregation function is max.
Corollary 6.2 makes use of the assumption of strictness only in order to show that the optimality ratio of TA is then precisely
m + m(m — 1)cr/cs, and that this is best possible.

\We are assuming in this paper that andcs are both strictly positive. However, Corollary 6.2 and the proof of Theo-
rem 9.1 would still hold if we were to allowg to be 0.

12The algorithm could halt safely, since it “knows” that it has found an object with the maximal possible grade of 1 (this
grade is maximal, since we are assuming that all grades lie between 0 and 1). Even if we did not assume that all grades lie
between 0 and 1, one sorted access to either list would provide the information that each overall grade in the database is at
most 1.
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winning objectn + 1 is in the middle of both sorted lists, it follows that at least 1 sorted accesses
would be required before algorithi would even see the winning object.

What if we were to enlarge the cla8sof algorithms to allow queries of the form “Which object has
theith largest grade in list, and what is its grade in ligt?” We then see from Example 6.3, where we
replace the wild guess by the query that asks for the object witfvthel)st largest grade in each list,
that TA is not instance optimal. Effectively, these new queries are “just as bad” as wild guesses.

Example 6.3 shows that TA is not instance optimal over the daséall algorithms that find the
top answer for min (with two arguments) and the clBssf all databases. The next theorem says that
under these circumstances, not only is TA not instance optimal, but neither is any algorithm.

Theorem 6.4: LetD be the class of all databases. l&be the class of all algorithms that correctly find
the top answer for min (with two arguments) for every database. There is no deterministic algorithm
(or even probabilistic algorithm that never makes a mistake) that is instance optimat\aved D.

Proof: Let us modify Example 6.3 to obtain a family of databases, each with two sorted lists. The first
list has the objects$, 2,...,2n + 1 in some order, with the top + 1 objects having grade 1, and the
remainingn objects having grade 0. The second list has the objects in the reverse order, again with
the topn + 1 objects having grade 1, and the remainingbjects having grade 0. As before, there

is a unique object with overall grade 1 (namely, the object in the middle of both orderings), and every
remaining object has overall grade O.

Let.4 be an arbitrary deterministic algorithmAn Consider the following distribution on databases:
each member is as above, and the ordering of the first list is chosen uniformly at random (with the
ordering of the second list the reverse of the ordering of the first list). It is easy to see that the expected
number of accesses (sorted and random together) of algadthnder this distribution in order to even
see the winning object is at least- 1. Since there must be some database where the number of accesses
is at least equal to the expected number of accesses, the number of accesses on this database is at least
n + 1. However, as in Example 6.3, there is an algorithm that makes only 2 random accesses and no
sorted accesses. Therefore, the optimality ratio can be arbitrarily large. The theorem follows (in the
deterministic case).

For probabilistic algorithms that never make a mistake, we appeal to Yao’s Minimax Principle
[Yao77] (see also [MR95, Section 2.2], and see [FMRW85, Lemma 4] for a simple proof), which says
that the expected cost of the optimal deterministic algorithm for an arbitrary input distribution is a lower
bound on the expected cost of the optimal probabilistic algorithm that never makes a nistake.

Although, as we noted earlier, algorithms that make wild guesses would not normally be imple-
mented in practice, it is still interesting to consider them. This is because of our interpretation of
instance optimality of an algorithid as saying that its cost is essentially the same as the cost of the
shortest proof for that database that these are really thé sopswers. If we consider algorithms that
allow wild guesses, then we are allowing a larger class of proofs. Thus, in Example 6.3, the fact that
objectn + 1 has (overall) grade 1 is a proof that it is the top answer.

We say that an aggregation functioris strictly monoton&® if t(x1,...,x,) < t(z},...,2.,)

rrm

wheneverr; < z for everyi. Although average and min are strictly monotone, there are aggregation

13This should not be confused with the aggregation function being both strict and monotone. We apologize for the clash in
terminology, which exists for historical reasons.
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functions suggested in the literature for representing conjunction and disjunction that are monotone
but not strictly monotone (see [Fag99] and [Zim96] for examples). We say that a dafalsatisfies

the distinctness properiy for eachi, no two objects irD have the same grade in li&t, that is, if the
grades in listZ; are distinct. We now show that these conditions guarantee optimality of TA even among
algorithms that make wild guesses.

Theorem 6.5: Assume that the aggregation functiotis strictly monotone. Leb be the class of all
databases that satisfy the distinctness property.ALbe the class of all algorithms that correctly find
the topk answers for for every database iD. Then TA is instance optimal ovArandD.

Proof: Assume thatd € A, and that algorithn is run over databasP € D. Assume thatd sees
a distinct objects (some possibly multiple times). We shall show that TA halt® by deptha + k.
Hence, TA makes at most?(a+k) accesses, which ia2a plus an additive constant efk. It follows
easily that the optimality ratio of TA is at moatn?, wherec = max {cr/cs, cs/cRr}.

If there are at moskt objects that4d does not see, then TA halts by depth- & (after having seen
every object), and we are done. So assume that there are dt leasibjects thatd does not see. Since
Y is of sizek, there is some objedt that.4 does not see and that is not¥h We shall show that TA
halts onD by deptha + 1.

Let 7 be the threshold value of TA at deptht 1. Thus, ifz; is the grade of th¢a + 1)th highest
object in listi, thent = ¢(z,,...,z,,). Let us call an objecR big if t(R) > 7, and otherwise call
objectR small (Note that these definitions of “big” and “small” are different from those in the proof of
Theorem 6.1.)

We now show that every memb&rof Y is big. Letz, be some grade in the tap+ 1 grades in list
1 that is not the grade in ligtof any object seen byl. There is such a grade, since all grades inilist
are distinct, andd sees at most objects. LetD’ agree withD on all objects seen by A, and let object
V have grade’ in theith list of D', for 1 <1 < m. Hence, the grade &f in D" ist(z,...,z],) > .
SinceV was unseen, and sinégis assigned grades in each listi¥ below the level tha reached by
sorted access, it follows that algoritha performs exactly the same, and in particular gives the same
output, for database® andD’. Therefore, algorithrd hasR, but notV/, in its output for databasp’.

By correctness af, it follows that R is big, as desired.

We claim that every membek of Y is one of the tom + 1 members of some ligt(and so is seen
by TA by deptha + 1). Assume by way of contradiction that is not one of the tom + 1 members
of list 4, for 1 < i < m. By our assumptions that the aggregation functigstrictly monotone. and
thatD satisfies the distinctness property, it follows easily tRas small. We already showed that every
member ofY is big. This contradiction proves the claim. It follows that TA halts by depth 1, as
desired

In the proof of Theorem 6.5, we showed that under the assumptions of Theorem 6.5 (strict mono-
tonicity and the distinctness property) the optimality ratio of TA is at most, wherec = max {cr/cs, cs/cr}.
In Theorem 9.2, we give an aggregation function that is strictly monotone such that no deterministic al-
gorithm can have an optimality ratio of less th@%i—g. So in our case of greatest interest, where
cRr > cg, there is a gap of around a factor®df in the upper and lower bounds.

The proofs of Theorems 6.1 and 6.5 have several nice properties:

e The proofs would still go through if we were in a scenario where, whenever a random access of
objectR in list i takes place, we learn not only the gradefbin list 4, but also the relative rank.
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Thus, TA is instance optimal even when we alldwto include also algorithms that learn and
make use of such relative rank information.

e As we shall see, we can prove the instance optimality among approximation algorithms of an
approximation version of TA, under the assumptions of Theorem 6.1, with only a small change to
the proof (as we shall see, such a theorem does not hold under the assumptions of Theorem 6.5).

6.1 Treating k and m as Constants

In Theorems 6.1 and 6.5 about the instance optimality of TA, we are trekat{ndiere we are trying
to find the topk answers) andn (the number of sorted lists) as constants. We now discuss these
assumptions.

We begin first with the assumption thiatis constant. As in the proofs of Theorems 6.1 and 6.5,
let « be the number of accesses by an algorithne A. If a > k, then there is no need to treflatas
a constant. Thus, if we were to restrict the classf algorithms to contain only algorithms that make
at leastk accesses to find the tdpanswers, then there would be no need to assumektisatonstant.
How can it arise that an algorithtd can find the topt answers without making at leaktaccesses,
and in particular without accessing at leagibjects? It must then happen that either there are at most
k objects in the database, or else every objethat.A has not seen has the same overall gridd®.
The latter will occur, for example, ifis a constant function. Even under these circumstances, it is still
not reasonable in some contexts (such as certain database contexts) to allow an algdadtbotput
an object as a member of the tbmbjects without ever having seen it: how would the algorithm even
know the name of the object? This is similar to an issue we raised earlier about wild guesses.

What about the assumption thatis constant? As we noted earlier, this is certainly a reasonable
assumption, since is the number of arguments of the aggregation function, which we are of course
taking to be fixed. In the case of the assumptions of Theorem 6.1 (no wild guesses), Corollary 6.2 tells
us that at least for strict aggregation functions, this dependenceisimevitable. Similarly, in the case
of the assumptions of Theorem 6.5 (strict monotonicity and the distinctness property), Theorem 9.2 tells
us that at least for certain aggregation functions, this dependenegi®mevitable.

