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Multiway Tables and Margins

A k-way table isan mq x - - - x m array of nonnegative integers.
A margin of a table is the sum of all entries in some flat
of the table, so can be a line-sum, plane-sum, and so on.

Example: 2-way table of size 2 x 3:
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Multiway Tables and Margins

A k-way table isan mq x - - - x m array of nonnegative integers.
A margin of a table is the sum of all entries in some flat
of the table, so can be a line-sum, plane-sum, and so on.

Example: 2-way table of size 2 x 3 with line-sums:

O 12| 3
2120
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Multiway Tables and Margins

A k-way table isan mq x - - - x m array of nonnegative integers.
A margin of a table is the sum of all entries in some flat
of the table, so can be a line-sum, plane-sum, and so on.

Example: 2-way table of size 2 x 3 with line-sums:

O 12| 3
2120
2
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Multiway Tables and Margins

A k-way table isan mq x - - - x m array of nonnegative integers.
A margin of a table is the sum of all entries in some flat
of the table, so can be a line-sum, plane-sum, and so on.

Example: 2-way table of size 2 x 3 with line-sums:

O 1|2 3
212|101 4
2 3 2
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Multiway Tables and Margins

A k-way table isan mq x---x my array of nonnegative integers.
A margin of a table is the sum of all entries in some flat
of the table, so can be a line-sum, plane-sum, and so on.

Example: 3-way table of size 3 x4 x 6:
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Multiway Tables and Margins

A k-way table isan mq x---x my array of nonnegative integers.
A margin of a table is the sum of all entries in some flat
of the table, so can be a line-sum, plane-sum, and so on.

Example: 3-way table of size 3 x4 x 6 with a plane-sum:

— 24
™ v
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Multiway Tables and Margins

A k-way table isan mq x---x my array of nonnegative integers.
A margin of a table is the sum of all entries in some flat
of the table, so can be a line-sum, plane-sum, and so on.

Example: 3-way table of size 3 x4 x 6 with a line-sum:
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A multiway (transportation) polytope is the set of all
nonnegative mqy x - - - x my. arrays with some margins fixed.
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A mulfiway (transportation) polytope is the set of all
nonnegative mqy x - - - x my. arrays with some margins fixed.

The my x - - - x my. tables with some margins fixed are the
integer points in the corresponding multiway polytope.
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A multiway (transportation) polytope is the set of all
nonnegative mqy x - - - x my. arrays with some margins fixed.

The my x - - - x my. tables with some margins fixed are the
integer points in the corresponding multiway polytope.

Two contrasting Statements:
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A mulfiway (transportation) polytope is the set of all
nonnegative mqy x - - - x my. arrays with some margins fixed.

The my x - - - x my. tables with some margins fixed are the
integer points in the corresponding multiway polytope.

Two contrasting Statements:

Universality Theorem: Any rational polytope
isanrx C x 3 line-sum polytope.

Optimization Theorem: (Convex) Integer Programming over
myx --- xmy,x N polytopes is solvable in polynomial time.
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Some Formalism: Hierarchical Margins

More formally, a k-way polytope is the set of all mq x - -+ % mj, nonnegative arrays = = (x;, __;, ) such

that the sums of the entries over some of their lower dimensional sub-arrays (margins) are specified.

More precisely, for any tuple (71,...,4;) with ¢; € {1,...,m; [ U {4}, the corresponding margin =;, 4,
is the sum of entries of = over all coordinates j with i; = +. The support of (i1,...,4;) and of =, _;_is
the set supp(é....,7;) := {J : ¢; # +} of non-summed coordinates. For instance, if = is a 4 x5 33 x 2

array then it has 12 margins with support F' = {1,3} such as z3 2 = Z?Fl Zizl T345.244- A
collection of margins is hierarchical if, for some family F of subsets of {1,...,k}, it consists of all
margins u;, 4, with support in /. In particular, for any 0 < h < k, the collection of all A-margins of
F-tables is hierarchical with F the family of all h-subsets of {1,..., k}. Given a hierarchical collection

of margins wu;, _; supported on a family F of subsets of {1....,k}, the corresponding k-way polytope

1s the set of nonnegative arrays with these margins,
TR e _ . . i
Tr = {zeRM By iy = Wiy SUpplit,....ip) € F} o

The integer points in this polytope are precisely the k-way tables with the specified margins.
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Universality and
its Consequences



Universality Theorem for Short 3-Way Polytopes

Theorem: Any rational polytope P = {y ¢ RT . Ay = b} is
polytime representable as an » x ¢ x 3 line-sum polytope

mo_ rxcx3 . - . — —_— . .
T { z € R 1 ) @ik = Wik, DTk = Vik, D Tijk = Ui }
f. i i

(there is a coordinate-erasing projection from R *“*° to R giving
a bijection between 7" and P and between their integer points).
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(there is a coordinate-erasing projection from R *“*° to R giving
a bijection between 7" and P and between their integer points).

—> Any linear/integer program is polytime representable
as anr x ¢ x 3 multiway program.
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Universality Theorem for Short 3-Way Polytopes

Theorem: Any rational polytope P = {y ¢ RT . Ay = b} is
polytime representable as an » x ¢ x 3 line-sum polytope

mo_ rxcx3 . - . — —_— . .
T { z € R 1 ) @ik = Wik, DTk = Vik, D Tijk = Ui }
f. i i

(there is a coordinate-erasing projection from R *“*° to R giving
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—> Any linear/integer program is polytime representable
as anr x ¢ x 3 multiway program.

