
Chapter 6Randomness and CountingI owe this almost atrocious variety to an institution which otherrepublics do not know or which operates in them in an imperfectand secret manner: the lottery.Jorge Luis Borges, The Lottery In BabylonSo far, our approach to computing devices was somewhat conservative: we thoughtof them as executing a deterministic rule. A more liberal and quite realistic ap-proach, which is pursued in this chapter, considers computing devices that use aprobabilistic rule. This relaxation has an immediate impact on the notion of e�-cient computation, which is consequently associated with probabilistic polynomial-time computations rather than with deterministic (polynomial-time) ones. Westress that the association of e�cient computation with probabilistic polynomial-time computation makes sense provided that the failure probability of the latter isnegligible (which means that it may be safely ignored).The quantitative nature of the failure probability of probabilistic algorithmprovides one connection between probabilistic algorithms and counting problems.The latter are indeed a new type of computational problems, and our focus is oncounting e�ciently recognizable objects (e.g., NP-witnesses for a given instance ofset in NP). Randomized procedures turn out to play an important role in thestudy of such counting problems.Summary: Focusing on probabilistic polynomial-time algorithms, weconsider various types of probabilistic failure of such algorithms (e.g.,actual error versus failure to produce output). This leads to the formu-lation of complexity classes such as BPP, RP , and ZPP. The resultspresented include the existence of (non-uniform) families of polynomial-size circuits that emulate probabilistic polynomial-time algorithms (i.e.,BPP � P=poly) and the fact that BPP resides in the (second level ofthe) Polynomial-time Hierarchy (i.e., BPP � �2).We then turn to counting problems; speci�cally, counting the numberof solutions for an instance of a search problem in PC (or, equivalently,203



204 CHAPTER 6. RANDOMNESS AND COUNTINGcounting the number of NP-witnesses for an instance of a decision prob-lem in NP). We distinguish between exact counting and approximatecounting (in the sense of relative approximation). In particular, whileany problem in PH is reducible to the exact counting class #P , ap-proximate counting (for #P) is (probabilisticly) reducible to NP .In general, counting problems exhibit a \richer structure" than the cor-responding search (and decision) problems, even when considering onlynatural problems. For example, some counting problems are hard in theexact version (e.g., are #P-complete) but easy to approximate, whileothers are NP-hard to approximate. In some cases #P-completeness isdue to the very same reduction that establishes the NP-completeness ofthe corresponding decision problem, whereas in other cases new reduc-tions are required (often because the corresponding decision problem isnot NP-complete but is rather in P).We also consider two other types of computational problems that arerelated to approximate counting. The �rst type refers to promise prob-lems, called unique solution problems, in which the solver is guaran-teed that the instance has at most one solution. Many NP-completeproblems are randomly reducible to the corresponding unique solutionproblems. Lastly, we consider the problem of generating almost uni-formly distributed solutions, and show that in many cases this problemis computationally equivalent to approximately counting the number ofsolutions.Prerequisites: We assume basic familiarity with elementary probability theory(see Appendix D.1). In Section 6.2 we will rely extensively on formulations pre-sented in Section 2.1 (i.e., the \NP search problem" class PC as well as the setsR(x) def= fy : (x; y) 2 Rg, and SR def= fx : R(x) 6= ;g de�ned for every R 2 PC).In Sections 6.2.2{6.2.4 we shall extensively use various hashing functions and theirproperties, as presented in Appendix D.2.6.1 Probabilistic Polynomial-TimeConsidering algorithms that utilize random choices, we extend our notion of ef-�cient algorithms from deterministic polynomial-time algorithms to probabilisticpolynomial-time algorithms. Two conicting questions that arise are whether itis reasonable to allow randomized computational steps and whether adding suchsteps buys us anything.We �rst note that random events are an important part of our modeling ofthe world. We stress that this does not necessarily mean that we assert that theworld per se includes genuine random choices, but rather that it is bene�cial tomodel the world as including random choices (i.e., some phenomena appear to usas if they are random in some sense). Furthermore, it seems feasible to generate



6.1. PROBABILISTIC POLYNOMIAL-TIME 205random-looking events (e.g., the outcome of a toss coin).1 Thus, postulating thatseemingly random choices can be generated by a computer is quite natural (andis in fact common practice). At the very least, this postulate yields an intuitivemodel of computation and the study of such a model is of natural concern.This leads to the question of whether augmenting the computational model withthe ability to make random choices buys us anything. Although randomization isknown to be essential in several computational settings (e.g., cryptography (cf.,Appendix C) and sampling (cf., Appendix D.3)), the question is whether random-ization is useful in the context of solving decision (and search) problems. This isindeed a very good question, which is further discussed in x6.1.2.1. In fact, one ofthe main goals of the current section is putting this question forward. To demon-strate the potential bene�t of randomized algorithms, we provide a few examples(cf., x6.1.2.2, x6.1.3.1 and x6.1.5.2).6.1.1 Basic modeling issuesRigorous models of probabilistic (or randomized) algorithms are de�ned by nat-ural extensions of the basic machine model. We will exemplify this approach bydescribing the model of probabilistic Turing machines, but we stress that (again)the speci�c choice of the model is immaterial (as long as it is \reasonable"). Aprobabilistic Turing machine is de�ned exactly as a non-deterministic machine (seethe �rst item of De�nition 2.7), but the de�nition of its computation is fundamen-tally di�erent. Speci�cally, whereas De�nition 2.7 refers to the question of whetheror not there exists a computation of the machine that (started on a speci�c input)reaches a certain con�guration, in the case of probabilistic Turing machines werefer to the probability that this event occurs, when at each step a choice is selecteduniformly among the relevant possible choices available at this step. That is, if thetransition function of the machine maps the current state-symbol pair to severalpossible triples, then in the corresponding probabilistic computation one of thesetriples is selected at random (with equal probability) and the next con�guration isdetermined accordingly. These random choices may be viewed as the internal cointosses of the machine. (Indeed, as in the case of non-deterministic machines, wemay assume without loss of generality that the transition function of the machinemaps each state-symbol pair to exactly two possible triples; see Exercise 2.4.)We stress the fundamental di�erence between the �ctitious model of a non-deterministic machine and the realistic model of a probabilistic machine. In the caseof a non-deterministic machine we consider the existence of an adequate sequence ofchoices (leading to a desired outcome), and ignore the question of how these choicesare actually made. In fact, the selection of such a sequence of choices is merely amental experiment. In contrast, in the case of a probabilistic machine, at each stepa real random choice is actually made (uniformly among a set of predetermined1Di�erent perspectives on the question of the feasibility of randomized computation are o�eredin Chapter 8 and Appendix D.4. The pivot of Chapter 8 is the distinction between being actuallyrandom and looking random (to computationally restricted observers). In contrast, Appendix D.4refers to various notions of randomness and to the feasibility of transforming weak forms ofrandomness into almost perfect forms.



206 CHAPTER 6. RANDOMNESS AND COUNTINGpossibilities), and we consider the probability of reaching a desired outcome.In view of the foregoing, we consider the output distribution of such a proba-bilistic machine on �xed inputs; that is, for a probabilistic machine M and stringx 2 f0; 1g�, we denote by M(x) the output distribution of M when invoked oninput x, where the probability is taken uniformly over the machine's internal cointosses. Needless to say, we will consider the probability that M(x) is a \correct"answer; that is, in the case of a search problem (resp., decision problem) we will beinterested in the probability that M(x) is a valid solution for the instance x (resp.,represents the correct decision regarding x).The foregoing description views the internal coin tosses of the machine as takingplace on-the-y; that is, these coin tosses are performed on-line by the machineitself. An alternative model is one in which the sequence of coin tosses is providedby an external device, on a special \random input" tape. In such a case, we viewthese coin tosses as performed o�-line. Speci�cally, we denote by M 0(x; r) the(uniquely de�ned) output of the residual deterministic machineM 0, when given the(primary) input x and random input r. Indeed, M 0 is a deterministic machine thattakes two inputs (the �rst representing the actual input and the second representingthe \random input"), but we consider the random variableM(x) def= M 0(x; U`(jxj)),where `(jxj) denotes the number of coin tosses \expected" by M 0(x; �).These two perspectives on probabilistic algorithms are closely related: Clearly,the aforementioned residual deterministic machine M 0 yields the on-line machineM that on input x selects at random a string r of adequate length, and invokesM 0(x; r). On the other hand, the computation of any on-line machineM is capturedby the residual machineM 0 that emulates the actions ofM(x) based on an auxiliaryinput r (obtained by M 0 and representing a possible outcome of the internal cointosses of M). (Indeed, there is no harm in supplying more coin tosses than areactually used by M , and so the length of the aforementioned auxiliary input maybe set to equal the time complexity ofM .) For sake of clarity and future reference,we summarize the foregoing discussion in the following de�nition.De�nition 6.1 (on-line and o�-line formulations of probabilistic polynomial-time):� We say thatM is a on-line probabilistic polynomial-time machine if there existsa polynomial p such that when invoked on any input x 2 f0; 1g�, machine Malways halts within at most p(jxj) steps (regardless of the outcome of itsinternal coin tosses). In such a case M(x) is a random variable.� We say that M 0 is a o�-line probabilistic polynomial-time machine if there ex-ists a polynomial p such that, for every x 2 f0; 1g� and r 2 f0; 1gp(jxj), wheninvoked on the primary input x and the random-input sequence r, machine M 0halts within at most p(jxj) steps. In such a case, we will consider the ran-dom variable M 0(x; Up(jxj)), where Um denotes a random variable uniformlydistributed over f0; 1gm.Clearly, in the context of time-complexity, the on-line and o�-line formulationsare equivalent (i.e., given an on-line probabilistic polynomial-time machine we canderive a functionally equivalent o�-line (probabilistic polynomial-time) machine,and vice versa). Thus, in the sequel, we will freely use whichever is more convenient.



6.1. PROBABILISTIC POLYNOMIAL-TIME 207Failure probability. A major aspect of randomized algorithms (probabilisticmachines) is that they may fail (see Exercise 6.1). That is, with some speci�ed(\failure") probability, these algorithms may fail to produce the desired output.We discuss two aspects of this failure: its type and its magnitude.1. The type of failure is a qualitative notion. One aspect of this type is whether,in case of failure, the algorithm produces a wrong answer or merely an indica-tion that it failed to �nd a correct answer. Another aspect is whether failuremay occur on all instances or merely on certain types of instances. Let usclarify these aspects by considering three natural types of failure, giving riseto three di�erent types of algorithms.(a) The most liberal notion of failure is the one of two-sided error. Thisterm originates from the setting of decision problems, where it meansthat (in case of failure) the algorithm may err in both directions (i.e.,it may rule that a yes-instance is a no-instance, and vice versa). Inthe case of search problems two-sided error means that, when failing,the algorithm may output a wrong answer on any input. That is, thealgorithm may falsely rule that the input has no solution and it mayalso output a wrong solution (both in case the input has a solution andin case it has no solution).(b) An intermediate notion of failure is the one of one-sided error. Again, theterm originates from the setting of decision problems, where it meansthat the algorithm may err only in one direction (i.e., either on yes-instances or on no-instances). Indeed, there are two natural cases de-pending on whether the algorithm errs on yes-instances but not on no-instances, or the other way around. Analogous cases occur also in thesetting of search problems. In one case the algorithm never outputsa wrong solution but may falsely rule that the input has no solution.In the other case the indication that an input has no solution is neverwrong, but the algorithm may output a wrong solution.(c) The most conservative notion of failure is the one of zero-sided error. Inthis case, the algorithm's failure amounts to indicating its failure to �ndan answer (by outputting a special don't know symbol). We stress thatin this case the algorithm never provides a wrong answer.Indeed, the forgoing discussion ignores the probability of failure, which is thesubject of the next item.2. The magnitude of failure is a quantitative notion. It refer to the probabilitythat the algorithm fails, where the type of failure is �xed (e.g., as in theforgoing discussion).When actually using a randomized algorithm we typically wish its failureprobability to be negligible, which intuitively means that the failure event isso rare that it can be ignored in practice. Formally, we say that a quantity isnegligible if, as a function of the relevant parameter (e.g., the input length),this quantity vanishes faster than the reciprocal of any positive polynomial.



