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Abstract

We put forward a new type of computationally-sound proof systems, called universal-arguments.
Universal-arguments are related but different from both CS-proofs (as defined by Micali [SICOMP,
Vol. 37, pages 1253–1298, 2000]) and arguments (as defined by Brassard, Chaum, and Crépeau
[JCSS, Vol. 37, pages 156–189, 1988]). In particular, we adopt the instance-based prover-
efficiency paradigm of CS-proofs, but follow the computational-soundness condition of argument
systems (i.e., we consider only cheating strategies that are implementable by polynomial-size cir-

cuits).
We show that universal-arguments can be constructed based on standard intractability as-

sumptions that refer to polynomial-size circuits (rather than based on assumptions that refer
to subexponential-size circuits as used in the construction of CS-proofs). Furthermore, these
protocols have a constant number of rounds and are of the public-coin type. As an application of
these universal-arguments, we weaken the intractability assumptions used in the non-black-box
zero-knowledge arguments of Barak [42nd FOCS, 2001]. Specifically, we only utilize intractabil-
ity assumptions that refer to polynomial-size circuits (rather than assumptions that refer to
circuits of some “nice” super-polynomial size).
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1 Introduction

Various types of probabilistic proof systems have played a central role in the development of com-
puter science in the last two decades. The best known ones are interactive proofs [20], zero-
knowledge proofs [20], and probabilistic checkable proofs [15, 5, 14, 2], but other notions such as
various types of computationally-sound proofs (e.g., arguments [12] and CS-proofs [23]) and multi-
prover interactive proofs [11] have made a prominent appearance as well. Do we really need yet

another type of probabilistic proof systems?

We believe that the answer is positive: The number of different (related) notions that “we need”
is exactly the number of different notions that are natural, interesting and/or useful. Confining
ourself to usefulness, we note that the new type of computationally-sound proof systems introduced
in this paper has emerged in the context of trying to improve the constructions of non-black-box
zero-knowledge arguments of Barak [6]. Furthermore, these proof system seem inherent to certain
diagonalization techniques used in [6] and (in a different context) in [13].

1.1 Motivation: Applying diagonalization in cryptography

A naive idea, which was discarded for decades in Cryptography, is constructing a cryptographic
scheme by “diagonalization”; for example, enumerating all probabilistic polynomial-time adver-
saries and making sure that each of them fails. The main reason that this idea was discarded is
that the resulting scheme will (necessary) be more complex than the class of adversaries it de-
feats, while in cryptography a scheme should withstand adversaries that are (at least slightly) more
complex than the scheme.

Still, as observed by Canetti, Goldreich and Halevi [13] and Barak [6], a small twist on diag-
onalization may be useful in Cryptography. The twist is using diagonalization in order to build
a “trapdoor” so that the trapdoor can be used in some “imaginary setting” (e.g., by the simula-
tor [6]), but not in the “real” setting (e.g., an actual execution of the proof system [6]).1 Thus, the
complexity of the imaginary setting is affected by the diagonalization, whereas the complexity of
the real setting is independent of the diagonalization. Specifically, in the context of Barak’s zero-
knowledge arguments [6], the trapdoor is knowledge of the (adversarial) verifier’s strategy, where
this strategy (which is the locus of diagonalization) may be any polynomial-size circuit (where the
polynomial is determined only after the proof system is specified). In the actual execution, the
(zero-knowledge) prover does not use this trapdoor (but rather uses an NP-witness to the real
input), and so its complexity is independent of the complexity of the trapdoor (i.e., the cheating
verifier’s strategy). However, the simulator uses the trapdoor, and so its complexity depends on
the latter (and so every polynomial-size adversary yields a related polynomial-time simulation).

For the foregoing idea to make sense, the verifier should not be able to distinguish the case in
which the (real) prover uses an NP-witness to the real input from the case in which the (simulated)
prover uses the trapdoor (i.e., the cheating verifier’s strategy). Indeed, Barak’s protocol utilizes
a witness indistinguishable (WI) proof for which both the NP-witness (to the real input) and the
trapdoor (i.e., verifier’s strategy) are valid witnesses. Thus, the honest verifier strategy in the WI
proof must be independent of the length of the witness used by the prover. This is because in one
of the cases the length of the witness is determined only after the proof system is specified (i.e.,

1In [13], the “imaginary setting” is an implementation of the random-oracle by a function ensemble (shown not
to exist), whereas the “real setting” is the ideal (Random Oracle Model) setting in which the scheme uses a random-
oracle. (Indeed our perspective here is opposite to the one in [13], where the random-oracle is considered “imaginary”
and its implementations by function ensembles are considered “real”).
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in the simulation, the length of the trapdoor is polynomial, but this polynomial is determined and
fixed only after the proof system is specified).

We conclude that in order to use diagonalization as above, we should have a (WI) proof system
that is capable of handling any “NP-statement” (and not merely statements in any a-priori fixed
NP-set). Put in other words, we need a single proof system that can be used to provide proofs for
any set S in NP such that the running time and communication needed for verifying that x ∈ S
is bounded by a fixed (i.e., single) polynomial in |x|, which does not depend on the set S. In
particular, it may be the case that S ∈ Ntime(p), where p(·) is a polynomial that is larger than
the fixed polynomial bounding the verifier’s complexity. We stress that, in contrast, typically when
the phrase “proof systems for NP” is used, the intended meaning is that every set S ∈ NP has a
different proof system (and the complexity of verifying that x ∈ S is bounded by an S-dependent

polynomial in |x|).

1.2 The notion of universal arguments

For sake of simplicity, we define and present proof systems only for the universal set SU defined
such that the tuple (M,x, t) is in SU if M is a non-deterministic machine that accepts x within
t steps.2 This suffices for handling any NP-set via a single protocol, because every NP-set S is
linear-time reducible to SU (e.g., via the mapping x 7→ (MS , x, 2|x|), where MS is any fixed non-
deterministic polynomial-time machine that decides S). Thus, a proof system for SU allows us to
handle all “NP-statements” (in a uniform manner): for any S ∈ NP , when wishing to verify the
assertion “x in S”, the verifier should just use the proof system of SU on input (MS , x, 2|x|), where
MS is as above. (In fact, SU is NE-complete, by an analogous linear-time reduction).3

We consider also the natural witness-relation for SU , denoted RU : the pair ((M,x, t), w) is in
RU if M (viewed here as a two-input deterministic machine) accepts (x,w) within t steps. Loosely
speaking, a universal argument system (or a universal argument system for SU ) is a two-party protocol
(P, V ), for common inputs of the form (M,x, t), that satisfies the following:

Efficient verification: The total time spent by the (probabilistic) verifier V is polynomial in length
of the common input (i.e., polynomial in |(M,x, t)| = O(|M |+ |x|+ log t)). In particular, all
messages exchanged in the protocol have length that is so bounded.

Completeness by a relatively-efficient prover: For every ((M,x, t), w) in RU , on common input (M,x, t),
when P is given auxiliary input w, it always convinces V . Furthermore, the total time spent
by P in this case is bounded by a fixed polynomial in (|M | and) TM (x,w), where TM (x,w) ≤ t
is the number of steps taken by M on input (x,w).

Computational Soundness: For every polynomial-size circuit family {Cn}n∈N and every (M,x, t) ∈
{0, 1}n \ SU , the probability that, on common input (M,x, t), the (“cheating”) circuit Cn

succeeds in fooling V (into accepting (M,x, t)) is negligible (as a function of n).

(The actual definition appears in Section 2.)

2One nice feature of SU is that it comes with a natural measure of complexity of instances: the complexity of
(M, x, t) is the actual time it takes M to accept x (when using the best sequence of non-deterministic choices).
(Similarly, the complexity of (M, x, t) coupled with the witness w is the actual time it takes M to accept x when
using w as the sequence of non-deterministic choices.) Such a complexity measure is pivotal to the refined formulation
of the prover complexity condition.

3That is, for S ∈ Ntime(e), where e(n) = 2cn for some constant c, we use the reduction x 7→ (MS , x, 2c|x|).
Furthermore, every set in NEXP is polynomial-time (but not linear-time) reducible to SU .
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Relation to prior notions. Universal-arguments are related but different from both CS-proofs
(as defined by Micali [23]) and arguments (as defined by Brassard, Chaum and Crepeau [12]).
Specifically:

1. The efficient-verification condition is identical in all definitions (except that arguments are
typically defined only for individual sets in NP).

2. The “completeness by a relatively-efficient prover” condition follows the instance-based paradigm
of CS-proofs (but provides the prover with an auxiliary input).

3. The computational-soundness condition is exactly as in argument systems (and is typically
weaker than the one in CS-proofs).

Thus, in a sense, universal-arguments are a hybrid of arguments and CS-proofs. Indeed, universal-
arguments are weaker than CS-proofs, but the point is that we will be able to construct a universal-
argument based on a weaker assumption than the ones that seem necessary for constructing CS-
proofs (cf. [23, 6]).

We comment that computational-soundness seems unavoidable in any proof system for SU

that satisfies the efficient-verification condition (even just “uniformly for all NP”). In contrast,
statistical soundness (coupled with the standard notion of efficient-verification) would have implied
that SU (or “just” all NP) is in DSpace(p), for some fixed polynomial p. (The reason is that the
total communication in such a protocol must be upper-bounded by a fixed polynomial, p, and that
an optimal prover strategy can be implemented in space p.)

On natural applications of universal-arguments. A strange-looking aspect of universal-
arguments is that, on some yes-instances, the designated prover may run in more time than allowed
to cheating provers (i.e., a fixed polynomial in TM (., .) may be larger than an arbitrary polynomial
in the length of the common input).4 However, in typical applications (such as ours), the designated
prover will never be invoked on such inputs (i.e., on inputs requiring the prover to run for time that
is super-polynomial in their length). Actually, we shall only use the fact that a universal-argument
system guarantees the following behavior with respect to any polynomial p (which may be selected
after the system is specified):

1. For every (y,w) ∈ RU such that y = (M,x, t) and t ≤ p(|x|), it holds that (given y and w)
the designated prover convinces the verifier to accept y, and the total time used by the prover
is poly(|M |+ t) = poly(|y|). Specifically, there exists a fixed polynomial q0 that is associated
with the universal-argument system such that the running time of the designated prover on
input (M,x, t) (and w) is q0(|M |+ t) ≤ q0(|M |+ p(|x|)) < (q0 ◦ p)(|y|).

2. For every polynomial q and every sufficiently long y = (M,x, t) 6∈ SU , it holds that no
q(|y|)-size circuit can convince the verifier to accept y.

4This phenomena does not occur in arguments [12] and in CS-proofs [23]: Arguments were defined only for
individual sets in NP , and so the issue never arises. In the case of CS-proofs, the definition of computational-
soundness relates to cheating provers of size exponential in the security parameter, which is typically set to be linear
in the length of the common input [23]. Thus, the cheating provers are always allowed more running time than the
designated prover (since its running-time is always at most exponential in the length of the common input). However,
it seems that allowing the adversaries time that is exponential in the security parameter requires using intractability
assumptions that refer to exponential (or sub-exponential) circuits.
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Thus, in this restricted case, the complexity bound considered in the soundness condition (of
Item 2) may exceed the complexity of the designated prover when handling yes-inputs of the type
mentioned in Item 1 (i.e., (M,x, t) ∈ SU such that t ≤ p(|x|)). Needless to say, the foregoing
items cover all NP-sets (where a set S ∈ NP is handled by selecting the polynomial p such that
S ∈ Ntime(p) holds).

1.3 The construction of universal arguments

By adapting the construction of Kilian [21], one can show that the existence of strong collision-
resistant hashing functions implies the existence of universal arguments (and even CS-proofs for
SU ; cf. Micali [23]). By strong collision-resistant hashing we mean families of functions for which
collisions are hard to find even by using subexponential-size circuits. The goal, achieved in this
paper, is to construct universal arguments based only on standard collision-resistant hashing; that
is, families of functions for which collisions are hard to find by polynomial-size circuits. That is,
we obtain:

Theorem 1.1 (our main result): The existence of (standard) collision-resistant hashing functions

implies the existence of universal arguments. Furthermore, these proof systems are of the public-

coin5 type and use a constant number of rounds.

Our construction of universal arguments adapts Kilian’s construction [21] in a quite straightforward
manner. Our contribution is in the analysis of this construction. Unlike in previous analysis (as
in [21] and [23]), when establishing computational-soundness via contradiction, we cannot afford
to derive a collision-forming circuit of size that is polynomial in the worst-case time-complexity
of the designated prover (because the designated prover may have (worst-case) complexity that is
super-polynomial (in the input length)).6 We need to derive a collision-forming circuit of size that
is polynomial in the input length. Indeed, doing so allows us to use standard collision-resistant
hashing (rather than strong ones).

The analysis is further complicated by our desire to establish a “proof of knowledge” property,
which is needed for our main application. This is discussed next.

1.4 Application to zero-knowledge arguments

Barak’s construction [6] of non-black-box zero-knowledge arguments (for any set in NP) uses a
witness indistinguishable (WI) argument of knowledge for RU .7 In his protocol, the prover uses
this WI argument (of knowledge) to prove that it knows either an NP-witness for the original com-
mon input or a program that fits the verifier functionality (as reflected in the challenge-respond
exchange that follows). Thus, as a first step, we need to transform our universal argument (of
knowledge) into a corresponding WI universal argument (of knowledge). The transformation es-
sentially follows Barak’s transformation [6], but then we encounter a second place where Barak

5A.k.a, Arthur–Merlin systems (cf. [3]).
6Specifically, Kilian’s construction [21] uses a PCP system, and the hypothetical violation of its computational-

soundness is shown to yield a (relatively small) collision-forming circuit, but this circuit is bigger than the length of
the corresponding PCP-oracle (which, in the case of SU , is exponential in the input length). Instead, we show how
to obtain a collision-forming circuit that is smaller than the length of the corresponding PCP-oracle.

