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Example: 2-way table of size 2 X 3:

A k-way table is an  m1 X . . . X mk array of nonnegative integers.
A margin of a table is the sum of all entries in some flat
of the table,  so can be a line-sum, plane-sum, and so on.
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Example: 2-way table of size 2 X 3 with line-sums:

A k-way table is an  m1 X . . . X mk array of nonnegative integers.
A margin of a table is the sum of all entries in some flat
of the table,  so can be a line-sum, plane-sum, and so on.
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Example: 2-way table of size 2 X 3 with line-sums:

A k-way table is an  m1 X . . . X mk array of nonnegative integers.
A margin of a table is the sum of all entries in some flat
of the table,  so can be a line-sum, plane-sum, and so on.
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Example: 2-way table of size 2 X 3 with line-sums:

A k-way table is an  m1 X . . . X mk array of nonnegative integers.
A margin of a table is the sum of all entries in some flat
of the table,  so can be a line-sum, plane-sum, and so on.
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Example: 3-way table of size 3 X 4 X 6:

A k-way table is an  m1 X . . . X mk array of nonnegative integers.
A margin of a table is the sum of all entries in some flat
of the table,  so can be a line-sum, plane-sum, and so on.
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Example: 3-way table of size 3 X 4 X 6 with a plane-sum:

0
3

5
03 32
0

1
4

1
2

A k-way table is an  m1 X . . . X mk array of nonnegative integers.
A margin of a table is the sum of all entries in some flat
of the table,  so can be a line-sum, plane-sum, and so on.
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Example: 3-way table of size 3 X 4 X 6 with a line-sum:

A k-way table is an  m1 X . . . X mk array of nonnegative integers.
A margin of a table is the sum of all entries in some flat
of the table,  so can be a line-sum, plane-sum, and so on.
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A multiway (transportation) polytope is the set of all
nonnegative m1 X . . . X mk arrays with some margins fixed.
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A multiway (transportation) polytope is the set of all
nonnegative m1 X . . . X mk arrays with some margins fixed.

The m1 X . . . X mk tables with some margins fixed are the 
integer points in the corresponding multiway polytope. 

Universality Theorem:Universality Theorem: Any rational polytope
is an r X c X 3 line-sum polytope.

Two contrasting Statements:
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A multiway (transportation) polytope is the set of all
nonnegative m1 X . . . X mk arrays with some margins fixed.

The m1 X . . . X mk tables with some margins fixed are the 
integer points in the corresponding multiway polytope. 

Optimization Theorem:Optimization Theorem: (Convex) Integer Programming over 
m1 X . . . X mk X n  polytopes is solvable in polynomial time.

Universality Theorem:Universality Theorem: Any rational polytope
is an r X c X 3 line-sum polytope.
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Two contrasting Statements:



Some Formalism: Hierarchical Margins
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Universality and 
its Consequences



Universality Theorem for Short 3-Way Polytopes
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Universality Theorem for Short 3-Way Polytopes

Any linear/integer program is polytime representable
as an r x c x 3 multiway program. 
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Implications on the existence of a strongly polynomial time
algorithm for linear programming ?
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Universality Theorem for Short 3-Way Polytopes

Any linear/integer program is polytime representable
as an r x c x 3 multiway program. 

Optimization over r x c x 3 tables is NP-hard.

Implications on the existence of a strongly polynomial time
algorithm for linear programming ?

Implications on the rational version of Hilbert’s 10th problem on  
the decidability of the realization problem for polytopes ? 



Agencies such as the census bureau and center for health statistics
allow public web-access to information on their data bases,  

but are concerned about confidentiality of individuals. 

Table Security (confidential data disclosure)
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allow public web-access to information on their data bases,  
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Agencies such as the census bureau and center for health statistics
allow public web-access to information on their data bases,  

but are concerned about confidentiality of individuals. 

Common strategy: release margins but not table entries.

Question: how does the set of values that can occur in a
specific entry in all tables with the released margins look like ?