208 CHAPTER 6. RANDOMNESS AND COUNTINGFor ease of presentation, we sometimes consider alternative upper-boundson the probability of failure. These bounds are selected in a way that al-lows (and in fact facilitates) \error reduction" (i.e., converting a probabilisticpolynomial-time algorithm that satis�es such an upper-bound into one inwhich the failure probability is negligible). For example, in the case of two-sided error we need to be able to distinguish the correct answer from wronganswers by sampling, and in the other types of failure \hitting" a correctanswer su�ces.In the following three sections (i.e., Sections 6.1.2{6.1.4), we will discuss complexityclasses corresponding to the aforementioned three types of failure. For sake ofsimplicity, the failure probability itself will be set to a constant that allows errorreduction.Randomized reductions. Before turning to the more detailed discussion, wemention that randomized reductions play an important role in complexity the-ory. Such reductions can be de�ned analogously to the standard Cook-Reductions(resp., Karp-reductions), and again a discussion of the type and magnitude of thefailure probability is in place. For clarity, we spell-out the two-sided error versions.� In analogy to De�nition 2.9, we say that a problem � is probabilistic polynomial-time reducible to a problem �0 if there exists a probabilistic polynomial-timeoracle machineM such that, for every function f that solves �0 and for everyx, with probability at least 1��(jxj), the output Mf (x) is a correct solutionto the instance x, where � is a negligible function.� In analogy to De�nition 2.11, we say that a decision problem S is reducibleto a decision problem S0 via a randomized Karp-reduction if there exists aprobabilistic polynomial-time algorithm A such that, for every x, it holds thatPr[�S0(A(x)) = �S(x)] � 1��(jxj), where �S (resp., �S0) is the characteristicfunction of S (resp., S0) and � is a negligible function.These reductions preserve e�cient solvability and are transitive: see Exercise 6.2.6.1.2 Two-sided error: The complexity class BPPIn this section we consider the most liberal notion of probabilistic polynomial-timealgorithms that is still meaningful. We allow the algorithm to err on each input,but require the error probability to be negligible. The latter requirement guaranteesthe usefulness of such algorithms, because in reality we may ignore the negligibleerror probability.Before focusing on the decision problem setting, let us say a few words on thesearch problem setting (see De�nition 1.1). Following the previous paragraph, wesay that a probabilistic (polynomial-time) algorithm A solves the search problemof the relation R if for every x 2 SR (i.e., R(x) def= fy : (x; y) 2Rg 6= ;) it holdsthat Pr[A(x) 2 R(x)] > 1 � �(jxj) and for every x 62 SR it holds that Pr[A(x) =?] > 1��(jxj), where � is a negligible function. Note that we did not require that,



6.1. PROBABILISTIC POLYNOMIAL-TIME 209when invoked on input x that has a solution (i.e., R(x) 6= ;), the algorithm alwaysoutputs the same solution. Indeed, a stronger requirement is that for every such xthere exists y 2 R(x) such that Pr[A(x)= y] > 1� �(jxj). The latter version andquantitative relaxations of it allow for error-reduction (see Exercise 6.3).Turning to decision problems, we consider probabilistic polynomial-time algo-rithms that err with negligible probability. That is, we say that a probabilistic(polynomial-time) algorithm A decides membership in S if for every x it holdsthat Pr[A(x) = �S(x)] > 1 � �(jxj), where �S is the characteristic function of S(i.e., �S(x) = 1 if x 2 S and �S(x) = 0 otherwise) and � is a negligible function.The class of decision problems that are solvable by probabilistic polynomial-timealgorithms is denoted BPP, standing for Bounded-error Probabilistic Polynomial-time. Actually, the standard de�nition refers to machines that err with probabilityat most 1=3.De�nition 6.2 (the class BPP): A decision problem S is in BPP if there existsa probabilistic polynomial-time algorithm A such that for every x 2 S it holds thatPr[A(x) = 1] � 2=3 and for every x 62 S it holds that Pr[A(x) = 0] � 2=3.The choice of the constant 2=3 is immaterial, and any other constant greater than1=2 will do (and yields the very same class). Similarly, the complementary constant1=3 can be replaced by various negligible functions (while preserving the class).Both facts are special cases of the robustness of the class, discussed next, which isestablished using the process of error reduction.Error reduction (or con�dence ampli�cation). For " : N ! (0; 0:5), letBPP" denote the class of decision problems that can be solved in probabilisticpolynomial-time with error probability upper-bounded by "; that is, S 2 BPP" ifthere exists a probabilistic polynomial-time algorithm A such that for every x itholds that Pr[A(x) 6= �S(x)] � "(jxj). By de�nition, BPP = BPP1=3. However, awide range of other classes also equal BPP. In particular, we mention two extremecases:1. For every positive polynomial p and "(n) = (1=2)� (1=p(n)), the class BPP"equals BPP. That is, any error that is (\noticeably") bounded away from1/2 (i.e., error (1=2)� (1=poly(n))) can be reduced to an error of 1=3.2. For every positive polynomial p and "(n) = 2�p(n), the class BPP" equalsBPP. That is, an error of 1=3 can be further reduced to an exponentiallyvanishing error.Both facts are proved by invoking the weaker algorithm (i.e., the one having alarger error probability bound) for an adequate number of times, and ruling bymajority. We stress that invoking a randomized machine several times means thatthe random choices made in the various invocations are independent of one another.The success probability of such a process is analyzed by applying an adequate Lawof Large Numbers (see Exercise 6.4).



210 CHAPTER 6. RANDOMNESS AND COUNTING6.1.2.1 On the power of randomizationLet us turn back to the natural question raised at the beginning of Section 6.1;that is, was anything gained by extending the de�nition of e�cient computation toinclude also probabilistic polynomial-time ones.This phrasing seems too generic. We certainly gained the ability to toss coins(and generate various distributions). More concretely, randomized algorithms areessential in many settings (see, e.g., Chapter 9, Section 10.1.2, Appendix C, andAppendix D.3) and seem essential in others (see, e.g., Sections 6.2.2{6.2.4). Whatwe mean to ask here is whether allowing randomization increases the power ofpolynomial-time algorithms also in the restricted context of solving decision andsearch problems?The question is whether BPP extends beyond P (where clearly P � BPP).It is commonly conjectured that the answer is negative. Speci�cally, under somereasonable assumptions, it holds that BPP = P (see Part 1 of Theorem 8.19). Wenote, however, that a polynomial slow-down occurs in the proof of the latter result;that is, randomized algorithms that run in time t(�) are emulated by determinis-tic algorithms that run in time poly(t(�)). This slow-down seems inherent to theaforementioned approach (see x8.3.3.2). Furthermore, for some concrete problems(most notably primality testing (cf. x6.1.2.2)), the known probabilistic polynomial-time algorithm is signi�cantly faster (and conceptually simpler) than the knowndeterministic polynomial-time algorithm. Thus, we believe that even in the con-text of decision problems, the notion of probabilistic polynomial-time algorithmsis advantageous.We note that the fundamental nature of BPP will remain intact even in the(rather unlikely) case that it turns out that randomization o�ers no computa-tional advantage (i.e., even if every problem that can be decided in probabilisticpolynomial-time can be decided by a deterministic algorithm of essentially thesame complexity). Such a result would address a fundamental question regardingthe power of randomness.2 We now turn from the foregoing philosophical (andpartially hypothetical) discussion to a concrete discussion of what is known aboutBPP.BPP is in the Polynomial-TimeHierarchy: While it may be that BPP = P ,it is not known whether or not BPP is contained in NP . The source of troubleis the two-sided error probability of BPP, which is incompatible with the absoluterejection of no-instances required in the de�nition of NP (see Exercise 6.8). Inview of this ignorance, it is interesting to note that BPP resides in the secondlevel of the Polynomial-Time Hierarchy (i.e., BPP � �2). This is a corollary ofTheorem 6.9.Trivial derandomization. A straightforward way of eliminating randomnessfrom an algorithm is trying all possible outcomes of its internal coin tosses, collect-ing the relevant statistics and deciding accordingly. This yields BPP � PSPACE �2By analogy, establishing that IP = PSPACE (cf. Theorem 9.4) does not diminish theimportance of any of these classes, because each class models something fundamentally di�erent.



6.1. PROBABILISTIC POLYNOMIAL-TIME 211EXP , which is considered the trivial derandomization of BPP. In Section 8.3 wewill consider various non-trivial derandomizations of BPP, which are known undervarious intractability assumptions. The interested reader, who may be puzzled bythe connection between derandomization and computational di�culty, is referredto Chapter 8.Non-uniform derandomization. In many settings (and speci�cally in the con-text of solving search and decision problems), the power of randomization is su-perseded by the power of non-uniform advice. Intuitively, the non-uniform advicemay specify a sequence of coin tosses that is good for all (primary) inputs of aspeci�c length. In the context of solving search and decision problems, such anadvice must be good for each of these inputs3, and thus its existence is guaran-teed only if the error probability is low enough (so as to support a union bound).The latter condition can be guaranteed by error-reduction, and thus we get thefollowing result.Theorem 6.3 BPP is (strictly) contained in P=poly.Proof: Recall that P=poly contains undecidable problems (Theorem 3.7), whichare certainly not in BPP. Thus, we focus on showing that BPP � P=poly. Bythe discussion regarding error-reduction, for every S 2 BPP there exists a (de-terministic) polynomial-time algorithm A and a polynomial p such that for everyx it holds that Pr[A(x; Up(jxj)) 6= �S(x)] < 2�jxj. Using a union bound, it followsthat Prr2f0;1gp(n) [9x 2 f0; 1gn s.t. A(x; r) 6= �S(x)] < 1. Thus, for every n 2 N ,there exists a string rn 2 f0; 1gp(n) such that for every x 2 f0; 1gn it holds thatA(x; rn) = �S(x). Using such a sequence of rn's as advice, we obtain the desirednon-uniform machine (establishing S 2 P=poly).Digest. The proof of Theorem 6.3 combines error-reduction with a simple ap-plication of the Probabilistic Method (cf. [10]), where the latter refers to provingthe existence of an object by analyzing the probability that a random object isadequate. In this case, we sought a non-uniform advice, and proved it existence byanalyzing the probability that a random advice is good. The latter event was ana-lyzed by identifying the space of possible advice with the set of possible sequencesof internal coin tosses of a randomized algorithm.6.1.2.2 A probabilistic polynomial-time primality testTeaching note: Although primality has been recently shown to be in P, we believethat the following example provides a nice illustration to the power of randomizedalgorithms.3In other contexts (see, e.g., Chapters 7 and 8), it su�ces to have an advice that is good onthe average, where the average is taken over all relevant (primary) inputs.



212 CHAPTER 6. RANDOMNESS AND COUNTINGWe present a simple probabilistic polynomial-time algorithm for deciding whetheror not a given number is a prime. The only Number Theoretic facts that we useare:Fact 1: For every prime p > 2, each quadratic residue mod p has exactly two squareroots mod p (and they sum-up to p).4Fact 2: For every (odd and non-integer-power) composite numberN , each quadraticresidue mod N has at least four square roots mod N .Our algorithm uses as a black-box an algorithm, denoted sqrt, that given a primep and a quadratic residue mod p, denoted s, returns the smallest among the twomodular square roots of s. There is no guarantee as to what the output is in thecase that the input is not of the aforementioned form (and in particular in the casethat p is not a prime). Thus, we actually present a probabilistic polynomial-timereduction of testing primality to extracting square roots modulo a prime (which isa search problem with a promise; see Section 2.4.1).Construction 6.4 (the reduction): On input a natural number N > 2 do1. If N is either even or an integer-power5 then reject.2. Uniformly select r 2 f1; :::; N � 1g, and set s r2 mod N .3. Let r0  sqrt(s;N). If r0 � �r (mod N) then accept else reject.Indeed, in the case that N is composite, the reduction invokes sqrt on an illegiti-mate input (i.e., it makes a query that violates the promise of the problem at thetarget of the reduction). In such a case, there is not guarantee as to what sqrt an-swers, but actually a bluntly wrong answer only plays in our favor. In general, wewill show that if N is composite, then the reduction rejects with probability at least1=2, regardless of how sqrt answers. We mention that there exists a probabilisticpolynomial-time algorithm for implementing sqrt (see Exercise 6.16).Proposition 6.5 Construction 6.4 constitutes a probabilistic polynomial-time re-duction of testing primality to extracting square roots module a prime. Further-more, if the input is a prime then the reduction always accepts, and otherwise itrejects with probability at least 1=2.We stress that Proposition 6.5 refers to the reduction itself; that is, sqrt is viewedas a (\perfect") oracle that, for every prime P and quadratic residue s (mod P ),returns r < s=2 such that r2 � s (mod P ). Combining Proposition 6.5 with aprobabilistic polynomial-time algorithm that computes sqrt with negligible errorprobability, we obtain that testing primality is in BPP.4That is, for every r 2 f1; :::; p�1g, the equation x2 � r2 (mod p) has two solutions modulo p(i.e., r and p� r).5This can be checked by scanning all possible powers e 2 f2; :::; log2Ng, and (approximately)solving the equation xe = N for each value of e (i.e., �nding the smallest integer i such thatie � N). Such a solution can be found by binary search.