7In fact, Barak uses a CS-proof (of knowledge) for R
f
U ⊂ RU , where f is any “nice” super-polynomial function (e.g.,

f(n) = nlog2 n) and ((M, x, t), w) is in R
f
U only if t ≤ f(|x|). He constructs such CS-proof assuming the existence of

hashing functions that are resilient with respect to f -size circuits (rather than subexponential hardness which would
have been required for CS-proof for RU ).
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uses a super-polynomial hardness assumption: Barak uses a collision-resistant hashing function to
hash “SU -witnesses” (into fix-length strings), where the length of these witnesses is bounded by
some super-polynomial function (but not by any polynomial). Consequently, a collision on such
long strings only yields violation of a super-polynomial collision-resistant assumption. To avoid
super-polynomial hardness assumptions, we hash these witnesses by combining “tree-hashing” (as
in Kilian’s construction [21]) with an error-correcting code. Specifically, first the witness string is
encoded using an error-correcting code, and then the “tree-hashing” is applied to the result. Thus,
if two different strings are so hashed to the same value, then we can form a collision with respect
to the basic hashing function (used in the “tree-hashing”) by considering a uniformly selected leaf
(which is quite likely to be assigned different values under an error-correction coding of different
strings). Combining the foregoing, we obtain:

Theorem 1.2 (our main application): The existence of (standard) collision-resistant hashing func-

tions implies the existence of (non-black-box) zero-knowledge arguments for any set in NP such

that these protocols have the following additional properties:

1. The protocol has a constant number of rounds and uses only public-coins;

2. The simulator runs in strict (rather than expected) probabilistic polynomial-time;

3. The protocol remains zero-knowledge when, say, n2 copies are executed concurrently.8

Recall that, assuming NP 6⊆ BPP , each of the three extra properties requires a non-black-box
simulator (and that such protocols were presented for the first time in [6]).9 Thus, Theorem 1.2
establishes the main result of Barak’s work [6] under a weaker assumption: We only assume the
existence of hashing functions that are resilient with respect to polynomial-size circuits (rather than
with respect to circuits of some super-polynomial size).

1.5 Organization

In Section 2 we define universal arguments and in Section 3 we show how to construct them (using
any family of collision-resistant hash functions). The application to the construction of non-black-
box zero-knowledge arguments is presented in Section 4. Appendix B contains a revised treatment
of the notion of non-oblivious commitment scheme, which may be of independent interest (because
it augments the initial treatment provided in [16, §4.9.2.1] and corrected in [17, Sec. C.3.3]).

Comment: The current version differs from prior versions of this paper mainly in Section 4.1.
The presentation in prior versions (see [8]) relied on the existence of constant-round, public-coin
strong-WI proofs-of-knowledge for any NP set. Unfortunately, contrary to prior misconceptions
(cf. [16, Sec. 4.6]), such protocols are not known to exist [17, Apdx. C.3]. Indeed, this gap can be
bypassed – as done in [7] and in the current version, by using a rather ugly patch – but our hope
was to bridge the gap (i.e., prove the existence of the said strong-WI protocols) and maintain the
original presentation. Having failed to do so for several years, we decided to archive the current
version.

8In fact, we can tolerate p(n) concurrent copies, where p is an arbitrary polynomial that is fixed a priori; that is,
the argument system depends on the polynomial p.

9Indeed, see [6, 7] for a discussion of various results regarding the impossibility of achieving the above via a
black-box simulator. We stress that the current discussion refers to protocols of negligible soundness error.
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2 The Definition of Universal Arguments

Let us start with some general notions. For an integer n, we denote the set {1, ..., n} by [n]. We
denote by µ :N→ [0, 1] an unspecified negligible function; that is, for every positive polynomial p and
all sufficiently large n, it holds that µ(n) < 1/p(n). We say that an event occurs with overwhelmingly
high probability if it occurs with probability at least 1 − µ(n), where n is the relevant security
parameter. For a pair of (interactive) strategies, denoted (P, V ), we denote by (P (w), V )(y) the
output of V when interacting with P (w) on common input y, where P (w) denotes the functionality
of P when given auxiliary input w.

In continuation of the discussion in Section 1.2, we now define universal argument systems (for
SU ). Recall that SU = {(M,x, t) : ∃w s.t. ((M,x, t), w) ∈ RU}, where ((M,x, t), w) ∈ RU if M
accepts (x,w) within t steps. Let TM (x,w) denote the number of steps made by M on input (x,w);
indeed, if ((M,x, t), w) ∈ RU then TM (x,w) ≤ t. Recall that |(M,x, t)| = O(|M |+ |x|+ log t); that
is, t is given in binary. In the following definition, we incorporate a (weak) “proof of knowledge”
property (which was mentioned in Sections 1.3 and 1.4, but not in Section 1.2).10

Definition 2.1 (universal argument): A universal-argument system is a pair of strategies, denoted

(P, V ), that satisfies the following properties:

Efficient Verification: There exists a polynomial p such that for any y = (M,x, t), the total time

spent by the (probabilistic) verifier strategy V , on common input y, is at most p(|y|). In

particular, all messages exchanged in the protocol have length smaller than p(|y|).

Completeness via a relatively-efficient prover: For every ((M,x, t), w) in RU ,

Pr[(P (w), V )(M,x, t) = 1] = 1. (1)

Furthermore, there exists a polynomial p such that for every ((M,x, t), w) ∈ RU the total time

spent by P (w), on common input (M,x, t), is at most p(|M |+ TM (x,w)) ≤ p(|M |+ t).

Computational Soundness: For every polynomial-size circuit family {P̃n}n∈N, and every (M,x, t) ∈
{0, 1}n \ SU ,

Pr[(P̃n, V )(M,x, t) = 1] < µ(n) (2)

where µ : N→ [0, 1] is a negligible function.11

A weak proof-of-knowledge property: For every positive polynomial p there exists a positive polyno-

mial p′ and a probabilistic polynomial-time oracle machine E such that the following holds:12

for every polynomial-size circuit family {P̃n}n∈N, and every sufficiently long y = (M,x, t) ∈

{0, 1}∗ if Pr[(P̃n, V )(y) = 1] > 1/p(|y|) then

Prr

[
∃w = w1 · · ·wt∈RU(y)

(∀i∈ [t]) EP̃n
r (y, i) = wi

]
>

1

p′(|y|)
(3)

10Indeed, the (weak) “proof of knowledge” property may be considered an auxiliary feature, which need not be
mandated by the basic definition of a “universal argument” (i.e., Definition 2.1). Our choice to include this property
in Definition 2.1 is motivated by the specific context and results of the present work.

11That is, the function µ is fixed depending on {P̃n}n∈N and on an infinite sequence of inputs that contains at
most one input per each input length. Equivalently, one may fix the function µ depending only on the polynomial
bounding the size of the circuit family.

12Indeed, the polynomial p′ as well as the (polynomial) running-time of E may depend on the polynomial p (which
determines the noticeable threshold probability).
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where RU (y)
def
= {w : (y,w) ∈ RU} and EP̃n

r (., .) denotes the function defined by fixing the

random-tape of E to equal r, and providing the resulting Er with oracle access to P̃n. The

oracle machine E is called a (knowledge) extractor.

A few comments regarding the weak proof-of-knowledge property are in place. First, note that the

condition “∀i∈ [t] it holds that EP̃n
r (y, i) = wi” means that EP̃n

r (y, .) is an implicit representation

of the string w = w1 · · ·wt (i.e., any specific bit of w is obtained by instantiating the second input

to EP̃n
r (y, .) accordingly). If Pr[(P̃n, V )(y) = 1] > 1/p(|y|) then at least an 1/p′(|y|) fraction of

the possible r’s yield such implicit representations of some string in RU(y), but these strings are
not necessarily equal (i.e., different r’s may yield different strings in RU (y)). Implicit (rather than
explicit) representation is required here because we want the extractor to run in polynomial-time,
whereas the length of the strings in RU (y) may not be bounded by any polynomial (in |y|). Finally,
we note that the weak proof-of-knowledge property is indeed weaker than the standard definition
of a proof of knowledge (cf. [9], [16, Sec. 4.7] and Footnote 12), but it suffices for the applications
that we have in mind.

3 The Construction of Universal Arguments

As mentioned in Section 1.3, by adapting of the construction of Kilian [21], one can easily show
that the existence of strong collision-resistant hashing functions implies the existence of universal
arguments (and even CS-proofs for SU ; cf. Micali [23]). Here we show how a similar adaptation,
when using only standard collision-resistant hashing functions, yields universal arguments. Our
focus is on demonstrating the computational soundness of this construction, which should now be
established under a weaker assumption than the one used in [21, 23].

3.1 Motivation

In order to explain the difficulty and its resolution, let us recall the basic construction of Kilian [21]
(used also by Micali [23]), as adapted to our setting.

Our starting point is a PCP [poly,poly] system for SU ∈NEXP , which is used in the universal-
argument system as follows. The verifier starts by sending the prover a hashing function. The
prover constructs a PCP-proof/oracle (corresponding to the common input and its own auxiliary
input), places the bits of this oracle at the leaves of a polynomial-depth full binary tree, and places
in each internal node the hash-value obtained by applying the hashing function to the labels (i.e.,
contents) of its children. The prover sends the label of the root to the verifier, which responses by
sending a random tape of the type used by the PCP-verifier. Both parties determine the queries
corresponding to this tape, and the prover responds with the values of the corresponding leaves
along with the labels of the vertices along the paths from these leaves to the root (as well as the
labels of the siblings of these vertices). The verifier checks that this sequence of labels matches the
corresponding applications of the hashing function, and also emulates the PCP-verifier. Ignoring
(for a moment) the issue of prover’s complexity, the problem we consider next is that of establishing
computational-soundness.

The naive approach is to consider how the prover responds to each of the possible random-tapes
sent to it. If the prover answers consistently (i.e., with leaf-labels that depend only on the leaf
location), then we obtain a PCP-oracle and soundness follows by the soundness of the PCP scheme.
On the other hand, inconsistent labels for the same leaf yield a (hashing) collision somewhere along
the path to the root. However, in order to find such a collision, we must spend time proportional

7



to the size of the tree, which yields contradiction only in the case that the hashing function is
supposed to withstand adversaries that use that much time. Note that the size of the tree is picked
by the (adversarial) prover, and since we wish to handle SU (or merely “only” all of NP) we do not
have an a priori polynomial bound on the size of the tree that the prover is allowed to use (because
no such bound exists for the designated prover). But in such a case, if the tree is exponential (or
even merely super-polynomial) in the security parameter, then we derive contradiction only when
using hashing functions of sub-exponential (respectively, super-polynomial) security.

In contrast to the (above) naive approach, the approach taken here is to consider each leaf
separately rather than all leaves together. That is, the naive analysis distinguishes the case that
the prover answers inconsistently on some leaf from the case it answer consistently on all leaves.
Instead, we consider each leave separately, and distinguishes the case that the prover answers
inconsistently on this leaf from the case it answer consistently on this leaf. Loosely speaking, we
call a leaf good if the prover answers consistently on it, and observe that if a big fraction of the leaves
are good then soundness follows by the soundness of the PCP scheme (regardless of the contents
of other leaves). On the other hand, if sufficiently many leaves are not good, then we obtain a
collision by picking a random leaf (hoping that it is not good) and obtaining inconsistent labels for
it. This requires being able to uniformly select a random-tape that causes the PCP-verifier to make
the corresponding query, a property which is fortunately enjoyed by the relevant PCP systems.

We warn that the above is merely a rough description of the main idea in our analysis. Further-
more, in order to establish the proof-of-knowledge property of our construction, we need to rely
on an analogous property of the PCP system (which again happens to be satisfied by the relevant
PCP systems).

3.2 The PCP system in use

We first recall the basic definition of a PCP system. Loosely speaking, a probabilistically checkable
proof (PCP) system consists of a probabilistic polynomial-time verifier having access to an oracle
which represents a proof in redundant form. Typically, the verifier accesses only few of the oracle
bits, and these bit positions are determined by the outcome of the verifier’s coin tosses. It is required
that if the assertion holds then the verifier always accepts (i.e., when given access to an adequate
oracle); whereas, if the assertion is false then the verifier must reject with high probability (as
specified in an adequate bound), no matter which oracle is used. The basic definition of the PCP
setting is given in Item (1) of Definition 3.1 below. Typically, the complexity measures introduced
in Item (2) of Definition 3.1 are of key importance, but this is not the case in the current work.

Definition 3.1 (PCP – basic definition):

1. A probabilistic checkable proof system (PCP) with error bound ǫ : N→ [0, 1] for a set S is a

probabilistic polynomial-time oracle machine (called verifier), denoted V , satisfying

• Completeness: For every x ∈ S there exists an oracle πx such that V , on input x and

access to oracle πx, always accepts x.

• Soundness: For every x 6∈ S and every oracle π, machine V , on input x and access to

oracle π, rejects x with probability at least 1− ǫ(|x|).

2. Let r and q be integer functions. The complexity class PCPǫ[r(·), q(·)] consists of sets having

a PCP system with error bound ǫ in which the verifier, on any input of length n, makes at

most r(n) coin tosses and at most q(n) oracle queries.
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Note that if S has a PCP system with error bound ǫ, then S ∈ PCPǫ[p(·), p(·)], for some polynomial
p. Here we will only care that SU ∈ NE has a PCP system with an exponentially decreasing error
bound (i.e., ǫ(n) = 2−n). Instead of caring about the refined complexity measures (of Item 2), we
will care about the following additional properties which are satisfied by some PCP systems, where
only some of these properties were explicitly considered before (see discussion below).