Table Security (confidential data disclosure)
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2 1 0
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0 1 2

4
3

2 3 2

Example: the values 0, 2 occur in an entry:

Fact: for k-way tables with fixed hyperplane-sums,
the set of values in an entry is always an interval.
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2 2 0 
0 1 2

4
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2 3 2

1 2 1 
1 1 1

4
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2 3 2

Therefore, also the value 1 occurs in that entry:

Example: the values 0, 2 occur in an entry:

Fact: for k-way tables with fixed hyperplane-sums,
the set of values in an entry is always an interval.
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Theorem:Theorem: For every finite set S of nonnegative integers, 
there are r, c and line-sums for r X c X 3 tables such 
that the set of values occurring in a fixed entry in all 
possible tables with these line-sums is precisely S.

In contrast we have the following universality:
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In contrast we have the following universality:

Theorem:Theorem: For every finite set S of nonnegative integers, 
there are r, c and line-sums for r X c X 3 tables such 
that the set of values occurring in a fixed entry in all 
possible tables with these line-sums is precisely S.
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Consider the following line-sums for 6 X 4 X 3 tables:
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Consider the 
designated entry:

Consider the following line-sums for 6 X 4 X 3 tables:

Example: set of entry values with a gap
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The only values occurring in that entry in all 
possible tables with these line-sums are 0, 2
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Consider the 
designated entry:

Consider the following line-sums for 6 X 4 X 3 tables:

Example: set of entry values with a gap
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So common practice is to compute by linear programming
lower bound LL and upper bound UU on the possible values of 
an entry and use the gap U-L as a measure of its security.

Shmuel Onn

Certain perception: if the set of values that can occur in a
specific entry in all tables with the released margins contains
many values then the entry is secure; otherwise it is vulnerable.



LP-Relaxation is Arbitrarily Bad
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Hardness of Entry Uniqueness
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Universality Theorem for Universality Theorem for ToricToric Ideals:Ideals: Every toric ideal is
embeddable in a toric ideal of r X c X 3 tables with fixed line-sums. 

More Universality Consequences
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Universality Theorem for Universality Theorem for ToricToric Ideals:Ideals: Every toric ideal is
embeddable in a toric ideal of r X c X 3 tables with fixed line-sums. 

Solution of the Solution of the VlachVlach Problems:Problems: Many problems of the corner 
stone paper by M. Vlach on transportation polytopes resolved.
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Universality Theorem for Universality Theorem for ToricToric Ideals:Ideals: Every toric ideal is
embeddable in a toric ideal of r X c X 3 tables with fixed line-sums. 

Solution of the Solution of the VlachVlach Problems:Problems: Many problems of the corner 
stone paper by M. Vlach on transportation polytopes resolved.

Universality Theorem for Bitransportation Polytopes:

More Universality Consequences
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A Markov basis is a set of arrays that enables a walk between 
any two tables with the same margins while staying nonnegative.
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Table Sampling: Markov Bases

A Markov basis is a set of arrays that enables a walk between 
any two tables with the same margins while staying nonnegative.

It enables sampling the (huge) set of tables with fixed margins.

0 0 0 

0 1 -1 

0 -1 1 

0 0 0 

1 0 -1 

-1 0 1 

1 0 -1 

-1 0 1 

0 0 0 

1 -1 0 

-1 1 0 

0 0 0 . . . 

Example: Markov bases of rxc tables with fixed line-sums are 2x2 minors:
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So Markov bases of rxc tables with fixed line-sums are simple:
they have constant support 4 and constant degree 1 regardless of r,c.
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Table Sampling: Markov Bases

A Markov basis is a set of arrays that enables a walk between 
any two tables with the same margins while staying nonnegative.

It enables sampling the (huge) set of tables with fixed margins.

0 0 0 

0 1 -1 

0 -1 1 

0 0 0 

1 0 -1 

-1 0 1 

1 0 -1 

-1 0 1 

0 0 0 

1 -1 0 

-1 1 0 

0 0 0 . . . 

So Markov bases of rxc tables with fixed line-sums are simple:
they have constant support 4 and constant degree 1 regardless of r,c.

Same holds for d-tables with fixed hyperplane-sums.