—> Optimization over r x ¢ x 3 tables is NP-hard.
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Universality Theorem for Short 3-Way Polytopes

Theorem: Any rational polytope P = {y ¢ RT . Ay = b} is
polytime representable as an » x ¢ x 3 line-sum polytope

mo_ rxcx3 . - . — —_— . .
T { z € R 1 ) @ik = Wik, DTk = Vik, D Tijk = Ui }
f. i i

(there is a coordinate-erasing projection from R *“*° to R giving
a bijection between 7" and P and between their integer points).

—> Any linear/integer program is polytime representable
as anr x ¢ x 3 multiway program.

—> Optimization over r x ¢ x 3 tables is NP-hard.

—> Implications on the existence of a strongly polynomial tfime
algorithm for linear programming ?
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Universality Theorem for Short 3-Way Polytopes

Theorem: Any rational polytope P = {y ¢ RT . Ay = b} is
polytime representable as an » x ¢ x 3 line-sum polytope

mo_ rxcx3 . - . — —_— . .
T { z € R 1 ) @ik = Wik, DTk = Vik, D Tijk = Ui }
f. i i

(there is a coordinate-erasing projection from R *“*° to R giving
a bijection between 7" and P and between their integer points).

—> Any linear/integer program is polytime representable
as anr x ¢ x 3 multiway program.

—> Optimization over r x ¢ x 3 tables is NP-hard.

—> Implications on the existence of a strongly polynomial tfime
algorithm for linear programming ?

—> Implications on the rational version of Hilbert's 10™ problem on
the decidability of the realization problem for polytopes 2



Table Security (confidential data disclosure)

Agencies such as the census bureau and center for health statistics
allow public web-access to information on their data bases,
but are concerned about confidentiality of individuals.
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Agencies such as the census bureau and center for health statistics
allow public web-access to information on their data bases,
but are concerned about confidentiality of individuals.

Common strategy: release margins but not table entries.
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Table Security (confidential data disclosure)

Agencies such as the census bureau and center for health statistics
allow public web-access to information on their data bases,
but are concerned about confidentiality of individuals.

Common strategy: release margins but not table entries.

Question: how does the set of values that can occur ina
specific enfry in all tables with the released margins look like ?
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Fact: for k-way tables with fixed hyperplane-sums,
the set of values in an entry is always an interval.

Example: the values O, 2 occur in an entry:
O 1|2 3 21110 3
2120 4 0|22 4
2 3 2 2 3 2
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Fact: for k-way tables with fixed hyperplane-sums,
the set of values in an entry is always an interval.

Examp

e: the values O, 2 occur in an entry:

0

2

2

1
2
3

2
0
2

3
4

2 |1
0|2
2 3

0
2| 4
2

Therefore, also the value 1 occurs in that entry:

1111
11211
2 3 2

3
4
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In contrast we have the following universality:

Theorem: For every finite set S of nonnegative integers,

there are r, ¢ and line-sums for r x € X 3 tables such
that the set of values occurring in a fixed entry in all
possible tables with these line-sums is precisely S.

Shmuel Onn



In contrast we have the following universality:

Theorem: For every finite set S of nonnegative integers,

there are r, ¢ and line-sums for r x € X 3 tables such
that the set of values occurring in a fixed entry in all
possible tables with these line-sums is precisely S.

Proof: Given S = {s1,...,sm}, let

T T

Pi={ye€ R'T'Jrl L yo— Y siyi =0, Y yi=1}
i=1 i=1

Lift P using the universality theorem to r x ¢ x 3 line-sum polytope 7.
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Example: set of entry values with a gap
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Example: set of entry values with a gap

Consider the following line-sums for 6 X 4 X 3 tables:

AR RN
AR RE2 AR

of~/o/~/o/~/
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Example: set of entry values with a gap

Consider the following line-sums for 6 X 4 X 3 tables:

: 0 0
Con;uder‘rhe | }il 45
designated enfry: [ [oN]2[2 1T°

\0\1 1112
2\2\/0/
NENEB e
0\0\/0/
LT LTS
SN
~L
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Example: set of entry values with a gap

Consider the following line-sums for 6 X 4 X 3 tables:

Consider the
designated entry:

AVEYAYEVEYE

The only values occurring in that entry in all

possible tables with these line-sums are O, 2
Shmuel Onn



Certain perception: if the set of values that can occur ina
specific entry in all tables with the released margins contains
many values then the entry is secure; otherwise it is vulnerable.

So common practice is to compute by linear programming
lower bound L and upper bound U on the possible values of
an entry and use the gap U-L as a measure of its security.
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LP-Relaxation is Arbitrarily Bad

Since integer programming problems are generally intractable, a common practice by disclosing
agencies 18 to compute a lower bound [ and an upper bound @ on the entry z; _ ; 1n all tables with
these margins, by solving the linear programmang relaxations of the corresponding multiway programs,

-

. — TIbq 2o X T, . " —_
| := min{z; . :zeR Ty, = Wiy Supplin, ..., ip) € F}
- ) _ Ty X X Mg . . S
@ = max{zj,,. ., ' zER] o Ty = Wiy, i SUPP(2, ..., i) € F}

that is, where the variables are nonnegative real numbers without integrality constraints. While this
can be done efficiently for tables of any size, it is only an approximation on the true smallest value
| and largest value u of that entry in (integer) tables, and can be far from the truth; it is easy to
design examples (using again the Universality Theorem) of line-sums for r x ¢ x 3 table where there is

a unique integer entrv xy 11, while the linear programming bounds are arbitrarily far apart, that is,

I << 1| = 29, = u <<

which may lead to erroneously declaring insecure margin disclosure as secure. Indeed, let u be any large
positive integer. Congider the triangle P, := {y € ]Ri : 2y1 +(2u+ 1)y = 4u+1}. It has just one integer
point y = (u, 1), with y; = u, while [ := min{y; : y € P,} =0 and @ := max{y;, : y € P,} = 2u+ %
Lifting P, to a suitable r x ¢ x 3 line-sum polytope T}, with the coordinate y; embedded in the entry
r1.1.1 using Universality, we find that T, has just one integer table, where the entry xy ;1 attains the
unique value | = ry 11 = u. while the linear programming bounds are [=0<<u<<2u+ % = u.

