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Apology: this talk represent the type of

work of some statisticians in this area.

You might disagree with the basic tenets.

Still maybe there are some statistical

issues of interest.
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Israel STATISTICS ORDINANCE (1972)

No information collected for the purposes of

this Ordinance and derived from an individual re-

turn or the answer to a question... shall be so

published as to enable the identifica-

tion of the person to whom it relates.

.

.

.

A person who publishes or communicates

to any person any information which to his

knowledge has been disclosed in contra-

vention of this Ordinance shall be liable to

imprisonment for a term of three years.

http://www.cbs.gov.il/ordinanc.htm

brocard ignorantia legis non excusat

(=ignorance of the law is no excuse).
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Example of sensitive data :
NATIONAL HEALTH SURVEY 2003
Source: The Central Bureau of Statistics
and the Ministry of Health

The survey population includes all those
aged 21 and over in the permanent popu-
lation of Israel. 7,075 people were sampled for

the survey; of whom 4,859 were interviewed.
The data was collected in face-to-face in-
terviews... The survey questionnaire in-
cludes about 1,400! items in a number of
questionnaires ...

The dataset received in the ISDC includes
6 data files:
1. The core questionnaire 2. Mental and
emotional disorders : depression, affective
bi-polar disorder, manic episodes, dysthymia,
panic disorder, agoraphobia, generalized anx-
iety disorder, suicidality 3. Post-traumatic
stress disorder 4. Alcohol and drug ad-
diction 5. Use of medication and use of
health services 6. Mental diagnoses.

*Israel Social Sciences Data Center
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Confidentiality (privacy)

Many papers discuss protection methods

without a precise definition of privacy, e.g.,

Adam and Wortman (1989). Various types

of perturbations may bias the data, and

reduce its utility.

Formal definitions require additional struc-

ture such as a prior (Bayesian stucture).

It seems that a precise definition of privacy

leads to the conclusion that Noise should

be added to any data released (query).

Noise should be big enough to mask in-

dividuals (small queries) but small enough

not to distort totals (large queries).

Grunau Committee at the Israel Central

Bureau of Statistics: data should never be

perturbed by random noise.
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For large queries of size N , noise of size

<
√

N is insignificant, but significantly per-

turbs small queries.

Provides protection against a scenario of

differencing (tracking), for example.

What about collusion and averaging over

noise?

When the data is a (sparse) sample, nat-

ural queries may be relatively small.
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Main Scenario of Bureaus of Statistics:

no queries (but this is rapidly changing),

single file (often a sample) to be released.

To protect data, variables are coarsened

(rounded), and Microdata becomes a Fre-

quency Table. (Coarsening may also bias

the data.)

Rules for coarsening: no cells smaller than

3 ... This is query restriction.

The 3-rule provides protection against cer-

tain scenarios, but may reduce utility of

the data ”too much”.

Whoever wishes to keep a secret must hide

the fact that he possesses one –Johann

Wolfgang von Goethe
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This talk: A sample frequency table is to

be released by agency. Population table

unknown or partially known to the agency.

Disclosure Risk arises from small popula-

tion cells which are represented in the sam-

ple and in particular population uniques

which are also in the sample (hence sample

uniques).

Agency wants to assess risk under relevant

scenarios and modify table if risk is high.
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Sample (size n): f = {fk : k = 1, . . . , K}
Population (size N): F = {Fk : k = 1, . . . , K},
tables with K cells, k = (k1, . . . , km),

m-way table.

Agency intends to publish the sample.

“Intruder” (adversary, snooper): tries to

match individuals in sample with popula-

tion on the basis of variables with which

he is familiar (Key Variables) and then infer

on other variables in the table.

Agency: on the basis of the sample and

(usually) partial knowledge on the popu-

lation, agency estimates Disclosure Risk,

that is, some measure of the intruder’s

chance of success.
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Statistical models for contingency tables:

F = {Fk : k = 1, . . . , K}, a parameter.

f = {fk : k = 1, . . . , K} data.

n/N = π = sampling fraction. ρk = Fk/N

{fk}|{Fk} ∼MultinomialK(n, {ρk}) , or fk ∼ Poisson(nρk).

Models: attributes are independent

(ρk =
∏m

i=1 p
[i]
ki

), or conditionally indepen-

dent ...

Efk = nρk = n exp(x′k θ); for example

= n exp(
∑m

i=1 θ
[i]
ki

) = n
∏m

i=1 p
[i]
ki

means independent attributes.

(θ = {θ[i]
j }, 1 ≤ i, j ≤ m, xk,i = δi,ki

).

Two-way interactions: Efk = exp(
∑m

i,j=1 θ
[i,j]
ki,kj

).

Statistics: estimate parameters (MLE), dis-

tribution of estimates (confidence inter-

vals) for large n, test hypotheses (e.g.,

that attributes are independent).

Is this relevant to SDC?
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Risk Measures: two simple examples

τ1 =
∑

I(fk = 1, Fk = 1)

τ2 =
∑

I(fk = 1)1/Fk

=the expected number of correct matches

of sample uniques. Clearly τ1 < τ2.

May want normalize by size of file, or its

information value?