Example: Markov bases of rxc tables with fixed line-sums are 2x2 minors:
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Universality Theorem for Markov Bases
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Markov bases of 3-tables with fixed line-sums are much more complicated.
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Markov bases of 3-tables with fixed line-sums are much more complicated.
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Universality Theorem for Markov Bases

Nice result (Aoki-Takemura, Santos-Sturmfels): for tables of size rXcXn, 
with two sides r,c fixed and one side n variable, there is an upper bound
u(r,c) on degree and support of Markov base elements, regardless of n.



Markov bases of 3-tables with fixed line-sums are much more complicated.

In contrast, we show the following universality of tables of size rXcX3, 
with one side 3 fixed and smallest possible and two sides r,c variable.

Nice result (Aoki-Takemura, Santos-Sturmfels): for tables of size rXcXn, 
with two sides r,c fixed and one side n variable, there is an upper bound
u(r,c) on degree and support of Markov base elements, regardless of n.
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Markov bases of 3-tables with fixed line-sums are much more complicated.

In contrast, we show the following universality of tables of size rXcX3, 
with one side 3 fixed and smallest possible and two sides r,c variable.

Theorem:Theorem: For every finite set V of integer vectors, there 
are r, c such that any Markov basis for r X c X 3 tables with 
fixed line-sums, restricted to some entries, contains V. 
So these Markov bases have unbounded degree and support.
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Universality Theorem for Markov Bases

Nice result (Aoki-Takemura, Santos-Sturmfels): for tables of size rXcXn, 
with two sides r,c fixed and one side n variable, there is an upper bound
u(r,c) on degree and support of Markov base elements, regardless of n.
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The equations forcing the same margins on tables, such as line-sums, 
plane-sums, and so on, lift to a corresponding toric ideal generated 
by all binomials coming from pairs of tables with the same margins:
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We have the following universality theorem for toric ideals.

The equations forcing the same margins on tables, such as line-sums, 
plane-sums, and so on, lift to a corresponding toric ideal generated 
by all binomials coming from pairs of tables with the same margins:

Fundamental result (Diaconis-Sturmfels): the binomials xu-xv generate a
toric ideal if and only if the corresponding arrays u-v form a Markov basis.
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We have the following universality theorem for toric ideals.

The equations forcing the same margins on tables, such as line-sums, 
plane-sums, and so on, lift to a corresponding toric ideal generated 
by all binomials coming from pairs of tables with the same margins:

Fundamental result (Diaconis-Sturmfels): the binomials xu-xv generate a
toric ideal if and only if the corresponding arrays u-v form a Markov basis.

Theorem 3:Theorem 3: For every toric ideal I, there are r, c such that any 
generating set of the ideal of r X c X 3 tables with fixed line-sums, 
restricted to some variables, contains a generating set of I.

Toric ideals and Tables
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A glimpse at step 3 of the proof 
of the Universality Theorem:
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The Convex Integer Programming Problem
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We consider the following convex integer programming problem:
max {c(w1x, . . ., wdx) : x ≥ 0,  Ax = b,  x integer}   

where w1, . . ., wd  are linear forms and c is a convex functional on Rd.
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The problem can be interpreted as multiobjective integer programming:
given d linear criteria, the goal is to maximize their “convex balancing”.
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We consider the following convex integer programming problem:
max {c(w1x, . . ., wdx) : x ≥ 0,  Ax = b,  x integer}   

Nonetheless, as a consequence of our more general theorem below, we    
obtain the following Optimization Theorem for long multiway polytopes:

where w1, . . ., wd  are linear forms and c is a convex functional on Rd.

The problem can be interpreted as multiobjective integer programming:
given d linear criteria, the goal is to maximize their “convex balancing”.

Theorem:Theorem: Fix d, m1 , . . . , mk. Then convex integer programming over any
m1 X . . . X mk X n  multiway polytope is solvable in polynomial oracle-time 
for any margins, w1, . . ., wd, and convex c presented by comparison oracle.

It is generally intractable even for fixed d=1, since standard linear 
integer programming is the special case with c the identity on R. 

Shmuel Onn

The Convex Integer Programming Problem
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N-Fold Systems

Let A be (r+s) x t matrix with submatrices A1, A2 of first r and last s rows. 
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N-Fold Systems

Define the n-fold product of A to be the following (r+ns) x nt matrix,

Let A be (r+s) x t matrix with submatrices A1, A2 of first r and last s rows. 