As a simple consequence of our Convex Integer Programming Theorem we get, for the first time, a
polynomial time algorithm allowing to compute the true smallest value [ and largest value u over long

d-way tables, enabling exact solution of the entry uniqueness problem and taking accurate decisions.
Shmuel Onn



Hardness of Entry Uniqueness

Corollary It is coNP-complete to decide, gqiven r,c and consistent 2-margins (line-sums) for 3-way

tables of size r x ¢ x 3, if the value of the entry x111 is the same in all tables with these margins.

Proof. From the complement of subset-sum: given positive integers ag, ay. ..., a,,. need to decide if there
isnol C{1,...,m} with ag = Z«;ef a;. Consider the polyvtope in variables yo,y1 ..., Uy 204 210+ -+ 3 Zms
T
P = {(y}z)g]ﬁi_{m_‘_” . aﬂyﬂ—Zaiyi:D?yi—l—zé: ??'.:031...,?’?1}
i=1

First, note that it always has one integer point with y; = 0, given by y; = 0 and z; = 1 for all 2.
Second, note that it has an integer point with yy # 0 if and only if there is an I C {1,...,m} with
ag = cr @ given by yp =1, y; =1fori eI, y;=0fori € {1,...,m} \ I, and z; =1 — y; for all 7.
Lifting P to a suitable r x ¢ x 3 line-sum polytope T" with the coordinate 33 embedded in the entry
r1.1.1 using Universality, we find that T has a table with =117 = 0, and this value is unique among

the tables in 1" it and only if there is no solution to the subset sum problem with ag.aq,...,ay. O

Shmuel Onn



More Universality Consequences

Universality Theorem for Toric Ideals: Every foric ideal is
embeddable in a toric ideal of rx c x 3 tables with fixed line-sums.

Shmuel Onn



More Universality Consequences

Universality Theorem for Toric Ideals: Every toric ideal is
embeddable in a toric ideal of rx c x 3 tables with fixed line-sums.

Solution of the Vlach Problems: Many problems of the corner
stone paper by M. Vlach on transportation polytopes resolved.
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More Universality Consequences

Universality Theorem for Toric Ideals: Every foric ideal is
embeddable in a toric ideal of rx c x 3 tables with fixed line-sums.

Solution of the Vlach Problems: Many problems of the corner
stone paper by M. Vlach on transportation polytopes resolved.

Universality Theorem for Bitransportation Polytopes:

Theorem: Any rational polytope P = {y ¢ R* 0 Ay = b} is
polvtime representable as an n x n bitransportation polytope

—_— ,]- . 2 T X . ,JEJ —_— ,Jrf . JEL? —_— _jf ) ]_ ‘2 -
B = {(1 ,T°) € :E?Rj_ " E T =0 E xi;=c, wpital; < “*-!-j}
J ‘

Shmuel Onn



Example 1. Vlach’s rational-nonempty integer-empty transportation:
using our construction, we automatically recover the smallest known example.
first discovered by Vlach [21], of a rational-nonempty integer-empty transporta-
tion polytope, as follows. We start with the polytope P = {y > 0 : 2y = 1}
in one variable, containing a (single) rational point but no integer point. Our
construction represents it as a transportation polytope T of (6.4, 3)-arrays with
line-sums given by the three matrices below:; by Theorem 1. T is integer equiva-
lent to P and hence also contains a (single) rational point but no integer point.

1
/ 0
1
0

1

\ 0

—

)

o O =

ok

L 0
0 0
L 1

£

1
1

p—
P

1
1
0
0
1
1

—

A

et el

el ek ek



Example 2. Bipartite biflows with arbitrarily large denominator: Fix
any positive integer ¢. Start with the polytope P = {y > 0 : qy = 1} in one
variable containing the single point y = L Our construction represents it as a
bipartite biflow polytope F' with integer supplies. demands and capacities, where
y is embedded as the flow o1 ; of the first commodity from vertex 1 € Rto 1 € C.
Bv Corollary 2. F' contains a single biflow with ;1‘}11 =y = % For ¢ = 3. the data

for the biflow problem is below, resulting in a unique. {0, % %}—1-}1111&:‘1. biflow.

1 0010010 | |
([] 10100 0 1\ (1\ (1\
010010 1 0 N R
i) =19 0101 0 0 1 (si) = | |- (i) = |4
0010011 0 | |
\1t 000010 1/ \ 1/ \ 1/



Table Sampling: Markov Bases
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Table Sampling: Markov Bases

A Markov basis is a set of arrays that enables a walk between
any fwo tables with the same margins while staying

It enables sampling the (huge) set of tables with fixed margins.