6.1. PROBABILISTIC POLYNOMIAL-TIME 213Proof: By Fact 1, on input a prime number N , Construction 6.4 always accepts(because in this case, for every r 2 f1; :::; N�1g, it holds that sqrt(r2 mod N;N) 2fr;N � rg). On the other hand, suppose that N is an odd composite that is notan integer-power. Then, by Fact 2, each quadratic residue s has at least foursquare roots, and each of these square roots is equally likely to be chosen at Step 2(in other words, s yields no information regarding which of its modular squareroots was selected in Step 2). Thus, for every such s, the probability that eithersqrt(s;N) or N � sqrt(s;N) equal the root chosen in Step 2 is at most 2=4. Itfollows that, on input a composite number, the reduction rejects with probabilityat least 1=2.Reection: Construction 6.4 illustrates an interesting aspect of randomized algo-rithms (or rather reductions); that is, their ability to take advantage of informationthat is unknown to the invoked subroutine. Speci�cally, Construction 6.4 generatesa problem instance (N; s), which hides crucial information (regarding how s wasgenerated). Any subroutine that answers correctly in the case that N is prime pro-vides probabilistic evidence that N is a prime, where the probability space refersto the missing information (regarding how s was generated in the case that N iscomposite).Comment. Testing primality is actually in P . However, the deterministic al-gorithm demonstrating this fact is more complex than Construction 6.4 (and itsanalysis is even more complicated).6.1.3 One-sided error: The complexity classes RP and coRPIn this section we consider notions of probabilistic polynomial-time algorithmshaving one-sided error. The notion of one-sided error refers to a natural partition ofthe set of instances; that is, yes-instances versus no-instances in the case of decisionproblems, and instances having solution versus instances having no solution in thecase of search problems. We focus on decision problems, and comment that ananalogous treatment can be provided for search problems (see Exercise 6.3).De�nition 6.6 (the class RP)6: A decision problem S is in RP if there exists aprobabilistic polynomial-time algorithm A such that for every x 2 S it holds thatPr[A(x)=1] � 1=2 and for every x 62 S it holds that Pr[A(x)=0] = 1.The choice of the constant 1=2 is immaterial, and any other constant greater thanzero will do (and yields the very same class). Similarly, this constant can bereplaced by 1��(jxj) for various negligible functions � (while preserving the class).Both facts are special cases of the robustness of the class (see Exercise 6.5).Observe that RP � NP (see Exercise 6.8) and that RP � BPP (by theaforementioned error-reduction). De�ning coRP = ff0; 1g� n S : S 2 RPg, note6The initials RP stands for Random Polynomial-time, which fails to convey the restricted typeof error allowed in this class. The only nice feature of this notation is that it is reminiscent of NP,thus reecting the fact that RP is a randomized polynomial-time class that is contained in NP .



214 CHAPTER 6. RANDOMNESS AND COUNTINGthat coRP corresponds to the opposite direction of one-sided error probability.That is, a decision problem S is in coRP if there exists a probabilistic polynomial-time algorithm A such that for every x 2 S it holds that Pr[A(x)=1] = 1 and forevery x 62 S it holds that Pr[A(x)=0] � 1=2.6.1.3.1 Testing polynomial identityAn appealing example of a one-sided error randomized algorithm refers to theproblem of determining whether two polynomials are identical. For simplicity, weassume that we are given an oracle for the evaluation of each of the two polynomials.An alternative presentation that refers to polynomials that are represented byarithmetic circuits (cf. Appendix B.3) yields a standard decision problem in coRP(see Exercise 6.17). Either way, we refer to multi-variant polynomials and to thequestion of whether they are identical over any �eld (or, equivalently, whether theyare identical over a su�ciently large �nite �eld). Note that it su�ces to consider�nite �elds that are larger than the degree of the two polynomials.Construction 6.7 (Polynomial-Identity Test): Let n be an integer and F be a�nite �eld. Given black-box access to p; q : Fn ! F, uniformly select r1; :::; rn 2 F,and accept if and only if p(r1; :::; rn) = q(r1; :::; rn).Clearly, if p � q then Construction 6.7 always accepts. The following lemma impliesthat if p and q are di�erent polynomials, each of total degree at most d over the�nite �eld F, then Construction 6.7 accepts with probability at most d=jFj.Lemma 6.8 Let p : Fn ! F be a non-zero polynomial of total degree d over the�nite �eld F. Then Prr1;:::;rn2F[p(r1; :::; rn) = 0] � djFj :Proof: The lemma is proven by induction on n. The base case of n = 1 followsimmediately by the Fundamental Theorem of Algebra (i.e., any non-zero univariatepolynomial of degree d has at most d distinct roots). In the induction step, we writep as a polynomial in its �rst variable with coe�cients that are polynomials in theother variables. That is,p(x1; x2; :::; xn) = dXi=0 pi(x2; :::; xn) � xi1where pi is a polynomial of total degree at most d�i. Let i be the largest integer forwhich pi is not identically zero. Dismissing the case i = 0 and using the inductionhypothesis, we havePrr1;r2;:::;rn[p(r1; r2; :::; rn) = 0]� Prr2;:::;rn[pi(r2; :::; rn) = 0]+Prr1;r2;:::;rn[p(r1; r2; :::; rn) = 0 j pi(r2; :::; rn) 6= 0]� d� ijFj + ijFj



6.1. PROBABILISTIC POLYNOMIAL-TIME 215where the second term is bounded by �xing any sequence r2; :::; rn for whichpi(r2; ::::; rn) 6= 0 and considering the univariate polynomial p0(x) def= p(x; r2; :::; rn)(which by hypothesis is a non-zero polynomial of degree i).Reection: Lemma 6.8 may be viewed as asserting that for every non-zero poly-nomial of degree d over F at least a 1 � (d=jFj) fraction of its domain does notevaluate to zero. Thus, if d � jFj then most of the evaluation points constitute awitness for the fact that the polynomial is non-zero. We know of no e�cient deter-ministic algorithm that, given a representation of the polynomial via an arithmeticcircuit, �nds such a witness. Indeed, Construction 6.7 attempts to �nd a witnessby merely selecting it at random.6.1.3.2 Relating BPP to RPA natural question regarding probabilistic polynomial-time algorithms refers to therelation between two-sided and one-sided error probability. For example, is BPPcontained in RP? Loosely speaking, we show that BPP is reducible to coRPby one-sided error randomized Karp-reductions, where the actual statement refersto the promise problem versions of both classes (briey de�ned in the followingparagraph). Note that BPP is trivially reducible to coRP by two-sided errorrandomized Karp-reductions, whereas a deterministic Karp-reduction of BPP tocoRP would imply BPP = coRP = RP (see Exercise 6.9).First, we refer the reader to the general discussion of promise problems inSection 2.4.1. Analogously to De�nition 2.31, we say that the promise problem� = (Syes; Sno) is in (the promise problem extension of) BPP if there exists aprobabilistic polynomial-time algorithm A such that for every x 2 Syes it holds thatPr[A(x)=1] � 2=3 and for every x 2 Sno it holds that Pr[A(x)=0] � 2=3. Similarly,� is in coRP if for every x 2 Syes it holds that Pr[A(x) = 1] = 1 and for everyx 2 Sno it holds that Pr[A(x)=0] � 1=2. Probabilistic reductions among promiseproblems are de�ned by adapting the conventions of Section 2.4.1; speci�cally,queries that violate the promise at the target of the reduction may be answeredarbitrarily.Theorem 6.9 Any problem in BPP is reducible by a one-sided error randomizedKarp-reduction to coRP, where coRP (and possibly also BPP) denotes the cor-responding class of promise problems. Speci�cally, the reduction always maps ano-instance to a no-instance.It follows that BPP is reducible by a one-sided error randomized Cook-reduction toRP . Thus, using the conventions of Section 3.2.2 and referring to classes of promiseproblems, we may write BPP � RPRP . In fact, since RPRP � BPPBPP = BPP,we have BPP = RPRP . Theorem 6.9 may be paraphrased as saying that thecombination of the one-sided error probability of the reduction and the one-sidederror probability of coRP can account for the two-sided error probability of BPP.We warn that this statement is not a triviality like 1 + 1 = 2, and in particular



216 CHAPTER 6. RANDOMNESS AND COUNTINGwe do not know whether it holds for classes of standard decision problems (ratherthan for the classes of promise problems considered in Theorem 6.9).Proof: Recall that we can easily reduce the error probability of BPP-algorithms,and derive probabilistic polynomial-time algorithms of exponentially vanishing er-ror probability. But this does not eliminate the error altogether (not even on \oneside"). In general, there seems to be no hope to eliminate the error, unless we(either do something earth-shaking or) change the setting as done when allowing aone-sided error randomized reduction to a problem in coRP . The latter setting canbe viewed as a two-move randomized game (i.e., a random move by the reductionfollowed by a random move by the decision procedure of coRP), and it enablesapplying di�erent quanti�ers to the two moves (i.e., allowing error in one directionin the �rst quanti�er and error in the other direction in the second quanti�er).In the next paragraph, which is inessential to the actual proof, we illustrate thepotential power of this setting.Teaching note: The following illustration represents an alternative way of provingTheorem 6.9. This way seems conceptual simpler but it requires a starting point (orrather an assumption) that is much harder to establish, where both comparisons arewith respect to the actual proof of Theorem 6.9 (which follows the illustration).An illustration. Suppose that for some set S 2 BPP there exists a polynomial p0 andan o�-line BPP-algorithmA0 such that for every x it holds that Prr2f0;1g2p0(jxj) [A0(x; r) 6=�S(x)] < 2�(p0(jxj)+1); that is, the algorithm uses 2p0(jxj) bits of randomness andhas error probability smaller than 2�p0(jxj)=2. Note that such an algorithm cannotbe obtained by standard error-reduction (see Exercise 6.10). Anyhow, such a smallerror probability allows a partition of the string r such that one part accountsfor the entire error probability on yes-instances while the other part accounts forthe error probability on no-instances. Speci�cally, for every x 2 S, it holds thatPrr02f0;1gp0(jxj) [(8r00 2 f0; 1gp0(jxj))A0(x; r0r00) = 1] > 1=2, whereas for every x 62 Sand every r0 2 f0; 1gp0(jxj) it holds that Prr002f0;1gp0(jxj) [A0(x; r0r00) = 1] < 1=2.Thus, the error on yes-instances is \pushed" to the selection of r0, whereas theerror on no-instances is pushed to the selection of r00. This yields a one-sided errorrandomized Karp-reduction that maps x to (x; r0), where r0 is uniformly selectedin f0; 1gp0(jxj), such that deciding S is reduced to the coRP problem (regardingpairs (x; r0)) that is decided by the (on-line) randomized algorithm A00 de�nedby A00(x; r0) def= A0(x; r0Up0(jxj)). For details, see Exercise 6.11. The actual proof,which avoids the aforementioned hypothesis, follows.The actual starting point. Consider any BPP-problem with a characteristic function� (which, in case of a promise problem, is a partial function, de�ned only over thepromise). By standard error-reduction, there exists a probabilistic polynomial-timealgorithm A such that for every x on which � is de�ned it holds that Pr[A(x) 6=�(x)] < �(jxj), where � is a negligible function. Looking at the correspondingo�-line algorithm A0 and denoting by p the polynomial that bounds the running



6.1. PROBABILISTIC POLYNOMIAL-TIME 217time of A, we havePrr2f0;1gp(jxj) [A0(x; r) 6=�(x)] < �(jxj) < 12p(jxj) (6.1)for all su�ciently long x's on which � is de�ned. We show a randomized one-sidederror Karp-reduction of � to a promise problem in coRP .Teaching note: Some readers may prefer skipping the following two paragraphs andproceeding directly to the formal description of the randomized mapping (which fol-lows). To such readers, we recommend returning to the two skipped paragraphs afterreading the formal analysis.The main idea. As in the illustrating paragraph, the basic idea is \pushing" theerror probability on yes-instances (of �) to the reduction, while pushing the er-ror probability on no-instances to the coRP-problem. Focusing on the case that�(x) = 1, this is achieved by augmenting the input x with a random sequence of\modi�ers" that act on the random-input of algorithm A0 such that for a goodchoice of modi�ers it holds that for every r 2 f0; 1gp(jxj) there exists a modi�er inthis sequence that when applied to r yields r0 that satis�es A0(x; r0) = 1. Indeed,not all sequences of modi�ers are good, but a random sequence will be good withhigh probability and bad sequences will be accounted for in the error probabilityof the reduction. On the other hand, using only modi�ers that are permutationsguarantees that the error probability on no-instances only increase by a factorthat equals the number of modi�ers that we use, and this error probability will beaccounted for by the error probability of the coRP-problem. Details follow.The aforementioned modi�ers are implemented by shifts (of the set of all stringsby �xed o�sets). Thus, we augment the input x with a random sequence of shifts,denoted s1; :::; sm 2 f0; 1gp(jxj), such that for a good choice of (s1; :::; sm) it holdsthat for every r 2 f0; 1gp(jxj) there exists an i 2 [m] such that A0(x; r�si) = 1. Wewill show that, for any yes-instance x and a suitable choice of m, with very highprobability, a random sequence of shifts is good. Thus, for A00(hx; s1; :::; smi; r) def=_mi=1A0(x; r � si), it holds that, with very high probability over the choice ofs1; :::; sm, a yes-instance x is mapped to an augmented input hx; s1; :::; smi thatis accepted by A00 with probability 1. On the other hand, the acceptance probabil-ity of augmented no-instances (for any choice of shifts) only increases by a factor ofm. In further detailing the foregoing idea, we start by explicitly stating the simplerandomized mapping (to be used as a randomized Karp-reduction), and next de�nethe target promise problem.The randomized mapping. On input x 2 f0; 1gn, we set m = p(jxj), uniformly selects1; :::; sm 2 f0; 1gm, and output the pair (x; s), where s = (s1; :::; sm). Note thatthis mapping, denoted M , is easily computable by a probabilistic polynomial-timealgorithm.The promise problem. We de�ne the following promise problem, denoted � =(�yes;�no), having instances of the form (x; s) such that jsj = p(jxj)2.