Definition 3.2 (PCP – auxiliary properties): Let V be a PCP verifier with error ǫ :N→ [0, 1] for

a set S ∈ NEXP, and let R be a corresponding witness relation. That is, if S ∈ Ntime(t(·)), then

we refer to a polynomial-time decidable relation R satisfying x ∈ S if and only if there exists w of

length at most t(|x|) such that (x,w) ∈ R. We consider the following auxiliary properties:

Relatively-efficient oracle-construction: This property holds if there exists a polynomial-time algo-

rithm P such that, given any (x,w) ∈ R, algorithm P outputs an oracle πx that makes V
always accept (i.e., as in the completeness condition).

Non-adaptive verifier: This property holds if the verifier’s queries are determined based only on the

input and its internal coin tosses, independently of the answers given to previous queries.

That is, V can be decomposed into a pair of algorithms, Q and D, such that on input x and

random-tape r, the verifier makes the query sequence Q(x, r, 1), Q(x, r, 2), ..., Q(x, r, p(|x|)),
obtains the answers b1, ..., bp(|x|), and decides according to D(x, r, b1 · · · bp(|x|)), where p is

some fixed polynomial.

Efficient reverse-sampling: This property holds if there exists a probabilistic polynomial-time algo-

rithm S such that, given any string x and integers i and j, algorithm S outputs a uniformly

distributed r that satisfies Q(x, r, i) = j, where Q is as in the previous item.

A proof-of-knowledge property: This property holds if there exists a probabilistic polynomial-time

oracle machine E such that the following holds:13 for every x and π, if Pr[V π(x) = 1] > ǫ(|x|)
then there exists w = w1 · · ·wt such that (x,w) ∈ R and Pr[Eπ(x, i) = wi] > 2/3 holds for

every i ∈ [t].

Non-adaptive PCP verifiers were explicitly considered in several works, and in fact in some sources
PCP is defined in terms of non-adaptive verifiers. (Needless to say, almost all PCP systems use
non-adaptive verifiers.) The oracle-construction and proof-of-knowledge properties are implicit in
some works, and are known to hold for many PCP systems (although we are not aware of a text
that contains a proof of this fact). To the best of our knowledge, the reverse-sampling property
was not considered before. Nevertheless, it can be verified that any S ∈ NEXP has a PCP system
that satisfies all the foregoing properties.

Theorem 3.3 For every S ∈ NEXP and for every ǫ : N → [0, 1] such that for some positive

polynomial p it holds that ǫ(n) > 2−p(n) for all n, there exist a PCP system with error ǫ for S such

that this PCP satisfies the four properties listed in Definition 3.2.

Proof sketch: For S ∈ Ntime(t(·)), we consider the PCP1/2[O(log t(·)),poly(·)] system presented
by Babai et al. [5] (i.e., the starting point of Arora et al. [2, 1]). (We stress that this PCP system,
unlike the one of Feige et al. [14], uses oracles of length polynomial in t.) This PCP system is

13For negligible ǫ (as used below), this proof-of-knowledge property is stronger than the standard proof-of-knowledge
property (as in [9] and [16, Sec. 4.7.1]). Indeed, the proof-of-knowledge property in Definition 3.2 is analogous to the
definition of a strong proof-of-knowledge (as in [16, Sec. 4.7.6]).
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evidently non-adaptive and it is well-known to satisfy the oracle-construction property. It is also
known (alas less known) that this PCP system satisfies the proof-of-knowledge property. Finally,
it is easy to see that this PCP system (as well as any reasonable PCP system we know of) also
satisfies the reverse-sampling property.14 Further details regarding the proof of all the foregoing

facts can be found in Appendix A. Thus, we obtain a PCP system with error 1/2 (for S) that
satisfies all the auxiliary properties listed in Definition 3.2. To obtain the desired error of ǫ, we
apply straightforward error-reduction, while noting that this process does not affect the oracle and
so the resulting (error-reduced) PCP preserves all the auxiliary properties.

3.3 The actual construction

The construction is an adaptation of Kilian’s construction [21] (used also by Micali [23]). Using
Theorem 3.3, we start with a PCP system with error ǫ(n) = 2−n for SU that satisfies the auxiliary
properties in Definition 3.2. Actually, the corresponding witness relation will not be RU as defined
in Section 1.2, but rather a minor modification of it, denoted R′

U : the pair ((M,x, t), (w, 1t′ )) is in
R′

U if M accepts (x,w) in t′ ≤ t steps. (The purpose of the modification is to obtain a relation that
is decidable in polynomial-time, as required in Definition 3.2.) Let Vpcp denote the aforementioned
PCP system (or rather its verifier), and Ppcp, Qpcp,Dpcp, Spcp, Epcp denote the auxiliary algorithms
(or machines) guaranteed by Definition 3.2 (i.e., Ppcp is the oracle-constructing procedure, Qpcp

determines the verifier’s queries, Dpcp describes the verifier’s final decision, Spcp provides reverse-
sampling, and Epcp is the “witness extractor” guaranteed in the proof-of-knowledge property).

A second ingredient used in the construction is a family of collision-resistant hashing functions.
That is, a collection of (uniformly polynomial-time computable) functions {hα : {0, 1}∗ → {0, 1}|α|}
such that for every (non-uniform) family of polynomial-size circuits {Cn}n∈N

Prα∈{0,1}n [Cn(α) = (x, y) s.t. x 6= y and hα(x) = hα(y)] = µ(n)

where µ is a negligible function. Such families can be constructed based, for example, on the
conjectured intractability of factoring (integers); see, e.g., [17, Sec. 6.2.3].

Construction 3.4 (a universal argument for SU ):

Common input: y = (M,x, t), supposedly in SU . Let n
def
= |y|.

Auxiliary input to the prover: w such that supposedly (y,w) ∈ RU holds.

First verifier step (V1): Uniformly select α ∈ {0, 1}n, and send it to the prover.

First prover step (P1): When describing the prover’s actions, we assume that (y,w) ∈ RU .

1. Preliminary action by the prover: The prover invokes M on input (x,w), and obtains

t′ = TM (x,w). Assuming that (y,w) ∈ RU and letting w′ = (w, 1t′ ), the prover obtains

an R′
U -witness; that is, (y,w′) ∈ R′

U .

2. Oracle-construction: Invoking Ppcp on (y,w′), the prover obtains πy = Ppcp(y,w′).

Assume without loss of generality that |πy| is a power of 2, and let d
def
= log2 |πy|.

14This property follows from the structure of the standard PCP systems. In our case, the system consists of a
sum-check (a la Lund et al. [22]), and a low-degree test. In both tests, the queries are selected in a very simple
manner, and what is complex (at least in the case of low-degree tests) is the analysis of the test.
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3. Construction of a hashing tree: The prover constructs a binary tree of depth d and

associates its nodes with binary strings of length at most d such that the root is associated

with the empty string, and an internal node associated with γ has children associated with

γ0 and γ1. Using the oracle πy (just constructed) and the hashing function hα (sent by

the verifier), the prover labels the nodes of this tree as follows:

• The label of a leaf associated with γ ∈ {0, 1}d is the value of πy at position γ; that

is, this label, denoted ℓγ, equals the answer of oracle πy to the query γ.

• The label of an internal node associated with γ ∈ ∪d−1
i=0 {0, 1}

i is the value obtained

by applying hα to the string ℓγ0ℓγ1. This label is denoted ℓγ.

Thus, the label of the node associated with γ ∈ ∪d
i=0{0, 1}

i is denoted ℓγ.

4. The actual message sent by the prover is the depth of the tree and the label of its root.

That is, the prover sends the pair (d, ℓλ) to the verifier.

Second verifier step (V2): The verifier selects uniformly a random-tape r for the PCP system, and

sends r to the prover.

Second prover step (P2): The prover provides the corresponding (PCP) answers, augmented by

proofs of consistency of these answers with the label of the root as provided in Step (P1).

1. Determining the queries: Invoking Qpcp, the prover determines the sequence of queries

that the PCP system makes on random-tape r. That is, for i = 1, ...,m, it computes

qi = Qpcp(y, r, i), where m
def
= poly(n) is the number of queries made by the system.

2. The message sent: for i = 1, ...,m and j = 0, ..., d − 1, the prover sends the pair

(ℓγi,j0, ℓγi,j1), where γi,j is the j-bit long prefix of qi. (Note that this message contains,
for every i ∈ [m], the value of ℓqi as well as information that enables the authentication
of this value with respect to ℓλ.)

Verifier final decision – Step (V3): The verifier checks that the answers provided by the prover would

have been accepted by the PCP-verifier, and that the corresponding proofs of consistency (with

the label of the root) are valid. That is, denoting by ℓ′γ the label provided by the prover for the

node associated with γ, the verifier accepts if and only if all the following checks pass:

1. Invoking Dpcp, the verifier checks whether, on input y and random-tape r, the PCP-

verifier would have accepted the answer sequence ℓ′q1
, ..., ℓ′qm

, where qi = Qpcp(y, r, i)
(as in Step (P2)). That is, it checks whether Dpcp(y, r, ℓ′q1

· · · ℓ′qm
) = 1, where r is the

random-tape chosen in Step (V2).

2. Check whether the labels provided are consistent with the label of the root of the tree as

sent in Step P1. That is, for i = 1, ...,m and j = 0, ..., d − 1, check whether ℓ′γi,j
=

hα(ℓ′γi,j0ℓ
′
γi,j1), where γi,j is the j-bit long prefix of qi and ℓ′λ

def
= ℓλ.

We denote the foregoing verifier and prover strategies by V and P , respectively.

We highlight the fact that Construction 3.4 uses a constant number of rounds and is of the public-
coin type. Furthermore, Construction 3.4 satisfies the first two requirements of Definition 2.1; that
is, the verifier’s strategy is implementable in probabilistic polynomial-time, and completeness holds
with respect to a prover strategy that (when given y = (M,x, t) and w as above) runs in time poly-
nomial in TM (x,w). We thus focus on establishing the two last requirements of Definition 2.1. In
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fact, computational soundness follows from the weak proof-of-knowledge property, because if some
adversary can convince the verifier to accept y with non-negligible probability then the extractor
(given oracle access to that adversary) outputs a valid witness for membership of y in SU (which
implies that y is indeed in SU ). Thus, it suffices to establish the latter.

3.4 Establishing the weak proof-of-knowledge property

This subsection contains the main technical contribution of the current section. The novel aspect
in the analysis is the use of a “local definition of a conflict” (i.e., considering conflicting values for
individual oracle-bits rather than conflicting values for the entire oracle), and the use of reverse-
sampling for deriving (in polynomial-time) hashing-collisions when given a conflict on any bit-
position in the oracle.

Lemma 3.5 Construction 3.4 satisfies the weak proof-of-knowledge property of Definition 2.1, pro-

vided that the family {hα} is indeed collision-resistant.

Combining Lemma 3.5 with the foregoing discussion, we establish Theorem 1.1.

Proof: Fixing any polynomial p, we present a probabilistic polynomial-time knowledge-extractor
that extracts witnesses from any feasible prover strategy that makes V accept with probability
above the threshold specified by p. Specifically, for any family of (deterministic) polynomial-size
circuits representing a possible prover strategy and for all sufficiently long y’s, if the prover convinces
V to accept y with probability at least 1/p(|y|) then, with noticeable probability (i.e., 1/p′(|y|)),
the knowledge-extractor (given oracle access to the strategy) outputs the bits of a corresponding
witness.

We fix an arbitrary family, {P̃n}n∈N, of (deterministic) polynomial-size circuits representing a

possible prover strategy, and a generic n and y ∈ {0, 1}n such that Pr[(P̃n, V )(y) = 1] > ε
def
= 1/p(n).

We consider a few key notions regarding the interaction of P̃n and the designated verifier V on
common input y. First we consider notions that refer to a specific interaction (corresponding to a
fixed sequence of verifier coins, which consists of a pair of choices (α, r) that the verifier takes in
Steps (V1) and (V2), respectively):

• The ith query in such interaction is qi = Qpcp(y, r, i), where r is the Step (V2) message.

• The ith answer supplied by (the prover) P̃n is the label (i.e., ℓ′qi
) that the prover has provided

(in Step (P2)) for the leaf (associated with) the ith query (i.e., qi = Qpcp(y, r, i)). The corre-
sponding authentication is the corresponding sequence of pairs 〈(ℓ′γi,j0

, ℓ′γi,j1
) : j = 0, ..., d − 1〉,

where γi,j is the j-bit long prefix of qi.

Note that the various parts of the prover’s message in Step (P2) are a function of α and r,
and thus the notation ℓ′γ is actually a shorthand for ℓ′γ(α, r).

• The ith answer supplied by P̃n is said to be proper if the corresponding authentication passes
the verifier’s test (in Step (V3)); that is, ℓ′γi,j

= hα(ℓ′γi,j0ℓ
′
γi,j1) holds, for j = 0, ..., d−1 (where

γi,j is as above and ℓ′λ
def
= ℓλ).

Next, we consider the probability distribution induced by the verifier’s coins. Note that these coins
consist of the pair of choices (α, r) that the verifier takes in Steps (V1) and (V2), respectively.
Fixing any α ∈ {0, 1}n, we consider the conditional probability, denoted py,α, that the verifier
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accepts y when choosing α is Step (V1). Clearly, for at least an ε/2 fraction of the possible α’s it
holds that py,α ≥ ε/2. We fix any such α for the rest of the discussion. We now consider notions
that refer to the residual probability space induced by a uniformly distributed r ∈ {0, 1}poly(n) (as
selected by the verifier in Step (V2)).

• For a query value q ∈ {0, 1}d, a query index i ∈ [m], a possible answer σ ∈ {0, 1}, and a
parameter δ∈ [0, 1], we say that σ is δ-strong for (i, q) if, conditioned on the ith query being
q, the probability that P̃n properly answers the ith query with σ is at least δ. That is,

Prr[ℓ
′
q = σ is proper | q = Qpcp(y, r, i)] ≥ δ ,

where ℓ′q = ℓ′Qpcp(y,r,i)(α, r) as well as its being proper are determined based on α and r.

