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Abstract 

 Object segregation in a visual scene is a complex perceptual 
process that relies on the integration of multiple cues. The 
task is computationally challenging, and even the best 
performing models fall significantly short of human 
performance. Infants initially have a surprisingly 
impoverished set of segregation cues and their ability to 
perform object segregation in static images is severely 
limited. Major questions that arise are therefore how the rich 
set of useful cues is learned, and what initial capacities make 
this learning possible. Here we present a computational model 
that initially incorporates only two basic capacities known to 
exist at an early age: the grouping of image regions by 
common motion and the detection of motion discontinuities. 
The model then learns significant aspects of object 
segregation in static images in an entirely unsupervised 
manner by observing videos of objects in motion. 
Implications of the model to infant learning and to the future 
development of object segregation models are discussed. 

Keywords: Visual perception; computational modeling; 
development; object segregation; figure-ground. 

Background and Goals 

We naturally perceive the scene around us as containing 

coherent objects, separated from each other and from their 

background. Even in a complex image such as Figure 1A, 

we can count for example the number of distinct cars, 

delineate their boundaries, etc. The ability to segregate the 

scene into objects, delineate their boundaries, and determine 

occlusion relations (termed here 'object segregation'), relies 

on a complex set of processes, which integrate multiple cues 

that are only partially understood.  

Infants' initial ability to segregate scenes into coherent 

objects is rudimentary and it does not make use of even 

basic salient 'Gestalt' properties such as uniformity of 

texture, brightness or color, the smooth continuity of 

boundary contours, occlusion cues and the like (Spelke et al. 

1993). For instance, infants at 3 months of age do not appear 

to distinguish that the shape in Figure 1B is likely to be 

composed of two distinct components. The contrast between 

Figures 1A and 1B illustrates the span of learning 

accomplished in performing object segregation. The ability 

to segregate objects based on multiple cues develops 

quickly already in the first year of life, but the learning 

process continues over an extended period of time (Kovaks 

et al. 1999). The process of learning object segregation 

raises fundamental questions for cognitive development and 

computational modeling of vision. For cognitive 

development, it is of basic interest to understand the innate 

capacities and learning mechanisms that allow the system to 

start from a surprisingly limited capacity for segregating the 

world into coherent objects, and reach the capability of the 

adult system. For computational modeling of vision, an 

intriguing possibility is to try to surpass the capabilities of 

current models by following a strategy similar to human 

development, namely, start with the appropriate set of basic 

capacities and learning mechanisms and allow the model to 

develop on its own the final segregation capabilities.  

In the current study we focus on specific sub-problems 

within this broad domain. We develop a model that 

incorporates simple basic capacities, which are known 

empirically to already exist in young infants. It uses them to 

segregate familiar objects and to extract and use so-called 

'boundary ownership' cues (indicating boundaries as well as 

figure/background direction) for static object segregation. 

The model initially has no ability to segregate objects in 

static images, but it can compute visual motion and motion 

discontinuities. It is exposed in an unsupervised manner to 

video sequences containing moving objects. It uses them to 

segregate familiar objects in static images and to learn local 

boundary ownership cues. These are used as cues for static 

object segregation, applied to novel objects.  

In the next sections we briefly summarize relevant 

background from developmental studies of object 

segregation, followed by a presentation of the current 

model. 

Early Development of Object Segregation 

Initial object segregation by infants is based almost 

exclusively on dynamic cues, which are then used to learn 

static object segregation. We focus below on two main 

 

Figure 1: Object segregation, infant to adult capacity. 

(A): A complex scene, easily segregated by an adult. 

(B): At 3 months, infants do not appear to divide the 

figure into two components (after Spelke et al. 1993).  
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aspects of using visual motion for object segregation: 

grouping by common motion, and the use of motion 

discontinuities. We also comment briefly on the use of static 

cues. 