218 CHAPTER 6. RANDOMNESS AND COUNTING� The yes-instances are pairs (x; s), where s = (s1; :::; sm) and m = p(jxj), suchthat for every r 2 f0; 1gm there exists an i satisfying A0(x; r � si) = 1.� The no-instances are pairs (x; s), where again s = (s1; :::; sm) and m = p(jxj),such that for at least half of the possible r 2 f0; 1gm, for every i it holds thatA0(x; r � si) = 0.To see that � is indeed a coRP promise problem, we consider the following random-ized algorithm. On input (x; (s1; :::; sm)), wherem = p(jxj) = js1j = � � � = jsmj, thealgorithm uniformly selects r 2 f0; 1gm, and accepts if and only if A0(x; r� si) = 1for some i 2 f1; :::;mg. Indeed, yes-instances of � are accepted with probability 1,whereas no-instances of � are rejected with probability at least 1=2.Analyzing the reduction: We claim that the randomized mapping M reduces � to� with one-sided error. Speci�cally, we will prove two claims.Claim 1: If x is a yes-instance (i.e., �(x) = 1) then Pr[M(x) 2 �yes] > 1=2.Claim 2: If x is a no-instance (i.e., �(x) = 0) then Pr[M(x) 2 �no] = 1.We start with Claim 2, which is easier to establish. Recall thatM(x) = (x; (s1; :::; sm)),where s1; :::; sm are uniformly and independently distributed in f0; 1gm. We notethat (by Eq. (6.1) and �(x) = 0), for every possible choice of s1; :::; sm 2 f0; 1gmand every i 2 f1; :::;mg, the fraction of r's that satisfy A0(x; r � si) = 1 is at most12m . Thus, for every possible choice of s1; :::; sm 2 f0; 1gm, for at most half of thepossible r 2 f0; 1gm there exists an i such that A0(x; r � si) = 1 holds. Hence, thereduction M always maps the no-instance x (i.e., �(x) = 0) to a no-instance of �(i.e., an element of �no).Turning to Claim 1 (which refers to �(x) = 1), we will show shortly that inthis case, with very high probability, the reduction M maps x to a yes-instance of�. We upper-bound the probability that the reduction fails (in case �(x) = 1) asfollows:Pr[M(x) 62 �yes] = Prs1;:::;sm [9r 2 f0; 1gm s.t. (8i) A0(x; r � si) = 0]� Xr2f0;1gm Prs1;:::;sm [(8i) A0(x; r � si) = 0]= Xr2f0;1gm mYi=1Prsi [A0(x; r � si) = 0]< 2m � � 12m�mwhere the last inequality is due to Eq. (6.1). It follows that if �(x) = 1 thenPr[M(x) 2 �yes]� 1=2.Combining both claims, it follows that the randomized mapping M reduces �to �, with one-sided error on yes-instances. Recalling that � 2 coRP , the theoremfollows.



6.1. PROBABILISTIC POLYNOMIAL-TIME 219BPP is in PH. The traditional presentation of the ideas underlying the proof ofTheorem 6.9 uses them for showing that BPP is in the Polynomial-time Hierarchy(where both classes refer to standard decision problems). Speci�cally, to prove thatBPP � �2 (see De�nition 3.8), de�ne the polynomial-time computable predicate'(x; s; r) def= Wmi=1(A0(x; si � r) = 1), and observe that�(x) = 1 ) 9s8r '(x; s; r) (6.2)�(x) = 0 ) 8s9r :'(x; s; r) (6.3)(where Eq. (6.3) is equivalent to :9s8r '(x; s; r)). Note that Claim 1 (in the proofof Theorem 6.9) establishes that most sequences s satisfy 8r '(x; s; r), whereasEq. (6.2) only requires the existence of at least one such s. Similarly, Claim 2establishes that for every s most choices of r violate '(x; s; r), whereas Eq. (6.3)only requires that for every s there exists at least one such r. We comment thatthe same proof idea yields a variety of similar statements (e.g., BPP �MA, whereMA is a randomized version of NP de�ned in Section 9.1).76.1.4 Zero-sided error: The complexity class ZPPWe now consider probabilistic polynomial-time algorithms that never err, but mayfail to provide an answer. Focusing on decision problems, the corresponding class isdenoted ZPP (standing for Zero-error Probabilistic Polynomial-time). The stan-dard de�nition of ZPP is in terms of machines that output ? (indicating fail-ure) with probability at most 1=2. That is, S 2 ZPP if there exists a proba-bilistic polynomial-time algorithm A such that for every x 2 f0; 1g� it holds thatPr[A(x) 2 f�S(x);?g] = 1 and Pr[A(x) = �S(x)] � 1=2, where �S(x) = 1 if x 2 Sand �S(x) = 0 otherwise. Again, the choice of the constant (i.e., 1=2) is immate-rial, and \error-reduction" can be performed showing that algorithms that yield ameaningful answer with noticeable probability can be ampli�ed to algorithms thatfail with negligible probability (see Exercise 6.6).Theorem 6.10 ZPP = RP \ coRP.Proof Sketch: The fact that ZPP � RP (as well as ZPP � coRP) follows by atrivial transformation of the ZPP-algorithm; that is, replacing the failure indicator? by a \no" verdict (resp., \yes" verdict). Note that the choice of what to say incase the ZPP-algorithm fails is determined by the type of error that we are allowed.In order to prove that RP \ coRP � ZPP we combine the two algorithmguaranteed for a set in RP \ coRP . The point is that we can trust the RP-algorithm (resp., coNP-algorithm) in the case that it says \yes" (resp., \no"), butnot in the case that it says \no" (resp., \yes"). Thus, we invoke both algorithms,7Speci�cally, the classMA is de�ned by allowing the veri�cation algorithm V in De�nition 2.5to be probabilistic and err on no-instances; that is, for every x 2 S there exists y 2 f0; 1gpoly(jxj)such that Pr[V (x; y) = 1] = 1, whereas for every x 62 S and every y it holds that Pr[V (x; y) =0] � 1=2. We note that MA can be viewed as a hybrid of the two aforementioned pairs ofconditions; speci�cally, each problem in MA satisfy the conjunction of Eq. (6.2) and Claim 2.Other randomized versions of NP (i.e., variants of MA) are considered in Exercise 6.12.



220 CHAPTER 6. RANDOMNESS AND COUNTINGand output a de�nite answer only if we obtain an answer that we can trust (whichhappen with high probability). Otherwise, we output ?.Expected polynomial-time. In some sources ZPP is de�ned in terms of ran-domized algorithms that run in expected polynomial-time and always output thecorrect answer. This de�nition is equivalent to the one we used (see Exercise 6.7).6.1.5 Randomized Log-SpaceIn this section we discuss probabilistic polynomial-time algorithms that are furtherrestricted such that they are allowed to use only a logarithmic amount of space.6.1.5.1 De�nitional issuesWhen de�ning space-bounded randomized algorithms, we face a problem analogousto the one discussed in the context of non-deterministic space-bounded computation(see Section 5.3). Speci�cally, the on-line and the o�-line versions (formulated inDe�nition 6.1) are no longer equivalent, unless we restrict the o�-line machine toaccess its random-input tape in a uni-directional manner. The issue is that, in thecontext of space-bounded computation (and unlike in the case that we only careabout time-bounds), the outcome of the internal coin tosses (in the on-line model)cannot be recorded for free. Bearing in mind that, in the current context, we wishto model real algorithms (rather than present a �ctitious model that captures afundamental phenomena as in Section 5.3), it is clear that using the on-line versionis the natural choice.An additional issue that arises is the need to explicitly bound the running-timeof space-bounded randomized algorithms. Recall that, without loss of generality,the number of steps taken by a space-bounded non-deterministic machine is at mostexponential in its space complexity, because the shortest path between two con�g-urations in the (directed) graph of possible con�gurations is upper-bounded by itssize (which in turn is exponential in the space-bound). This reasoning fails in thecase of randomized algorithms, because the shortest path between two con�gura-tions does not bound the expected number of random steps required for going fromthe �rst con�guration to the second one. In fact, as we shall shortly see, failing toupper-bound the running time of log-space randomized algorithms seems to allowthem too much power; that is, such (unrestricted) log-space randomized algorithmscan emulate non-deterministic log-space computations (in exponential time). Theemulation consists of repeatedly invoking the NL-machine, while using randomchoices in the role of the non-deterministic moves. If the input is a yes-instancethen, in each attempt, with probability at least 2�t, we \hit" an accepting t-step(non-deterministic) computation, where t is polynomial in the input length. Thus,the randomized machine accepts such a yes-instance after an expected number of2t trials. To allow for the rejection of no-instances (rather than looping in�nitely invain), we wish to implement a counter that counts till 2t (or so) and reject the input



6.1. PROBABILISTIC POLYNOMIAL-TIME 221if 2t trials were made and have all failed (to hit an accepting computation of theNL-machine). We need to implement such a counter within space O(log t) ratherthan t (which is easy). In fact, it su�ces to have a \randomized counter" that,with high probability, counts to approximately 2t. The implementation of such acounter is left to Exercise 6.18, and using it we may obtain a randomized algorithmthat halts with high probability (on every input), always rejects a no-instance, andaccepts each yes-instance with probability at least 1=2.In light of the foregoing discussion, when de�ning randomized log-space algo-rithms we explicitly require that the algorithms halt in polynomial-time. Modulothis convention, the relation between classesRL (resp., BPL) and NL is analogousto the relation between RP (resp., BPP) and NP. Speci�cally, the probabilisticacceptance condition of RL (resp., BPL) is as in the case of RP (resp., BPP).De�nition 6.11 (the classes RL and BPL): We say that a randomized log-spacealgorithm is admissible if it always halts in a polynomial number of steps.� A decision problem S is in RL if there exists an admissible (on-line) random-ized log-space algorithm A such that for every x 2 S it holds that Pr[A(x) =1] � 1=2 and for every x 62 S it holds that Pr[A(x) = 0] = 1.� A decision problem S is in BPL if there exists an admissible (on-line) random-ized log-space algorithm A such that for every x 2 S it holds that Pr[A(x) =1] � 2=3 and for every x 62 S it holds that Pr[A(x) = 0] � 2=3.Clearly, RL � NL � P and BPL � P . Note that the classes RL and BPL remainunchanged even if we allow the algorithms to run for expected polynomial-time andhave non-halting computations. Such algorithms can be easily transformed intoadmissible algorithms by truncating long computations, while using a (standard)counter (which can be implemented in logarithmic-space). Also note that error-reduction is applicable in the current setting (while essentially preserving both thetime and space bounds).6.1.5.2 The accidental tourist sees it allAn appealing example of a randomized log-space algorithm is presented next. Itrefers to the problem of deciding undirected connectivity, and demonstrates thatthis problem is in RL. (Recall that in Section 5.2.4 we proved that this problemis actually in L, but the algorithm and its analysis were more complicated.) Incontrast, recall that Directed Connectivity is complete for NL (under log-spacereductions).For sake of simplicity, we consider the following computational problem: givenan undirected graph G and a pair of vertices (s; t), determine whether or not sand t are connected in G. Note that deciding undirected connectivity (of a givenundirected graph) is log-space reducible to the foregoing problem (e.g., just checkthe connectivity of all pairs of vertices).Construction 6.12 On input (G; s; t), the randomized algorithm starts a poly(jGj)-long random walk at vertex s, and accepts the triplet if and only if the walk passed