When i and q are understood from the context, we just say that σ is a δ-strong answer.

• We say that a query q ∈ {0, 1}d has δ-conflicting answers if there exist i and j (possibly i = j)
such that 0 is δ-strong for (i, q) and 1 is δ-strong for (j, q).

We stress that throughout the rest of the analysis we consider a fixed α ∈ {0, 1}n and a uniformly
distributed r ∈ {0, 1}poly(n).

Our goal is to show that if py,α ≥ ε/2, then we can extract a witness for y by using P̃n. We
first show that using P̃n, we can reconstruct an adequate PCP-oracle that convinces Vpcp (with

probability at least poly(ε)), although the strategy of P̃n need not be consistent with any such
oracle. That is, although a priori the strategy of P̃n may answer queries in an inconsistent fashion,
we shall show that in order to be convincing the answers of P̃n must be “essentially” consistent.

As a preparation to the oracle reconstruction procedure, we first show (in Claim 3.5.1) that
answers that are not adequately strong are quite rare (because they are useless for convincing V ).
Indeed, the oracle reconstruction will be based on adequately strong answers (i.e., answers that
appear frequently in interactions). Next, we show (via Claim 3.5.2) that reconstructing the oracle
based on strong answers is essentially well-defined, because queries that have conflicting answers
(which are both adequately strong) occur rarely in the interaction.

Claim 3.5.1 The probability that the verifier accepts while receiving only δ-strong answers is at

least py,α −mδ.

(Recall that m is the number of queries asked by the PCP verifier Vpcp.) Thus, picking δ = py,α/2m,
we may focus on the case that all the prover’s answers are δ-strong (since this case occurs with
non-negligible probability).

Proof: The key observation is that whenever the verifier accepts, it is the case that all answers
are proper. Intuitively, answers that are not δ-strong (i.e., are rarely proper) are unlikely to
appear in such interactions. Specifically, we just upper-bound the probability that, for a uniformly
distributed r there exists i ∈ [m] such that the answer ℓ′Qpcp(y,r,i) is proper but not δ-strong for

(i,Qpcp(y, r, i)). Fixing any i and any possible value of qi, by definition (of being proper but not
δ-strong), the probability that the answer ℓ′qi

is proper but not δ-strong for (i, qi) is smaller than δ.
Averaging over the possible values of qi (as emerging from Qpcp(y, ·, i)) and taking a union bound
over all i ∈ [m], the claim follows. 2

Claim 3.5.2 There exists a probabilistic polynomial-time oracle machine that, for any δ, given α
and oracle access to P̃n, finds collisions with respect to hα with success probability that is polyno-

mially related to δ/m and to the probability that the verifier makes a query that has δ-conflicting
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answers. That is, let ηα denote the probability that (after choosing α in Step (V1)) the verifier

makes a query that has δ-conflicting answers. Then, the probability of finding a collision (i.e.,
z′ 6= z′′ such that hα(z′) = hα(z′′)) is at least ηαδ2/m3.

Thus, on a typical α (or rather on all but a negligible fraction of the α’s) and for δ > 1/poly(n), the
quantity ηα must be negligible, because otherwise we derive a contradiction to the collision-resistant
hypothesis of the family {hα}. Consequently, for δ = py,α/2m > 1/poly(n), we may focus on the
case that the prover’s answers are not (δ/2)-conflicting.

Proof: We uniformly select r ∈ {0, 1}poly(n) and i ∈ [m], hoping that qi = Qpcp(y, r, i) is δ-conflicting
(which is the case with probability at least ηα/m). Uniformly selecting i′, i′′ ∈ [m], and invoking the
reverse-sampling algorithm Spcp on inputs (y, i′, qi) and (y, i′′, qi), respectively, we obtain uniformly

distributed r′ and r′′ that satisfy qi = Qpcp(y, r′, i′) and qi = Qpcp(y, r′′, i′′). We now invoke P̃n

twice, feeding it with α and r′ (resp., α and r′′) in the first (resp., second) invocation. Assuming
that qi is δ-conflicting, with probability at least (δ/m)2, both answers to qi will be proper but with
opposite values. Thus, with probability at least (ηα/m) · (δ/m)2, we have obtained two different
proper answers to the same query qi. In such a case, the authentication information corresponding
to these two (proper) answers yield a collision under hα, because of the following considerations:

• Both answers to query qi are authenticated with respect to the same pair (d, ℓλ) that was sent
by P̃n in step (P1). Note that these different values are provided as the label of the (same)
leaf associated with the string qi ∈ {0, 1}

d.

• Each of the different values for the same leaf (associated with qi) is authenticated with respect
to the same value of the root (i.e., ℓλ). This means that a collision under hα must occur
somewhere along the path from the leaf to the root. Details follow.

Recall that when invoked with input α and r′ (resp., α and r′′), the circuit P̃n provides
authenticating information corresponding to the leaf qi. This information takes the form
of a sequence of pairs 〈(ℓ′γi,j0, ℓ

′
γi,j1) : j = 0, ..., d − 1〉 (resp., 〈(ℓ′′γi,j0, ℓ

′′
γi,j1) : j = 0, ..., d − 1〉),

where γi,j denotes the j-bit long prefix of qi. Note that ℓ′qi
6= ℓ′′qi

(i.e., the answers to qi are
different) while ℓ′λ = ℓλ = ℓ′′λ (since both sequences refer to the same root value ℓλ). Thus,
there exists a j ∈ {0, ..., d − 1} such that ℓ′γi,j

= ℓ′′γi,j
and ℓ′γi,j+1

6= ℓ′′γi,j+1
. It follows that

hα(ℓ′γi,j0ℓ
′
γi,j1) = ℓ′γi,j

= ℓ′′γi,j
= hα(ℓ′′γi,j0ℓ

′′
γi,j1) but ℓ′γi,j0ℓ

′
γi,j1 6= ℓ′′γi,j0ℓ

′′
γi,j1.

The claim follows. 2

Suppose for a moment, that (for δ = py,α/2m) all the prover’s answers are δ-strong but none
is (δ/2)-conflicting. Then, we can use the prover’s answers in order to construct (and not merely
claim the existence of) an oracle for the PCP system that makes Vpcp accept with probability at
least py,α/2. Specifically, let the qth bit of the oracle be σ if and only if there exists an i such that σ
is δ-strong for (i, q). This setting of the oracle bits can be determined in probabilistic polynomial-
time by using the reverse-sampling algorithm Spcp to generate multiple samples of interactions in
which these specific oracle bits are queried. Specifically, to determine the qth bit we generate, for
every i ∈ [m], multiple samples of interactions in which the ith oracle query equals q, and determine
the answer by using the gap provided by the hypothesis that for some i there is an answer that is
δ-strong for (i, q), whereas (by the non-conflicting hypothesis) for every j the opposite answer is
not (δ/2)-strong for (j, q).

Recall that the foregoing outline relies on the simplifying assumption by which all the prover’s
answers are δ-strong but none is (δ/2)-conflicting. In general, some queries may either have no
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strong answers or be conflicting (although these cases will occur rarely). In such a case, the
procedure may fail to recover the corresponding entries in the PCP-oracle, but this will not matter
much (because with sufficient high probability the PCP verifier will not query these badly-recovered
locations).

The oracle-recovery procedure: We present a probabilistic polynomial-time oracle machine
that, on input (y, α) and q ∈ {0, 1}d and oracle access to the prover P̃n, outputs a candidate for the

qth bit of a PCP-oracle. The procedure operates as follows, where T
def
= poly(n/δ) and δ = ε/4m:

1. For i = 1, ...,m and j = 1, ..., T , invoke Spcp on input (y, i, q) and obtain ri,j.

2. For i = 1, ...,m and j = 1, ..., T , invoke P̃n feeding it with α and ri,j, and if the ith answer is
proper then record (i, j) as supporting this answer value.

3. If for some i ∈ [m], there are (2δ/3) · T records for the form (i, ·) supporting the value
σ ∈ {0, 1} then define σ as a candidate. That is, σ is a candidate if there exists an i and at
least (2δ/3) · T different j’s such that the ith answer of P̃n(α, ri,j) is proper and has value σ.

4. If a single value of σ ∈ {0, 1} is defined as a candidate then set the qth bit accordingly.
(Otherwise, do whatever you please.)

We call the query q good if it does not have (δ/2)-conflicting answers and there exists an i ∈ [m]
and a bit value that is δ-strong for (i, q). As shown below, for a good query, with overwhelmingly
high probability, the foregoing procedure will define the latter value as a unique candidate. less
than (δ/2) · T , for every i′.) Let us denote the PCP-oracle induced by the above procedure by π.

Claim 3.5.3 Let δ = ε/4m and recall that py,α ≥ ε/2. Suppose that the probability that V makes

a query that has (δ/2)-conflicting answers is at most py,α/4. Then, with probability at least 1−2−n

taken over the reconstruction of π, the probability that Vpcp
π(y) accepts is lower bounded by py,α/4.

Proof: By definition, for each good query q, there exist i ∈ [m] and σ ∈ {0, 1} such that σ is δ-strong
for (i, q), whereas (for every i′) the opposite bit σ̄ is not δ/2-strong for (i′, q). It follows that, with
probability at least 1 − 2−n2

, the bit σ is declared (in Step 3) a candidate for the qth oracle-bit,
because each invocation of P̃n(α, Spcp(y, i, q)) supports σ with probability at least δ. Similarly,

with probability at least 1−m · 2−n2

, the bit σ̄ is not declared a candidate (for the qth oracle-bit),
because for every i′ each invocation of P̃n(α, Spcp(y, i′, q)) supports σ̄ with probability at most

δ/2. Thus, with probability at least 1 − |π| · (m + 1) · 2−n2

> 1 − 2−n, the oracle π reconstructed
by the procedure is such that for every good q the qth bit of π equals the (single) answer that
is δ-strong. Combining the hypothesis (regarding (δ/2)-conflicting answers) with Claim 3.5.1, we
conclude that with probability at least (py,α−mδ)− (py,α/4) ≥ py,α/4, taken solely over the choice
of the random-tape r, the verifier (of the interactive argument) accepts while making only good
queries and receiving only δ-strong answers. Fixing any such random-tape r and recalling that
the (interactive argument) verifier V accepts only if Vpcp accepts the answers that V obtained, we
conclude that in the latter case (i.e., when r is such that V accepts while making only good queries
and receiving only δ-strong answers) it holds that Vpcp

π accepts too (when using the same r). The
claim follows. 2

Note that so far we have analyzed the behavior of the oracle-recovery procedure with respect
to individual α’s. Specifically, Claim 3.5.3 asserts that in some cases (i.e., those satisfying the
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claim’s hypothesis) the procedure succeeds (i.e., yields an adequate oracle), whereas Claim 3.5.2
asserts that in the remaining relevant cases one can form collisions under the corresponding hashing
function. Using the hypothesis that the family of hashing functions is collision-resistant, we infer
that typically (i.e., for a random α) the oracle-recovery procedure works well. Details follow.

We call α useful if it satisfies the hypothesis of Claim 3.5.3 (i.e., if py,α ≥ ε/2 and the probability
that V makes a query that has (ε/8m)-conflicting answers is at most py,α/4). Indeed Claim 3.5.3
asserts that, for any useful α, with probability at least 1− 2−n, the oracle-recovery procedure yields

an oracle π such that Vpcp
π(y) accepts with probability at least py,α/4 ≥ ε/8. By Claim 3.5.2, if

the main hypothesis of Claim 3.5.3 does not hold (for α), then a collision (w.r.t hα) is formed with
probability at least (py,α/4) · (ε/8m)2/m3. Thus, with overwhelmingly high probability over the
choice of α, either py,α is negligible or the main hypothesis of Claim 3.5.3 holds for α. Recalling
that py,α ≥ ε/2 with probability at least ε/2 (over the choices of α), it follows that in such a case
the hypothesis of Claim 3.5.3 may only fail with negligible probability (for such a random α). We
conclude that a random α is useful with probability at least (ε/2) − µ(n) > ε/4.

So far we showed that if the interactive argument accepts with non-negligible probability then
with similar probability we can reconstruct an oracle that convinces the PCP-verifier with non-
negligible probability. The weak proof-of-knowledge property (of the interactive argument) now
follows from the corresponding property of the PCP system. Specifically, combining the PCP
extractor with the foregoing oracle-recovery procedure, we obtain the desired extractor (detailed
next).

Extractor for the argument system: On input (y, i), where y = (M,x, t) and i ∈ [t], and
access to a prover strategy P̃n, the extractor operates as follows (using δ = ε/4m):

1. Uniformly select α ∈ {0, 1}n, hoping that α is useful (which hold with probability at least
ε/4). Fix α for the rest of the discussion.

2. Uniformly select coins ω for the oracle-recovery procedure, and fix ω for the rest of the
discussion. Note that the oracle-recovery procedure (implicitly) provides oracle access to a
PCP-oracle π, which is determined by (P̃n, y, α, and) ω.

We say that ω is α-useful if the foregoing oracle-recovery procedure defines an oracle π such
that Vpcp

π(y) accepts with probability at least ε/8. Recall that, by Claim 3.5.3, if α is useful
then, with probability at least 1− 2−n, a random ω is α-useful.

3. Invoke Epcp(y, i) providing it with oracle access to π. This means that each time Epcp(y, i)
makes a query q, we invoke the oracle-recovery procedure on input (y, q) (and with α and ω
as fixed above), and obtain the qth bit of π, which we return as answer to Epcp(y, i). When
Epcp(y, i) provides an answer (supposedly the ith bit of a suitable witness w for y), we just
output this answer.