 

Common Motion Infants use visual motion to group 

together adjacent regions that move together. These grouped 

image entities, discovered through motion, are also stored in 

memory and can subsequently be identified in static images 

(Needham 2001, Needham & Baillargeon 1998, Needham & 

Modi 1999, Spelke 1990, Spelke et al. 1989). For example, 

if 4.5 months old see in a static image a region A next to a 

second region B, their expectations are shaped by their 

recent experience of seeing these regions in motion. If A 

and B moved together, infants will treat them as a unit and 

will be surprised if they move separately, but not if they saw 

A or B moving alone. The grouping of regions into a single 

unit depends on their common motion: if two regions differ 

in their image motion, even if they remain in contact, they 

are treated as separate objects (Spelke 1990, Spelke et al. 

1989). Retention in memory of the formed unit is limited in 

time (about 24 hours at 4.5 months of age), but grows 

gradually with age (Needham & Baillargeon 1998, 

Needham & Modi 1999). This use of stored object 

representations for segregation is termed 'object-based 

segregation', and it can generalize with more experience to 

other similar objects ('class based' segmentation), provided 

that the differences are initially small (Needham & Modi, 

1999). Two regions moving together can also be grouped 

together to form a single unit when they are non-contiguous 

but separated behind an occluder (Kellman & Spelke 1983) 

provided that the parts are roughly aligned (Johnson & 

Aslin 1996). 

 

Motion Discontinuities In addition to region grouping 

based on common motion, infants are also sensitive from an 

early age (5 months or earlier) to dynamic cues created by 

the boundaries of moving objects (e.g., Granrud et al. 1984). 

 

Static Cues In terms of static cues, at 3-5 months 

contiguous regions that are not separated by a visible gap 

tend to be grouped together, and are expected for example to 

move together rather than separately (Needham & 

Baillargeon 1998, Spelke 1990, Spelke et al. 1989). At this 

age they show little or no evidence for using grouping 

principles based on uniformity of color, texture, and 

continuity of bounding contour in object perception. At 9 

months the effect of such grouping cues is still weak 

(Spelke et al. 1993). The learning of static cues is gradual, 

and appears to depend on familiarity with many objects 

(Needham & Modi 1989, Spelke 1990). 

 

Following extended learning, perceptual organization into 

distinct objects and their boundaries develops into a 

complex process that relies on a rich set of cues. In addition 

to image-based, or bottom-up properties, organization into 

objects depends on top-down cues, based on familiarity with 

specific objects and object classes. The different cues and 

their integration into a full segregation scheme are still a 

subject of active research in both human studies and 

computational modeling. Yearly competitions and 

evaluations of natural image segmentation
1
 show consistent 

improvements, but current performance is still significantly 

below human performance. Due to space limitations, we 

will not review here different modeling efforts. The closest 

to the current study is the SANE (segmentation according to 

natural examples) model by Ross et al. (2009), where, like 

in the current study, motion segmentation was used to guide 

static segmentation. However, the SANE model does not 

use the two main components of the current model: learning 

boundary-ownership cues near a boundary, and learning 

object-based segregation. It uses instead local binary 5×5 

boundary elements, with no ownership information, and 

their pair-wise relationships. 

Goals of the Current Study  

As reviewed above, infants are sensitive to motion cues for 

segregation, but lack sensitivity to most static cues for 

objects identity. It is therefore natural to ask how static 

segregation cues may be learned during development, 

guided by dynamic cues. We focus on two dynamic cues 

that are prominent in early infant perception. The first is 

common motion, guiding object-based segmentation. That 

is, infants naturally segregate adjacent image regions that 

share common motion, and can identify similar 

configurations in static images. One goal is therefore to 

model this learning of object-based segregation. Second, 

infants are sensitive to dynamic cues created by the 

boundaries of moving objects, and these are used by the 

model to learn useful static boundary cues. Although 

boundary ownership cues appear to play a major role in 

human object segregation (e.g. McDermott 2004, Ghose & 

Palmer, 2010), they are not usually used in computational 

models, in part because it is still unclear which features are 

useful for assigning boundary ownership. A possible 

outcome of a model for the unsupervised learning of 

boundary ownership features could be, therefore, the 

extraction and use of such features in future segmentation 

models and algorithms. 