6.2 Turning TA into an Approximation Algorithm, and Allowing Early Stopping

TA can easily be modified to be @pproximation algorithmlt can then be used in situations where we
care only about thapproximatelytop £ answers. Thus, leét > 1 be given. Define &@-approximation

to the topk answers (fott over databasé) to be a collection of: objects (and their grades) such that
for eachy among thesé objects and each not among thesg objects,0t(y) > t(z). We can modify
TA to find a#-approximation to the top answers by modifying the stopping rule in Part 2 to say “As
soon as at leadt objects have been seen whose grade is at least equé tthen halt.” Let us call this
approximation algorithm TA

Theorem 6.6: Assume that > 1 and that the aggregation functians monotone. Then pAcorrectly
finds af-approximation to the tog answers fotr.

Proof: This follows from a straightforward modification of the proof of Theorem #411.

The next theorem says that if no wild guesses are allowed, thgiisTiAstance optimal.
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Figure 2: Database for Example 6.8

Theorem 6.7: Assume tha# > 1 and that the aggregation functidris monotone. LeD be the class of
all databases. LeA be the class of all algorithms that finddaapproximation to the top answers for
t for every database and that do not make wild guesses. Theis Tastance optimal ovei andD.

Proof: The proof of Theorem 6.1 carries over verbatim provided we modify the definition of an object
R being “big” to be thatt(R) > 7.4. O

Theorem 6.7 shows that the analog of Theorem 6.1 holds fgr TFhe next example, which is
a modification of Example 6.3, shows that the analog of Theorem 6.5 mmdsold for TAg. One
interpretation of these results is that Theorem 6.1 is sufficiently robust that it can survive the perturbation
of allowing approximations, whereas Theorem 6.5 is not.

Example 6.8 Assume thaf > 1, that there ar@n+ 1 objects, which we will call simplyt, 2, ..., 2n+

1, and that there are two lisfs; and L, (see Figure 24 Assume that in lisL, the grades are assigned
so that all grades are different, the ordering of the objects by grade.is. ., 2n + 1, objectn + 1 has
the gradel /¢, and object + 2 has the grade/(26%). Assume that in lisL,, the grades are assigned
so that all grades are different, the ordering of the objects by gratle-is1, 2n, ..., 1 (the reverse of
the ordering inL;), objectn + 1 has the gradé/6, and object has the grade/(26%). Assume that the
aggregation function is min, and thlat= 1 (so that we are interested in finding-@pproximation to the
top answer). The (overall) grade of each object other than ohject is at mosin = 1/(262). Since
fa = 1/(260), which is less than the grade6 of objectn + 1, it follows that the unique object that can
be returned by an algorithm such asgTihat correctly finds &-approximation to the top answer is the
objectn + 1.

An algorithm that makes a wild guess and asks for the grade of object in both lists would
determine the correct answer and be able to halt safely after two random accesses and no sorted accesses.
The algorithm could halt safely, since it “knows” that it has found an objesuch thatt(R) = 1,
and soft(R) is at least as big as every possible grade. However, under sorted accessiipy tist
algorithm TAy would see the objects in the order2, ..., 2n + 1, and under sorted access for lisf,
the algorithm T4 would see the objects in the reverse order. Since the winning abject is in the
middle of both sorted lists, it follows that at least- 1 sorted accesses would be required beforg TA
would even see the winning object.

¥1n this and later figures, each centered dot represents a value that it is not important to give explicitly.
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Just as we converted Example 6.3 into Theorem 6.4, we can convert Example 6.8 into the following
theorem.

Theorem 6.9: Assume that > 1. LetD be the class of all databases that satisfy the distinctness
property. LetA be the class of all algorithms that finddaapproximation to the top answer for min for
every database iD. There is no deterministic algorithm (or even probabilistic algorithm that never
makes a mistake) that is instance optimal o&eandD.

Early stopping of TA: It is straightforward to modify TA into an interactive process where at all
times the system can show the user the current:ttipt along with a guarantee about the degree of
approximation to the correct answer. At any time, the user can decide, based on this guarantee, whether
he would like to stop the process. Thus, felbe the grade of théth (bottom) object in the current top
k list, let 7 be the current threshold value, anddet 7/4. If the algorithm is stopped early, we have
6 > 1. Itis easy to see that similarly to the situation of Theorem 6.6, the currerit tigpis then a
f-approximation to the top answers. Thus, the user can be shown the currerit igpband the number
#, with a guarantee that he is being showftapproximation to the top answers.

7 Restricting Sorted Access

Bruno, Gravano, and Marian [BGMO02] discuss a scenario where it is not possible to access certain of
the lists under sorted access. They give a nice example where the user wants to get information about
restaurants. The user has an aggregation function that gives a score to each restaurant based on how good
it is, how inexpensive it is, and how close itis. In this example, the Zagat-Review web site gives ratings

of restaurants, the NYT-Review web site gives prices, and the MapQuest web site gives distances. Only
the Zagat-Review web site can be accessed under sorted access (with the best restaurants at the top of
the list).

Let Z be the set of indicesof those listsL; that can be accessed under sorted access. We assume
thatZ is nonempty, that is, that at least one of the lists can be accessed under sorted accessuiVe take
to be the cardinalityZ| of Z (and as before, take to be the total number of sorted lists). Define A
to be the following natural modification of TA, that deals with the restriction on sorted access.

1. Do sorted access in parallel to each of thiesorted listsL; with : € Z. As an objectR is seen
under sorted access in some list, do random access to the other lists to find the, grbdleject
R in every listL;. Then compute the grad¢R) = t(z1,...,x,,) of objectR. If this grade is
one of thek highest we have seen, then remember objeeind its grade(R) (ties are broken
arbitrarily, so that onlyt objects and their grades need to be remembered at any time).

2. For each list; with i € Z, let z; be the grade of the last object seen under sorted access. For
each listL; with i ¢ Z, letz; = 1. Define thethreshold value- to bet(z, ..., z,,). As soon as
at leastt objects have been seen whose grade is at least equaiten halt®

15As we shall see in Example 7.3, even though there are atlleasiects, it is possible that after seeing the grade of every
object in every list, and thus having done sorted access to every object in evdry \igth ¢« € Z, there are not at least
objects with a grade that is at least equal to the final threshold vallrethis situation, we say that TAhalts after it has seen
the grade of every object in every list. This situation cannot happen with TA.
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3. LetY be a set containing theobjects that have been seen with the highest grades. The output is
then the graded s¢{R,t(R)) | R € Y}.

In the case wher&Z| = 1, algorithm TA; is essentially the same as the algorithm TA-Adapt in
[BGMO2].

In footnote 6, we noted that each of the algorithms in this paper where there is “sorted access in
parallel” remain correct even when sorted access is not in lockstep. Algorithnpiidvides an extreme
example, where only some of the sorted lists are accessed under sorted access, and the remaining sorted
lists are accessed under random access only.

We now show that Theorem 6.1, which says that TA is instance optimal when no wild guesses
are allowed, and Corollary 6.2, which says that the optimality ratio of TA when no wild guesses are
allowed is best possible, both generalize to hold fog, TA&/hat about our other theorem about instance
optimality of TA (Theorem 6.5), which says that if the aggregation funatigrstrictly monotone, and if
the class of legal databases satisfies the distinctness property, then TA is instance optimal? Interestingly
enough, we shall show (Example 7.3) that this latter theorem does not generalizg.to TA

Theorem 7.1: Assume that the aggregation functibis monotone. Leb be the class of all databases.

Let A be the class of all algorithms that correctly find the toanswers fort for every database and

that do not make wild guesses, where the only lists that may be accessed under sorted access are those
lists L; with7 € Z. Then TA is instance optimal oveh andD.

Proof: The proof is essentially the same as the proof of Theorem 6.1, except for the bookkeeping.
Assume thatd € A, and that algorithmA is run over databasP. Assume that algorithr!l halts at
depthd (that is, ifd; is the number of objects seen under sorted access tg fmt 1 < ¢ < m, then

d = max; d;). Assume thatd sees: distinct objects (some possibly multiple times). Sintenakes no

wild guesses, and seedlistinct objects, it must make at leassorted accesses, and so its middleware
cost is at leastcg. By the same proof as that of Theorem 6.1, it follows thag; Thalts onD by depth

a + k. Hence, the middleware cost of FAs at most(a + k)m/cs + (a + k)m'(m — 1)cg, which is

am’cs + am/(m — 1)cg plus an additive constant &fn’cs + km’(m — 1)cg. So the optimality ratio

of TA is at mosteestam m=becr _ 7 | m'(m —1)cr/cs. O

acg

The next result, which is analogous to Corollary 6.2, is a corollary of the proof of Theorem 7.1 and
of a lower bound in Section 9.

Corollary 7.2: Lett be an arbitrary monotone, strict aggregation function witharguments. Assume
that|Z| = m’. LetD be the class of all databases. L&tbe the class of all algorithms that correctly
find the topk answers for for every database, and that do not make wild guesses, where the only lists
that may be accessed under sorted access are thosd.Jistih i € Z. Then T4 is instance optimal
overA and D, with optimality ratiom’ + m/(m — 1)cr/cs. No deterministic algorithm has a lower
optimality ratio.

Proof: In the proof of Theorem 7.1, it is shown that FAas an optimality ratio of at most’ +
m'(m — 1)cg/cg for an arbitrary monotone aggregation function, The lower bound follows from a
simple variation of the proof of Theorem 9.1, where we take (dm’ —1)cg + (dm’ —1)(m — 1)cg.

The simple details are left to the reader.
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Figure 3: Database for Example 7.3

Theorem 6.5 says that if the aggregation functias strictly monotone, and if the class of legal
databases satisfies the distinctness property, then TA is instance optimal. We now show by example that
the analogous result fails for TA In fact, we shall show that TAneed not be instance optimal even if
we assume not only that aggregation functiamstrictly monotone, and that the class of legal databases
satisfies the distinctness property, but in addition we assume that the aggregation fuiscsitoiet, and
that no wild guesses are allowed.