Recall that if α is useful and ω is α-useful then with probability at least 2/3 (over the coins of
Epcp), the output of Epcp (and thus of our extractor) will be correct (i.e., will yield the desired
bit of a fixed witness for y). This follows by the proof-of-knowledge property of the PCP system,
which refers to convincing Vpcp with probability at least 2−n, while here Vpcp is convinced with
probability at least ε/8 > 2−n. Using suitable amplification, we can obtain (for each bit in the
witness) the correct answer with probability at least 1 − 2−2n (over the coins of Epcp), pending
again on α and ω being useful. Denoting the coins of the amplified Epcp by ρ, we infer that for
at least a fraction 1 − t · 2−2n ≥ 1 − 2−n of the possible ρ’s, the amplified Epcp provides correct
answers for each of the possible t bit locations. We call such ρ’s (α, ω)-useful.
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Let us denote the foregoing extractor by E. The running-time of E is dominated by the
running-time of the oracle-recovery procedure, whereas the latter is dominated by the poly(n/ε)
invocations of P̃n (during the oracle-recovery procedure). Using ε = 1/p(n), it follows that E runs
in polynomial-time (specifically, the running time is polynomial in n and p(n)). The random choices
of E correspond to the above three steps; that is, they consist of α, ω and ρ. Whenever they are
all useful (i.e., α is useful, ω is α-useful, and ρ is (α, ω)-useful), the extractor E recovers correctly
each of the bits of a suitable witness (for y). The event in the condition (i.e., α, ω and ρ being
adequately useful) occurs with probability at least (ε/4) · (1 − 2−n) · (1 − 2−n) > ε/5 = 1/5p(n).
Letting p′(n) = 5p(n), the lemma follows.

4 Application to Zero-Knowledge Arguments

Using Theorem 1.1, we prove Theorem 1.2 in two steps:

1. Using any constant-round public-coin universal-argument, we derive one that is witness-
indistinguishable. Here we follow the paradigm of “encrypted interactions” (introduced in [10]
and also used in Barak’s paper [6]). The construction and its analysis, which appear in Sec-
tion 4.1, differ from prior versions that appeared (or are outlined) in [8, 7, 17].

2. Using the result of the first step, we modify Barak’s main construction [6] of a zero-knowledge
argument (for any S ∈ NP) such that it can be analyzed based on standard collision-resistant
hashing. Specifically, rather than using any collision-resistant hashing (for the very first
message in his protocol), we use tree-hashing (as in Step (P1) of Construction 3.4) composed
with an error-correcting code. The construction and its analysis appear in Section 4.2.

The reasons for the various modifications will be discussed in the corresponding subsections. But
before turning to the constructions, we stress that the notion of witness-indistinguishability (which
is typically applied to proofs/argument systems for specific sets in NP) needs to be redefined
when applied to universal-arguments. Specifically, this property should apply to any “fragment”
of RU that can be recognized in time that is polynomial in the length of the common input (where
the polynomial is fixed after the universal-argument system is specified). That is, we refer to the
following definition.

Definition 4.1 (witness-indistinguishable universal argument): A universal-argument system, (P, V ),
is called witness-indistinguishable if, for every polynomial p, every polynomial-size circuit family

{V ∗
n }n∈N, and every three sequences 〈yn = (Mn, xn, tn) : n ∈ N〉, 〈w1

n : n ∈ N〉 and 〈w2
n : n ∈ N〉 such

that |yn| = n, tn ≤ p(|xn|), and (yn, w1
n), (yn, w2

n) ∈ RU , the probability ensembles {〈P (w1
n), V ∗〉(yn)}n∈N

and {〈P (w2
n), V ∗〉(yn)}n∈N are computationally indistinguishable, where 〈P (w), V ∗〉(y) denotes the

output of V ∗ when interacting with P (w) on common input y.

Note the analogy to the discussion at the end of Section 1.2 (regarding “natural applications of
universal-arguments”).

4.1 Constructing witness-indistinguishable universal-arguments

Our starting point is any constant-round, public-coin universal-argument (for SU ), denoted (Pua, Vua).
For sake of simplicity, we assume (without loss of generality) that, on any n-bit long common in-
put, each message sent by either parties has length m = poly(n). Using the public-coin clause this
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means that the protocol proceeds in rounds, where in each round the verifier selects uniformly an
m-bit string, and the prover responds with an m-bit string determined based on its inputs and the
messages it has received so far. We denote by cua the (constant) number of such rounds; in case of
Construction 3.4, cua = 2.

A second ingredient used in the construction is a (constant-round, public-coin) non-oblivious

statistically-binding commitment scheme. Loosely speaking, such a scheme allows a sender to
“commit” to a value such that the value remains hidden from the receiver and still the sender is
“committed” to this value. Furthermore, “statistically-binding” means that, with high probability,
if the commitment phase is concluded successfully then there exists at most one value v that can be
later revealed as a proper decommitment, whereas “non-oblivious” means that the sender actually
knows this value v. For further discussion see Appendix B, where we also show that such a scheme
can be constructed based on the existence of one-way functions. We denote this commitment
scheme by C, and the corresponding decommitment verification by D. Furthermore, we denote by
(d, c) ← C(v) an execution of C in which the sender enters the value v, the receiver obtains the
commitment value c, and the sender obtains corresponding decommitment information d satisfying
D((v, d), c) = 1. Recall that statistically-binding means that, with overwhelmingly high probability,
the protocol yields a commitment c such that if for any v, d, v′, d′ it holds that D((v, d), c) = 1 and
D((v′, d′), c) = 1 then it must be that v = v′. The “non-oblivious” condition means that the sender
knows the (possibly) single value v for which there exists d such that D((v, d), c) = 1 holds; that
is, there exists a knowledge extractor (as in the definition of proofs of knowledge (see, e.g., [16,
Sec. 4.7.1])) that can extract from the sender this value v.

A third (and last) ingredient used in the construction is a (constant-round, public-coin) zero-
knowledge proof of constant soundness error for some NP-complete set. Such proof system can be
constructed based on the existence of one-way functions (see, e.g., [16, Chap. 4, Exec. 20]).15 Let
us denote such a system by (Pzk, Vzk).

The construction presented next is based on an “encrypted” emulation of the execution of the
universal-argument system (Pua, Vua). That is, the prover in our protocol responds to the verifier’s
messages by sending commitments to the messages that Pua would have sent. This “encrypted”
form of the prover’s messages does not impair the new verifier that merely emulates Vua, because Vua

is of the public-coin type. At the end of the emulation phase, the prover provides a zero-knowledge
proof that the committed values correspond to a transcript that Vua would have accepted. The
zero-knowledge property of the foregoing protocol is quite intuitive, and so we focus on its weak
proof-of-knowledge property. Indeed, the fact that the commitment scheme is non-oblivious is used
for extracting the corresponding transcript, but the acceptability of this transcript is only guaran-
teed when the new prover convinces the new verifier with constant probability (which originates
in the constant soundness error of the zero-knowledge proof). To handle any non-negligible accep-
tance probability, we repeat the foregoing protocol for a super-logarithmic number of times, where
these repetitions are performed in parallel (so to maintain a constant number of rounds). These
repetitions do not necessarily preserve the zero-knowledge property of the basic protocol, but they
preserve its witness indistinguishability property. The resulting protocol is described next.

Construction 4.2 (a witness-indistinguishable universal-argument):

15This construct replaces the strong witness-indistinguishable proof system of negligible soundness error assumed
in [8]. Unfortunately, contrary to prior misconceptions (cf. [16, Sec. 4.6]), such protocols are not known to exist [17,
Apdx. C.3]. In fact, in our construction, we may use a strong witness-indistinguishable proof system of constant

soundness error (for some NP-complete set), but we do not know of such a protocol that is not zero-knowledge as
well.

18



Common input: y = (M,x, t), supposedly in SU . Let n
def
= |y|.

Auxiliary input to the prover: w such that supposedly (y,w) ∈ RU holds.

Part 1: encrypted emulations of (Pua, Vua). The parties perform n parallel emulations of the (Pua, Vua)
protocol, where each emulation is performed in a partially encrypted manner. Specifically, the

verifier generates random messages exactly as Vua, but the prover answers with commitments

to the corresponding responses of Pua. That is, for i = 1, ..., cua, the parties emulate in parallel

n copies of the ith round of (Pua, Vua) as follows:

1. The verifier selects uniformly at random r1
i , ..., r

n
i ∈ {0, 1}

m, and sends these strings to

the prover.

2. The prover determines the answers of Pua, and responds with commitments to them.

That is, for j = 1, ..., n, the prover first determines aj
i ← Pua(y,w; rj

1, ..., r
j
i ). Next,

the parties invoke n parallel executions of C, where the prover plays the sender and the

verifier plays the receiver, such that the jth copy yields the output pair (sj
i , e

j
i )← C(aj

i ).
If the verifier detects improper termination in any of these executions then it halts and

rejects.

Part 2: proving that Vua accepts in the encrypted emulations. The parties invoke the proof system

(Pzk, Vzk), where the prover’s goal is proving that the transcripts (rj
1, e

j
1, ..., r

j
cua

, ej
cua

) gener-

ated in Part 1 corresponds to encryptions (or rather commitments) of accepting (Pua, Vua)
transcripts. That is, the parties run n parallel copies of (Pzk, Vzk) such that, in the jth copy,

the NP-statement being proved refers to the input (y, r1, e1, ..., rcua , ecua) and asserts that there

exists ((aj
1, s

j
1), ..., (a

j
cua

, sj
cua

)) such that

1. for i = 1, ..., cua, it holds that D((aj
i , s

j
i ), e

j
i ) = 1.

2. Vua(y; rj
1, a

j
1, ..., r

j
cua

, aj
cua

) = 1.

Needless to say, the prover executes this copy of Pzk using the NP-witness ((aj
1, s

j
1), ..., (a

j
cua

, sj
cua

)),
where this sequence of pairs is as determined by it in Part 1.

Note that the length of the NP-statement being proven (as well as the length of the correspond-

ing NP-witness) is bounded by a fixed polynomial in n + m (and thus by a fixed polynomial

in n).

We denote the above verifier and prover strategies by V and P , respectively.

Clearly, Construction 4.2 is constant-round, public-coin, and satisfies the first two requirements of
Definition 2.1; that is, the verifier’s strategy is implementable in probabilistic polynomial-time, and
completeness holds with respect to a prover strategy that (given y = (M,x, t) and w as above) runs
in time polynomial in TM (x,w). To establish that Construction 4.2 is a witness-indistinguishable
universal-argument, it remains to prove the following two properties of Construction 4.2:

1. The weak proof-of-knowledge property, which in turn implies also the computational sound-
ness property.

2. The witness-indistinguishability property (as per Definition 4.1).

We mention that (unlike in [8, Lem. 4.2]) the following proofs do not take advantage of the fact that
the basic ingredients are constant-round protocols. We start with the witness-indistinguishability
property, because its proof is significantly simpler.
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Lemma 4.3 Construction 4.2 is witness-indistinguishable (as per Definition 4.1), provided that

(Pzk, Vzk) is zero-knowledge and that C is computationally-hiding.

Proof: We view Construction 4.2 as the result of n parallel executions of a basic protocol, denoted
(P ′, V ′), such that (P ′, V ′) consists of performing a single “encrypted” execution of (Pua, Vua)
followed by a (single) execution of (Pzk, Vzk), which refers to this “encrypted” transcript (and is
aimed to establish that this “encrypted” transcript encodes an accepting transcript of (Pua, Vua)).
Intuitively, this basic protocol is zero-knowledge, because it can be simulated by generating dummy
commitments and invoking the simulator of (Pzk, Vzk) on these commitments. The computational
indistinguishability of this simulation from the real execution is argued as follows:

• As a mental experiment, we consider a hybrid distribution in which the simulator of (Pzk, Vzk)
is invoked on an “encrypted” transcript of (Pua, Vua).

• The computationally-hiding property of the commitment scheme implies that the output of
our simulator (which invokes the simulator of (Pzk, Vzk) on dummy commitments) is compu-
tationally indistinguishable from the foregoing hybrid distribution (which invokes the same
simulator on commitments that correspond to a transcript of (Pua, Vua)).

• By our hypothesis regarding the simulator of (Pzk, Vzk), the hybrid distribution is computa-
tionally indistinguishable from the real execution of the basic protocol (in which (Pzk, Vzk) is
invoked on the encrypted transcript of (Pua, Vua)).

Having established the zero-knowledge property of the basic protocol, we conclude that the basic
protocol (i.e., (P ′, V ′)) is witness-indistinguishable (in the sense of Definition 4.1). Furthermore,
when confining our attention to common and auxiliary inputs that are admissible as per Defini-
tion 4.1, it is the case that P ′ runs in polynomial time (when given adequate auxiliary inputs).
Thus, the witness-indistinguishability of P ′ (on such inputs) is preserved under parallel composition
(cf., e.g., [16, Sec. 4.6.2])). The lemma follows.

Lemma 4.4 Construction 4.2 satisfies the weak proof-of-knowledge property of Definition 2.1, pro-

vided that so does (Pua, Vua) and that C is statistically-binding and non-oblivious.

Proof: Here we decompose Construction 4.2 in a different way, considering Part 1 as a whole
and Part 2 as a whole. We start with an overview of the proof. Loosely speaking, the non-
oblivious property of the commitment scheme guarantees that we can extract the cleartext version
of all encrypted transcripts (of (Pua, Vua)), but at this point it is unclear whether any of these
transcripts is accepting. Using the statistically-binding property of the commitment scheme we
distinguish the case that some of these transcripts are accepting from the case that none of them is
accepting. Using the (constant error) soundness of (Pzk, Vzk), we infer that the second case (which
refers to multiple failures) happens with negligible probability, and so we may ignore it. Thus,
either V detects an improper execution of the commitment scheme or we are able to extract an
accepting transcript of (Pua, Vua). It follows that if V is convinced with some noticeable probability
p, then for some j ∈ [n], with probability at least p/n (or so), the jth transcript is accepting and
extractable. At this point the lemma follows by invoking the weak proof-of-knowledge property of
(Pua, Vua). We now turn to the actual proof.