The Model 

The current learning model has initially two 'innate' 

capacities for using visual motion to learn object 

segregation. The first is the capability to group together 

adjacent regions based on their common motion. A 

representation of the grouped shape is stored and can then 

be used for segregating similar shapes in novel static 

images. The second capacity is to extract motion 

discontinuities. These are used as teaching signals to extract 

image features located along object boundaries, together 

with a labeling of the figure/background sides, and 

                                                           
1 http://www.eecs.berkeley.edu/Research/Projects/CS/vision/gro

uping/segbench/ 
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subsequently use them to locate novel object boundaries and 

identify the figure direction in new static images. These two 

components and how they are used by the learning model 

are described in subsequent sections, following a brief 

description of the training data used for learning. 

Training and Testing Data 

Data consisted of 48 movies, each depicting an object (doll, 

banana, remote control etc.) moved by hand in front of a 

textured background (12 objects, 12 backgrounds). For each 

movie, there are 3 other movies showing the same object on 

a different background, 3 movies showing different objects 

on the same background; the remaining 41 have different 

object and a background. Each movie is one minute long 

(1500 frames), frame size varies between 520×720 pixels to 

576×752 pixels. 

Object-based Segregation  

The goal of object-based segregation is to learn the 

appearance of a specific object, such as the doll, fruit, etc., 

in our movies, and then find the full extent of the object and 

separate it from its background under new settings. The part 

of the model that deals with object-based segregation is 

based on an object detection model used, with some 

variations, in computer vision schemes, termed 'star model'. 

For the purpose of object segregation, the model is 

augmented with a 'back projection' stage. Since this part 

relies on existing object detection models it will be 

described here briefly.  

The input to the object-based segregation is an image in a 

movie, together with the visual motion associated with the 

image. The scheme used for motion computation was an 

available optical flow algorithm (Sun et al. 2010) combined 

with background subtraction, assuming that the camera 

itself is stationary (as in Ross & Kaelbling, 2009).  

The motion computation divides the image into two 

components: a stationary one, and a set of one or more 

moving regions. One of the moving regions is selected for 

further processing. The selected region is covered by local 

image descriptors, each one representing the appearance of a 

local region. The implementation used the standard SIFT 

image descriptor (Lowe 2004) because computationally, it is 

robust and efficient, and biologically, it is similar to 

intermediate level units used in modeling (e.g. S2 units in 

the cortical H-Max model, Riesenhuber & Poggio 1999). A 

single reference point C is selected at the center of the 

selected region, and for each image descriptor Fi, the 

displacement Vi from its location to the center C is stored. 

The object defined by the moving region is therefore 

represented by its center C, and the set of image descriptors 

(Fi), each one with its displacement Vi from the object's 

center. 

 

Segregation of Static Images If the same or similar object 

appears in a new image, it can be detected and segregated 

based on the above representation, using the following 

algorithm. The new image is represented by its local SIFT 

descriptors. For each descriptor F in the image, we find its 

K=25 nearest neighbors among the descriptors of the stored 

object. Each neighbor Fk, votes for the location of the center 

C according to the displacement Vk. Votes are weighted by 

the similarity between F and Fk, and aggregated over the 

image. If an image location C obtains a sufficient number of 

total votes, an object is detected, centered at location C. The 

full object is then segregated by a 'back projection' step: all 

image descriptors that contributed their votes to the selected 

location are identified as components of the detected object. 

A final object/background decision is made by an 

automatically set threshold.  

 

Results – Speed and Generalization In infants, even a few 

seconds of observing an object in motion already affects 

subsequent segregation of the same object in static images 

(e.g. Needham, & Baillargeon 1998). The segmentation is 

effective for images of the same or similar object and 

generalizes gradually to less similar objects (Needham, & 

Baillargeon 1998, Needham & Modi 1999). Object-based 

segregation in the model showed similar characteristics. 

Brief (5 seconds) training was sufficient for learning object 

segregation of a specific object in subsequent parts of the 

movie, with some generalization to a different pose and 

different background. The object is often grouped by motion 

with the holding hand; the two can be separated when the 

hand is learned as an object on its own (Ullman et al. 2012). 

Figure 2 shows example segregations.  