Example 7.3 Assume that the database satisfies the distinctness property, that there are only three sorted
lists L1, L2, and L3 (see Figure 3), and tha = {1} (so that onlyL; may be accessed under sorted
access). Let be the aggregation function wheter, y, z) = min{z,y} if z = 1, andt(z,y,2) =

(min {z,y,2})/2if z # 1. Itis easy to see thatis strictly monotone and strict. Assume that we are
interested in finding the top answer (i.e.= 1).

Assume that objeck has grade 1 in listé; and L3, and grade 0.6 in list,. Hencet(R) = 0.6.
Note that for each objed®’ other thanR, necessarily the grade &f in L3 is not 1 (by the distinctness
property), and so(R’) < 0.5. Therefore R is the unique top object.

Assume that the minimum grade in lisg is 0.7. It follows that the threshold value is never less
than 0.7. Therefore, TAdoes not halt until it has seen the grade of every object in every list. However,
let A be an algorithm that does sorted access to the top oRjéctist ., and random access #®in
lists L» and L3, and then halts and announces tRas the top object. Algorithrd does only one sorted
access and two random accesses on this database. It is safe for algdrithhalt, since it “knows”
that objectk has grade 0.6 and that no other object can have grade bigger than 0.5. Since there can be
an arbitrarily large number of objects, it follows that F4s not instance optimal. Hence, the analogue
of Theorem 6.5 fails for TA.

It is instructive to understand “what goes wrong” in this example and why this same problem does
not also cause Theorems 6.5 or 7.1 to fail. Intuitively, what goes wrong in this example is that the
threshold value is too conservative an estimate as an upper bound on the grade of unseen objects. By
contrast, in the case of Theorem 7.1, some unseen object may have an overall grade equal to the threshold
value, so the threshold value is not too conservative an estimate. In the case of Theorem 6.5, an analysis
of the proof shows that we consider the threshold value at depthi rather than depth. Intuitively,
although the threshold value may be too conservative an estimate, the threshold value one extra level
down is not]

8 Minimizing Random Access
Thus far in this paper, we have not been especially concerned about the number of random accesses.

For every sorted access in TA, upiio— 1 random accesses take place. Recall thatisfthe number
of sorted accesses, ands the number of random accesses, then the middleware cast is rcg, for
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some positive constantg andcg. Our notion of instance optimality ignores constant factorshikand
cg (they are simply multiplicative factors in the optimality ratio). Hence, there has been no motivation
so far to concern ourself with the number of random accesses.

There are, however, some scenarios where we must pay attention to the number of random accesses.
The first scenario is where random accesses are impossible (which correspopds teo). As we
discussed in Section 2, an example of this first scenario arises when the middleware system is a text
retrieval system, and the sorted lists correspond to the results of search engines. Another scenario is
where random accesses are not impossible, but simply expensive relative to sorted access. An example
of this second scenario arises when the costs correspond to disk access (sequential versus random). Then
we would like the optimality ratio to be independentegf/cs. That is, if instead of treatingz andcg
as constants, we allow them to vary, we would still like the optimality ratio to be bounded.

In this section we describe algorithms that do not use random access frivolously. We give two
algorithms. One uses no random accesses at all, and hence is called NRA (“No Random Access”). The
second algorithm takes into account the cost of a random access. It is a combination of NRA and TA,
and so we call it CA (“Combined Algorithm”).

Both algorithms access the information in a natural way, and, in the spirit of the knowledge-based
programs of Section 4, halt when they know that no improvement can take place. In general, at each
point in an execution of these algorithms where a number of sorted and random accesses have taken
place, for each objecR there is a subset(R) = {i1,i2,...,i¢} C {1,...,m} of the fields ofR
where the algorithm has determined the valugsz;,, .. ., z;, of these fields. Given this information,
we define functions of this information that are lower and upper bounds on thetj&uean obtain.

The algorithm proceeds until there are no more candidates whose current upper bound is better than the
currentkth largest lower bound.

Lower Bound: Given an object? and subset(R) = {i1,i2,...,i¢} C {1,...,m} of known
fields of R, with valuesx;,,z;,,...,z;, for these known fields, we defind’s(R) (or W(R) if the
subsetS = S(R) is clear) as the minimum (arorsf value the aggregation functiancan attain for
object R. Whent is monotone, this minimum value is obtained by substituting for each missing field
i € {1,...,m}\S the value 0, and applyingto the result. For example, § = {1,...,/¢}, then
Ws(R) = t(z1,22,...,2¢0,...,0). The following property is immediate from the definition:

Proposition 8.1: If S is the set of known fields of objegt thent(R) > Ws(R).

In other words W (R) represents a lower bound o(R). Is it the best possible? Yes, unless we have
additional information, such as that the valudoes not appear in the lists. In general, as an algorithm
progresses and we learn more fields of an ohj&éts W value becomes larger (or at least not smaller).
For some aggregation functionshe valuelV (R) yields no knowledge untif' includes all fields: for
instance ift is min, then W (R) is 0 until all values are discovered. For other functions it is more
meaningful. For instance, whens the median of three fields, then as soon as two of them are known
W (R) is at least the smaller of the two.

Upper Bound: The best value an object can attain depends on other information we have. We
will use only thebottom valuesn each field, defined as in TA; is the last (smallest) value obtained
via sorted access in ligt;. Given an objeci? and subseb(R) = {i1,i2,...,i¢} C {1,...,m} of
known fields ofR, with valuesz;,, z,, ..., x;, for these known fields, we definBs(R) (or B(R) if
the subsef is clear) as the maximum (dres}) value the aggregation functiancan attain for object
R. Whent is monotone, this maximum value is obtained by substituting for each missing field
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{1,...,m}\S the valuer;, and applying to the result. For example, #f = {1,..., ¢}, thenBgs(R) =
t(x1,22,..., %0, 2o 1, .-, 2,,). The following property is immediate from the definition:

Proposition 8.2 If S is the set of known fields of objeRt thent(R) < Bs(R).

In other words,B(R) represents an upper bound on the valu®) (or the bestvaluet(R) can
be), given the information we have so far. Is it the best upper bound? If the lists may each contain
equal values (which in general we assume they can), then given the information we have it is possible
thatt(R) = Bg(R). If the distinctness property holds (equalities are not allowed in a list), then for
continuous aggregation functionst is the case thaB(R) is the best upper bound on the valuean
have onR. In general, as an algorithm progresses and we learn more fields of an Bbgext the
bottom values:; decrease3(R) can only decrease (or remain the same).

An important special case is an objétthat has not been encountered at all. In this dagB) =
t(z;,zy,...,x,,). Note that this is the same as the threshold value in TA.

8.1 No Random Access Algorithm—NRA

As we have discussed, there are situations where random accesses are impossible. We now consider
algorithms that make no random accesses. Since random accesses are impossible, in this section we
change our criterion for the desired output. In earlier sections, we demanded that the output be the “top
k answers”, which consists of the t@pobjects, along with their (overall) grades. In this section, we
make the weaker requirement that the output consist of thé: tolpjects, without their grades. The

reason is that, since random access is impossible, it may be much cheaper (that is, require many fewer
accesses) to find the tdpanswers without their grades. This is because, as we now show by example,
we can sometimes obtain enough partial information about grades to know that an object is inkthe top
objects without knowing its exact grade.

Example 8.3 Consider the following scenario, where the aggregation function is the average, and where
k = 1 (so that we are interested only in the top object). There are only two sorted {istsd L, (see

Figure 4), and the grade of every object in béthand L, is 1/3, except that objed® has grade 1 in

L, and grade 0 in,. After two sorted accesses I and one sorted access g, there is enough
information to know that objecR is the top object (its average grade is at least 1/2, and every other
object has average grade at most 1/3). If we wished to find the grade of &hjeet would need to do
sorted access to all df;. [

Note that we are requiring only that the output consist of thektopjects, with no information being
given about the sorted order (sorted by grade). If we wish to know the sorted order, this can easily
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be determined by finding the top object, the top 2 objects, etc.CLéte the cost of finding the top
objects. It is interesting to note that there is no necessary relationship befiyaedC for i < j. For
example, in Example 8.3, we havg < C,. If we were to modify Example 8.3 so that there are two
objectsR and R’ with grade 1 inL;, where the grade aR in L, is 0, and the grade a®’ in L, is 1/4
(and so that, as before, all remaining grades of all objects in both lists is 1/3),'therC,.

The cost of finding the top objects in sorted order is at mdsinax; C;. Since we are treating
as a constant, it follows easily that we can convert our instance optimal algorithm (which we shall give
shortly) for finding the topgk objects into an instance optimal algorithm for finding the kopbjects in
sorted order. In practice, it is usually good enough to know thektopjects in sorted order, without
knowing the grades. In fact, the major search engines on the web no longer give grades (possibly to
prevent reverse engineering).

The algorithm NRA is as follows.

1. Do sorted access in parallel to each oftiagorted listsL;. At each depthl (whend objects have
been accessed under sorted access in each list):

e Maintain the bottom valueggd),ggd), .. ,gﬁff) encountered in the lists.

e For every object? with discovered field§ = S@(R) C {1,...,m}, compute the values
WD (R) = Ws(R) andB@(R) = Bg(R). (For objectsR that have not been seen, these
values are virtually computed &® (R) = (0, ...,0), andBY(R) = t(z, z, . .., Z,,),
which is the threshold value.)

o Let T,Ed), the current togk list, contain thek objects with the largest/(9) values seen so
far (and their grades); if two objects have the sdii&) value, then ties are broken using
the B(4) values, such that the object with the highB&?) value wins (and arbitrarily among
objects that tie for the highe®(® value). LetM? be thekth largestV (@ value inT,?.