222 CHAPTER 6. RANDOMNESS AND COUNTINGthrough the vertex t. By a random walk we mean that at each step the algorithmselects uniformly one of the neighbors of the current vertex and moves to it.Observe that the algorithm can be implemented in logarithmic space (becausewe only need to store the current vertex as well as the number of steps takenso far). Obviously, if s and t are not connected in G then the algorithm alwaysrejects (G; s; t). Proposition 6.13 implies that if s and t are connected (in G) thenthe algorithm accepts with probability at least 1=2. It follows that undirectedconnectivity is in RL.Proposition 6.13 With probability at least 1=2, a random walk of length O(jV j �jEj) starting at any vertex of the graph G = (V;E) passes through all the verticesthat reside in the same connected component as the start vertex.Thus, such a random walk may be used to explore the relevant connected compo-nent (in any graph). Following this walk one is likely to see all that there is to seein that component.Proof Sketch: We will actually show that if G is connected then, with probabilityat least 1=2, a random walk starting at s visits all the vertices of G. For any pair ofvertices (u; v), letXu;v be a random variable representing the number of steps takenin a random walk starting at u until v is �rst encountered. The reader may verifythat for every edge fu; vg 2 E it holds that E[Xu;v] � 2jEj; see Exercise 6.19. Next,we let cover(G) denote the expected number of steps in a random walk starting at sand ending when the last of the vertices of V is encountered. Our goal is to upper-bound cover(G). Towards this end, we consider an arbitrary directed cyclic-tourC that visits all vertices in G, and note thatcover(G) � X(u;v)2C E[Xu;v] � jCj � 2jEj:In particular, selecting C as a traversal of some spanning tree of G, we concludethat cover(G) < 4 � jV j � jEj. Thus, with probability at least 1=2, a random walkof length 8 � jV j � jEj starting at s visits all vertices of G.6.2 CountingWe now turn to a new type of computational problems, which vastly generalizedecision problems of the NP-type. We refer to counting problems, and more specif-ically to counting objects that can be e�ciently recognized. The search and decisionversions of NP provide suitable de�nitions of e�ciently recognized objects, whichin turn yield corresponding counting problems:1. For each search problem having e�ciently checkable solutions (i.e., a relationR � f0; 1g�� f0; 1g� in PC (see De�nition 2.3)), we consider the problem ofcounting the number of solutions for a given instance. That is, on input x,we are required to output jfy : (x; y)2Rgj.



6.2. COUNTING 2232. For each decision problem S in NP , and each corresponding veri�cationprocedure V (as in De�nition 2.5), we consider the problem of counting thenumber of NP-witnesses for a given instance. That is, on input x, we arerequired to output jfy : V (x; y)=1gj.We shall consider these types of counting problems as well as relaxations (ofthese counting problems) that refer to approximating the said quantities (see Sec-tions 6.2.1 and 6.2.2, respectively). Other related topics include \problems withunique solutions" (see Section 6.2.3) and \uniform generation of solutions" (seeSection 6.2.4). Interestingly, randomized procedures will play an important role inmany of the results regarding the aforementioned types of problems.6.2.1 Exact CountingIn continuation to the foregoing discussion, we de�ne the class of problems con-cerned with counting e�ciently recognized objects. (Recall that PC denotes theclass of search problems having polynomially long solutions that are e�cientlycheckable; see De�nition 2.3.)De�nition 6.14 (counting e�ciently recognized objects { #P): The class #Pconsists of all functions that count solutions to a search problem in PC. That is,f : f0; 1g� ! N is in #P if there exists R 2 PC such that, for every x, it holdsthat f(x) = jR(x)j, where R(x) = fy : (x; y)2Rg. In this case we say that f is thecounting problem associated with R, and denote the latter by #R (i.e., #R = f).Every decision problem in NP is Cook-reducible to #P , because every such prob-lem can be cast as deciding membership in SR = fx : jR(x)j > 0g for some R 2 PC(see Section 2.1.2). It also holds that BPP is Cook-reducible to #P (see Exer-cise 6.20). The class #P is sometimes de�ned in terms of decision problems, as isimplicit in the following proposition.Proposition 6.15 (a decisional version of #P): For any f 2 #P, deciding mem-bership in Sf def= f(x;N) : f(x)�Ng is computationally equivalent to computing f .Actually, the claim holds for any function f : f0; 1g� ! N for which there exists apolynomial p such that for every x 2 f0; 1g� it holds that f(x) � 2p(jxj).Proof: Since the relation R vouching for f 2 #P (i.e., f(x) = jR(x)j) is poly-nomially bounded, there exists a polynomial p such that for every x it holds thatf(x) � 2p(jxj). Deciding membership in Sf is easily reduced to computing f (i.e.,we accept the input (x;N) if and only if f(x) � N). Computing f is reducible todeciding Sf by using a binary search (see Exercise 2.9). This relies on the fact that,on input x and oracle access to Sf , we can determine whether or not f(x) � N bymaking the query (x;N). Note that we know a priori that f(x) 2 [0; 2p(jxj)].The counting class #P is also related to the problem of enumerating all possiblesolutions to a given instance (see Exercise 6.21).



224 CHAPTER 6. RANDOMNESS AND COUNTING6.2.1.1 On the power of #PAs indicated, NP [ BPP is (easily) reducible to #P . Furthermore, as stated inTheorem 6.16, the entire Polynomial-Time Hierarchy (as de�ned in Section 3.2) isCook-reducible to #P (i.e., PH � P#P). On the other hand, any problem in #Pis solvable in polynomial space, and so P#P � PSPACE .Theorem 6.16 Every set in PH is Cook-reducible to #P.We do not present a proof of Theorem 6.16 here, because the known proofs arerather technical. Furthermore, one main idea underlying these proofs appears ina more clear form in the proof of Theorem 6.29. Nevertheless, in Section F.1 wepresent a proof of a related result, which implies that PH is reducible to #P viarandomized Karp-reductions.6.2.1.2 Completeness in #PThe de�nition of #P-completeness is analogous to the de�nition ofNP-completeness.That is, a counting problem f is #P-complete if f 2 #P and every problem in #Pis Cook-reducible to f .We claim that the counting problems associated with the NP-complete problemspresented in Section 2.3.3 are all #P-complete. We warn that this fact is notdue to the mere NP-completeness of these problems, but rather to an additionalproperty of the reductions establishing their NP-completeness. Speci�cally, theKarp-reductions that were used (or variants of them) have the extra property ofpreserving the number of NP-witnesses (as captured by the following de�nition).De�nition 6.17 (parsimonious reductions): Let R;R0 2 PC and let g be a Karp-reduction of SR = fx : R(x) 6= ;g to SR0 = fx : R0(x) 6= ;g, where R(x) = fy :(x; y) 2 Rg and R0(x) = fy : (x; y) 2 R0g. We say that g is parsimonious (withrespect to R and R0) if for every x it holds that jR(x)j = jR0(g(x))j. In such a casewe say that g is a parsimonious reduction of R to R0.We stress that the condition of being parsimonious refers to the two underlyingrelations R and R0 (and not merely to the sets SR and SR0). The requirementthat g is a Karp-reduction is partially redundant, because if g is polynomial-timecomputable and for every x it holds that jR(x)j = jR0(g(x))j, then g constitutes aKarp-reduction of SR to SR0 . Speci�cally, jR(x)j = jR0(g(x))j implies that jR(x)j >0 (i.e., x 2 SR) if and only if jR0(g(x))j > 0 (i.e., g(x) 2 SR0). The reader mayeasily verify that the Karp-reduction underlying the proof of Theorem 2.19 as wellas many of the reductions used in Section 2.3.3 are parsimonious (see Exercise 2.29).Theorem 6.18 Let R 2 PC and suppose that every search problem in PC is par-simoniously reducible to R. Then the counting problem associated with R is #P-complete.Proof: Clearly, the counting problem associated with R, denoted #R, is in #P.To show that every f 0 2 #P is reducible to f , we consider the relation R0 2 PC



6.2. COUNTING 225that is counted by f 0; that is, #R0 = f 0. Then, by the hypothesis, there existsa parsimonious reduction g of R0 to R. This reduction also reduces #R0 to #R;speci�cally, #R0(x) = #R(g(x)) for every x.Corollaries. As an immediate corollary of Theorem 6.18, we get that countingthe number of satisfying assignments to a given CNF formula is #P-complete(because RSAT is PC-complete via parsimonious reductions). Similar statementshold for all the other NP-complete problems mentioned in Section 2.3.3 and infact for all NP-complete problems listed in [82]. These corollaries follow from thefact that all known reductions among natural NP-complete problems are eitherparsimonious or can be easily modi�ed to be so.We conclude that many counting problems associated with NP-complete searchproblems are #P-complete. It turns out that also counting problems associatedwith e�ciently solvable search problems may be #P-complete.Theorem 6.19 There exist #P-complete counting problems that are associatedwith e�ciently solvable search problems. That is, there exists R 2 PF (see De�ni-tion 2.2) such that #R is #P-complete.Theorem 6.19 can be established by presenting arti�cial #P-complete problems(see Exercise 6.22). The following proof uses a natural counting problem.Proof: Consider the relation Rdnf consisting of pairs (�; �) such that � is a DNFformula and � is an assignment satisfying it. Note that the search problem of Rdnfis easy to solve (e.g., by picking an arbitrary truth assignment that satis�es the�rst term in the input formula). To see that #Rdnf is #P-complete consider thefollowing reduction from #RSAT (which is #P-complete by Theorem 6.18). Givena CNF formula �, transform :� into a DNF formula �0 by applying de-Morgan'sLaw, query #Rdnf on �0, and return 2n�#Rdnf(�0), where n denotes the numberof variables in � (resp., �0).Reections: We note that Theorem 6.19 is not established by a parsimoniousreduction. This fact should not come as a surprise because a parsimonious reduc-tion of #R0 to #R implies that SR0 = fx : 9y s.t. (x; y) 2 R0g is reducible toSR = fx : 9y s.t. (x; y)2Rg, where in our case SR0 is NP-Complete while SR 2 P(since R 2 PF). Nevertheless, the proof of Theorem 6.19 is related to the hard-ness of some underlying decision problem (i.e., the problem of deciding whether agiven DNF formula is a tautology (i.e., whether #Rdnf(�0) = 2n)). But does thereexist a #P-complete problem that is \not based on some underlying NP-completedecision problem"? Amazingly enough, the answer is positive.Theorem 6.20 Counting the number of perfect matchings in a bipartite graph is#P-complete.88See Appendix G.1 for basic terminology regarding graphs.



226 CHAPTER 6. RANDOMNESS AND COUNTINGEquivalently (see Exercise 6.23), the problem of computing the permanent of ma-trices with 0/1-entries is #P-complete. Recall that the permanent of an n-by-nmatrix M = (mi;j), denoted perm(M), equals the sum over all permutations �of [n] of the products Qni=1mi;�(i). Theorem 6.20 is proven by composing thefollowing two (many-to-one) reductions (asserted in Propositions 6.21 and 6.22,respectively) and using the fact that #R3SAT is #P-complete (see Theorem 6.18and Exercise 2.29). Needless to say, the resulting reduction is not parsimonious.Proposition 6.21 The counting problem of 3SAT (i.e., #R3SAT) is reducible tocomputing the permanent of integer matrices. Furthermore, there exists an eveninteger c > 0 and a �nite set of integers I such that, on input a 3CNF formula �, thereduction produces an integer matrix M� with entries in I such that perm(M�) =cm �#R3SAT(�) where m denotes the number of clauses in �.The original proof of Proposition 6.21 uses c = 210 and I = f�1; 0; 1; 2; 3g. Itcan be shown (see Exercise 6.24 (which relies on Theorem 6.29)) that, for everyinteger n > 1 that is relatively prime to c, computing the permanent modulo nis NP-hard (under randomized reductions). Thus, using the case of c = 210, thismeans that computing the permanent modulo n is NP-hard for any odd n > 1. Incontrast, computing the permanent modulo 2 (which is equivalent to computingthe determinant modulo 2) is easy (i.e., can be done in polynomial-time and evenin NC). Thus, assuming NP 6� BPP, Proposition 6.21 cannot hold for an odd c(because by Exercise 6.24 it would follow that computing the permanent modulo 2is NP-Hard). We also note that, assuming P 6= NP , Proposition 6.21 cannotpossibly hold for a set I containing only non-negative integers (see Exercise 6.25).Proposition 6.22 Computing the permanent of integer matrices is reducible tocomputing the permanent of 0/1-matrices. Furthermore, the reduction maps anyinteger matrix A into a 0/1-matrix A00 such that the permanent of A can be easilycomputed from A and the permanent of A00.Teaching note: We do not recommend presenting the proofs of Propositions 6.21and 6.22 in class. The high-level structure of the proof of Proposition 6.21 has theavor of some sophisticated reductions among NP-problems, but the crucial point is theexistence of adequate gadgets. We do not know of a high-level argument establishingthe existence of such gadgets nor of any intuition as to why such gadgets exist.9 Instead,the existence of such gadgets is proved by a design that is both highly non-trivial and adhoc in nature. Thus, the proof of Proposition 6.21 boils down to a complicated designproblem that is solved in a way that has little pedagogical value. In contrast, the proofof Proposition 6.22 uses two simple ideas that can be useful in other settings. Withsuitable hints, this proof can be used as a good exercise.Proof of Proposition 6.21: We will use the correspondence between thepermanent of a matrix A and the sum of the weights of the cycle covers of theweighted directed graph represented by the matrix A. A cycle cover of a graph is9Indeed, the conjecture that such gadgets exist can only be attributed to ingenuity.