Example: Markov bases of rxc tables with fixed line-sums are 2x2 minors:

1-1|0 110 |-1 0(0|0 0(0|0
-111]0 -110 |1 o 110 |-1 O|1]-1
0010 0010 -110 |1 O|-1|1
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Table Sampling: Markov Bases

A Markov basis is a set of arrays that enables a walk between
any fwo tables with the same margins while staying

It enables sampling the (huge) set of tables with fixed margins.

Example: Markov bases of rxc tables with fixed line-sums are 2x2 minors:

1-1|0 110 |-1 0(0|0 0(0|0
-111]0 -110 |1 o 110 |-1 O|1]-1
0010 0010 -110 |1 O|-1|1

So Markov bases of rxc tables with fixed line-sums are simple:
they have constant support 4 and constant degree 1 regardless of r,cC.
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Table Sampling: Markov Bases

A Markov basis is a set of arrays that enables a walk between
any fwo tables with the same margins while staying

It enables sampling the (huge) set of tables with fixed margins.

Example: Markov bases of rxc tables with fixed line-sums are 2x2 minors:

1-1|0 110 |-1 0(0|0 0(0|0
-111]0 -110 |1 o 110 |-1 O|1]-1
0010 0010 -110 |1 O|-1|1

So Markov bases of rxc tables with fixed line-sums are simple:
they have constant support 4 and constant degree 1 regardless of r,cC.

Same holds for d-tables with fixed hyperplane-sums.
Shmuel Onn



Universality Theorem for Markov Bases
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Universality Theorem for Markov Bases

Markov bases of 3-tables with fixed line-sums are much more complicated.
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Universality Theorem for Markov Bases

Markov bases of 3-tables with fixed line-sums are much more complicated.

Nice result (Aoki-Takemura, Santos-Sturmfels): for tables of size rxcxn,
with two sides r,c fixed and one side n variable, there is an upper bound
u(r,c) on degree and support of Markov base elements, regardless of n.
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In contrast, we show the following universality of tables of size rxcxs,
with one side 3 fixed and smallest possible and two sides r,c variable.
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Universality Theorem for Markov Bases

Markov bases of 3-tables with fixed line-sums are much more complicated.

Nice result (Aoki-Takemura, Santos-Sturmfels): for tables of size rxcxn,
with two sides r,c fixed and one side n variable, there is an upper bound
u(r,c) on degree and support of Markov base elements, regardless of n.

In contrast, we show the following universality of tables of size rxcxs,
with one side 3 fixed and smallest possible and two sides r,c variable.

Theorem: For every finite set V of integer vectors, there

are ", C such that any Markov basis for  x ¢ x 3 tables with
fixed line-sums, restricted to some entries, contains V.
So these Markov bases have unbounded degree and support.
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Proof: Write V = {vl,...,v*} with v' = (v},...,v%). For each i
let v = (v¥)T and w! = (v*)~ be the positive and negative parts
of v! respectively, so that v' = u! — w.
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of v! respectively, so that v' = u! — w.

Let P be the polytope in nonnegative variables sq,t1,..., 8, tg,
x1,...,xg, Satisfying the following equations, with parameter b:
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Proof: Write V = {vl,...,v*} with v' = (v},...,v%). For each i

let u* = (v))T and w! = (v¥)~ be the positive and negative parts
of v! respectively, so that v' = u! — w.

Let P be the polytope in nonnegative variables sq,t1,..., 8, tg,
x1,...,xg, Satisfying the following equations, with parameter b:
k k
d (si+t) =1, > i(s;i+¢) = b,
i=1 i=1

'I.: - -
mj—Z(U;Si—I'?U}ti) = 0, j=1,...,d.
i=1
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Proof: Write V = {vl,...,v*} with v' = (v},...,v%). For each i

let u* = (v))T and w! = (v¥)~ be the positive and negative parts
of v! respectively, so that v' = u! — w.

Let P be the polytope in nonnegative variables sq,t1,..., 8, tg,
x1,...,xg, Satisfying the following equations, with parameter b:

k k
d (si+t) =1, > i(s;i+¢) = b,
i=1 i=1

'I.: - -
mj—Z(U;Si—I'?U}ti) = 0, j=1,...,d.
=1

Now, consider any 1 <: < k and set / =4¢. Then P has only two
integer points: one with s; = 1 and = = u*, and the other with
t; = 1 and z = w*. To connect these two points, any Markov
basis must contain their difference which, restricted to the =
variables, is precisely v* = u? — wt. This holds for vl,... vk,
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Proof: Write V = {vl,...,v*} with v' = (v},...,v%). For each i

let u* = (v))T and w! = (v¥)~ be the positive and negative parts
of v! respectively, so that v' = u! — w.

Let P be the polytope in nonnegative variables sq,t1,..., 8, tg,
x1,...,xg, Satisfying the following equations, with parameter b:

k k
d (si+t) =1, > i(s;i+¢) = b,
i=1 i=1

'I.: - -
mj—Z(U;Si—I'?U}ti) = 0, j=1,...,d.
=1

Now, consider any 1 <: < k and set / =4¢. Then P has only two
integer points: one with s; = 1 and = = u*, and the other with
t; = 1 and z = w*. To connect these two points, any Markov
basis must contain their difference which, restricted to the =
variables, is precisely v* = u? — wt. This holds for vl,... vk,

Now lift P using the universality theorem to a suitable r x ¢ x 3

line-sum polytope T with lines-sums depending on b. [J
Shmuel Onn



Toric ideals and Tables
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Toric ideals and Tables

Each table v = (v;,,.. ;) Of size ny x --- x ng lifts to monomial
in variables x = (z;, ) indexed by table entries:

?"'!T'!'j.

ni ng v; ;
v — . 1-td
= = H H i erig

=1 ig=1
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Toric ideals and Tables

Each table v = (v;,,.. ;) Of size ny x --- x ng lifts to monomial
in variables x = (z;, ) indexed by table entries:

?"'!T'!'j.

ni ng v; ;
v — . 1-td
= = H H i erig

=1 ig=1

N
=
o

e : v 2 5 4
For example, » = lifts to 2z~ = T 1T 5%5 5%, 5

o
o
N
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Toric ideals and Tables

Each table v = (v;,,.. ;) Of size ny x --- x ng lifts to monomial
in variables x = (z;, ) indexed by table entries:

?"'!T'!'I.

ni ng v; ;
v = . 1wt
= = H H i erig

=1 ig=1

The equations forcing the same margins on tables, such as line-sums,
plane-sums, and so on, lift o a corresponding toric ideal generated
by all binomials coming from pairs of tables with the same margins:

I = (2% —2" : u,v tables with same margins) .
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Toric ideals and Tables

Each table v = (v;,,.. ;) Of size ny x --- x ng lifts to monomial
in variables x = (x;, ..; ) indexed by table entries:

e

ni ng v; ;
v — . 1-td
= = H H i erig

=1 ig=1

The equations forcing the same margins on tables, such as line-sums,
plane-sums, and so on, lift o a corresponding toric ideal generated
by all binomials coming from pairs of tables with the same margins:

I = (2% —2" : u,v tables with same margins) .

Fundamental result (Diaconis-Sturmfels): the binomials X"-XY generate a
toric ideal if and only if the corresponding arrays u-v form a Markov basis.

Shmuel Onn



Toric ideals and Tables

Each table v = (v;,,.. ;) Of size ny x --- x ng lifts to monomial
in variables x = (x;, ..; ) indexed by table entries:

e

ni ng v; ;
v = . 1wt
= = H H i erig

=1 ig=1

The equations forcing the same margins on tables, such as line-sums,
plane-sums, and so on, lift o a corresponding toric ideal generated
by all binomials coming from pairs of tables with the same margins:

I = (2% —2" : u,v tables with same margins) .

Fundamental result (Diaconis-Sturmfels): the binomials X"-XY generate a
toric ideal if and only if the corresponding arrays u-v form a Markov basis.

We have the following universality theorem for toric ideals.

Shmuel Onn



Toric ideals and Tables

Each table v = (v;,,.. ;) Of size ny x --- x ng lifts to monomial
in variables x = (z;, ) indexed by table entries:

?"'!T'!'I.

ni ng v; ;
v = . 1wt
= = H H i erig

=1 ig=1

The equations forcing the same margins on tables, such as line-sums,
plane-sums, and so on, lift o a corresponding toric ideal generated
by all binomials coming from pairs of tables with the same margins:

I = (2% —2" : u,v tables with same margins) .

Fundamental result (Diaconis-Sturmfels): the binomials X"-XY generate a
toric ideal if and only if the corresponding arrays u-v form a Markov basis.

We have the following universality theorem for toric ideals.

Theorem 3: For every toric ideal I, there are r, ¢ such that any

generating set of the ideal of rxcx 3 tables with fixed line-sums,

restricted to some variables, contains a generating set of L.
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A glimpse at step 3 of the proof
of the Universality Theorem:
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The Convex Integer Programming Problem
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The Convex Integer Programming Problem

We consider the following convex integer programming problem:
max {c(wyx, ..., wyX):x 20, AXx=Db, x integer}
where wq, . .., wy are linear forms and c is a convex functional on R4,
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The Convex Integer Programming Problem

We consider the following convex integer programming problem:
max {c(wyx, ..., wyX):x 20, AXx=Db, x integer}
where wq, . .., wy are linear forms and c is a convex functional on R4,

The problem can be interpreted as multiobjective intfeger programming:
given d linear criteria, the goal is fo maximize their "convex balancing”.

It is generally infractable even for fixed d=1, since standard linear
integer programming is the special case with ¢ the identity on R,

Nonetheless, as a consequence of our more general theorem below, we
obtain the following Optimization Theorem for long multiway polytopes:

Theorem: Fix d, m;, ..., m,. Then convex integer programming over any
myX --- Xxmgxn multiway polytope is solvable in polynomial oracle-time
for any margins, wy, . . ., wy, and convex c presented by comparison oracle.
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N-Fold Systems

Let A be (r+s) x t matrix with submatrices Ay, A, of first r and last s rows.
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N-Fold Systems

Let A be (r+s) x t matrix with submatrices A, A, of first r and last s rows.

Define the n-fold product of A to be the following (r+ns) x nt matrix,

(A] Ay Ay -+ Ap)
A, 0 0 --- 0
Aln) _ 0 A, 0 --- O
\ 0 0 0 - Ay
n

We establish the following theorem.

Theorem: For any fixed d and (r+s) x t matrix A, there is a polynomial
oracle-time algorithm that, given n, b, wy, . . ., wy, and convex c presented

by comparison oracle, solves the convex integer programming problem
max { c(wyx, ..., wyx) : AVx = b xin N}
Shmuel Onn



Efficient Treatment of Long Multiway Tables

The margin equations for any m;x - .- xm, x n polytope form an n-fold
system defined by a suitable matrix A, where A; controls the equations
of margins involving summation over layers, whereas A, controls the
equations of margins involving summation within a single layer at a time.
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Efficient Treatment of Long Multiway Tables

The margin equations for any m;x - .- xm, x n polytope form an n-fold
system defined by a suitable matrix A, where A; controls the equations
of margins involving summation over layers, whereas A, controls the
equations of margins involving summation within a single layer at a time.