Fixing an arbitrary prover strategy for Construction 4.2 we shall derive a related strategy
for the underlying universal-argument system such that the circuit complexity (resp., the success
probability) of the resulting strategy will be related to the circuit complexity (resp., the success
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probability) of the original strategy. Specifically, let us consider an arbitrary family, {P̃n}n∈N, of
(deterministic) polynomial-size circuits representing a possible prover strategy in the system (P, V ).

Fixing a generic n and y ∈ {0, 1}n, we let py
def
= Pr[(P̃n, V )(y) = 1]. Using P̃n, we shall construct

a corresponding prover strategy P̃ua that makes Vua accept y with probability Ω((py − µ(n))/n),

where µ is some negligible function. Thus, once we are done constructing P̃ua, the weak proof-of-
knowledge property of Construction 4.2 will follow from the weak proof-of-knowledge property of
the underlying universal-argument system.

We thus turn to constructing P̃ua, which starts by uniformly selecting j ∈ [n] and tries to
extract the cleartext messages that are encrypted (or rather committed) in the transcript of the
jth interaction performed by P̃n in Part 1. Specifically, after selecting j, the strategy P̃ua operates
in cua iterations, where in each iteration it obtains from P̃n a sequence of encrypted message and
extracts from it a (cleartext) message that it sends to Vua. That is, for i = 1, ..., cua:

1. Strategy P̃ua obtains from the (real) verifier Vua a (uniformly distributed) string, denoted
ri ∈ {0, 1}

m.

2. Strategy P̃ua selects uniformly r1
i , ..., r

j−1
i , rj+1

i , ..., rn
i ∈ {0, 1}

m and feeds r1
i , ..., r

j−1
i , ri, r

j+1
i , ..., rn

i

to P̃n, obtaining a residual sender (i.e., a committer) for the current round of executions of
the non-oblivious commitment scheme. Using this residual sender and the knowledge extrac-
tor guaranteed for the non-oblivious commitment scheme, strategy P̃ua extracts the (unique)
cleartext message that may correspond to the jth copy of the current executions of the non-
oblivious commitment scheme. (Note that the non-oblivious/proof-of-knowledge property is
preserved when the protocol is executed multiple times in parallel.)

3. Strategy P̃ua sends the aforementioned answer to the (real) verifier Vua.

Note that we do not claim, at this point, that the extracted values correspond to proper decom-
mitments and furthermore that they yield an accepting transcript. At this point we only wish to
establish that P̃ua extracts the only values that may be properly decommitted.

We now turn to the analysis of the size of P̃ua and its success probability. These quantities
are determined by the size of P̃n and its success probability, denoted py. We may indeed focus on
the case that py is a noticeable function of n = |y| (i.e., py > 1/poly(n)). Recall that P̃n executes
cua + 1 sub-protocols, where the first cua protocols are n parallel executions of the non-oblivious
commitment scheme and the last protocol consists of n parallel executions of the (constant-error)
zero-knowledge proof system. (Indeed, we neglect the fact that each of the first cua protocols ac-
tually consists of a random n ·m-bit long message send from the verifier to the prover followed by
n parallel executions of the non-oblivious commitment scheme.)16 We first prove that, with proba-
bility at least py/2, the entire execution produces a transcript such that for every i ∈ {0, 1, ..., cua},
given the partial transcript of the i previous executions, the next execution is successful with
probability at least py/2cua. This follows from the following general claim.

Claim 4.4.1 For a finite set Ω and an integer m, consider an arbitrary G ⊆ Ωm and let ρ =
|G|/|Ω|m. For i ∈ [m], a sequence (e1, ..., em) ∈ Ωm is called i-good if Pre∈Ω[(e1, ..., ei−1, e) ∈ Gi] ≥

ρ
2(m−1) , where (e′1, ..., e

′
i) ∈ Gi if and only if there exist e′i+1, ..., e

′
m ∈ Ω such that (e′1, ..., e

′
m) ∈ G.

Then, at least half of the sequences in G are i-good for every i ∈ [m].

Needless to say, the foregoing sequences correspond to the executions of the different m = cua + 1
protocols, and i-good sequences correspond to transcripts in which, given the partial transcript

16This ignored (random) message can be viewed as belonging to the previous sub-protocol.
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of the i − 1 previous (successful) executions, the next execution is successful with probability at
least py

2(m−1) . Actually, we give-up on execution transcripts that are not fully successful and yet for

every i ∈ [c + 1], given the partial transcript of the i− 1 previous executions, the next execution is
successful with probability at least py

2(m−1) .

Proof: Let Bi
def
= {(e1, ..., ei−1) ∈ Ωi−1 : Pre∈Ω[(e1, ..., ei−1, e) ∈ Gi] < ρ/2(m − 1)} be the set of

all (i − 1)-long prefixes of sequences that are not i-good. Note that B1 = ∅, because Pre∈Ω[e ∈
G1] ≥ Pre∈Ωm[e ∈ G] = ρ. Now, on one hand, every sequence in G that has no prefix in ∪m

i=1Bi, is
i-good for every i. On the other hand, the number of sequences in G that have a prefix in Bi is less
than ρ

2(m−1) · |Ω|
m, because each such sequence has an i-long prefix (e1, ..., ei−1, ei) ∈ Gi whereas

Pre∈Ω[(e1, ..., ei−1, e) ∈ Gi] < ρ/2(m − 1). The claim follows. 2

Turning back to Construction 4.2, we note that (by Claim 4.4.1) a py/2 fraction of all executions
are fully successful and furthermore each partial transcript of these executions leads to success in
the next execution with probability at least py/2cua. Thus, (1) in these executions each of the cua

rounds of non-oblivious commitments is successful with probability at least py/2cua, and (2) the
same holds for the interactive proofs that take place in Part 2.

The first foregoing fact implies that (in these executions), for every choice of j and for i =
1, ..., cua, strategy P̃ua can extract the value committed in the jth copy of the ith iteration of Part 1
(or rather the only value that can be decommitted as such) by invoking P̃n for poly(n)

py/2cua
times (and

failing with negligible probability). Thus, we can bound the size of P̃ua by poly(n)/py times the

size of P̃n, and conclude that (in these executions) P̃ua answers with messages that equal the values
committed in the corresponding executions of P̃n (or rather the only values that can be decommitted
as such).

Combining the second foregoing fact, which refers to Part 2, with the constant soundness-error
of each execution of the proof system, it follows that at least one of the n parallel executions that
took place in Part 1 corresponds (i.e., can be properly decommitted) to a (Pua, Vua)-transcript that
is accepting, because otherwise the probability that all these executions of the interactive proof
are successful is at most sn ≪ py/2cua, where s < 1 denotes the constant soundness-error of the
proof system. We stress that the proper decommitment requirement guarantees that this transcript
corresponds to the messages sent by P̃ua.

Hence, with probability at least (py/2) − µ(n) > py/3, for every choice of j, the strategy P̃ua

sends messages that correspond to the only possible proper decommitments of the corresponding
commitment of P̃n, and at least one of these n possible transcripts (corresponding to the choice of
j ∈ [n]) is accepting. Conditioned on the foregoing, with probability at least 1/n, the strategy P̃ua

selects j such that the recovered (Pua, Vua)-transcript is accepting. We conclude that P̃ua convinces
Vua with probability at least py/3n, and the lemma follows.

Remarks: We stress again that Construction 4.2 is different from the corresponding construction
presented in [8]. It is also different from the patch described in [7, Apdx. A.4] and the one outlined
in [17, Apdx. C.3.3]. An important difference is that the current proof of Lemma 4.4 does not
rely on the fact that the protocols employed have a constant number of rounds. We also mention
that the main analysis of Construction 4.2, which is provided in the proofs of Lemmas 4.3 and 4.4,
proceeds by decomposing the construction in two different ways. A similar strategy is employed in
Appendix B (see the proof of Claims B.2.1 and B.2.2).

22



4.2 Modifying Barak’s zero-knowledge argument

Here our starting point is any (constant-round, public-coin) strong witness-indistinguishable universal-
argument (for SU ), denoted (Pwi-ua, Vwi-ua).

A second ingredient used in the construction is a tree-hashing scheme, denoted TH, as used in
Construction 3.4. Loosely speaking, such a scheme can be applied to arbitrary long strings and
allows for the verification of the value of a particular bit in the string within time polynomial
in the hash-value (and possibly polylogarithmic in the length of the string). We stress that the
verification does not require presenting the entire string to which hashing was applied (but rather
only auxiliary authentication information that is specific to that bit position). Recall that tree-
hashing is constructed based on some “basic” hashing function (which maps 2n-bit strings to n-bit
strings), and that conflicting values assigned to any bit position in the tree-hashing yield a collision
in the basic hashing. Specifically, when using a basic hashing function indexed by α, and applying
the tree-hashing procedure to an m-bit long string z that is placed at the leaves of the (log2 m-deep)
tree, we denote the resulting label of the root by THα(z) and denote the corresponding sequence of
m authenticators by authα(z).17

In addition, we use a standard statistically-binding commitment scheme, denoted C, and a
binary error-correcting code of constant relative distance and polynomial-time encoding algorithm,
denoted ECC. Recall that a commitment scheme as above can be constructed based on any one-way
function (see, e.g., [16, Sec. 4.4.1]), whereas even stronger forms of error-correcting codes are known
to exist unconditionally (e.g., consider a concatenation code that combines a Reed-Solomon Code
with the encoding of the small field elements by a Hadamard Code). As in Construction B.2, we
let Cs(z) denote the receiver’s view of the commitment phase (of C) when the sender inputs the
value z and uses randomness s.

The key idea in our modification of Barak’s construction [6] is replacing an arbitrary collision-
resistant hashing of strings by the following two-step (hashing) process:

1. Apply the error-correcting code to the input string.

2. Apply the tree-hashing to the resulting codeword.

The advantage of this two-step (hashing) process over standard hashing is that if two different
strings are hashed to the same value then we can quickly obtain a collision in the basic hashing
function (underlying the tree-hashing). We stress that this collision is found in time that is poly-
nomial in the hash-value (which may be polylogarithmic in the length of the strings being hashed).
The reason is that, with (positive) constant probability, a uniformly selected bit-position in the
codeword will have different values in the two codewords, and in this case we obtain from the cor-
responding authentications a collision in the basic hashing. (The foregoing motivational discussion
will be clarified by the proof of Lemma 4.6.)

Construction 4.5 (a zero-knowledge argument for S ∈ NP (with a corresponding witness rela-
tion RS)):

Common input: x, supposedly in S. Let n
def
= |x|.

Auxiliary input to the prover: w such that supposedly (x,w) ∈ RS holds.

17That is, THα(z) = ℓλ, where ℓi is the ith bit of z, and ℓγ = hα(ℓγ0ℓγ1). Actually, here it is more natural to let

THα(z) = ℓ0,0, where ℓd,i is the ith bit of z ∈ {0, 1}2d

, and ℓj,i = hα(ℓj+1,2iℓj+1,2i+1). Similarly, the ith sequence in
authα(z) is (ℓd,2⌊i/2⌋, ℓd,2⌊i/2⌋+1, ℓd−1,2⌊i/4⌋, ℓd−1,2⌊i/4⌋+1, ..., ℓ1,2⌊i/2d⌋, ℓ1,2⌊i/2d⌋+1).
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Part 1: introducing a trapdoor for the simulation. The prover commits to a dummy value that al-

lows cheating in the case that this value provides a description of the supposedly random value

that is sent by the verifier after getting the said commitment. This is done as follows:

1. The verifier uniformly selects α ∈ {0, 1}n (i.e., a basic hash function), and sends it to

the prover.

2. The prover sends a dummy commitment (i.e., a commitment to the value 02n); that is,

it sends c
def
= Cs(0

2n) to the verifier, where s denotes the sender’s randomness in this

execution of the commitment scheme.

3. The verifier uniformly selects r ∈ {0, 1}n, and sends it to the prover.

Cheating in Part 2 will become possible if and only if r agrees with c in the sense that one

may present a circuit Π such that Π(c) = r and c = Cs(|ECC(Π)|, THα(ECC(Π))).

Part 2: effectively proving that x ∈ S. Specifically, the prover will prove that he knows either a

witness w for x ∈ S (i.e., (x,w) ∈ RS) or a circuit Π such that Π(c) = r and c =
Cs(|ECC(Π)|, THα(ECC(Π))). This is done as follows:

Loosely speaking, the parties invoke the proof system (Pwi-ua, Vwi-ua) on common input (x, α, c, r),
where the prover intends to prove that it knows a tuple (w,m, η, γ, s) such that either (x,w) ∈
RS or (η, γ, s) encodes authentication and decommitment information for a circuit Π such

that Π(c) = r, where the encoding clause means that it holds that η = ECC(Π) ∈ {0, 1}m,

γ = authα(η) and c = Cs(|η|, THα(η)).18 Actually, the parties reduce the above instance

(x, α, c, r) to the triplet y = (M ′
S , (x, α, c, r), 2n), where y ∈ {0, 1}poly(n) is supposedly in SU ,

and M ′
S is such that M ′

S((x, α, c, r), (w,m, η, γ, s))
def
= 1 if and only if at least one of the

following two conditions holds:

1. (x,w) ∈ RS.

2. m = |η|, c = Cs(m, THα(η)), γ = authα(η), and Π(c) = r, where Π ← ECC−1(η) is a

description of a circuit (i.e., η = ECC(Π)).

When invoking Pwi-ua, the prover provides it with the witness (w,m0, η0, γ0, s0), where m0 = n

and η0 = γ0 = s0
def
= 0n are (short) dummy values.

Note that the first condition can be evaluated in (fixed) polynomial-time (in |x|), whereas the

complexity of evaluating the second condition is dominated by the running-time of Π on input

c. Furthermore, if (x,w) ∈ RS then (y, (w,m0, η0, γ0, s0)) ∈ RU and the running-time of

Pwi-ua on (y, (w,m0, η0, γ0, s0)) is a fixed polynomial in |x|. We stress that, in any case, the

length of the statement being proven is bounded by a fixed polynomial in |x|.