6.2. COUNTING 227a collection of simple10 vertex-disjoint directed cycles that covers all the graph'svertices, and its weight is the product of the weights of the corresponding edges.The SWCC of a weighted directed graph is the sum of the weights of all its cyclecovers.Given a 3CNF formula �, we construct a directed weighted graph G� such thatthe SWCC of G� equals equals cm �#R3SAT(�), where c is a universal constant andm denotes the number of clauses in �. We may assume, without loss of generality,that each clause of � has exactly three literals (which are not necessarily distinct).
x

+x

+x+x
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Figure 6.1: Tracks connecting gadgets in the reduction to cycle cover.We start with a high-level description (of the construction) that refers to (clause)gadgets, each containing some internal vertices and internal (weighted) edges, whichare unspeci�ed at this point. In addition, each gadget has three pairs of designatedvertices, one pair per each literal appearing in the clause, where one vertex in thepair is designated as an entry vertex and the other as an exit vertex. The graphG� consists of m such gadgets, one per each clause (of �), and n auxiliary vertices,one per each variable (of �), as well as some additional directed edges, each havingweight 1. Speci�cally, for each variable, we introduce two tracks, one per each ofthe possible literals of this variable. The track associated with a literal consists ofdirected edges (each having weight 1) that form a simple \cycle" passing throughthe corresponding (auxiliary) vertex as well as through the designated vertices thatcorrespond to the occurrences of this literal in the various clauses. Speci�cally, foreach such occurrence, the track enters the corresponding clause gadget at the entry-vertex corresponding to this literal and exits at the corresponding exit-vertex. (Ifa literal does not appear in � then the corresponding track is a self-loop on thecorresponding variable.) See Figure 6.1 showing the two tracks of a variable x thatoccurs positively in three clauses and negatively in one clause. The entry-vertices(resp., exit-vertices) are drawn on the top (resp., bottom) part of each gadget.10Here a simple cycle is a strongly connected directed graph in which each vertex has a singleincoming (resp., outgoing) edge. In particular, self-loops are allowed.
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On the left is a gadget with the track edges adjacent to it (as in thereal construction). On the right is a gadget and four out of the nineexternal edges (two of which are nice) used in the analysis.Figure 6.2: External edges for the analysis of the clause gadgetFor the purpose of stating the desired properties of the clause gadget, we aug-ment the gadget by nine external edges (of weight 1), one per each pair of (notnecessarily matching) entry and exit vertices such that the edge goes from theexit-vertex to the entry-vertex (see Figure 6.2). (We stress that this is an auxiliaryconstruction that di�ers from and yet is related to the use of gadgets in the forego-ing construction of G�.) The three edges that link the designated pairs of verticesthat correspond to the three literals are called nice. We say that a collection ofedges C (e.g., a collection of cycles in the augmented gadget) uses the external edgesS if the intersection of C with the set of the (nine) external edges equals S. Wepostulate the following three properties of the clause gadget.1. The sum of the weights of all cycle covers (of the gadget) that do not use anyexternal edge (i.e., use the empty set of external edges) equals zero.2. Let V (S) denote the set of vertices incident to S, and say that S is nice if itis non-empty and the vertices in V (S) can be perfectly matched using niceedges.11 Then, there exists a constant c (indeed the one postulated in theproposition's claim) such that, for any nice set S, the sum of the weights ofall cycle covers that use the external edges S equals c.3. For any non-nice set S 6= ; of external edges, the sum of the weights of allcycle covers that use the external edges S equals zero.11Clearly, any non-empty set of nice edges is a nice set. Thus, a singleton set is nice if and onlyif the corresponding edge is nice. On the other hand, any set S of three (vertex-disjoint) externaledges is nice, because V (S) has a perfect matching using all three nice edges. Thus, the notionof nice sets is \non-trivial" only for sets of two edges. Such a set S is nice if and only if V (S)consists of two pairs of corresponding designated vertices.



6.2. COUNTING 229Note that the foregoing three cases exhaust all the possible ones. Also note thatthe set of external edges used by a cycle cover (of the augmented gadget) must bea matching (i.e., these edges must be vertex disjoint).Intuitively, there is a correspondence between nice sets of external edges (ofan augmented gadget) and the pairs of edges on tracks that pass through the(unaugmented) gadget. Indeed, we now turn back to G�, which uses unaugmentedgadgets. Using the foregoing properties of the (augmented) gadgets, it can beshown that each satisfying assignment of � contributes exactly cm to the SWCCof G� (see Exercise 6.26). It follows that the SWCC of G� equals cm �#R3SAT(�).Having established the validity of the abstract reduction, we turn to the imple-mentation of the clause gadget. The �rst implementation is a Deus ex Machina,with a corresponding adjacency matrix depicted in Figure 6.3. Its validity (for thevalue c = 12) can be veri�ed by computing the permanent of the correspondingsub-matrices (see analogous analysis in Exercise 6.28).The gadget uses eight vertices, where the �rst six are the designated(entry and exit) vertices. The entry-vertex (resp., exit-vertex) associ-ated with the ith literal is numbered i (resp., i+3). The correspondingadjacency matrix follows.0BBBBBBBBBB@
1 0 0 2 0 0 0 00 1 0 0 3 0 0 00 0 0 0 0 1 0 00 0 �1 1 �1 0 1 10 0 �1 �1 2 0 1 10 0 0 �1 �1 0 1 10 0 1 1 1 0 2 �10 0 1 1 1 0 0 1

1CCCCCCCCCCANote that the edge 3 ! 6 can be contracted, but the resulting 7-vertex graph will not be consistent with our (inessentially stringent)de�nition of a gadget by which the six designated vertices should bedistinct.Figure 6.3: A Deus ex Machina clause gadget for the reduction to cycle cover.A more structured implementation of the clause gadget is depicted in Figure 6.4,which refers to a (hexagon) box to be implemented later. The box contains severalvertices and weighted edges, but only two of these vertices, called terminals, areconnected to the outside (and are shown in Figure 6.4). The clause gadget consistsof �ve copies of this box, where three copies are designated for the three literalsof the clause (and are marked LB1, LB2, and LB3), as well as additional verticesand edges shown in Figure 6.4. In particular, the clause gadget contains the sixaforementioned designated vertices (i.e., a pair of entry and exit vertices per eachliteral), two additional vertices (shown at the two extremes of the �gure), and some



230 CHAPTER 6. RANDOMNESS AND COUNTINGedges (all having weight 1). Each designated vertex has a self-loop, and is incidentto a single additional edge that is outgoing (resp., incoming) in case the vertexis an entry-vertex (resp., exit-vertex) of the gadget. The two terminals of eachbox that is associated with some literal are connected to the corresponding pairof designated vertices (e.g., the outgoing edge of entry1 is incident at the rightterminal of the box LB1). Note that the �ve boxes reside on a directed path (goingfrom left to right), and the only edges going in the opposite direction are thosedrawn below this path.
entry1 entry2 entry3

exit1 exit2 exit3

LB1 LB2 LB3

Figure 6.4: A structured clause gadget for the reduction to cycle cover.
On the left is a box with potential edges adjacent to it (as in thegadget construction). On the right is a box and the four externaledges used in the analysis.Figure 6.5: External edges for the analysis of the boxIn continuation to the foregoing, we wish to state the desired properties of thebox. Again, we do so by considering the augmentation of the box by external edges(of weight 1) incident at the speci�ed vertices. In this case (see Figure 6.5), wehave a pair of anti-parallel edges connecting the two terminals of the box as well as



6.2. COUNTING 231two self-loops (one on each terminal). We postulate the following three propertiesof the box.1. The sum of the weights of all cycle covers (of the box) that do not use anyexternal edge equals zero.2. There exists a constant b (in our case b = 4) such that, for each of the twoanti-parallel edges, the sum of the weights of all cycle covers that use thisedge equals b.3. For any (non-empty) set S of the self-loops, the sum of the weights of allcycle covers (of the box) that use S equals zero.Note that the foregoing three cases exhaust all the possible ones. It can be shownthat the conditions regarding the box imply that the construction presented inFigure 6.4 satis�es the conditions that were postulated for the clause gadget (seeExercise 6.27). Speci�cally, we have c = b5. As for box itself, a smaller Deus exMachina is provided by the following 4-by-4 adjacency matrix0BB@ 0 1 �1 �11 �1 1 10 1 1 20 1 3 0 1CCA (6.4)where the two terminals correspond to the �rst and the fourth vertices. Its va-lidity (for the value b = 4) can be veri�ed by computing the permanent of thecorresponding sub-matrices (see Exercise 6.28).Proof of Proposition 6.22: The proof proceeds in two steps. In the �rststep we show that computing the permanent of integer matrices is reducible tocomputing the permanent of non-negative matrices. This reduction proceeds asfollows. For an n-by-n integer matrix A = (ai;j)i;j2[n], let kAk1 = maxi;j(jai;j j)and QA = 2(n!) � kAkn1+1. We note that, given A, the value QA can be computedin polynomial-time, and in particular log2QA < n2 log kAk1. Given the matrix A,the reduction constructs the non-negative matrix A0 = (ai;j mod QA)i;j2[n] (i.e.,the entries of A0 are in f0; 1; :::; QA � 1g), queries the oracle for the permanent ofA0, and outputs v def= perm(A0) mod QA if v < QA=2 and �(QA � v) otherwise.The key observation is thatperm(A) � perm(A0) (mod QA), while jperm(A)j � (n!) � kAkn1 < QA=2.Thus, perm(A0) mod QA (which is in f0; 1; :::; QA � 1g) determines perm(A). Wenote that perm(A0) is likely to be much larger than QA > jperm(A)j; it is merelythat perm(A0) and perm(A) are equivalent modulo QA.In the second step we show that computing the permanent of non-negativematrices is reducible to computing the permanent of 0/1-matrices. In this reduc-tion, we view the computation of the permanent as the computation of the sumof the weights of all the cycle covers (SWCC) of the corresponding weighted di-rected graph (see proof of Proposition 6.21). Thus, we reduce the computation of