Example:

Consider long 3-way tables of size 3 x 3 x n with all line-sums fixed, that is, with k = 2, m; = mgy = 3,
and the hierarchical collection of all 2-margins, supported on F = {{1,2},{1,3},{2,3}}. Then r =9,
s=6,t=29, and writing ' = (2114, 71,24, T1 3,1 T2,1i» T2,2,i, T2.3,i> T3 1. T3,2.i, T334) for i = 1,... n,

the (9+6) x 9 matrix A whose n-fold product A defines the 3 x 3 x n multiway polytope has 41 = Iq,

(111000000\
000111000
0000O0O0T111

A4._2:
100100100
0100100710
\001001001)

Already for this case, of 3 % 3 x n tables, the only polynomial time algorithm we are aware of for the

corresponding integer programming problem is the one guaranteed by our theorem for n-fold systems.
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Proof Ingredient 1: Edge-Directions
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Exploit edge symmetry of the integer hull

P =conv{x:x20, Ax=b, xinteger} c R"
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Exploit edge symmetry of the integer hull

P =conv{x:x20, Ax=b, xinteger} c R"
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Proof Ingredient 1: Edge-Directions

Exploit edge symmetry of the integer hull

P =conv{x:x20, Ax=b, xinteger} c R"

Lemma 1: Fix d. Then, given a set E covering all edge-directions of P,
the convex integer programming problem over P is reducible to solving

polynomially many linear integer programming counterparts over £ . o



Zonotope Refinement and Construction

Prop. 1. If E = {e!, ..., e™ covers all edge-directions of a polytope P

then the zonotope Z = [-1, 1] el+ .+ [-1,1]1e™ is a refinement of P.
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Zonotope Refinement and Construction

Prop. 1. If E = {e!, ..., e™ covers all edge-directions of a polytope P

then the zonotope Z = [-1, 1] el+ .+ [-1,1]1e™ is a refinement of P.
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Zonotope Refinement and Construction

Prop. 1. If E = {e!, ..., e™ covers all edge-directions of a polytope P

then the zonotope Z = [-1, 1] el+ .+ [-1,1]1e™ is a refinement of P.

ag G/M ag '\ / a

\03

Prop. 2: In RY, the zonotope Z can be constructed from E = (e!, .., e™
along with a vector g; in the of every vertex in o(m°™h) operations.
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The Algorithm Establishing Lemma 1

Input: Polytope P in R" given via A b, set E covering its edge-directions,
d xn matrix w, and convex functional c on RY given by comparison oracle.
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The Algorithm Establishing Lemma 1

Input: Polytope P in R" given via A b, set E covering its edge-directions,
d xn matrix w, and convex functional ¢ on RY given by comparison oracle.

1. Construct the zonotope Z generated by the
projection weE, and find q; in each normal cone

lw l W l projection
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The Algorithm Establishing Lemma 1

Input: Polytope P in R" given via A b, set E covering its edge-directions,
d xn matrix w, and convex functional ¢ on RY given by comparison oracle.

1. Construct the zonotope Z generated by the
projection weE, and find q; in each normal cone

n
d — R
2. Lift each a; inR® to b; = wTe a; in R" and solve b=wTeq
linear integer programming with objective b, over P ! !
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The Algorithm Establishing Lemma 1

Input: Polytope P in R" given via A b, set E covering its edge-directions,
d xn matrix w, and convex functional ¢ on RY given by comparison oracle.

1. Construct the zonotope Z generated by the
projection weE, and find q; in each normal cone

Rn
2. Lift each g; in RY to b;=wTea in R" and solve WTea
linear integer programming with objective b; over P !
3. Obtain the vertex v; of P l W l
and the vertex wev; of weP
We
05 06
Qs we P q; Rd
Qq
as az
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The Algorithm Establishing Lemma 1

Input: Polytope P in R" given via A b, set E covering its edge-directions,
d xn matrix w, and convex functional ¢ on RY given by comparison oracle.

1. Construct the zonotope Z generated by the
projection weE, and find q; in each normal cone

2. Lift each a; in RY to b, =wTe a; in R" and solve
linear integer programming with objective b; over P

3. Obtain the vertex v; of P l l
and the vertex wev; of weP

W
We
4. Output any 9% Qe d
attaining maximum g weP / @ R
value c(we v;) using q

comparison oracle as az
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Proof Ingredient 2: Graver Bases
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Proof Ingredient 2: Graver Bases

The Graver basis of an integer matrix A is the set of conformal-minimal

nonzero infeger dependencies on A, i.e. vectors with Av=0. For instance,
the Graver basisof A=[121] is +{[2-10],[0-12],[10-1],[1-117}.
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the Graver basisof A=[121] is +{[2-10],[0-12],[10-1],[1-117}.
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Proof Ingredient 2: Graver Bases

The Graver basis of an integer matrix A is the set of conformal-minimal

nonzero intfeger dependencies on A, i.e. vectors with Av =0. For instance,
the Graver basisof A=[121] is +{[2-10],[0-12],[10-1],[1-117}.

(A vector u is conformal to vector v if |u;| < |v;| and u;v; =0 for all i).

Lemma 2: The Graver basis of A allows to augment in polynomial time
of any linear integer program

max { wx : x =20, Ax=b, x integer}

Proof: use equivalence of directed augmentation and optimization.