We denote the above verifier and prover strategies by V and P , respectively.

Clearly, Construction 4.5 is constant-round, public-coin, and employs a probabilistic polynomial-
time verifier strategy. Furthermore, the designated prover satisfies the completeness property while
running in polynomial-time, given x and w as above. Demonstrating that Construction 4.5 is zero-
knowledge is done by following the ideas of [6]. We start with a rough sketch of this proof, and
then turn to establish the computational-soundness property of Construction 4.5.

18The reason that we include (in the witness) the authentication information (i.e., auth(ECC(Π))) rather than
including Π itself will become clear in the proof of Lemma 4.6. Furthermore, for simplicity and clarity, we explicitly
include in the witness both ECC(Π) and its length.
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Construction 4.5 is zero-knowledge: We present a non-black-box simulator that, given the
code of any feasible cheating verifier (represented by a polynomial-size circuit family {Ṽn}n∈N), sim-

ulates the interaction of P with that verifier. Specifically, given Ṽn, the simulator emulates Part 1 of
the protocol, except that it sets c← Cs(|ECC(Ṽn)|, THα(ECC(Ṽn))) instead of c← Cs(0

2n). Next, the
simulator emulates Part 2 of the protocol by using the witness (w0, |ECC(Ṽn)|, ECC(Ṽn), authα(ECC(Ṽn)), s),
where w0 = 0n is a (short) dummy value, s was selected by the simulator when emulating Part 1,
and Ṽn was given to it as (auxiliary) input.

Needless to say, given Ṽn, the simulator computes η ← ECC(Ṽn) as well as the tree-hash value
THα(η) and the corresponding sequence of authenticators authα(η) in polynomial-time. It follows
that, for every polynomial bounding the size of the verifier’s strategy (i.e., Ṽn), the simulator
runs in poly(n)-time. It is thus left to show that, for every polynomial bounding the size of the
verifier’s strategy (i.e., Ṽn), the simulator’s output (produced when given Ṽn as auxiliary input)
is computationally indistinguishable from a real execution (as in Construction 4.5). The proof
proceeds as follows:

• As a mental experiment, we consider a hybrid distribution in which Part 1 is performed as
in the simulation (i.e., by committing to the tree-hashing of the encoding of Ṽn) but Part 2
is performed as in the real execution (i.e., by using a witness w to the common input x).

• Combining the computationally-hiding property of the commitment scheme and the fact that
P (when given w) runs in poly(n)-time, it follows that the hybrid distribution is computa-
tionally indistinguishable from the real execution of the protocol.

• The witness indistinguishability property of Pwi-ua implies that the simulator’s output (in
which the witness Ṽn is used) is computationally indistinguishable from the hybrid distribution
(in which the witness w is used). We stress that, when using the witness indistinguishability
property of Pwi-ua, we refer to witnesses that are verifiable in fixed polynomial (in n) time
(because the polynomial bounding the size of Ṽn has been fixed for the current discussion).

Thus, the zero-knowledge feature follows.

Construction 4.5 is computational-sound: We show that any feasible cheating strategy for
the prover yields a feasible algorithm that forms collisions with respect to the basic hashing family
{hα :{0, 1}2|α|→{0, 1}|α|}α∈{0,1}∗ . The main idea is using the (weak) proof-of-knowledge property
of Vwi-ua in order to implicitly reconstruct error-correcting codewords that encode (different) valid
witnesses that corresponding to different executions of Part 1. We stress that since there is no a-
priori polynomial bound on the length of such witnesses, we cannot afford to explicitly reconstruct
them (as done in [6], where only a contradiction to super-polynomial hardness is derived). However,
implicit reconstruction of valid codewords will suffice, because different witnesses will be encoded
by codewords that differ on a constant fraction of the bit-locations.

Lemma 4.6 Construction 4.5 is computationally-sound (w.r.t S), provided that the family {hα}
is indeed collision-resistant.

Proof: Suppose towards the contradiction that there exists a feasible prover strategy that fools
V with non-negligible probability (to accept inputs not in S). Specifically, let {P̃n}n∈N be such a

family, and p be a polynomial such that for infinitely many x 6∈S it holds that px
def
= Pr[(P̃n, V )(x) =

1] > 1/p(|x|). Let us fix a generic n and x ∈ {0, 1}n \ S such that px > 1/p(n). For simplicity, we
incorporate this x in P̃n. Using {P̃n}n∈N, we present a family of circuits {Cn}n∈N that try to form
collisions. On input α ∈ {0, 1}n, the circuit Cn proceeds as follows:
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1. Invoking P̃n, on input α, the circuit Cn obtains c← P̃n(α). This is supposedly a commitment
produced by the cheating prover (in the second step of Part 1 of the protocol).

2. Uniformly selecting r ∈ {0, 1}n and feeding it to P̃n yields a residual prover P̃n(α, r) for

Part 2 of the protocol. That is, ˜Pwi-ua
def
= P̃n(α, r) is a prover strategy for the (witness-

indistinguishable) universal-argument system (Pwi-ua, Vwi-ua).

We shall focus on the case that ˜Pwi-ua convinces Vwi-ua to accept (x, α, c, r) with probability
at least px/4 > 1/4p(n). In this case, the (weak) proof-of-knowledge property guarantees
that we can implicitly reconstruct a witness (w,m, η, γ, s) that satisfies the second condition
in Part 2 (because x 6∈ S makes it impossible to satisfy the first condition (i.e., the condition
(x,w) ∈ RS)). Recall that the second condition implies that η encodes a circuit Π such that
Π(c) = r, and futhermore that m = |η|, c = Cs(m, THα(η)), and γ = authα(η). In the following
two steps, we shall first use the foregoing (implicit) reconstruction procedure to obtain m,
and next use it to obtain the ith bit of η as well as the corresponding (authentication) segment
of γ, for a uniformly selected i ∈ [m].

3. Invoking the knowledge-extractor guaranteed for the system (Pwi-ua, Vwi-ua), while providing
it with oracle access to ˜Pwi-ua, we reconstruct the values at bit-locations n + 1, ..., 2n in the
witness (i.e., the integer m that indicates the length of a codeword).

Recall that the values at bit-locations 2n + 1, ..., 2n + m are an error-correcting encoding of
Π, and the subsequent m strings consist of authentication information for the corresponding
bits.

4. The circuit Cn uniformly selects i ∈ [m]. Invoking the knowledge-extractor again with oracle
access to ˜Pwi-ua, it reconstructs the value of the ith bit of the codeword as well as the values
in the bit-locations that correspond to the authenticator of the ith bit in the codeword.

5. We repeat Steps 2 and 4 with a new uniformly selected r′ ∈ {0, 1}n but with the same value of
i as selected in Step 4. That is, analogously to Step 2, we first obtain a corresponding prover

strategy ˜P ′
wi-ua

def
= P̃n(α, r′) (for the (witness-indistinguishable) universal-argument system

(Pwi-ua, Vwi-ua)). We need not repeat Step 3 because the statistically-binding property of
C guarantees the uniqueness of m (obtained in Step 3). Analogously to Step 4, we invoke

the knowledge-extractor with oracle access to ˜P ′
wi-ua, and obtain the value of the ith bit of

a codeword (which encodes a circuit Π′ such that Π′(c) = r′) as well as the values in the
bit-locations that correspond to the authenticator of this bit.

Recall that since x /∈ S, the witness used by ˜P ′
wi-ua must encode a program Π′ such that

Π′(c) = r′. Since (with probability 1 − 2−n it holds that) r 6= r′ (and Π(c) = r), it must
be the case that Π′ 6= Π (whereas |ECC(Π)| = m = |ECC(Π′)|). We hope that ECC(Π) and
ECC(Π′) differ on the ith bit (which happens with constant probability), in which case we
obtain authenticators to conflicting values (with respect to the same label of the root of the
tree (where the uniqueness of this label is due to the statistically-binding property of C)).

6. The circuit Cn examines the authenticators obtained in Steps 4 and 5. If they authenticate
conflicting values, then the circuit derives a collision under hα (as in the proof of Claim 3.5.2).

The foregoing circuit family has polynomial-size (because each Cn is implementable by the same
probabilistic polynomial-time oracle machine, which in turn is given access to the polynomial-size
P̃n). We now turn to analyze the success probability of Cn.
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Claim 4.6.1 Given a uniformly distributed α ∈ {0, 1}n, with probability at least 1/poly(n), the

circuit Cn outputs a collision with respect to hα.

Proof: Recall that P̃n makes V accept x with probability px > 1/p(n), where the probability is
taken over V ’s random choices in the two parts of Construction 4.5. Moreover, V ’s choices in Part 1
are (α, r), where α (resp., r) is uniformly selected in {0, 1}n.

We call α good if the probability that P̃n makes V accept x, conditioned on V selecting α in
the first step of Part 1, is at least px/2. Clearly, at least a px/2 fraction of the α’s are good, and
we focus on any such good α.

Similarly, we say that r is α-good if the probability that P̃n makes V accept x, conditioned on
V selecting α and r in Part 1, is at least px/4. We denote by G = Gα the set of α-good strings, and
note that |G| > (px/4) · 2n (since α is good). That is, for every r ∈ G, the residual prover P̃n(α, r)
convinces Vwi-ua with probability at least px/4 > 1/4p(n), and therefore the knowledge-extractor
(given oracle access to P̃n(α, r)) implicitly extracts the corresponding witness with probability at

least qn
def
= 1/poly(n), where the polynomial depends on the polynomial p.

Observe that, with probability at least (px/4)2, both r and r′ selected in Steps 2 and 5 re-
spectively reside in G. Conditioned on this event, we (implicitly) extract both the corresponding
witnesses with probability at least q2

n. We stress that the two witnesses must be of the same length
by the virtue of their length being committed to in c (sent by the prover in the second step of
Part 1). Finally, with constant probability, these witnesses differ in bit position i (selected in
Step 4), in which case Cn succeeds in forming a collision under hα.

We conclude that, for any good α, the circuit Cn succeeds in forming a collision under hα with
probability at least (px/4)2 · q2

n ·Ω(1) = 1/poly(n). Recalling that at least px/2 = 1/poly(n) of the
α’s are good, the claim follows. 2

Using Claim 4.6.1, we derive a contradiction to the hypothesis that {hα} is collision-resistant. The
lemma follows.

Achieving Bounded Concurrent Zero-Knowledge. We have shown that Construction 4.5
satisfies the first two extra properties asserted in Theorem 1.2. To establish the third extra property,
we slightly modify the construction (analogously to the way this is done in [7, Chap. 4], which
constitutes the full version of [6]). Specifically, for a suitably chosen polynomial ℓ, in Part 1 we
select r uniformly in {0, 1}ℓ(n)+n (rather than in {0, 1}n), and in Part 2 we relax the second condition
(or case) such that now we require that there exists a string z ∈ {0, 1}ℓ(n) such that Π(c, z) = r
(rather than requiring that Π(c) = r). The extra string z allows to encode information from n2

concurrent executions of the protocol (see details in [7, Sec. 4.4]), and so enables the simulator
strategy to insert a “trapdoor” to the second step of Part 1 of the current execution (and thus
proceed in an “execution-by-execution” manner). When demonstrating computational-soundness,
we merely observe that, for a uniformly distributed r′ ∈ {0, 1}ℓ(n)+n (chosen in Step 5), it is unlikely
that Π, which is (implicitly) recovered (in Step 4) obliviously of r′, will satisfy Π(c, z′) = r′ for
some z′ ∈ {0, 1}ℓ(n).
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Appendix A: auxiliary properties of popular PCP systems

We claim that the PCP system of Babai et al. [5] satisfies all the auxiliary properties listed in
Definition 3.2. As stated in the main text, it is clear that this PCP system is non-adaptive and
thus we turn to establish the following remaining properties:19

Relatively-efficient oracle-construction: The oracle in this PCP system consists of two parts: (1) a
low-degree extension of a multi-variate function that encodes the original witness, and (2) var-
ious partial sums of the values of this polynomial, where the number of these partial sums
is smaller than the size the domain of the low-degree extension. The low-degree polynomial
can be constructed in time that is polynomial in the length of the explicit description of the
aforementioned function, and the same holds with respect to each of the partial sums.

Efficient reverse-sampling: The queries in this PCP system are either evaluations of the aforemen-
tioned polynomial at various points or queries regarding some partial sums of such values.
Specifically, the queries belong either to the low-degree test or to the sum-check, respectively.
The queries of the low-degree test are points along a random line, while the queries of the
sum-check are prefixes of a random point. Thus, given i and q, it is easy to select uniformly
a random tape for the verifier such that the ith query of the verifier (on this random tape)
equals q.

A proof-of-knowledge property: The standard analysis of this PCP system actually establishes that
if the verifier rejects with probability smaller than 1/2, then part of the oracle is (very) close
to a low-degree polynomial that extends a multi-variate function that encodes a valid witness.
Thus, by standard self-correction, we may (probabilistically) recover each bit in this witness
in polynomial-time. Hence, we obtain a polynomial-time oracle machine E such that for every
x and π that satisfy Pr[V π(x) = 1] > 1/2 it follows that there exists w = w1 · · ·wt such that
(x,w) ∈ R and Pr[Eπ(x, i) = wi] > 2/3 holds for every i.

As stated in the main text, to obtain the desired error of ǫ, we apply straightforward error-reduction
(on the PCP system), while noting that this process does not affect the oracle and so the resulting
(error-reduced) PCP preserves all the auxiliary properties (including a proof-of-knowledge property
that refers to a lower level of error). This completes the proof of Theorem 3.3.

We comment that the foregoing considerations are not specific to the PCP system of [5], but
rather hold also with respect to many other PCP systems.