In the statistics literature, 6 ∃ formal de-

finition of safe file.
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Other Risk measures:

θ1 =
∑

k I(fk = 1, Fk = 1)/
∑

k I(fk = 1)

= P (pu | su) = probability that a randomly

chosen sample unique is a population unique.

θ2 =
∑K

k=1 I(fk = 1)F−1
k /

∑K
k=1 I(fk = 1)

=average probability of a correct match.

Skinner and Elliot (2002) :

θSE =
K∑

k=1

I(fk = 1)/
K∑

k=1

FkI(fk = 1) .

Probability of a correct match if intruder

chooses at random an individual from all

population cells which are sample uniques

and matches him to the sample unique.
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The “parameters” τi and θi are of

the form
∑

k U(fk, Fk), or changing nota-

tion
∑

i U(Xi, θi), Robbins and Zhang (2000),

Zhang (2005).

Estimation of risk measures are based on

the conditional distribution of F|f .

Estimates:

τ̂1 =
∑

I(fk = 1)P̂ (Fk = 1|fk = 1)

τ̂2 =
∑

I(fk = 1)Ê[1/Fk|fk = 1]

where P̂ and Ê are estimates, efficient

under certain conditions, Zhang (2005).
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Statistical models for disclosure risk

Common (natural?) Assumptions

Fk|γk ∼ Poisson(Nγk) ind.
∑

γk = 1

fk|Fk ∼ Bin(Fk, πk), Bernoulli or Poisson sampling.

⇓
fk ∼ Poisson(Nγkπk). observed

⇓
Fk | fk ∼ fk+Poisson(λk = Nγk(1−πk)) (*)

In particular

Fk | fk = 1 ∼ 1 + Poisson(λk)

ADD assumption

γk ∼ Gamma(α, β) ind

⇓
fk ∼ NB(α, pk = 1

1+Nπkβ
) observed (♣)

Fk | fk ∼ fk + NB(α + fk,
Nπk+1/β
N+1/β

) (**)

As α → 0 and β → ∞ we obtain the µ-

ARGUS assumption Fk | fk ∼ fk+NB(fk, πk).

As α → ∞ and αβ2 → 0 we obtain the

above Poisson (*).
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Estimation:

(**) ARGUS (Benedetti, Capobianchi and

Franconi 1998): Fk | fk ∼ fk + NB(fk, πk).

Let wi = ”sampling weight” of individual i,

obtained from design or post-stratification.

π̂k = fk/F̂k, F̂k =
∑

i∈sample cell k wi .

fk = 0 ⇒ F̂k = 0,
∑

k F̂k =
∑

i wi = N

⇒ π̂k 6= 0 are overestimated ⇒ Risk is un-

derestimated.

Monotonicity: if we replace fk = 0 by

some ε, Risk estimates increase to the cor-

rect level in ε, but how do we estimate ε?

(*) Poisson Log-linear Models Skinner

and Holmes (1998), Elamir and Skinner

(2005), Skinner and Shlomo (2005):

Efk = exp{(x′kβ}.

“Monotonicity” in the size of the model.

Saturated (“big” model) ⇒ Risk under-

estimation, Independence (“small” model)

⇒ Risk overestimation.
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Log linear models use a neighborhood of

cells of cell k to infer on cell k (γk).

Independence Neighborhoods, k = (i, j):

i

j

Local smoothers for large sparse (ordinal)

tables, e.g., Bishop-Fienberg-Holland (1975),

Simonoff(1998±): use local neighborhoods

to fit a simple smooth function to fk or to

estimate γk by some model after smooth-

ing, [and then (Abberger, 2002) test for

Independence, etc.]
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Proposed Neighborhoods (work with Na-

talie Shlomo):

k1

k2

Fix cell k and let k′ ∈ M , neighborhood of cell k.

fk′ ∼ NB(αk, pk = 1
1+Nπkβk

) (♣)

Likelihood of data in M of cell k: L =
∏

k′∈M P (fk′).
Assume

Efk′ = θ0+θ1(k
′
1−k1)+ϑ1(k

′
2−k2)+ . . .+

θt(k′1 − k1)
t + ϑt(k′2 − k2)

t.

Compute MLE, and estimate Efk by exp(θ̂0).
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Example 1 Population : extract from the

1995 Israeli Census. N = 37,586, n =

3,759, K = 11,648. Attributes (with num-

ber of levels in parentheses): Sex(2) * Age

Groups (32) * Income Groups(14) * Years

of Study (13). Sex fixed in neighborhoods.

M = {k′ : k′1 = k1, max
i≥2

|k′i − ki| ≤ c},

with c = 2, and since we vary three vari-

ables, each over a range of five values, we

have |M | = 125.

Model τ1 τ2
True Values 187 452.0
Argus 137.2 346.4
Log Linear Model:
Independence 217.3 518.0
Log Linear Model:
2-Way Interactions 167.2 432.8
NB Smoothing t = 2 |M | = 125 181.9 461.3
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Final comments:

The argument on Risk definitions and mea-

sures will go on.

In the sample-population setup, Risk mea-

sure estimation is a non standard statisti-

cal question, requiring suitable methods.

21