Lemma 3: The Graver basis of A covers all edge-directions of any fiber

P =conv{x:x=0, Ax=b, x infteger}

Lemma 4: The Graver basis of the product A" is polytime computable.

Proof: use Graver basis stabilization.
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Example of Graver Complexity and Stabilization

Consider the (241) x 2 matrix A with A; = I and A; = [1 1]. The Graver complexityof A is g(A) = 2.

The 2-fold matrix of A and its Graver basis, consisting of two antipodal vectors only, are

A2 —

= = O

=0 = = O

= O O =

= O = O

(A

(1 -1 -1 1)

Since g(A) = 2, the Graver basis of the 4-fold matrix AW can be computed by taking the union of the

images of G [A{E]) under the 6 = @) maps Oy ko - Z*? — Z*? for 1 < ky < ks < 4, and we obtain

(

o T e T w N O a

= o D = = D

o O = O O =

o o = O = O

o T A s s B s R

0 = OO = O

[ = B e B s [ s S

0 )
1
0
0
0

L)

, G(AW) =+

il

= = = O O

1
0
0
—1
—1
0

0
il
0
—1
0
1

=0 = O = O

—1

0 )
0
1
0
1

L)
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Combining Lemmas 1 - 4 plus some additional components,
we obtain the aforementioned theorem on n-fold systems:

Shmuel Onn



Combining Lemmas 1 - 4 plus some additional components,
we obtain the aforementioned theorem on n-fold systems:

Theorem: For any fixed d and (r+s) xt matrix A, there is a polynomial
oracle-time algorithm that, given n, b, wy, . . ., wy, and convex c presented

by comparison oracle, solves the convex integer programming problem

max { c(wyX, . .., wgx) : Ax=b, xin N}

Shmuel Onn



Application 1: Multiway Tables

The margin equations for any m;x - - - xm, x n polytope form an n-fold
system defined by a suitable matrix A, where A; controls the equations
of margins involving summation over layers, whereas A, controls the
equations of margins involving summation within a single layer at a time.
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myX --- Xxmgxn multiway polytope is solvable in polynomial oracle-time
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Application 1: Multiway Tables

The margin equations for any m;x - -- xm, x n polytope form an n-fold
system defined by a suitable matrix A, where A; controls the equations
of margins involving summation over layers, whereas A, controls the
equations of margins involving summation within a single layer at a time.

We deduce the optimization theorem for long k-way polytopes:

Theorem: Fix d, m;, ..., m. Then convex integer programming over any
myX --- Xxmgxn multiway polytope is solvable in polynomial oracle-time
for any margins, wy, . . ., wy, and convex c presented by comparison oracle.

Recall that in contrast, short 3-way polytopes are universal:

Theorem: Any rational polytope is an rx c x 3 line-sum 3-way polytope.
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many items types bins
More precisely, there are t types of items, n; items of type |
of weight v; each, and n bins with weight capacity u for bin k.
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In the linear problem, there is a utility matrix w with w; , the utility

of packing one item of type j in bin k. In the convex problem, there
are d utility matrices and total utility is a suitable convex balancing.
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In the linear problem, there is a utility matrix w with w; , the utility

of packing one item of type j in bin k. In the convex problem, there
are d utility matrices and total utility is a suitable convex balancing.

This can be shown to be an n-fold system defined by a (t+1) x t matrix A,
where A is the T x t identity matrix and A, =(v{, ... ,v;). So we deduce:
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Application 2: Bin Packing

many items types bins
More precisely, there are t types of items, n; items of type |
of weight v; each, and n bins with weight capacity u for bin k.

In the linear problem, there is a utility matrix w with w; , the utility
of packing one item of type j in bin k. In the convex problem, there
are d utility matrices and total utility is a suitable convex balancing.

This can be shown to be an n-fold system defined by a (t+1) x t matrix A,
where A is the T x t identity matrix and A, =(v{, ... ,v;). So we deduce:

Theorem: Fix d, t,v;, ..., vs. Then convex bin packing is polytime solvable.

Shmuel Onn



Application 3: Partitioning Problems
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Application 3: Partitioning Problems

Partition n items evaluated by k criteria to p players, to maximize social
utility which is convex on the sums of values of items each player gets.
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utility which is convex on the sums of values of items each player gets.
Example: Consider n=6 items, k=2 criteria, p=3 players

The criteria -item matrix is: tems

} criteria
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Application 3: Partitioning Problems

Partition n items evaluated by k criteria to p players, fo maximize social
utility which is convex on the sums of values of items each player gets.
Example: Consider n=6 items, k=2 criteria, p=3 players

The criteria -item matrix is: tems

1 23 4 5 6
1 49 16 25 36
Each player should get 2 items

criteria

A =
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Application 3: Partitioning Problems

Partition n items evaluated by k criteria to p players, fo maximize social
utility which is convex on the sums of values of items each player gets.
Example: Consider n=6 items, k=2 criteria, p=3 players

The criteria -item matrix is: tems

1 23 4 5 6
1 4 9 16 25 36
Each player should get 2 items

A =

} criteria

The convex functional on k x p matrices is c(X) = > X;;’
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Application 3: Partitioning Problems

Partition n items evaluated by k criteria to p players, fo maximize social
utility which is convex on the sums of values of items each player gets.
Example: Consider n=6 items, k=2 criteria, p=3 players

The criteria -item matrix is: tems

1 23 4 5 6
1 4 9 16 25 36
Each player should get 2 items

A =

} criteria

The convex functional on k x p matrices is c(X) = > X;;’