 

Figure 2: Examples of object-based segregations produced 

by the algorithm. Bottom right: an erroneous example. 
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Results were tested by learning an object model in each 

movie using 5 sec and 40 sec segments, and testing on both 

later parts of the same movie, as well as the same object in 

other movies, with different backgrounds and larger 

variations in pose and lighting. Agreement between the true 

object (extracted by motion) and the model segregation 

were measured by the standard score s = |   | |   |, 
where T is the true object and S the segmented. Mean scores 

for 5-sec training were s = 0.3 vs. 0.23 on same vs. different 

movies, and for 40-sec training s = 0.49, 0.36 respectively. 

Effects of training time and generalization are highly 

significant (1-tailed t-test, n=1200, p < 10
-6

 in all 

comparisons).  

The object-based segregation in the model segregates the 

general object region but it does not accurately delineate the 

boundaries. Since the object is represented by local 

appearance patches, it is sensitive to texture properties 

inside the object, in agreement with infant's object-based 

segregation (Needham & Modi, 1999). In contrast, the 

model shows limited accuracy around object boundaries; it 

will be interesting to test this prediction in infants' vision 

(see discussion). 

Learning Boundary Features 

The accurate delineation of boundaries is important for 

interacting with objects, e.g. for grabbing, finding free space 

to place them, etc. This is obtained in the model by a second 

mechanism, which uses motion discontinuities to learn static 

cues for occluding boundaries, as described next. 

Learning Process To learn useful boundary features, 

motion discontinuities are used to guide the extraction of 

static boundary features and their figure-ground labeling. 

The learning procedure is simple, proceeding along the 

following stages. In each frame of the training movies, 

motion discontinuities are detected, and at each pixel along 

the boundary, image patches are extracted at 5 different 

sizes (ranging from 12×12 pixels to 60×60 pixels). Each 

patch is represented by a rotation invariant SIFT descriptor, 

producing a fixed-size descriptor regardless of original 

patch size. The motion signal is also used to label the figure 

part (which is moving in the training images) and 

background part (which is stationary) in each stored patch. 

From these, a subset of boundary patches is later selected, as 

described in the Results section below.  

 

Use In Static Images The learned boundary features are 

then used to identify likely object boundaries in novel static 

images. Given a static input image, local SIFT features are 

extracted at the same 5 sizes, densely over the entire image. 

For each feature, its 25 nearest neighbors in the stored set of 

trained boundary features are extracted (using a fast 

approximation algorithm, Arya & Mount 1993). These 

neighbors are used to estimate the likelihood of an object 

boundary at this location, and to identify the figure side of 

the potential boundary. Specifically, each neighbor i has a 

SIFT descriptor Di and an object direction θi. For an image 

patch with descriptor D, we define the predicted object 

direction θ and a score S as follows: 

Figure 3: Detecting object boundaries. Left: Original image, with object-based segregation. Object is located, but boundaries 

are inaccurate. Center: Detection of boundary features. Warm colors indicate figure side of boundary, cold colors – ground 

side. Both object and background were not seen during training of boundary detector. Right: Combining object-based 

segregation with boundary detections. Object is detected with correct boundaries. 
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Where atan2 is a 4-quadrant arctangent function. σ is set to 

0.25. θ, S are then used to estimate the figure/background 

direction at the patch in question. Estimations of all patches 

are added together weighted by S and smoothed by a spatial 

Gaussian function (positive in the figure, negative in 

background side). This yields a single total figure-score at 

each image location, where a positive score is likely to be 

the figure side of an object boundary. 

 

Results Examples of boundary detection are shown in 

Figure 3. We used statistical testing to compare the density 

of boundary features in a region (10 pixels) around object 

boundaries compared with inside the object and on the 

background. Density was significantly higher around the 

boundaries compared with internal or external regions. In 

contrast, object-based segregation produced higher density 

in internal regions compared with boundary or external 

regions (1-tailed t-test, n=1200 p < 10
-6

 in all comparisons). 

 

Types And Number Of Boundary Features 
Psychophysical and computational studies of boundary 

features have suggested several types of informative 

boundary features, including: interposition (T-junctions), 

surface junctions, such as Y-junctions and arrow-junctions, 

and extremal edges, or folds, (Geisler et al. 2009, Ghose & 

Palmer 2010) coming from the projection of an occluding 

edge curving smoothly in 3D, typically creating a highlight 

or shadow along the curving edge.  