232 CHAPTER 6. RANDOMNESS AND COUNTINGthe SWCC of directed graphs with non-negative weights to the computation of theSWCC of unweighted directed graphs with no parallel edges (which correspond to0/1-matrices). The reduction is via local replacements that preserve the value ofthe SWCC. These local replacements combine the following two local replacements(which preserve the SWCC):1. Replacing an edge of weight w = Qti=1 wi by a path of length t (i.e., t � 1internal nodes) with the corresponding weights w1; :::; wt, and self-loops (withweight 1) on all internal nodes.Note that a cycle-cover that uses the original edge corresponds to a cycle-cover that uses the entire path, whereas a cycle-cover that does not use theoriginal edge corresponds to a cycle-cover that uses all the self-loops.2. Replacing an edge of weight w =Pti=1 wi by t parallel 2-edge paths such thatthe �rst edge on the ith path has weight wi, the second edge has weight 1,and the intermediate node has a self-loop (with weight 1). (Paths of lengthtwo are used because parallel edges are not allowed.)Note that a cycle-cover that uses the original edge corresponds to a collectionof cycle-covers that use one out of the t paths (and the self-loops of all otherintermediate nodes), whereas a cycle-cover that does not use the original edgecorresponds to a cycle-cover that uses all the self-loops.In particular, we may write each positive edge-weight w, having binary expansion�jwj�1 � � ��0, as Pi:�i=1(1 + 1)i, and apply the adequate replacements (i.e., �rstapply the additive replacement to the outer sum (over fi : �i=1g), next apply theproduct replacement to each power 2i, and �nally apply the additive replacementto each 1+1). Applying this process to the matrix A0 obtained in the �rst step, wee�ciently obtain a matrix A00 with 0/1-entries such that perm(A0) = perm(A00). (Inparticular, the dimension of A00 is polynomial in the length of the binary represen-tation of A0, which in turn is polynomial in the length of the binary representationof A.) Combining the two reductions (steps), the proposition follows.6.2.2 Approximate CountingHaving seen that exact counting (for relations in PC) seems even harder thansolving the corresponding search problems, we turn to relaxations of the countingproblem. Before focusing on relative approximation, we briey consider approxi-mation with (large) additive deviation.Let us consider the counting problem associated with an arbitrary R 2 PC.Without loss of generality, we assume that all solutions to n-bit instances have thesame length `(n), where indeed ` is a polynomial. We �rst note that, while it maybe hard to compute #R, given x it is easy to approximate #R(x) up to an additiveerror of 0:01 �2`(jxj) (by randomly sampling potential solutions for x). Indeed, suchan approximation is very rough, but it is not trivial (and in fact we do not know howto obtain it deterministically). In general, we can e�ciently produce at randoman estimate of #R(x) that, with high probability, deviates from the correct value



6.2. COUNTING 233by at most an additive term that is related to the absolute upper-bound on thenumber of solutions (i.e., 2`(jxj)).Proposition 6.23 (approximation with large additive deviation): Let R 2 PCand ` be a polynomial such that R � [n2Nf0; 1gn � f0; 1g`(n). Then, for everypolynomial p, there exists a probabilistic polynomial-time algorithm A such that forevery x 2 f0; 1g� and � 2 (0; 1) it holds thatPr[jA(x; �)�#R(x)j > (1=p(jxj)) � 2`(jxj)] < �: (6.5)As usual, � is presented to A in binary, and hence the running time of A(x; �) isupper-bounded by poly(jxj � log(1=�)).Proof Sketch: On input x and �, algorithm A sets t = �(p(jxj)2 � log(1=�)), selectsuniformly y1; :::; yt and outputs 2`(jxj) � jfi : (x; yi) 2 Rgj=t.Discussion. Proposition 6.23 is meaningful in the case that #R(x) > (1=p(jxj)) �2`(jxj) holds for some x's. But otherwise, a trivial approximation (i.e., outputtingthe constant value zero) meets the bound of Eq. (6.5). In contrast to this no-tion of additive approximation, a relative factor approximation is typically moremeaningful. Speci�cally, we will be interested in approximating #R(x) up-to aconstant factor (or some other reasonable factor). In x6.2.2.1, we consider a natu-ral #P-complete problem for which such a relative approximation can be obtainedin probabilistic polynomial-time. We do not expect this to happen for every count-ing problem in #P , because a relative approximation allows for distinguishinginstances having no solution from instances that do have solutions (i.e.,, decidingmembership in SR is reducible to a relative approximation of #R). Thus, rela-tive approximation for all #P is at least as hard as deciding all problems in NP .However, in x6.2.2.2 we show that the former is not harder than the latter; that is,relative approximation for any problem in #P can be obtained by a randomizedCook-reduction to NP . Before turning to these results, let us state the underlyingde�nition (and actually strengthen it by requiring approximation to within a factorof 1� ", for " 2 (0; 1)).12De�nition 6.24 (approximation with relative deviation): Let f : f0; 1g� ! Nand "; � : N ! [0; 1]. A randomized process � is called an ("; �)-approximator of fif for every x it holds thatPr [j�(x) � f(x)j > "(jxj) � f(x)] < �(jxj): (6.6)We say that f is e�ciently (1 � ")-approximable (or just (1 � ")-approximable) ifthere exists a probabilistic polynomial-time algorithm A that constitute an ("; 1=3)-approximator of f .12We refrain from formally de�ning an F -factor approximation, for an arbitrary F , althoughwe shall refer to this notion in several informal discussions. There are several ways of de�ning theaforementioned term (and they are all equivalent when applied to our informal discussions). Forexample, an F -factor approximation of #Rmay mean that, with high probability, the output A(x)satis�es #R(x)=F (jxj) � A(x) � F (jxj) � #R(x). Alternatively, we may require that #R(x) �A(x) � F (jxj) �#R(x) (or, alternatively, that #R(x)=F (jxj) � A(x) � #R(x).



234 CHAPTER 6. RANDOMNESS AND COUNTINGThe error probability of the latter algorithm A (which has error probability 1=3)can be reduced to � by O(log(1=�)) repetitions (see Exercise 6.29). Typically, therunning time of A will be polynomial in 1=", and " is called the deviation parameter.6.2.2.1 Relative approximation for #RdnfIn this subsection we present a natural #P-complete problem for which constantfactor approximation can be found in probabilistic polynomial-time. Stronger re-sults regarding unnatural #P-complete problems appear in Exercise 6.30.Consider the relation Rdnf consisting of pairs (�; �) such that � is a DNFformula and � is an assignment satisfying it. Recall that the search problem ofRdnf is easy to solve and that the proof of Theorem 6.19 establishes that #Rdnfis #P-complete (via a non-parsimonious reduction). Still, as we shall see, thereexists a probabilistic polynomial-time algorithm that provides a constant factorapproximation of #Rdnf. We warn that the fact that #Rdnf is #P-completevia a non-parsimonious reduction means that the constant factor approximationfor #Rdnf does not seem to imply a similar approximation for all problems in#P . In fact, we should not expect each problem in #P to have a (probabilistic)polynomial-time constant-factor approximation algorithm because this would implyNP � BPP (since a constant factor approximation allows for distinguishing thecase in which the instance has no solution from the case in which the instance hasa solution).The approximation algorithm for #Rdnf is obtained by a deterministic re-duction of the task of ("; 1=3)-approximating #Rdnf to an (additive deviation)approximation of the type provided in Proposition 6.23. Consider a DNF formula� = Wmi=1 Ci, where each Ci : f0; 1gn ! f0; 1g is a conjunction. Our task is to ap-proximate the number of assignments that satisfy at least one of the conjunctions.Actually, we will deal with the more general problem in which we are (implicitly)given m subsets S1; :::; Sm � f0; 1gn and wish to approximate jSi Sij. In our case,each Si is the set of assignments that satisfy the conjunction Ci. In general, wemake two computational assumptions regarding these sets (while letting \e�cient"mean implementable in time polynomial in n �m):1. Given i 2 [m], one can e�ciently determine jSij.2. Given i 2 [m] and J � [m], one can e�ciently approximate Prs2Si hs 2 Sj2J Sjiup to an additive deviation of 1=poly(n+m).These assumptions are satis�ed in our setting (where Si = C�1i (1), see Exer-cise 6.31). Now, the key observation towards approximating jSmi=1 Sij is that����� m[i=1Si����� = mXi=1 ������Si n[j<iSj������ = mXi=1 Prs2Si24s 62 [j<iSj35 � jSij (6.7)



6.2. COUNTING 235and that the probabilities in Eq. (6.7) can be approximated by the second assump-tion. This leads to the following algorithm, where " denotes the desired deviationparameter (i.e., we wish to obtain (1� ") � jSmi=1 Sij).Construction 6.25 Let "0 = "=m. For i = 1 to m do:1. Using the �rst assumption, compute jSij.2. Using the second assumption, obtain an approximation epi = pi � "0, wherepi def= Prs2Si [s 62 Sj<i Sj ]. Set ai def= epi � jSij.Output the sum of the ai's.Let Ni = pi � jSij, and note that by Eq. (6.7) it holds that jSi Sij =PiNi. We areinterested in the quality of the approximation to PiNi provided by Pi ai. Usingai = (pi� "0) � jSij = Ni� "0 � jSij (for each i), we havePi ai =PiNi� "0 �Pi jSij.UsingPi jSij � m�jSi Sij = m�PiNi (and " = m"0), we getPi ai = (1�")�PiNi.Thus, we obtain the following result (see Exercise 6.31).Proposition 6.26 For every positive polynomial p, the counting problem of Rdnfis e�ciently (1� (1=p))-approximable.Using the reduction presented in the proof of Theorem 6.19, we conclude that thenumber of unsatisfying assignments to a given CNF formula is e�ciently (1�(1=p))-approximable. We warn, however, that the number of satisfying assignments tosuch a formula is not e�ciently approximable. This concurs with the generalphenomenon by which relative approximation may be possible for one quantity, butnot for the complementary quantity. Needless to say, such a phenomenon does notoccur in the context of additive-deviation approximation.6.2.2.2 Relative approximation for #PRecall that we cannot expect to e�ciently approximate every #P problem, wherethroughout the rest of this section \approximation" is used as a shorthand for \rel-ative approximation" (as in De�nition 6.24). Speci�cally, e�ciently approximating#R yields an e�cient algorithm for deciding membership in SR = fx : R(x) 6=;g.Thus, at best we can hope that approximating #R is not harder than deciding SR(i.e., that approximating #R is reducible in polynomial-time to SR). This is indeedthe case for every NP-complete problem (i.e., if SR is NP-complete). More gener-ally, we show that approximating any problem in #P is reducible in probabilisticpolynomial-time to NP.Theorem 6.27 For every R 2 PC and every positive polynomial p, there exists aprobabilistic polynomial-time oracle machine that when given oracle access to NPconstitutes a (1=p; �)-approximator of #R, where � is a negligible function (e.g.,�(n) = 2�n).



236 CHAPTER 6. RANDOMNESS AND COUNTINGRecall that it su�ces to provide a (1=p; �)-approximator of #R, for any constant� < 0:5, because error reduction is applicable in this context (see Exercise 6.29).Furthermore, it su�ces to provide a (1=2; �)-approximator for every problem in#P (see Exercise 6.32).Teaching note: The following proof relies on the notion of hashing functions, presentedin Appendix D.2. Speci�cally, we shall assume familiarity with the basic de�nition (seeAppendix D.2.1), at least one construction (see Appendix D.2.2), and Lemma D.4(of Appendix D.2.3). The more advanced material of Appendix D.2.3 (which followsLemma D.4) will not be used in the current section (but part of it will be used inx6.2.4.2).Proof: Given x, we show how to approximate jR(x)j to within some constantfactor. The desired (1� (1=p))-approximation can be obtained as in Exercise 6.32.We may also assume that R(x) 6= ;, by starting with the query \is x in SR"and halting (with output 0) if the answer is negative. Without loss of generality,we assume that R(x) � f0; 1g`, where ` = poly(jxj). We focus on �nding somei 2 f1; :::; `g such that 2i�4 � jR(x)j � 2i+4.We proceed in iterations. For i = 1; :::; ` + 1, we �nd out whether or notjR(x)j < 2i. If the answer is positive then we halt with output 2i, and otherwisewe proceed to the next iteration. (Indeed, if we were able to obtain correct answersto all these queries then the output 2i would satisfy 2i�1 � jR(x)j < 2i.)Needless to say, the key issue is how to check whether jR(x)j < 2i. The mainidea is to use a \random sieve" on the set R(x) such that each element passes thesieve with probability 2�i. Thus, we expect jR(x)j=2i elements of R(x) to passthe sieve. Assuming that the number of elements in R(x) that pass the randomsieve is indeed bjR(x)j=2ic, it holds that jR(x)j � 2i if and only if some element ofR(x) passes the sieve. Assuming that the sieve can be implemented e�ciently, thequestion of whether or not some element in R(x) passed the sieve is of an \NP-type" (and thus can be referred to our NP-oracle). Combining both assumptions,we may implement the foregoing process by proceeding to the next iteration aslong as some element of R(x) passes the sieve. Furthermore, this implementationwill provide a reasonably good approximation even if the number of elements inR(x) that pass the random sieve is only approximately equal to jR(x)j=2i. In fact,the level of approximation that this implementation provides is closely related tothe level of approximation that is provided by the random sieve. Details follow.Implementing a random sieve. The random sieve is implemented by using a familyof hashing functions (see Appendix D.2). Speci�cally, in the ith iteration we use afamily H ì such that each h 2 H ì has a poly(`)-bit long description and maps `-bitlong strings to i-bit long strings. Furthermore, the family is accompanied withan e�cient evaluation algorithm (i.e., mapping adequate pairs (h; x) to h(x)) andsatis�es (for every S � f0; 1g`)Prh2H ì [jfy 2 S : h(y) = 0igj 62 (1� "; 1 + ") � 2�ijSj] < 2i"2jSj (6.8)