2. Call an objectR viableif B(Y(R) > Méd). Halt when (a) at least distinct objects have been

seen (so that in particulﬂi’,ﬁd) containsk objects) and (b) there are no viable objects left outside
T,gd), that is, whenB@ (R) < M,gd) forall R ¢ T,Ed). Return the objects iﬂT,ﬁd).

We now show that NRA is correct for each monotone aggregation function

Theorem 8.4:1f the aggregation functionis monotone, then NRA correctly finds the topbjects.

Proof: Assume that NRA halts aftef sorted accesses to each list, and tﬂiﬁf = {R1,Ra,..., Ry}
Thus, the objects output by NRA afe, Ro, ..., R;. Let R be an object not amonB;, R, ..., Ry.
We must show that(R) < ¢(R;) for each.

Since the algorithm halts at depih we know thatR is nonviable at depth, that is,B(d)(R) <
M. Now t(R) < B@(R) (Proposition 8.2). Also for each of theobjectsR; we haveM” <
W@ (R;) < t(R;) (from Proposition 8.1 and the definition M,gd)). Combining the inequalities we
have shown, we have

t(R) < BY(R) < MY < WD (R,) < t(Ry)

for eachi, as desired]
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Note that the tie-breaking mechanism was not needed for correctness (but will be used for instance
optimality). We now show instance optimality of NRA over all algorithms that do not use random
access:

Theorem 8.5: Assume that the aggregation functibis monotone. Leb be the class of all databases.
LetA be the class of all algorithms that correctly find the topbjects fort for every database and that
do not make random accesses. Then NRA is instance optimaharedD.

Proof: AssumeA € A. If algorithm NRA halts at deptl, and NRA saw at least distinct objects for
the first time by depthl, then NRA makes only a constant number of accesses (at/mogton that
database. So suppose that on some databaa@gorithm NRA halts at depth, and that NRA saw at
leastk distinct objects by deptti — 1. We claim that4 must get to depthl in at least one of the listdt
then follows that the optimality ratio of NRA is at mast, and the theorem follows. Suppose the claim
fails; then from the fact that algorithm NRA did not halt at degth 1 there is an objeck ¢ T,ECH)
such thatB@D(R) > M. We know thatv (*-D(R) < M"Y, sinceRr ¢ TV Further, we
know from the tie-breaking mechanism thatif~(R) = M,ECH), then for eachi; € T,Edil) such
that@ (R;) = M\ necessariyB@~1)(R;) > Bl-D(R).

There are now two cases, depending on whether or not algositloatputsR as one of the tog
objects. In either case, we construct a database on whigtrs.

Case 1: Algorithm A outputsR as one of the tof objects. We construct a databa®éwhere
A errs as follows. Database’ is identical toD up to depthd — 1 (that is, for each the topd — 1
objects and their grades are the same inllistor D’ as forD). For eachR; and for each missing field
j e {1,...,m})\SU-(R;) assign vaIu@.d*l). For the objectR assign all of the missing fields in
{1,...,m}\SY(R) the valued. We now show that(R) < t(R;) for eachj with 1 < j < k. Hence,
R is notone of the topk objects, and so algorithtd erred. First, we have

t(R) = W D(R) < MV 3)

Also, for all7 with 1 < ¢ < k£ we have

MY < wlé-D(R)) < BU-D(R,) = t(Ry). @)

If WE-D(R) < MV, then we have from (3) and (4) thatR) < t(R;) for eachi, as desired.
So assume that’ (@D (Rr) = M\*"V. Again, we wish to show that(R) < t(R;) for eachi. We
consider separately in two subcases tfm%ereM,Edil) = W-(R;) and those wherM,gdfl) #
W=D(R,).

Subcase 12{"™Y = W@-D(R,). Thent(R) < M\""? < BU-1(R) < BU-D(R,) = t(Ry),
as desired, where the last inequality follows from the tie-breaking mechanism.

Subcase 2"V % W=1D(R;), and soM" " < W1 (R,). From the inequalities in (4),
we see thaM,Ed_l) < t(R;). So by (3), we have(R) < t(R;), as desired.

Case 2: Algorithm A does not outpulR as one of the tog objects. We construct a database
D" where A errs as follows. Databas®” is identical toD up to depthd — 1. At depthd it gives

each missing field € {1,...,m}\S@V(R) of R the valuez!* . For all remaining missing fields,
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including missing fields oRy, . . ., Ry, assign the value 0. NowR) = B{4~D(R) > M,E”H), whereas

(a) for at least one?; (namely, thatR; whereW(® (R;) = M,ﬁd)) we havet(R;) = MIE"H), and (b)
for each objec?’ not amongR;, Ra, . .., Ry or R we have that(R') < M,gd_l). Hence, algorithm4
erred in not outputting? as one of the tog objects.]

Note that the issue of “wild guesses” is not relevant here, since we are restricting our attention to
algorithms that make no random accesses (and hence no wild guesses).

The next result, which is analogous to Corollaries 6.2 and 7.2 is a corollary of the proof of Theo-
rem 8.4 and of a lower bound in Section 9. Specifically, in the proof of Theorem 8.4, we showed that
the optimality ratio of NRA is at most.. The next result says that if the aggregation function is strict,
then the optimality ratio is precisely, and this is best possible.

Corollary 8.6: Lett be an arbitrary monotone, strict aggregation function witharguments. LeD be
the class of all databases. LAtbe the class of all algorithms that correctly find the topbjects for

t for every database and that do not make random accesses. Then NRA is instance optiiamer
D, with optimality ratiom. No deterministic algorithm has a lower optimality ratio.

Proof: In the proof of Theorem 8.4, it is shown that NRA has an optimality ratio of at mofir an
arbitrary monotone aggregation function, The lower bound follows from Theorer9.5.

Remark 8.7: Unfortunately, the execution of NRA may require a lot of bookkeeping at each step, since
when NRA does sorted access at defifor 1 < ¢ < d), the value ofB(“) (R) must be updated for every
object R seen so far. This may be up £o» updates for each depth which yields a total of2(d?m)
updates by depth. Furthermore, unlike TA, it no longer suffices to have bounded buffers. However,
for a specific function likenin it is possible that by using appropriate data structures the computation
can be greatly simplified. This is an issue for further investigation.

8.2 Taking into Account the Random Access Cost

We now present the combined algorithm CA that does use random accesses, but takes their cost (relative
to sorted access) into account. As beforeclebe the cost of a sorted access apdbe the cost of a

random access. The middleware cost of an algorithm that makeged accesses andandom ones

is scs + rcg. We know that TA is instance optimal; however, the optimality ratio is a function of the
relative cost of a random access to a sorted access, thatds. Our goal in this section is to find an
algorithm that is instance optimal and where the optimality ratio is independenyef. One can view

CA as a merge between TA and NRA. Uet= |cr/cs]. We assume in this section that > cg, so

thath > 1. The idea of CA is to run NRA, but every steps to run a random access phase and update

the information (the upper and lower bounlsand W) accordingly. As in Section 8.1, in this section

we require only that the output consist of the fopbjects, without their grades. If we wish to obtain

the grades, this requires only a constant number of additional random accesses, and so has no effect on
instance optimality.

The algorithm CA is as follows.

1. Do sorted access in parallel to each oftiasorted listsl;. At each depthl (whend objects have
been accessed under sorted access in each list):

24



e Maintain the bottom valuenjgd),ggd), . ,;Sf? encountered in the lists.

e For every objeci? with discovered field§ = S@(R) C {1,...,m}, compute the values
WD (R) = Ws(R) andB@(R) = Bg(R). (For objectsRk that have not been seen, these
values are virtually computed &@ (R) = (0, ...,0), andBY(R) = t(zy, Zo, . .., Zp),
which is the threshold value.)

o Let T,Ed), the current togk list, contain thek objects with the largest/(9) values seen so
far (and their grades); if two objects have the sdifi& value, then ties are broken using
the B(4 values, such that the object with the highB$¢) value wins (and arbitrarily among
objects that tie for the highe®(® value). LetM? be thekth largestV (@ value inT|?.

2. Call an object? viableif B(Y(R) > M,gd). Everyh steps (that is, every time the depth of sorted
access increases by, do the following: pick the viable object that has been seen for winathll
fields are known and whoge(?) value is as big as possible (ties are broken arbitrarily). Perform
random accesses for all of its (at mast— 1) missing fields. If there is no such object, then do
not do a random access on this sfep

3. Halt when (a) at least distinct objects have been seen (so that in particﬁ]ﬁg? containsk
objects) and (b) there are no viable objects left outgl"éijé, that is, whenB(9) (R) < M,id) for
all R ¢ T,f;d). Return the objects iii\“,id).

Note that ifh is very large (say larger than the number of objects in the database), then algorithm
CA is the same as NRA, since no random access is performéd=Ifi, then algorithm CA is similar
to TA, but different in intriguing ways. For each step of doing sorted access in parallel, CA performs
random accesses for all of the missing fields of some object. Instead of performing random accesses for
all of the missing fields ofomeobject, TA performs random accesses for all of the missing fields of
everyobject seen in sorted access. Later (Section 8.4), we discuss further CA versus TA.