The matrix of a partition such as m = (34, 56, 12) is:
players

(11 3
20 01 5

-

AH —

criteria
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Application 3: Partitioning Problems

Partition n items evaluated by k criteria to p players, fo maximize social
utility which is convex on the sums of values of items each player gets.
Example: Consider n=6 items, k=2 criteria, p=3 players

The criteria -item matrix is: tems

1 23 4 5 6
1 4 9 16 25 36
Each player should get 2 items

A =

} criteria

The convex functional on k x p matrices is ¢(X) = > X;;’

The matrix of a partition such as = (34, 56, 12) is:
players

(11 3
20 01 5

-

AH —

criteria

. ope . Ty _
The social utility of Tis c(A") = 244432 Shmuel Onn



All 90 partitions TT
of items {1, ...,6} To
3 players where each

player gets 2 items

34

24

23

23 «

5 23 ¢

14

13

13 ¢

5 13 4

12

12 -

5 12 ¢

12

o 12 i

512 .

14

514

13

513

513

36 <

26 -

26

26

16 -

16

16

24

524

23

523

23

46

46

36

36

46

36

36

35 ] [12 56 34 ]
25] [13 56 24 ]
25] [14 56 23]

20 [15 46 23 ]

5 24| [16 45 23]

15] [23 56 14 ]
15| [24 56 13]

14] [25 46 13]

5 14] [26 45 13]

15] [34 56 12]

14] [35 46 12]

5 14] [36 45 12]

13] [45 36 12]

5 13| [46 35 12]

133 pitiet Ohm



All 90 partitions TT
of items {1, ...,6} To
3 players where each

player gets 2 items

The optimal partition is:
M = (34, 56, 12)

34

24

23

23 «

5 23 ¢

14

13

13 ¢

5 13 4

12

12 -

5 12 ¢

12

o 12 i

512 .

14

514

13

513

513

36 <

26 -

26

26

16 -

16

16

24

524

23

523

23

46

46

36

36

46

36

36

35 ] [12 56 34 ]
25] [13 56 24 ]
25] [14 56 23]

20 [15 46 23 ]

5 24| [16 45 23]

15] [23 56 14 ]
15| [24 56 13]

14] [25 46 13]

5 14] [26 45 13]

15 || [ 34 56 12 ]

14] [35 46 12]

5 14] [36 45 12]

13] [45 36 12]

5 13| [46 35 12]

133 pitiet Ohm



All 90 partitions T [ % ] [ ] (130 6] [12 5 ] [12 3] [ 30
of items {1, ...,6} To [13 24 56] [13 25 46] [13 26 45] [13 45 26] [13 46 25] [13 56 24]
3 players where each  [11 2 56] [14 25 36] [14 26 35] [14 35 26] [14 36 25] [14 56 23]
player gets 2 items (1523 46] [15 24 36] [15 26 34] [15 34 26] [15 36 24] [15 46 23]

(1623 a5] [16 24 35] [16 25 34] [16 34 25] [16 35 24] [16 45 23]

[23 14 56 ] [23 15 46 [23 16 45] [23 45 16 [23 46 15] [23 56 14 ]

The optimal partition is:
M = (34, 56, 12)

24 13 56 ] [24 15 36| [24 16 35] [24 35 16] [24 36 15] [24 56 13]
[25 13 46] [25 14 36 [25 16 34| [25 34 16] [25 36 14] [25 46 13 ]

[26 13 45] [26 14 35] [26 15 34] [26 34 15] [26 35 14] [26 45 13]

with op‘rimal UTiliTYi [34 12 56 ] [34 15 26] [34 16 25] [34 25 16] [34 26 15]|[34 56 12]
players [35 12 46] [35 14 26] [35 16 24] [35 24 16] [35 26 14] [35 46 12]
7 11 3

criteria  [36 12 45] [36 14 25] [36 15 24| [36 24 15] [36 25 14] [36 45 12]

AT =
25 61 5

[45 12 36 ] [45 13 26 [45 16 23] [45 23 16 [45 26 13] [45 36 12 ]
C(A"): 244432 [46 12 35] [46 13 25 [46 15 23] [46 23 15| [46 25 13] [46 35 12 ]
[56 12 34| [56 13 24 [56 14 23] [56 23 14| |56 24 Méh[n’i*aeﬂﬁd%



This can be shown to be an n-fold system defined by a (p+1) x p matrix A,
where A; is the p x p identity matrix and A, =(1, . . ., 1). So we deduce:

Shmuel Onn



This can be shown to be an n-fold system defined by a (p+1) x p matrix A,
where A; is the p x p identity matrix and A, =(1,...,1). So we deduce:

Theorem: Partitioning problems with fixed p and k are polytime solvable.

Shmuel Onn
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Most relevant:
- Convex integer programming (in preparation)
- N-fold integer programming (submitted)

- All linear and integer programs are
slim 3-way transportation programs (SIAM J. Opt., to appear)
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Bibliography: most papers are available at

http://ie.technion.ac.il/~onn/Home-Page/selected-articles.html

Most relevant:
- Convex integer programming (in preparation)
- N-fold integer programming (submitted)

- All linear and integer programs are
slim 3-way transportation programs (SIAM J. Opt., to appear)

Also related:

- Markov bases of three-way tables are
arbitrarily complicated (J. Symb. Comp. 2006)

- Convex combinatorial optimization (Disc. Comp. Geom. 2004)

- The Hilbert zonotope and a polynomial time algorithm
for universal Grobner bases (Adv. App. Math. 2003)
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