A(n) =

n
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We establish the following theorem.
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We establish the following theorem.

N-Fold Systems

Define the n-fold product of A to be the following (r+ns) x nt matrix,

Theorem:Theorem: For any fixed d and (r+s) x t matrix A,  there is a polynomial
oracle-time algorithm that, given n, b, w1, . . ., wd, and convex c presented
by comparison oracle, solves the convex integer programming problem

max { c(w1x, . . ., wdx)  :  A(n)x = b,  x in Nnt }   

Let A be (r+s) x t matrix with submatrices A1, A2 of first r and last s rows. 

A(n) =

n
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The margin equations for any m1 X . . . X mk X n polytope form an n-fold
system defined by a suitable matrix A, where A1 controls the equations 
of margins involving summation over layers, whereas A2 controls the 
equations of margins involving summation within a single layer at a time.

Efficient Treatment of Long Multiway Tables



Efficient Treatment of Long Multiway Tables

Shmuel Onn

The margin equations for any m1 X . . . X mk X n polytope form an n-fold
system defined by a suitable matrix A, where A1 controls the equations 
of margins involving summation over layers, whereas A2 controls the 
equations of margins involving summation within a single layer at a time.

Example:
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Proof Ingredient 1:  Edge-Directions

Exploit edge symmetry of the integer hull

P = conv {x : x ≥ 0,  Ax = b,  x integer}     Rn⊆
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Proof Ingredient 1:  Edge-Directions

Exploit edge symmetry of the integer hull

Lemma 1: Lemma 1: Fix Fix dd.. Then, given a set n, given a set E covering all covering all edge-directions of of P,,

the the convex integer programming problem over P is reducible to solving 
polynomially many linear integer programming counterparts over P.

P = conv {x : x ≥ 0,  Ax = b,  x integer}     Rn⊆



Prop. 1: If E = {e1, …, em} covers all edge-directions of a polytope P

then the zonotope Z = [-1, 1] e1 + … + [-1, 1] em is a refinement of P.

Zonotope Refinement and Construction
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Zonotope Refinement and Construction

Prop. 1: If E = {e1, …, em} covers all edge-directions of a polytope P

then the zonotope Z = [-1, 1] e1 + … + [-1, 1] em is a refinement of P.
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Prop. 2: In Rd, the zonotope Z can be constructed from E = {e1, …, em} 
along with a vector ai in the cone of every vertex in O(md-1) operations.
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then the zonotope Z = [-1, 1] e1 + … + [-1, 1] em is a refinement of P.
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The Algorithm Establishing Lemma 1
Input: Polytope P in Rn given via A,b, set E covering its edge-directions,
d x n matrix w, and convex functional c on Rd given by comparison oracle. 
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1. Construct the zonotope Z generated by the
projection w●E, and find ai in each normal cone
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The Algorithm Establishing Lemma 1
Input: Polytope P in Rn given via A,b, set E covering its edge-directions,
d x n matrix w, and convex functional c on Rd given by comparison oracle. 

Shmuel Onn



Rn

Rd

w

aa44

aa33

aa55

aa11

aa66
Z

aa22

P

bbii=wT●aaii

1. Construct the zonotope Z generated by the
projection w●E, and find ai in each normal cone

2. Lift each ai in Rd to bi = wT● ai in Rn and solve 
linear integer programming with objective bi over P

The Algorithm Establishing Lemma 1
Input: Polytope P in Rn given via A,b, set E covering its edge-directions,
d x n matrix w, and convex functional c on Rd given by comparison oracle. 

aaiiw●P
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The Algorithm Establishing Lemma 1
Input: Polytope P in Rn given via A,b, set E covering its edge-directions,
d x n matrix w, and convex functional c on Rd given by comparison oracle. 

1. Construct the zonotope Z generated by the
projection w●E, and find ai in each normal cone

2. Lift each ai in Rd to bi = wT● ai in Rn and solve 
linear integer programming with objective bi over P

3. Obtain the vertex vi of P
and the vertex w●vi of w●P
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Rd

w
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aa33

aa55

aa11

aa66
Z

aa22

P

bbii=wT●aaii

vi

3. Obtain the vertex vi of P
and the vertex w●vi of w●P

The Algorithm Establishing Lemma 1
Input: Polytope P in Rn given via A,b, set E covering its edge-directions,
d x n matrix w, and convex functional c on Rd given by comparison oracle. 