For moderate values df it is notthe case that CA is equivalent to thrgermittent algorithmthat
executesh steps of NRA and then one step of TA. (That is, the intermittent algorithm does random
accesses in the same time order as TA does, but simply delays them, so that it does random accesses
everyh steps.) We show later (Section 8.4) an example where the intermittent algorithm performs much
worse than CA. The difference between the algorithms is that CA picks “wisely” on which objects to
perform the random access, namely, according to th&it values. Thus, it is not enough to consider
the knowledge-based program of Section 4 to design the instance optimal algorithm CA; we need also
a principle as to which objects to perform the random access on. This was not an issue in designing TA,
since in that context, random accesses increase the cost by only a constant multiple.

Correctness of CA is essentially the same as for NRA, since the same upper and lower bounds are
maintained:

Theorem 8.8: If the aggregation functionis monotone, then CA correctly finds the fopbjects.

15The reason for this escape clause is so that CA does not make a wild guess. We now give an example where this escape
clause may be invoked. Assume that 2 andcr = cs. Assume that on the first round of sorted access in parallel, the same
object appears in all of the lists. Then on the first opportunity to do a random access, the escape clause must be invoked, since
every field is known for the only object that has been seen. In the proof of Theorem 8.9, we show that if the escape clause is
invoked after depttk (that is, after there has been at leasbunds of sorted access in parallel), then CA halts immediately
after.
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In the next section, we consider scenarios under which CA is instance optimal, with the optimality
ratio independent aofz /cs.

8.3 Instance Optimality of CA

In Section 4, we gave two scenarios under which TA is instance optimaloeadD. In the first sce-

nario (from Theorem 6.1), (1) the aggregation functi@@monotone; (2P is the class of all databases;

and (c)A is the class of all algorithms that correctly find the topbjects fort for every database and

that do not make wild guesses. In the second scenario (from Theorem 6.5), (1) the aggregation function
t is strictly monotone; (2P is the class of all databases that satisfy the distinctness property; afd (3)

is the class of all algorithms that correctly find the fopbjects fort for every database iD. We might

hope that under either of these two scenarios, CA is instance optimal, with optimality ratio independent
of cr/cs. Unfortunately, this hope is false, in both scenarios. In fact, our theorems say that not only
does CA fail to fulfill this hope, but so does every algorithm. In other words, neither of these scenarios
is enough to guarantee the existence of an algorithm with optimality ratio independenticgf In the

case of the first scenario, we obtain this negative result from Theorem 9.1. In the case of the second
scenario, we obtain this negative result from Theorem 9.2.

However, we shall show that by slightly strengthening the assumptigrirothe second scenario,
CA becomes instance optimal, with optimality ratio independenizgts. Let us say that the aggrega-
tion functiont is strictly monotone in each argumeifitvhenever one argument is strictly increased and
the remaining arguments are held fixed, then the value of the aggregation function is strictly increased.
That is,t is strictly monotone in each argumentzif < z, implies that

(X1, T, Tiy Tigeds - -+ s T

/
< t(l’l, ey L1, Ty T 1y - - - ,Jim).

The average (or sum) is strictly monotone in each argument, whereas min is not.

We now show (Theorem 8.9) that in the second scenario above, if we replace “The aggregation
functiont is strictly monotone” by “The aggregation functioiis strictly monotone in each argument”,
then CA is instance optimal, with optimality ratio independentgfcs. We shall also show (Theo-
rem 8.10) that the same result holds if instead, we simply#t#ik®e min, even though min is not strictly
monotone in each argument.

Theorem 8.9: Assume that the aggregation functiois strictly monotone in each argument. 2te
the class of all databases that satisfy the distinctness propertyA betthe class of all algorithms that
correctly find the topk objects fort for every database iD. Then CA is instance optimal ovArand
D, with optimality ratio independent ef; /cs.

Proof: AssumeD € D. Assume that when CA runs dh, it halts after doing sorted access to depth
d. Thus, CA makesnd sorted accesses andandom accesses, where< md/h. Note that in CA the
two componentsifdcs andrcg) of the costmdcs + rcg are roughly equal, and their sum is at most
2mdcg. AssumeA € A, and that4 makesd’ sorted accesses andrandom accesses. The cost that
incurs is therefor@’cg + r'cp.

Suppose that algorithmd announces that the objed®, RS, . .., Rj. are the topk. First, we claim
that eachr; appears in the tog’ + ' + 1 objects of at least one ligt;. Suppose not. Then there is an
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objectR] output by.A such that in each list there is a vacancy abBY¢hat has not been accessed either
by sorted or random access. There is a dataB¥dsdentical toD in all locations accessed by but

with an objectR’ ¢ {R}, R5, ..., R},} whose values reside in these vacancies. From the distinctness
property, for each field the value fdt’ is strictly larger than that foR, and from strict monotonicity

of t we havet(R') > t(R}), making R’ a mandatory member of the output. (Note: we used only strict
monotonicity oft rather than the stronger property of being strictly monotone in each variable.) This is
a contradiction. Hence, eadtf appears in the tog’ + r’ + 1 objects of at least one lidt;.

Let S, = min{t(R}),t(R5),...,t(R})}. Define the seC of objects not output byA whoseB
value at step’ + 7' + 1 of CA (that is, afterd’ + 7' 4 1 parallel sorted accesses) is more tignthat is,

C={R¢{R},Rh,...,R}|BY"T(R) > 5,}.

We claim that for each objed® € C, algorithm.4 must use a random access (to deternfid'®
value in some list). Suppose not. Then we show a dataBase which algorithmA performs the same
as onD but wheret(R) > Si. This is a contradiction, since thdd would have to be in the output
of A. For each field of R that is not accessed by, we assign irD’ the highest value from the top
d'+r'+1 locations ofL; that had not been accessedysuch “free” locations exist by the pigeonhole
principal, sinceA “touched” at most’ + r’ objects. Now each fieldof R that is accessed hy is one
of the topd’ values inL;, since by assumptioR was accessed only under sorted accesd bilso, by
construction, i’ each remaining field of R is one of the top!’ + ' + 1 values inL;. So inD’, every
field 7 of R is one of the top!’ + ' + 1 values inL;. Also, by construction, the value of every figld
of R is at least as high i®" as inD. It follows by monotonicity oft that the value of(R) in D’ is at
leastB(?+7'+1)(R) (we do not need the stronger fact thas strictly monotone in each argument). But
BU+r+1)(RY > Sy, sinceR € C. Hencet(R) > Sy. This is the contradiction that was to be shown.
So indeed, for each objeét € C algorithm.4 must use a random access. Hence; |C|.

Setd” = h(|C| + k) + d + r' + 1. We now show that CA halts by depiti. There are two cases,
depending on whether or not the escape clause in Part 2 of CA (which says “If there is no such object,
then do not do a random access on this step”) is invoked at somedejittnd’ + ' +1 < d < d".

Case 1:The escape clause of CA is invoked at some démtith d+r +1<d<d" There are
two subcases, depending on whether ordiet ' + 1 > k.

Subcase 1d’ +1' +1 > k. Thend > d’ + ' + 1 > k. Just as in the second paragraph of the proof
of Theorem 6.1, we know that the algorithm CA has seen at l?eabjects by deptﬁ(this is because
by depthJ it has madend sorted accesses, and each object is accessed atmtoses under sorted
access). If CA had seen strictly more thﬁobjects by depthﬁ, then the escape clause would not be
invoked. Since the escape clause was invoked, it follows that CA must have seen észtnjéyts by
depthd By depthd the algorithm CA has made exacﬂm sorted accesses. Since CA has seen exactly
d objects by depttd and since each object is accessed at mostes under sorted access, it follows
that each of the objects that CA has seen has been seen under sorted access in every oneladtthe
Sinced > k, by depthd there are at least objects that have been seen under sorted access in every one
of the lists. (This situation should sound familiar: it is the stopping rule for FA.) For every object that
has been seen, there is no uncertainty about its overall grade (since it has been seen in every list), and
S0 no object that has been seen and is not in thé gt is viable. Since each object that has not been

seen has3(@ value at most equal to the threshold value at defptind each member of the taplist
has grade at least equal to the threshold value, it follows that no object that has not been seen is viable.
So there are no more viable objects outside of theitbgt, and CA halts by depthi < d”, as desired.
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Subcase 2d’ + 1’ + 1 < k. So algorithmA sees less thah objects before it halts. If databa®e
contains more thah objects, then there are two objedtsand R’ that algorithmA does not see such
that algorithmA outputsR but notR’ as part of the tog. But then, since algorithmil does not have
information to distinguishk and R’, it must make a mistake on some database (either the datBharse
the database obtained frafhby reversing the roles ak and R’). So databas® cannot contain more
thank objects. Since we are assuming throughout this paper that the number of objects in the database
is at leastk, it follows thatD contains exactly: objects. Therefore, at depthof algorithm CA, allk
objects have been seen under sorted access in every list. Similarly to the proof in Subcase 1, it follows
that CA halts at depth. Sincek < d”, we know that CA halts by deptff’, as desired.

Case 2:The escape clause of CA is not invoked at any dépbhth d+1r +1<d<d" Recall
that CA performs random access on viable objects based onRheilues. Until they receive a random
access after steg§ + 7’ + 1 of CA, the members of have the highesB values. Therefore, within
h|C| steps after reaching depth+ ' + 1 (that is, by stepl’ + ' + 1 + h|C|), all members of>' will
be randomly accessed. We now argue that the next objects to be accessed in CA wilRfjs that
are output by4 (unless they have been randomly accessed already.) Here we will appeal to the strict
monotonicity in each argument of the aggregation functiofor a functiont that is strictly monotone
in each argument, at each step of CA on a database that satisfies the distinctness property and for every
objectR, if S(R) is missing some fields, theBs(R) > t(R). Therefore at steg’ + ' + 1 + h|C|
of CA, for all R, whoset value has not been determined we ha&@fé "' +1+hCD (R > t(R]) > .
Since no other object wittB (¢ +'+1+4ICN) value larger thars), is left, after at moshk more steps in
CA, all of {R}, R5, ..., R} with missing fields will be randomly accessed and themlue will be
known to CA.