The current study used automatically labeled object 

boundaries, identified by motion discontinuities. 

Consequently, it became possible to extract and study a 

much richer set of boundary features compared with 

previous studies that used human annotated boundaries 

(Geisler et al. 2009, Fowlkes et al. 2007). The learning 

process produced a rich and varied set of boundary cues. 

Their analysis revealed the following properties. (i) 

Individual boundary features are probabilistic in the sense 

that they contribute information to the correct figure 

direction, but individual features are usually not definitive 

on their own. When training on 100,000 boundary features, 

the correct figure side is predicted in novel boundary 

features 78% of the times. (ii) Boundary features are 

consistent across image sets and are therefore useful for 

generalization to novel images. Our testing was done in 48 

cross-validation folds, each time testing one movie, and 

excluding all movies with the same object or background 

from training data. (iii) There is a large set of useful 

boundary features, and using a restricted subset is less 

accurate than using the larger set. We selected the best 

performing features by cross-validation folds, and tested 

sets of different sizes, yielding 75% accuracy for 10,000 

patches, 71% for 1,000, 65% for 100, 54% for 50. 

Nonetheless, the improvement diminishes for very large 

sets, suggesting that saturation may be reached at some 

point, and there is no need to memorize every observed 

feature. Exploring mechanisms of feature retention is left for 

future work. (iv) Among the top-scoring boundary features 

(examples in Fig. 4) there is a significant fraction that can 

be labeled 'extremal edges'. These have only recently been 

found to play a crucial role in human vision (Ghose & 

Palmer 2010), and have not been tested in infants' object 

segregation. Our model focuses on learning boundary 

features, and does not model their integration within a fully 

functional segregation system. To illustrate their 

contribution we therefore used them as input to an existing 

algorithm (GrabCut, Rother et al. 2004); results are 

Figure 4: 25 examples of top-scoring  boundary detection 

features, chosen by cross validation testing over 48 folds. 

Individual features are not reliable on their own – it takes at 

least 1,000 features to get good predictions (see text). 

Figure 5: Object segmentation with the GrabCut algorithm. 

Left: Segmentation produced by the algorithm using default 

initialization. Right: Segmentation results with initialization 

by our segregation score maps. 
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illustrated in Figure 5. The figure shows performance of the 

algorithm in its standard form (left), and the same algorithm 

when supplied with our object and boundary scores.  

Discussion 

The model demonstrates how static object segregation can 

be learned effectively guided by two motion based 

mechanisms known to be innate or early learned in infants' 

vision: grouping by common motion and sensitivity to 

motion discontinuities.  

These mechanisms are used by the model for two 

complementary goals: common motion is used for object-

based segregation, and motion discontinuities are used for 

learning static occlusion cues. In agreement with infants 

learning, the learning of object-based segregation by the 

model is fast, with initial sensitivity to details of the object's 

internal texture. It identifies well the region of the object 

with reduced accuracy near the boundaries. Boundary cues 

require more prolonged learning, but they appear to 

generalize broadly to novel object images. The set of useful 

boundary features found by the model is large and varied, 

including a major contribution from extremal edges, which 

have played a limited role in modeling so far.  

The results of the study suggest a number of interesting 

directions for further research. In terms of infant studies, it 

will be of interest to test their capacity for object 

segregation based on extremal cues, which, to the best of 

our knowledge have not been tested so far. Another 

prediction that can be tested is whether object-based 

segregation by infants, which is sensitive to internal texture, 

will exhibit insensitivity to the object's boundary. 

Computationally, it will be interesting to compile a large set 

of useful boundary features that could be used by future 

segmentation algorithms. Finally, since scene segmentation 

in natural images is still a challenging open problem, it will 

be of interest to extend the current approach and examine 

whether following human development, by letting object 

segregation (including cues not considered in the current 

model) be guided and learned using dynamic cues, could 

lead to the emergence of models approaching human 

segregation capacities. 
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