1. Construct the zonotope Z generated by the
projection w●E, and find ai in each normal cone

2. Lift each ai in Rd to bi = wT● ai in Rn and solve 
linear integer programming with objective bi over P

4. Output any vi
attaining maximum
value c(w● vi) using
comparison oracle

w●vi

w●P aaii
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Proof Ingredient 2: Graver Bases 
The Graver basis of an integer matrix A is the set of conformal-minimal
nonzero integer dependencies on A, i.e. vectors with Av = 0. For instance, 
the Graver basis of A = [1 2 1]  is  ± { [2 -1 0], [0 -1 2], [1 0 -1], [1 -1 1] } .
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(A vector u is conformal to vector v if |ui| ≤ |vi| and uivi ≥ 0 for all i).

The Graver basis of an integer matrix A is the set of conformal-minimal
nonzero integer dependencies on A, i.e. vectors with Av = 0. For instance, 
the Graver basis of A = [1 2 1]  is  ± { [2 -1 0], [0 -1 2], [1 0 -1], [1 -1 1] } .
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Proof Ingredient 2: Graver Bases 

Lemma 2: The Graver basis of A allows to augment in polynomial time
any feasible solution to an optimal solution of any linear integer program

(A vector u is conformal to vector v if |ui| ≤ |vi| and uivi ≥ 0 for all i).

The Graver basis of an integer matrix A is the set of conformal-minimal
nonzero integer dependencies on A, i.e. vectors with Av = 0. For instance, 
the Graver basis of A = [1 2 1]  is  ± { [2 -1 0], [0 -1 2], [1 0 -1], [1 -1 1] } .

max { wx : x ≥ 0,  Ax = b,  x integer}  
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any feasible solution to an optimal solution of any linear integer program

(A vector u is conformal to vector v if |ui| ≤ |vi| and uivi ≥ 0 for all i).

The Graver basis of an integer matrix A is the set of conformal-minimal
nonzero integer dependencies on A, i.e. vectors with Av = 0. For instance, 
the Graver basis of A = [1 2 1]  is  ± { [2 -1 0], [0 -1 2], [1 0 -1], [1 -1 1] } .

max { wx : x ≥ 0,  Ax = b,  x integer}  

Proof: use equivalence of directed augmentation and optimization.
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Lemma 2: The Graver basis of A allows to augment in polynomial time
any feasible solution to an optimal solution of any linear integer program

(A vector u is conformal to vector v if |ui| ≤ |vi| and uivi ≥ 0 for all i).

The Graver basis of an integer matrix A is the set of conformal-minimal
nonzero integer dependencies on A, i.e. vectors with Av = 0. For instance, 
the Graver basis of A = [1 2 1]  is  ± { [2 -1 0], [0 -1 2], [1 0 -1], [1 -1 1] } .

max { wx : x ≥ 0,  Ax = b,  x integer}  

Lemma 3: The Graver basis of A covers all edge-directions of any fiber
P = conv {x : x ≥ 0,  Ax = b,  x integer}   

Proof: use equivalence of directed augmentation and optimization.
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Lemma 2: The Graver basis of A allows to augment in polynomial time
any feasible solution to an optimal solution of any linear integer program

(A vector u is conformal to vector v if |ui| ≤ |vi| and uivi ≥ 0 for all i).

The Graver basis of an integer matrix A is the set of conformal-minimal
nonzero integer dependencies on A, i.e. vectors with Av = 0. For instance, 
the Graver basis of A = [1 2 1]  is  ± { [2 -1 0], [0 -1 2], [1 0 -1], [1 -1 1] } .

max { wx : x ≥ 0,  Ax = b,  x integer}  

Lemma 3: The Graver basis of A covers all edge-directions of any fiber
P = conv {x : x ≥ 0,  Ax = b,  x integer}   

Lemma 4: The Graver basis of the product A(n) is polytime computable. 