We claim that at steg” of CA there are no more viable objects left: firM,,gd//) = S}, since all
of {R}, R5, ..., R,.} have been accessed (in every field) and each of théfr) values equals their
values. Since all other objeciwith B(¢")(R) > S} have been accessed, there are more viable objects
left, so CA halts.

We have shown that in both cases, the algorithm CA halts by d&ptRecall that when CA gets to
depthd it incurs a cost of at mostmdcs. We showed that CA halts by deptt = h(|C| + k) + d' +
"+ 1< h(r' +k)+d +r" + 1. Hence, the cost CA incurs is at ma@st.(h(r’ + k) + d' + ' + 1)cg,
which is2m(h(r’ + k) + d' + r)cg plus an additive constant @fncg. Now

om(h(r’ + k) +d +1')cs < 2m Zi;(r' +k)es + (d +1)cs)

"(cr+ cg) +d'cs + kcr)

'(2¢g) + d'cs + kcg) since by assumptioeg > cs
2m(r'(2cr) + d'cs + kr'cg) sincer’ > 1 (see below)
= 2md'cs+ (dm + k)r'cp

< (4m+k)(decs+1'cr)

r
2m(r

(
= 2m(
(

Sinced'cs + r’'cg is the middleware cost ofl, we get that the optimality ratio of CA is at mast + k.

So we need only show that we may assufe 1. Assume not. Thepl makes no random accesses.
Now by Theorem 8.5, NRA is instance optimal compared with algorithms that make no random access,
and of course the optimality ratio is independent gf cs. Further, the cost of CA is at most twice that
of NRA. So CA is instance optimal compared with algorithms that make no random access, slich as
with optimality ratio independent afz /cs. [
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In the proof of Theorem 8.9, we showed that under the assumptions of Theorem 8.9 (strict mono-
tonicity in each argument and the distinctness property), the optimality ratio of CA is atimostk.
In Theorem 9.2, we give a lower bound that is lineafrinpat least for one aggregation function that is
strictly monotone in each argument.

The next theorem says that for the functiain (which is not strictly monotone in each argument),
algorithm CA is instance optimal.

Theorem 8.10: Let D be the class of all databases that satisfy the distinctness propertyA bhetthe
class of all algorithms that correctly find the tépobjects formin for every database iD. Then CAis
instance optimal oveA andD, with optimality ratio independent ef;/cs.

Proof (Sketch): The proof is similar to the proof of Theorem 8.9, where the key point is that for the
functionmin at every stepl of CA there can be at most different R's with the sameB(?)(R) value,
since B (R) equals one of the fields @t and the distinctness property assures that there are at most
m different fields inall lists with the same value (this replaces the use of strict monotonicity in each
argument). Therefore at step+ ' + 1 + h|C| there are at most: objects withB value that equals

Sk, and there are no objects outside{@t, R5, ..., R,.} whoseB value exceeds). Since theB

value of each member ofR}, R), ... R} is at leastSy, it follows that afterhm more steps all of
{R}, RS, ..., R} will be randomly accessed, so there will be no viable objects left and CA will halt.
The rest of the analysis is similar to the proof of Theorem 8.9, excephfhia replaced byim. The

net result is an optimality ratio of at most. [

In the proof of Theorem 8.10, we showed that under the assumptions of Theorem 8.10 (the dis-
tinctness property with min as the aggregation function), the optimality ratio of CA is atimastn
Theorem 9.4, we give a lower bound that is linearin

8.4 CA Versus Other Algorithms

In this section, we compare CA against two other algorithms. The first algorithm we compare it against
is the intermittent algorithm which does random accesses in the same time order as TA does, but
simply delays them, so that it does random accesses évery cr/cs| steps. The second algorithm

we compare CA against is TA.

CA versus the intermittent algorithm: We now consider the choice we made in CA of doing
random access to find the fields of the viable objeethoseB(? value is the maximum. We compare
its performance with the intermittent algorithm, which we just described. We show a database (see
Figure 5) where the intermittent algorithm does much worse than CA. Consider the aggregation function
t wheret(x1,z2,x3) = x1 + x2 + x3. Letcr/cs be a large integer. L&P be a database where the top
h — 2 locations inL; and L. have grades of the foriy2 +i/(8h), for 1 < i < h — 2, and where none
are matched with each other. Locatibn- 1 in the two lists belong to same objegt with gradel /2 in
both of them. Locatiork in the two lists both have the gradés. In L3 the toph? — 1 locations have
grades of the form /2 +i/(8h?), for 1 < i < h? — 1, and in locatiorh?, objectR has gradd /2. Note
that the maximum overall grade (which occurs for the objeécis 1% and that all objects that appear in
one of the toph — 2 locations in listsl,; and Ly have overall grades that are at mb%t(this is because
each object in the top — 2 locations inL; has grade at mo$t/8 in L, grade at most/8 in Lo, and
grade at mos5/8 in Ls.) At steph in CA we have thatB(®) (R) > 11, whereas for all other objects
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Figure 5: Database about CA versus the intermittent algorithm

their B value is at mostl%. Therefore on this database, CA performsorted accesses in parallel
and a single random access Brand then halts. Its middleware cost is therefore + cr = 2ci. The
intermittent algorithm, on the other hand, does not give priority to checkingnd will first do two
random accesses for each of the- 2 objects at the top of each of the three lists. Since we take all of
these objects to be distinct, thisdsh — 2) random accesses, with a middleware cost(@f — 2)cr.

So the ratio of the middleware cost of the intermittent algorithm to the middleware cost of CA on this
database is at lea3th — 2), which can be arbitrarily large.

In particular, Theorem 8.9 would be false if we were to replace CA by the intermittent algorithm,
since this example shows that the optimality ratio of the intermittent algorithm can be arbitrarily large
for h arbitrarily large.

CA versus TA: It is intriguing to consider the differences between CA and TA, even whéeng
is not large. Intuitively, TA beats CA in terms of sorted accesses, and CA beats TA in terms of random
accesses. More precisely, TA never makes more sorted accesses than CA, since TA gathers as much
information as it can about every object it encounters under sorted access. On the other hand, if we
focus on random accesses, then we see that TA does random access to every field of every object that
it sees under sorted access. But CA is more selective about its random accesses. It “stores up” objects
that it has seen under sorted access, and then does random access only for the object in its stored-up
collection with the best potential.

We now consider other advantages of CA over TA. In the database we presented in comparing CA
with the intermittent algorithm, the random access cost of TA is the same as that of the intermittent
algorithm. So for this database, the ratio of the middleware cost of TA to the middleware cost of CA is
at leasB(h — 2). This is a manifestation of the dependence of the optimality ratio of TA9les and
the independence of the optimality ratio of CA@y/cs. Furthermore, the fact that at least under certain
assumptions, TA has an optimality ratio that is quadratia:jrwhereas under certain assumptions, CA
has an optimality ratio that is only linear in, is also an indicator of the possible superiority of CA
over TA in certain circumstances. This requires further investigation. As an example where it might be
interesting to compare CA and TA, let the aggregation function be mib, betthe class of all databases
that satisfy the distinctness property, andAebe the class of all algorithms that correctly find the top
k objects for min for every databaselh We know that TA and CA are both instance optimal in this
scenario (Theorems 6.5 and 8.9), and we know that the optimality ratio of CA is independegfitof
(Theorem 8.9). What are the precise optimality ratios of TA and CA in this scenario? Which has a better
optimality ratio when, say;z = cs?
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TA has an important advantage over CA. Namely, TA requires very little bookkeeping, whereas,
on the face of it, CA requires a great deal of bookkeeping. Thus, in CA, for every sorted access it is
necessary to update tiievalue (the upper bound on the overall grade) for every object where not all of
its fields are known. As we discussed in Remark 8.7 for NRA, it would be interesting to develop data
structures for CA that would lead to a reasonable amount of bookkeeping. We could then compare CA
versus TA in realistic scenarios (both by analysis and simulations).

9 Lower Bounds on the Optimality Ratio

In this section, we prove various lower bounds on the optimality ratio, both for deterministic algorithms
and for probabilistic algorithms that never make a mistake. Each lower bound corresponds to at least
one theorem from earlier in the paper.

The next theorem gives a matching lower bound for the upper bound on the optimality ratio of TA
given in the proof of Theorem 6.1, provided the aggregation function is strict. As we noted earlier, this
lower bound need not hold if the aggregation function is not strict (for example, for the aggregation
function max).

Theorem 9.1: Let ¢ be an arbitrary monotone, strict aggregation function witharguments. LeD

be the class of all databases. L&tbe the class of all algorithms that correctly find the topnswers

for ¢ for every database and that do not make wild guesses. There is no deterministic algorithm that is
instance optimal oveA andD, with optimality ratio less tham: + m(m — 1)cg/cs.

Proof: We assume first thdt = 1; later, we shall remove this assumption. We restrict our attention to
a subfamilyD’ of D, by making use of positive parametets), k1, ko where

1. d, k1, andks are integers.
2. ¢ = (dm —1)cg + (dm — 1)(m — 1)cp.
3. k2 > k1 > max(d,¢/cg).