Appendix B: non-oblivious commitment schemes

We first recall the definition of non-oblivious commitment schemes, following [16, §4.9.2.1] and [17,
Sec. C.3.3]. This definition augments the definition of a standard commitment scheme as pre-
sented in [16, §4.4.1.1]. The latter definition (i.e., [16, Def. 4.4.1]) refers to a scheme that is
computationally-hiding and statistically-binding. Loosely speaking, such a commitment scheme is
an efficient two-phase two-party protocol through which one party, called the sender, can commit
itself to a value so the following two conflicting requirements are satisfied.

Hiding: At the end of the first phase, the other party, called the receiver, does not gain any knowl-
edge of the sender’s value. This requirement has to be satisfied even if the receiver tries to

19Needless to say, we assume some familiarity with the work of Babai et al. [5]. In particular, the high-level overview
provided in [18, §9.3.2.2] suffices.
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cheat. The computational version asserts that the receiver’s views of interactions regarding
any two values used by the sender are computational indistinguishable.

Binding: Given the transcript of the interaction in the first phase, there exists at most one value
that the receiver may later (i.e., in the second phase) accept as a legal “opening” of the
commitment. This requirement has to be satisfied even if the sender tries to cheat. The
statistical version asserts that this property holds with overwhelmingly high probability (even
if the sender is compuationally unbounded), where the probability is taken solely over the
receiver’s randomness.

In addition, one should require that the protocol is viable in the sense that if both parties follow
it then, at the end of the second phase, the receiver gets the value committed to by the sender.
Throughout this appendix we refer to commitment schemes that are computationally hiding and
statistically binding. Actually, for sake of simplicity, we assume that the binding propery is perfect
(i.e., it holds with probability 1).20

It is indeed time to define formally the notion of a proper opening of a commitment, which is
also known as proper decommitment. Typically, one considers a canonical decommitment, which
consist of all randomness used by the sender in the commit phase. In this case, the value v and
the sender’s randomness s may be considered a proper decommitment to the receiver’s view of the
commitment phase if it is consistent with that view (i.e., using these values along with the receiver’s
randomness yields the transcript of messages seen by the receiver). However, a more general notion
of proper decommitment may be beneficial. Specifically, we refer to an arbitrary algorithm D that
satisfies the following two conditions:

1. If the commitment phase is performed properly using the sender’s value v and the outcome is
a pair (s, c), where s is given to the sender and c is given to the receiver, then D((v, s), c) = 1.
This means that (v, s) is accepted as a proper decommitment to c.

2. If the receiver follows the commitment phase properly, then the receiver output c is such that
there exists at most one value of v such that the set {s : D((v, s), c) = 1} is non-empty.

Needless to say, the aforementioned canonical decommitment gives rise to such an algorithm D. In
the sequel, we shall assume (without loss of generality) that the commitment c is contained in the
information s given to the sender.

Recall that the foregoing condition (2) mandates that, even when the sender cheats, there exists
at most one value v that can be properly decommitted for the output c (i.e., at most one v satisfies
{s : D((v, s), c) = 1} 6= ∅). This does not mean that the sender necessarily knows v, and furthermore
such a v may not exist at all (i.e., {s : D((v′, s), c) = 1} = ∅ may hold for every v′). The following
non-obliviousness requirement mandates that the sender “knows” the set of values for which proper
decommitment is impossible; that is, if the receiver does not detect cheating, then it is the case
that the sender knows v such that for every v′ 6= v there is no proper decommitment to c that
yields the value v′ (i.e., {s : D((v′, s), c) = 1} = ∅ holds).

20We mention that such (perfectly binding) commitment schemes can be constructed based on any one-way permu-
tation [16, §4.4.1.2], but only commitment schemes with non-perfect statistical binding are know to be constructible
based on any one-way function [16, §4.4.1.3]. Definition B.1 can be extended (from the case of perfectly binding
commitment schemes) to the case of statistically binding commitment schemes by referring to a proof-of-knowledge
for a promise problem, where the promise set consists of all interaction transcripts that can be opened in at most one
way (i.e., yielding one value).
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Definition B.1 (non-oblivious commitment schemes): A commitment scheme is called non-oblivious
if its commit phase consists of two sub-phases such that the first sub-phase is an ordinary commit-

ment phase and the second sub-phase is a proof-of-knowledge of the only possible value that can be

properly decommitted with respect to the first sub-phase. That is, the commitment scheme (S,R)
decomposes into S = (S1, S2) and R = (R1, R2) such that

1. (S1, R1) is a commitment scheme with decommitment-verification algorithm D;

2. (S2, R2) is a proof of knowledge system (with negligible error – see [16, Sec. 4.7.1]) for the

relation

{(c, v) : ∀v′ 6=v ∀s′ D((v′, s′), c) 6= 1} (4)

and this proof system is invoked on common input c and prover’s auxiliary input (v, s), where

(s, c) is a result of applying (S1, R1) to the value v.

Note that the relation defined in Eq. (4) is not necessarily an NP-witness relation (i.e., it is not
necessarily polynomial-time recognizable), but the definition of a proof-of-knowledge applies nev-
ertheless (see [16, Sec. 4.7.1] and further discussions in [9]). A seemingly stronger notion (of
non-oblivious commitment schemes) requires a proof of knowledge for an NP-witness relation R′

such that (c, v) satisfies Eq. (4) if and only if there exists w ∈ {0, 1}poly(|c|) such that (c, (v,w)) ∈ R′

holds. We comment that Construction B.2 (below) satisfies this stronger definition.
We mention that, in [17, Sec. C.3.3], Definition B.1 is referred to as a relaxed version of the

notion of a non-oblivious commitment scheme, whereas in the non-relaxed notion the second sub-
phase is required to prove knowledge of the input as well as of proper decommitment information.
That is, in the strict (i.e., non-relaxed) notion of non-oblivious commitment schemes (outlined
in [17, Sec. C.3.3]), the second sub-phase is a proof-of-knowledge of an input and decommitment
information that are consistent with the receiver’s view of the first sub-phase (i.e., a proof of
knowledge system for the relation {(c, (v, s)) : D((v, s), c) = 1}). Originally, we thought that we can
provide a constant-round public-coin implementation of the strict notion, but a flaw in our reasoning
was discovered by Iftach Haitner, Alon Rosen, and Ronen Shaltiel. Although the relaxed notion
suffices for our applications (as well as for other natural applications (see, e.g., [16, §4.9.2.2])), we
believe that the question of whether the strict notion can be implemented by a constant-round
public-coin protocol is of independent interest.

Constructing non-oblivious commitment schemes. Our construction follows the outline
provided in [17, Sec. C.3.3]. The basic idea is augmenting a standard commitment scheme with
an adequate zero-knowledge proof-of-knowledge, but the problem is that such a proof-of-knowledge
that is also constant-round and public-coin is not known. As observed in [16, §4.9.2.1], it suffices
to use a strong-WI proof-of-knowledge, but such a protocol is not known either (see [17, Sec. C.3]).
We stress that in both cases we have referred to protocols with negligible soundness-error, and that
corresponding protocols with constant soundness-error do exist. The solution suggested in [17,
Sec. C.3.3] is using multiple commitments (via the standard scheme) and applying a strong-WI
proof-of-knowledge of constant soundness-error to each of the different commitments. In this setting
(of statistically independent inputs), the strong-WI property is preserved under parallel executions
(cf. [17, Lem. C.3.1]). The following construction merely spells out this suggestion,

Construction B.2 (a non-oblivious commitment scheme): Let C be a standard statistically-binding

commitment scheme, and let Cs(x) denote the receiver’s view of the commitment phase when the

sender inputs the value x and uses randomness s. The following description refers to committing

to the value v under the security parameter n, where |v| ≤ poly(n).
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First commit sub-phase: The parties invoke C, in parallel, for n times. In all invocations the sender

enters the value v, and in the ith invocation the receiver obtains the value ci = Csi(v), where

si denotes the sender’s randomness.

These n invocations yield a standard commitment scheme with a decommitment algorithm D

that accepts the value v if it is supported by n proper decommitments with respect to the basic

commitment scheme; that is, D((v, s′), c) = 1 if c = (c1, ..., cn) and s′ = (s′1, ..., s
′
n) such that

for every i ∈ [n] it holds that ci = Cs′i
(v).

Second commit sub-phase: The parties perform, in parallel, n copies of the following protocol. In

the ith copy, the sender proves in zero-knowledge that it knows the values v and si that were

used in the corresponding copy of the first sub-phase. That is, the sender proves that it knows

(v, si) such that ci = Csi(v). Each of these proofs of knowledge has constant soundness-error.

If the receiver detects cheating in any of these executions, then it aborts indicating that the

sender is cheating. Otherwise, the receiver accepts the commitment (c1, ..., cn).

A proper decommitment to the value v with respect to a transcript c = (c1, ..., cn) of the first

sub-phase consists of a sequence of n strings (s′1, ..., s
′
n) such that for every i ∈ [n] it holds that

ci = Cs′i
(v).

Construction B.2 inherits the statistical-binding property of the standard commitment C (since
a proper decommitment in Construction B.2 requires proper decommitments of C to the same
value). We first show that, although the zero-knowledge property may not be preserved in the
parallel executions that take place in the second commit sub-phase, this sub-phase preserves the
computational-hiding property of the standard commitment C.

Claim B.2.1 Construction B.2 is computationally-hiding.

Proof: We view Construction B.2 as consisting of n parallel executions of a basic protocol in
which the sender first commits to v and then proves (in zero-knowledge) that it knows a proper
decommitment. This basic protocol is computationally-hiding, because it consists of produc-
ing a computationally-hiding commitment and running a zero-knowledge proof regarding this
commitment.21 Thus, it suffices to prove that any computationally-hiding commitment scheme
preserves this property under parallel executions. Indeed, the proof proceeds by a hybrid argument
and is very similar to the proof of Lemma C.3.1 in [17]. 2

It is left to establish the non-oblivious property of Construction B.2. Towards this end, we assume
that the proof-of-knowledge employed is such that the verifier tosses a single coin (and indeed
has knowledge-error 1/2).22 We note that such protocols (of constant soundness-error) exist; see,
e.g., [16, Chap. 4, Exer. 28.1].

Claim B.2.2 Construction B.2, when implemented using a proof-of-knowledge in which the verifier

tosses a single coin, is non-oblivious.

21Indeed, it is instructive to note that the zero-knowledge property implies the strong-WI property (see [16,
§4.6.1.1]), whereas the latter property preserves the computational indistinguishability of C-commitments (to dif-
ferent values).

22We believe that the argument can be extended to the general case (or at least to all standard proof-of-knowledge
protocols). See related discussion in [9, Apdx. C.2].
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Proof: We fix an arbitrary execution of the first (commit) sub-phase, and consider a random
execution of the second (commit) sub-phase, which amounts to n parallel executions of the proof-of-
knowledge protocol. Fixing an arbitrary (deterministic) sender strategy, the underlying probability
space consists of the n random (bit) choices made in the corresponding executions. We denote by
p the probability that the receiver is convinced by all these proofs, where here the probability is
taken uniformly over all the receiver’s n (binary) choices. We call the ith copy good if for each

choice of the verifier bit in this copy, the receiver is convinced (in this copy) with probability at
least p/n, where the probability is taken over the receiver’s choices in all the other n − 1 copies.
The current claim follows by combining two facts:

1. If p > 2−n then at least one of the indices is good.

Otherwise, we reach a contraction by upper-bounding the number of points in the probability
space that cause the receiver to be convinced. Specifically, if all indices are not good, then
for every i ∈ [n] there exists a bit σi such that the number of convincing points in which the
ith bit equals 1− σi is less than (p/n) · 2n−1. Thus, the total number of convincing points is
less than 1 + n · (p/n)2n−1, because the set of convincing points, denoted C, is a subset of

{σ1 · · · σn} ∪ {α1 · · ·αn ∈ C : ∃i∈ [n] s.t. αi = 1− σi}.

It follows that p · 2n < 1 + p · 2n−1, which yields p < 2−(n−1). Recalling that p is defined
with respect to a probability space of size 2n, it follows that p ≤ 2−n, in contradiction to the
hypothesis p > 2−n.

2. If i is good then the corresponding knowledge (i.e., a pair (vi, si) such that ci = Csi(vi)) can
be extracted in poly(n)/p steps.

By making O(n/p) trials, we can generate a convincing transcript for each of the (two) possible
choices of the verifier’s random bit in the execution of the ith copy. This implies extraction
(by the definition of a proof-of-knowledge).

Thus, assuming p > 2−n, we can extract the relevant decommitment information (i.e., v as well
as at least one corresponding si’s such that ci = Csi(v)) in time that is inversely proportional to
the probability that the receiver is convinced in the second commit sub-phase. This information
guarantess that the corresponding value (i.e., v) is the only value for which a proper decommitment
exists. It follows that the second commit sub-phase (of Construction B.2) constitutes a proof of
knowledge, with error 2−n, of the only possible value that can be properly decommitted with respect
to the first sub-phase. The claim follows. 2

Recalling that all ingredients used in Construction B.2 can be implemented based on any one-way
function (via constant-round public-coin protocols), we get:

Theorem B.3 The existence of one-way functions implies the existence of non-oblivious commit-

ment schemes. Furthermore, these systems are of the public-coin type and use a constant number

of rounds.

We also mention that the properties of non-oblivious commitment schemes are preserved when many
copies of the scheme are executed in parallel (or even concurrently under arbitrary scheduling). The
preservation of the standard properties of a commitment scheme follows by a hybrid argument (as
employed in the proof of Claim B.2.1). The preservation of the non-oblivious (or rather the proof-
of-knowledge) property follows by focusing on each individual copy and considering an auxiliary
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sender that emulates all the other copies. (We stress that we do not claim here a reduction in
the soundness-error of the proof-of-knowledge property, but rather a preservation of the proof-of-
knowledge property at the same level of soundness-error.)
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