Proof: use equivalence of directed augmentation and optimization.
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Proof Ingredient 2: Graver Bases 

Lemma 2: The Graver basis of A allows to augment in polynomial time
any feasible solution to an optimal solution of any linear integer program

(A vector u is conformal to vector v if |ui| ≤ |vi| and uivi ≥ 0 for all i).

The Graver basis of an integer matrix A is the set of conformal-minimal
nonzero integer dependencies on A, i.e. vectors with Av = 0. For instance, 
the Graver basis of A = [1 2 1]  is  ± { [2 -1 0], [0 -1 2], [1 0 -1], [1 -1 1] } .

max { wx : x ≥ 0,  Ax = b,  x integer}  

Lemma 3: The Graver basis of A covers all edge-directions of any fiber
P = conv {x : x ≥ 0,  Ax = b,  x integer}   

Lemma 4: The Graver basis of the product A(n) is polytime computable. 

Proof: use equivalence of directed augmentation and optimization.

Proof: use Graver basis stabilization.
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Combining Lemmas 1 – 4 plus some additional components, 
we obtain the aforementioned theorem on n-fold systems:
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Combining Lemmas 1 – 4 plus some additional components, 
we obtain the aforementioned theorem on n-fold systems:

Theorem:Theorem: For any fixed d and (r+s) x t matrix A,  there is a polynomial
oracle-time algorithm that, given n, b, w1, . . ., wd, and convex c presented
by comparison oracle, solves the convex integer programming problem

max { c(w1x, . . ., wdx)  :  A(n)x = b,  x in Nnt }   
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Application 1: Multiway Tables
The margin equations for any m1 X . . . X mk X n polytope form an n-fold
system defined by a suitable matrix A, where A1 controls the equations 
of margins involving summation over layers, whereas A2 controls the 
equations of margins involving summation within a single layer at a time.
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Application 1: Multiway Tables

Theorem:Theorem: Fix d, m1 , . . . , mk. Then convex integer programming over any
m1 X . . . X mk X n  multiway polytope is solvable in polynomial oracle-time 
for any margins, w1, . . ., wd, and convex c presented by comparison oracle.

We deduce the optimization theorem for long k-way polytopes:

The margin equations for any m1 X . . . X mk X n polytope form an n-fold
system defined by a suitable matrix A, where A1 controls the equations 
of margins involving summation over layers, whereas A2 controls the 
equations of margins involving summation within a single layer at a time.
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Application 1: Multiway Tables

Theorem:Theorem: Fix d, m1 , . . . , mk. Then convex integer programming over any
m1 X . . . X mk X n  multiway polytope is solvable in polynomial oracle-time 
for any margins, w1, . . ., wd, and convex c presented by comparison oracle.

Recall that in contrast, short 3-way polytopes are universal:

Theorem:Theorem: Any rational polytope is an r X c X 3 line-sum 3-way polytope.

We deduce the optimization theorem for long k-way polytopes:

The margin equations for any m1 X . . . X mk X n polytope form an n-fold
system defined by a suitable matrix A, where A1 controls the equations 
of margins involving summation over layers, whereas A2 controls the 
equations of margins involving summation within a single layer at a time.
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Application 2: Bin Packing

Pack many items of several types into bins to maximize utility.
More precisely, there are t types of items, nj items of type j   
of weight vj each, and n bins with weight capacity uk for bin k.  
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Pack many items of several types into bins to maximize utility.
More precisely, there are t types of items, nj items of type j   
of weight vj each, and n bins with weight capacity uk for bin k.  

In the linear problem, there is a utility matrix w with wj,k the utility 
of packing one item of type j in bin k.  In the convex problem, there 
are d utility matrices and total utility is a suitable convex balancing. 
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Pack many items of several types into bins to maximize utility.
More precisely, there are t types of items, nj items of type j   
of weight vj each, and n bins with weight capacity uk for bin k.  

In the linear problem, there is a utility matrix w with wj,k the utility 
of packing one item of type j in bin k.  In the convex problem, there 
are d utility matrices and total utility is a suitable convex balancing. 

This can be shown to be an n-fold system defined by a (t+1) x t matrix A, 
where A1 is the t x t identity matrix and A2 =(v1, . . . ,vt).  So we deduce:
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Application 2: Bin Packing

Theorem:Theorem: Fix d, t, v1 , . . . , vt. Then convex bin packing is polytime solvable. 