The familyD’ contains every database of the following form. In every list, thekipgrades are 1, and

the remaining grades are 0. No object is in the kpf more than one list. There is only one object

T that has grade 1 in all of the lists, and it is in the tbpf one list. Except fofl’, each object that is

in the topk, of any of the lists has grade 1 in all but one of the lists, and grade 0 in the remaining list.
It is easy to see that we can pigk andks big enough to satisfy our conditions, for a sufficiently large
numberN of objects.

Let A be an arbitrary deterministic algorithm A& We now show, by an adversary argument, that
the adversary can forcé to have middleware cost at leasbn some database . The idea is that the
adversary dynamically adjusts the database as each query comes id fiorauch a way as to evade
allowing A to determine the top element until as late as possible.

Let us say that an objectiggh in listi if it is in the topd of list 4, andhighif it is high in some list.
Since no object is high in more than one list, there @rehigh objects. Assume that sees at most
dm — 2 high objects, and hence does not see at least two high oljeesd.S,. Then the adversary
can force the answers thdtreceives to be consistent with eith&r or S, being the top object’. This
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is a contradiction, sincel does not have enough information to halt safely, since it does not know the
identity of the top object. Sl must see at leastn — 1 high objects. Sinced does not make wild
guesses, its sorted access cost is at le@ast— 1)cg. There are two cases.

Case 1:Algorithm A sees some high object under sorted access in aWsbiere it is not high (and
hence below positio&; in list j, since no object can be in the tép positions in more than one list).
Then.A has sorted access cost more thark > (1/cs)cs = 1, as desired.

Case 2:There is no high object thad sees under sorted access in a list where it is not high. Let
us say that a high objeétis fully randomly accesseifl A does random access kan each of the lists
where it is not high. Whenevet does random access to a high object in a list where it is not high, then
the adversary assures that the first- 2 such random accesses have grade 1, and only the final such
random access has grade 0 (this is possible for the adversary to continue until it has-ddnandom
accesses for all but one of the high objects). Assume that there are at least two high Bbfeads
that are not fully randomly accessed. Then the adversary can force the answetséaaives to be
consistent with eitheP; or P, being the top object’. This is a contradiction, since once agaihdoes
not have enough information to halt safely. So there is at most one high object that is not fully randomly
accessed. Since there akre high objects, it follows thatl must make at leagtlm —1)(m —1) random
accesses, with a random access costiof — 1)(m — 1)cgr. Hence, the middleware cost dfis at least
(dm —1)eg + (dm — 1)(m — 1)cg = 9, as desired.

So in either case, the middleware cost of algoritdmn the resulting database is at legstHow-
ever, there is an algorithm iA that makes at most sorted accesses amd — 1 random accesses,
and so has middleware cost at mdst + (m — 1)cg. By choosingd sufficiently large, the ratio
(dm”{jfsﬂf;”_’f))c(g’l)% can be made as close as desiredhta- m(m — 1)cg/cs. The theorem fol-
lows in the case wheh = 1.

We now describe how to modify the proof in the case when 1. The idea is that we make— 1
of the topk objects easy to find. We modify the databases given in the proof above by creatirig
new objects, each with a grade of 1 in every list, and putting them at the top of each of the lists. The
simple details are left to the reader.

In the proof of Theorem 6.5 (which assumes strict monotonicity and the distinctness property), we
showed that the optimality ratio of TA is at mast?, wherec = max {cr/cs, cs/cr}. In the next
theorem, we give an aggregation function that is strictly monotone such that no deterministic algorithm
can have an optimality ratio of less thﬁg‘—z%’;. So in our case of greatest interest, whege> cg,
there is a gap of around a factor®df: in the upper and lower bounds. The aggregation function we use
for this result is the function given by

t(x1, o, ..., Tyy) = min(zy + T2, 23, ..., Tm) (5)

The reason we made use of the unusual aggregation function in (5) is that in the case of min (or an
aggregation function such as average that is strictly monotone in each argument), there is an algorithm
(algorithm CA of Section 8.2) with optimality ratio independentgf cs when we restrict our attention

to databases that satisfy the distinctness property. Thus, the negative result of the next theorem does not
hold for min or average.

Theorem 9.2: Let the aggregation functiohbe given by (5) above. L& be the class of all databases
that satisfy the distinctness property. lfete the class of all algorithms that correctly find the top
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objects fort for every database iD. There is no deterministic algorithm that is instance optimal over
A andD, with optimality ratio less thar’; ¢&.

Proof: As in the proof of Theorem 9.1, we can assume without loss of generality that. We restrict
our attention to a subfamil’ of D, by making use of positive parameteksV, and, where

1. dandN are integers.
2. =(d—1)(m—2)cp.
3. N > max(d, 41 /cg), andN is a multiple of 4.

The family D’ contains each database of the following form. ThereMarmabjects. The topl grades in
lists 1 and 2 are of the forny (2d + 2) for 1 < i < d, and the object with gradg/ (2d + 2) in list 1 is
the one with the gradel + 1 — i) /(2d + 2) in list 2. Hence, the:; + z9 value of thesel objects isl /2.
The grades in the other lists are of the foifv, for 1 < i < N. One of the topl objects in lists 1 and
2 has a grade in the half-closed inter{%;l %) in each of the other lists. All the rest of the tdmbjects

in lists 1 and 2 have a grade in the half-closed intefa) in all but one of the other lists, and a grade
in the open interva(0, %) in the remaining list. The top object, which we cdl] is the unique object
whose overall grade i5/2. SinceT has grade less than 3/4 in lists.3,, m, it occurs after the first
N/4 objects in each of these — 2 lists. Furthermore, simply based on the grades of theltopjects

in lists 1 and 2, it is clear that the top object has grade at st

Let A be an arbitrary deterministic algorithm A& We now show, by an adversary argument, that
the adversary can forcé to have middleware cost at leasbn some database . The idea is that the
adversary dynamically adjusts the database as each query comes id fiorauch a way as to evade
allowing A to determine the top element until as late as possible. There are two cases.

Case 1.4 does at leasV/4 sorted accesses. Then the sorted access cgsisodt leas{ N /4)cg >
(¢/cs)cs =, as desired.,

Case 2:A does less thatV/4 sorted accesses. Let us call the tbpbjects in lists 1 and 2andi-
dates Thus,.4 does not see any candidate under sorted access in any of ti# listsm. Let us call a
grade that is at least 1Kigh, and a grade less than 1f8v. Let us say that a candidatgis fully ran-
domly accessei A does random access $oin each of the lists, . .., m. Wheneverd does random
access to a candidate in at least one of Bsts. , m, then as long as possible, the adversary assures that
the firstm — 3 random accesses have a high grade, and that only the final random access has a low grade
(it is possible for the adversary to continue like this until all but one of the candidates is fully randomly
accessed). Assume that there are at least two candiBagtesd P, that are not fully randomly accessed.
Then the adversary can force the answersthegceives to be consistent with eith@r or P, being the
top objectT". This is a contradiction, sincd does not have enough information to halt safely. So there
is at most one candidate that is not fully randomly accessed.

Since there are at leagt— 1 candidates that are fully randomly accessed, and hence each have at
leastm — 2 random accesses, the random access cadtisfat least(d — 1)(m — 2)cg. Hence, the
middleware cost ofd is at leas{d — 1)(m — 2)cr = v, as desired.

So in either case, the middleware cost of algoritdron the resulting database is at legstHow-
ever, there is an algorithm iy that accesses the tambjects in lists 1 and 2, and then makes a random
access to objed in each of lists 3, .., m. Its middleware cost i&dcs + (m — 2)cg. By choosing
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d sufficiently large, the ratig% can be made as close as desired’lgez—%’;. The theorem

follows. O

The next theorem is somewhat redundant (except for the fact that it deals with probabilistic algo-
rithms), because of Theorem 9.1. We give it because its proof is simple, and because we generalize the
proof in the theorem following it.

Theorem 9.3: Let ¢t be an arbitrary monotone, strict aggregation function witharguments. LeD

be the class of all databases. L&tbe the class of all algorithms that correctly find the topnswers

for ¢ for every database and that do not make wild guesses. There is no deterministic algorithm (or
even probabilistic algorithm that never makes a mistake) that is instance optimafoaed D, with
optimality ratio less thamn /2.

Proof: As in the proof of Theorem 9.1, we can assume without loss of generality: that. We now

define a family of databases, each withsorted lists. There is a parameter The topdm values in

each of the lists is 1, and all remaining values are 0. There is only one @bjett has a value of 1
in more than one of the lists, and this objétthas value 1 in all of the lists. Therefofehas overall

grade 1, and every other object has overall grade 0. Suppos# thed positiond in one of the lists,

and positiondm in all of the other lists.

Let.A be an arbitrary deterministic algorithmAn Consider the following distribution on databases:
each member is as above, and the list wirgppears in positiod is chosen uniformly at random. It
is easy to see that the expected number of sorted accesses under this distribution of aldgasithim
least(dm + 1)/2. Since there must be some database where the number of sorted accesses is at least
equal to the expected number of sorted accesses, the number of sorted accesses on this database is at
least(dm + 1)/2, and so the middleware cost gf on the resulting database is at le@st + 1)cg/2.
However, there is an algorithm i that makes! sorted accesses and — 1 rando(m ac)ce?ses, and so

dm+1)cg /2

has middleware cosics + (m — 1)cg. By choosingd sufficiently large, the rati%m can be

made as close as desired#g2. The theorem follows (in the deterministic case).
In the case of probabilistic algorithms that never makes a mistake, we conclude as in the conclusion
of the proof of Theorem 6.41

In the proof of Theorem 8.10, we showed that under the assumptions of Theorem 8.10 (the distinct-
ness property with min as the aggregation function), the optimality ratio of CA is atimasthe next
theorem gives a lower bound that is lineamin

Theorem 9.4: Let D be the class of all databases that satisfy the distinctness propertyA betthe

class of all algorithms that correctly find the tdpanswers for min for every database. There is no
deterministic algorithm (or even probabilistic algorithm that never makes a mistake) that is instance
optimal overA andD, with optimality ratio less tham /2.