Pack many items of several types into bins to maximize utility.
More precisely, there are t types of items, nj items of type j   
of weight vj each, and n bins with weight capacity uk for bin k.  

In the linear problem, there is a utility matrix w with wj,k the utility 
of packing one item of type j in bin k.  In the convex problem, there 
are d utility matrices and total utility is a suitable convex balancing. 

This can be shown to be an n-fold system defined by a (t+1) x t matrix A, 
where A1 is the t x t identity matrix and A2 =(v1, . . . ,vt).  So we deduce:
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Partition n items evaluated by k criteria to p players, to maximize social
utility which is convex on the sums of values of items each player gets.  
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Partition n items evaluated by k criteria to p players, to maximize social
utility which is convex on the sums of values of items each player gets.  

Example: Consider n=6 items, k=2 criteria, p=3 players
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Partition n items evaluated by k criteria to p players, to maximize social
utility which is convex on the sums of values of items each player gets.  

Example: Consider n=6 items, k=2 criteria, p=3 players

The criteria -item matrix is: items

criteria

Application 3: Partitioning Problems
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Partition n items evaluated by k criteria to p players, to maximize social
utility which is convex on the sums of values of items each player gets.  

Example: Consider n=6 items, k=2 criteria, p=3 players

The criteria -item matrix is: items

criteria

Each player should get 2 items

Application 3: Partitioning Problems
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Partition n items evaluated by k criteria to p players, to maximize social
utility which is convex on the sums of values of items each player gets.  

The convex functional on k x p matrices is c(X) = ∑ Xij
3

Example: Consider n=6 items, k=2 criteria, p=3 players

The criteria -item matrix is: items

criteria

Each player should get 2 items

Application 3: Partitioning Problems
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Partition n items evaluated by k criteria to p players, to maximize social
utility which is convex on the sums of values of items each player gets.  

The convex functional on k x p matrices is c(X) = ∑ Xij
3

Example: Consider n=6 items, k=2 criteria, p=3 players

The criteria -item matrix is: items

criteria

The matrix of a partition such as π = (34, 56, 12) is:
players

criteria

Each player should get 2 items

Application 3: Partitioning Problems
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Partition n items evaluated by k criteria to p players, to maximize social
utility which is convex on the sums of values of items each player gets.  

The convex functional on k x p matrices is c(X) = ∑ Xij
3

Example: Consider n=6 items, k=2 criteria, p=3 players

The criteria -item matrix is: items

criteria

The social utility of π is c(Aπ) = 244432

The matrix of a partition such as π = (34, 56, 12) is:
players

criteria

Each player should get 2 items

Application 3: Partitioning Problems

Shmuel Onn



All 90 partitions π
of items {1, …,6} To 
3 players where each 
player gets 2 items
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All 90 partitions π
of items {1, …,6} To 
3 players where each 
player gets 2 items

π = (34, 56, 12)
The optimal partition is:
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All 90 partitions π
of items {1, …,6} To 
3 players where each 
player gets 2 items

π = (34, 56, 12)

players

criteria

c(Aπ) = 244432

The optimal partition is:

with optimal utility:
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This can be shown to be an n-fold system defined by a (p+1) x p matrix A, 
where A1 is the p x p identity matrix and A2 =(1, . . . ,1).   So we deduce:

Shmuel Onn



This can be shown to be an n-fold system defined by a (p+1) x p matrix A, 
where A1 is the p x p identity matrix and A2 =(1, . . . ,1).   So we deduce:

Theorem:Theorem: Partitioning problems with fixed p and k are polytime solvable. 
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Most relevant:
- Convex integer programming (in preparation)

- N-fold integer programming (submitted)

- All linear and integer programs are 
slim 3-way transportation  programs (SIAM J. Opt., to appear)

Also related:
- Markov bases of three-way tables are 

arbitrarily complicated (J. Symb. Comp. 2006)

- Convex combinatorial optimization (Disc. Comp. Geom. 2004)

- The Hilbert zonotope and a polynomial time algorithm 
for universal Gröbner bases (Adv. App. Math. 2003) 
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