Proof: The proof is obtained from the proof of Theorem 9.3 by modifying the construction slightly to
guarantee that we consider only databases that satisfy the distinctness property. The simple details are
left to the reader]

The next theorem gives a matching lower bound for the upper bound on the optimality ratio of NRA
given in the proof of Theorem 8.4, provided the aggregation function is strict.
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Theorem 9.5: Lett be an arbitrary monotone, strict aggregation function witharguments. LeD be

the class of all databases. Latbe the class of all algorithms that correctly find the topbjects fort

for every database and that do not make random accesses. There is no deterministic algorithm that is
instance optimal oveA andD, with optimality ratio less thamn.

Proof: Asin the proof of Theorem 9.1, we can assume without loss of generality that. We restrict
our attention to a subfamil®’ of D, by making use of a positive integer parameteiThe family D’
contains every database of the following form.

There are2m special objectd?, ..., T,,,1},...,T),. There is only one objed in the database
with a grade of 1 in every list, and it is one of tBe: special objects. Thus, the top objdtis one of
the special objects. For eagHet us refer to list as thechallenge listfor the special object$; and7?,.
For eachi, the top2m — 2 objects in listi are precisely the special objects exceptfpandT. Thus,
no special object is in the tdpn — 2 of its challenge list, but all of the other special objects are. The
top d objects in each list have grade 1, and every remaining object in each list has grade-0.1lf or
T = T/, thenT is in positiond in list i. Thus, the unique top object is at positidin some list. Note
that each special object is at or below positibim its challenge list, and exactly one special object (the
top object) is at positiod in its challenge list.

Let A be an arbitrary deterministic algorithm A& We now show, by an adversary argument, that
the adversary can forcd to have sorted access cost at least on some database Y. The idea is
that the adversary dynamically adjusts the database as each query comes.ity frosnch a way as to
evade allowingA to determine the top element until as late as possible.

The firstm—1 times that algorithrod reaches positiod in a list, the adversary force$to encounter
some object that is not special in positi@nThus, the first time that the adversary allows algoritdm
to encounter a special object after positibn — 2 is at positiond of the last listi that it accesses to
depthd. Only at that time does the adversary allow the algorithm to discover whi@h of 77 is the
top object.

Itis clear that the sorted access cost4obn this resulting database is at ledst. However, there is
an algorithm inA that makes at mostsorted accesses to one list &d — 2 sorted accesses to each of
the remaining lists, for a total of at mast+ (m — 1)(2m — 2) sorted accesses. and so has middleware
cost at mostd + (m — 1)(2m — 2))cg. By choosingd sufficiently large, the ratiqdﬂm_d{?(gsm_m(;s
can be made as close as desireghtol he theorem follows]

9.1 Summary of upper and lower bounds

Table 1 summarizes our upper and lower bounds. The rows correspond to the different restrictions on the
setA of algorithms, and the columns to the restrictions on th®saftdatabases and on the aggregation
functiont. Note that “SM” means “strictly monotone” and “SMV” means “strictly monotone in each
variable.” “Distinctness” means thBtis the collection of databases that satisfy the distinctness property.
Note also that = max {%’;, %}' For each such combination we provide our upper and lower bounds,
along with the theorem where these bounds are proven. The upper bounds are stated above the single
separating lines and the lower bounds are below them. (The upper bounds are stated explicitly after the

proofs of the referenced theorems.) The lower bounds may be deterministic or probabilistic.
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D | EveryD; Distinctness; Distinctness;
t || Everyt Ref. t SM Ref. t SMV or Ref.
A min
Every TA: cm? Thm6.5|| CA:4m +k; | Thm8.9
correctA No instance 5m for min | Thm 8.10
(wild optimal algorithm Lower bound: Lower bound:
guesses ok) possible Thm 6.4 mT‘Q‘é—I; Thm 9.2 5 Thm9.4
(certaint)
No wild TA: m + wz—’; Thm 6.1
guesses
Lower bound:
m+ mmes | Thm 9.1
(¢ strict)
No random || NRA: m Thm 8.5
access
Lower bound:
m Thm 9.5
(t strict)

Table 1: Summary of Upper and Lower Bounds
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10 Related Work

Nepal and Ramakrishna [NR99] define an algorithm that is equivalent to TA. Their notion of optimality
is weaker than ours. Further, they make an assumption that is essentially equivalent to the aggregation
function being the mir/

Guntzer, Balke, and Kiessling [GBKO0O] also define an algorithm that is equivalent to TA. They
call this algorithm “Quick-Combine (basic version)” to distinguish it from their algorithm of interest,
which they call “Quick-Combine”. The difference between these two algorithms is that Quick-Combine
provides a heuristic rule that determines which sortedilisto do the next sorted access on. The
intuitive idea is that they wish to speed up TA by taking advantage of skewed distributions of tftades.
They make no claims of optimality. Instead, they do extensive simulations to compare Quick-Combine
against FA (but they do not compare Quick-Combine against TA).

We feel that it is an interesting problem to find good heuristics as to which list should be accessed
next under sorted access. Such heuristics can potentially lead to some speedup of TA (but the number
of sorted accesses can decrease by a factor of at motie number of lists). Unfortunately, there
are several problems with the heuristic used by Quick-Combine. The first problem is that it involves
a partial derivative, which is not defined for certain aggregation functions (such as min). Even more
seriously, it is easy to find a family of examples that shows that as a result of using the heuristic, Quick-
Combine is not instance optimal. We note that heuristics that modify TA by deciding which list should
be accessed next under sorted access can be forced to be instance optimal simply by insuring that each
listis accessed under sorted access at least evaligps, for some constaint

In another paper, thtzer, Balke, and Kiessling [GBKO1] consider the situation where random
accesses are impossible. Once again, they define a basic algorithm, called “Stream-Combine (basic ver-
sion)” and a modified algorithm (“*Stream-Combine”) that incorporates a heuristic rule that tells which
sorted listL; to do a sorted access on next. Neither version of Stream-Combine is instance optimal.
The reason that the basic version of Stream-Combine is not instance optimal is that it considers only
upper bounds on overall grades of objects, unlike our algorithm NRA, which considers both upper and
lower bounds. They require that the tbbjects be given with their grades (whereas as we discussed,
we do not require the grades to be given in the case where random accesses are impossible). Their
algorithm cannot say that an object is in the fopnless that object has been seen in every sorted list.
Note that there are monotone aggregation functions (such as max, or more interestingly, median) where
it is possible to determine the overall grade of an object without knowing its grade in each sorted list.

Natsev et al. [NCS01] note that the scenario we have been studying can be thought of as taking
joins over sorted lists where the join is over a unique record ID present in all the sorted lists. They
generalize by considering arbitrary joins.

1"The assumption that Nepal and Ramakrishna make is that the aggregation furszttisiies thdower bounding prop-

erty. This property says that whenever there is sarsech that; < z; for everyj, thent(z1, ..., zm) < t(z), ..., 27,).
It is not hard to see that if an aggregation functibrsatisfies the lower bounding property, thef:,...,z») =
f(min{z1,...,zn}), wheref(z) = ¢(z, ..., z). Note in particular that under the natural assumptiontbat. . ., z) = z,
so thatf(x) = z, we havet(z1,...,2m) = min{z1,...,zm}.

18They make the claim that the optimality results proven in [Fag99] about FA do not hold for a skewed distribution of
grades, but only for a uniform distribution. This claim is incorrect: the only probabilistic assumption in [Fag99] is that the
orderings given by the sorted lists are probabilistically independent.
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11 Conclusions and Open Problems

We studied the elegant and remarkably simple algorithm TA, as well as algorithms for the scenario where
random access is impossible or expensive relative to sorted access (NRA and CA). To study these algo-
rithms, we introduced the instance optimality framework in the context of aggregation algorithms, and
provided both positive and negative results. This framework is appropriate for analyzing and comparing
the performance of algorithms, and provides a very strong notion of optimality. We also considered
approximation algorithms, and provided positive and negative results about instance optimality there as
well.

Open problems: Let us say that an algorithm tightly instance optimalover A andD) if it is
instance optimal (oveA andD) and if its optimality ratio is best possible. Thus, Corollary 8.6 says
that NRA is tightly instance optimal, and Corollary 6.2 says that in the case of no wild guesses and a
strict aggregation function, TA is tightly instance optimal. In the case of no wild guesses, for which
aggregation functions is TA tightly instance optimi@l¥hat are the possible optimality ratios? For the
other cases where we showed instance optimality of one of our algorithms (as shown in Table 1), is the
algorithm in question in fact tightly instance optimal? For cases where our algorithms might turn out
not to be tightly instance optimal, what other algorithms are tightly instance optimal?

There are several other interesting lines of investigation. One is to find other scenarios where in-
stance optimality can yield meaningful results. Another is to find other applications of our algorithms,
such as in information retrieval. We already mentioned (Remark 8.7 and Section 8.4) the issue of finding
efficient data structures for NRA and CA in cases of interest, and of comparing CA versus TA.
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