6.2. COUNTING 237(see Lemma D.4). The random sieve will let y pass if and only if h(y) = 0i. Indeed,this random sieve is not as perfect as we assumed in the foregoing discussion, butEq. (6.8) suggests that in some sense this sieve is good enough. In particular,Eq. (6.8) implies that if i � log2 jSj � O(1) then some string in S is likely to passthe sieve, whereas if i � log2 jSj + O(1) then no string in S is likely to pass thesieve.Implementing the queries. Recall that for some x, i and h 2 H ì, we need to de-termine whether fy2R(x) : h(y)= 0ig = ;. This type of question can be cast asmembership in the setSR;H def= f(x; i; h) : 9y s.t. (x; y)2R ^ h(y)=0ig: (6.9)Using the hypotheses that R 2 PC and that the family of hashing functions has ane�cient evaluation algorithm, it follows that SR;H is in NP .The actual procedure. On input x 2 SR and oracle access to SR;H , we proceed initerations, starting with i = 1 and halting at i = ` (if not before), where ` denotesthe length of the potential solutions for x. In the ith iteration (where i < `), weuniformly select h 2 H ì and query the oracle on whether or not (x; i; h) 2 SR;H .If the answer is negative then we halt with output 2i, and otherwise we proceed tothe next iteration (using i i+ 1). Needless to say, if we reach the last iteration(i.e., i = `) then we just halt with output 2`.Indeed, we have ignored the case that x 62 SR, which can be easily handled bya minor modi�cation of the foregoing procedure. Speci�cally, on input x, we �rstquery SR on x and halt with output 0 if the answer is negative. Otherwise weproceed as in the foregoing procedure.The analysis. We upper-bound separately the probability that the procedure out-puts a value that is too small and the probability that it outputs a value that istoo big. In light of the foregoing discussion, we may assume that jR(x)j > 0, andlet ix = blog2 jR(x)jc � 0. Intuitively, at any iteration i < ix, we expect (at least)2ix�i elements of R(x) to pass the sieve and thus we are unlikely to halt beforeiteration ix �O(1). Similarly, we are unlikely to reach iteration ix +O(1) becauseat this stage we expect no elements of R(x) to pass the sieve (since the actualexpectation is 2�O(1)). A more rigorous analysis (of both cases) follows.1. The probability that the procedure halts in a speci�c iteration i < ix equalsPrh2H ì [jfy 2 R(x) : h(y) = 0igj = 0], which in turn is upper-bounded by2i=jR(x)j (using Eq. (6.8) with " = 1).13 Thus, the probability that theprocedure halts before iteration ix� 3 is upper-bounded byPix�4i=0 2i=jR(x)j,which in turn is less than 1=8 (because ix � log2 jR(x)j). It follows that, withprobability at least 7=8, the output is at least 2ix�3 > jR(x)j=16 (becauseix > (log2 jR(x)j) � 1).2. The probability that the procedure does not halt in iteration i > ix equalsPrh2H ì [jfy 2 R(x) : h(y) = 0igj � 1], which in turn is upper-bounded by13Note that 0 does not reside in the open interval (0; 2�), where � = jR(x)j=2i > 0.



238 CHAPTER 6. RANDOMNESS AND COUNTING�=(� � 1)2, where � = 2i=jR(x)j > 1 (using Eq. (6.8) with " = � � 1).14Thus, the probability that the procedure does not halt by iteration ix + 4 isupper-bounded by 8=49 < 1=6 (because ix > (log2 jR(x)j) � 1). Thus, withprobability at least 5=6, the output is at most 2ix+4 � 16 � jR(x)j (becauseix � log2 jR(x)j).Thus, with probability at least (7=8)�(1=6) > 2=3, the foregoing procedure outputsa value v such that v=16 � jR(x)j < 16v. Reducing the deviation by using the ideaspresented in Exercise 6.32 (and reducing the error probability as in Exercise 6.29),the theorem follows.Digest. The key observation underlying the proof Theorem 6.27 is that, while(even with the help of an NP-oracle) we cannot directly test whether the numberof solutions is greater than a given number, we can test (with the help of an NP-oracle) whether the number of solutions that \survive a random sieve" is greaterthan zero. Since the number of solutions that survive a random sieve reects thetotal number of solutions (normalized by the sieve's density), this o�ers a way ofapproximating the total number of solutions.We mention that one can also test whether the number of solutions that \sur-vive a random sieve" is greater than a small number, where small means polynomialin the length of the input (see Exercise 6.34). Speci�cally, the complexity of thistest is linear in the size of the threshold, and not in the length of its binary de-scription. Indeed, in many settings it is more advantageous to use a threshold thatis polynomial in some e�ciency parameter (rather than using the threshold zero);examples appear in x6.2.4.2 and in [103].6.2.3 Searching for unique solutionsA natural computational problem (regarding search problems), which arises whendiscussing the number of solutions, is the problem of distinguishing instances havinga single solution from instances having no solution (or �nding the unique solutionwhenever such exists). We mention that instances having a single solution facilitatenumerous arguments (see, for example, Exercise 6.24 and x10.2.2.1). Formally,searching for and deciding the existence of unique solutions are de�ned within theframework of promise problems (see Section 2.4.1).De�nition 6.28 (search and decision problems for unique solution instances):The set of instances having unique solutions with respect to the binary relation Ris de�ned as USR def= fx : jR(x)j = 1g, where R(x) def= fy : (x; y)2Rg. As usual, wedenote SR = fx : jR(x)j � 1g, and SR def= f0; 1g� n SR = fx : jR(x)j = 0g.14Here we use the fact that 1 62 (2��1 � 1; 1). A better bound can be obtained by using thehypothesis that, for every y, when h is uniformly selected in H ì, the value of h(y) is uniformlydistributed in f0; 1gi. In this case, Prh2H ì [jfy 2 R(x) : h(y) = 0igj � 1] is upper-bounded byEh2H ì [jfy 2 R(x) : h(y) = 0igj] = jR(x)j=2i.



6.2. COUNTING 239� The problem of �nding unique solutions for R is de�ned as the search problemR with promise USR [ SR (see De�nition 2.29).In continuation to De�nition 2.30, candid searching for unique solutions for Ris de�ned as the search problem R with promise USR.� The problem of deciding unique solution for R is de�ned as the promise problem(USR; SR) (see De�nition 2.31).Interestingly, in many natural cases, the promise does not make any of these prob-lems any easier than the original problem. That is, for all known NP-completeproblems, the original problem is reducible in probabilistic polynomial-time to thecorresponding unique instances problem.Theorem 6.29 Let R 2 PC and suppose that every search problem in PC is par-simoniously reducible to R. Then solving the search problem of R (resp., decidingmembership in SR) is reducible in probabilistic polynomial-time to �nding uniquesolutions for R (resp., to the promise problem (USR; SR)). Furthermore, thereexists a probabilistic polynomial-time computable mapping M such that for everyx 2 SR it holds that Pr[M(x) 2 SR] = 1, whereas for every x 2 SR it holds thatPr[M(x)2USR] � 1=poly(jxj).We highlight the fact that the hypothesis asserts that R is PC-complete via parsi-monious reductions; this hypothesis is crucial to Theorem 6.29 (see Exercise 6.35).The large (but bounded-away from 1) error probability of the randomized Karp-reduction M can be reduced by repetitions, yielding a randomized Cook-reductionwith exponentially vanishing error probability. Note that the resulting reductionmay make many queries that violate the promise, and still yields the correct answer(with high probability) by relying on queries that satisfy the promise. (Speci�cally,in the case of search problems, we avoid wrong solutions by checking each solutionobtained, while in the case of decision problems we rely on the fact that for everyx 2 SR it always holds that M(x) 2 SR.)Proof: We focus on establishing the furthermore clause (and the main claimfollows). The proof uses many of the ideas of the proof of Theorem 6.27, and werefer to the latter for motivation. We shall again make essential use of hashingfunctions, and rely on the material presented in Appendix D.2.1{D.2.2.As in the proof of Theorem 6.27, the idea is to apply a \random sieve" on R(x),this time with the hope that a single element survives. Speci�cally, if we let eachelement pass the sieve with probability approximately 1=jR(x)j then with constantprobability a single element survives. In such a case, we shall obtain an instancewith a unique solution (i.e., an instance of SR;H having a single NP-witness), whichwill (essentially) ful�ll our quest. Sieving will be performed by a random functionselected in an adequate hashing family (see Appendix D.2). A couple of questionsarise:1. How do we get an approximation to jR(x)j? Note that we need such an ap-proximation in order to determine the adequate hashing family. Note that



240 CHAPTER 6. RANDOMNESS AND COUNTINGinvoking Theorem 6.27 will not do, because the said oracle machine uses anoracle to NP (which puts us back to square one, let alone that the said reduc-tion makes many queries).15 Instead, we just selectm 2 f0; :::; poly(jxj)g uni-formly and note that (if jR(x)j > 0 then) Pr[m = dlog2 jR(x)je] = 1=poly(jxj).Next, we randomly map x to (x;m; h), where h is uniformly selected in anadequate hashing family.2. How does the question of whether a single element of R(x) pass the randomsieve translate to an instance of the unique-solution problem for R? Recallthat in the proof of Theorem 6.27 the non-emptiness of the set of element ofR(x) that pass the sieve (de�ned by h) was determined by checking mem-bership (of (x;m; h)) in SR;H 2 NP (de�ned in Eq. (6.9)). Furthermore, thenumber of NP-witnesses for (x;m; h) 2 SR;H equals the number of elementsof R(x) that pass the sieve. Thus, a single element of R(x) passes the sieve(de�ned by h) if and only if (x;m; h) 2 SR;H has a single NP-witness. Us-ing the parsimonious reduction of SR;H to SR (which is guaranteed by thetheorem's hypothesis), we obtained the desired instance.Note that in case R(x) = ; the aforementioned mapping always generates a no-instance (of SR;H and thus of SR). Details follow.Implementation (i.e., the mapping M). As in the proof of Theorem 6.27, we as-sume, without loss of generality, that R(x) � f0; 1g`, where ` = poly(jxj). Westart by uniformly selecting m 2 f1; :::; ` + 1g and h 2 Hm̀, where Hm̀ is afamily of e�ciently computable and pairwise-independent hashing functions (seeDe�nition D.1) mapping `-bit long strings to m-bit long strings. Thus, we ob-tain an instance (x;m; h) of SR;H 2 NP such that the set of valid solutions for(x;m; h) equals fy 2 R(x) : h(y) = 0mg. Using the parsimonious reduction g ofthe NP-witness relation of SR;H to R (i.e., the NP-witness relation of SR), wemap (x;m; h) to g(x;m; h), and it holds that jfy 2 R(x) : h(y) = 0mgj equalsjR(g(x;m; h))j. To summarize, on input x the randomized mapping M outputsthe instance M(x) def= g(x;m; h), where m 2 f1; :::; ` + 1g and h 2 Hm̀ are uni-formly selected.The analysis. Note that for any x 2 SR it holds that Pr[M(x) 2 SR] = 1. Assumingthat x 2 SR, with probability exactly 1=(` + 1) it holds that m = mx, wheremx def= dlog2 jR(x)je + 1. Focusing on the case that m = mx, for a uniformlyselected h 2 Hm̀, we shall lower-bound the probability that the set Rh(x) def= fy2R(x) : h(y)=0mg is a singleton. First, using the Inclusion-Exclusion Principle, welower-bound Prh2Hmx` [jRh(x)j > 0] byXy2R(x)Prh2Hmx` [h(y)=0mx ] � Xy1<y22R(x)Prh2Hmx` [h(y1)=h(y2)=0mx ]:15Needless to say, both problems can be resolved by using a reduction to unique-solution in-stances, but we still do not have such a reduction { we are currently designing it.



6.2. COUNTING 241Next, we upper-bound Prh2Hmx` [jRh(x)j > 1] byXy1<y22R(x)Prh2Hmx` [h(y1)=h(y2)=0mx ]:Combining these two bounds, we getPrh2Hmx` [jRh(x)j = 1]= Prh2Hmx` [jRh(x)j > 0] � Prh2Hmx` [jRh(x)j > 1]� Xy2R(x)Prh2Hmx` [h(y)=0mx ] � 2 � Xy1<y22R(x)Prh2Hmx` [h(y1)=h(y2)=0mx ]= jR(x)j � 2�mx � 2 � �jR(x)j2 � � 2�2mxwhere the last equality is due to the pairwise independence property. Using2mx�2 < jR(x)j � 2mx�1, it follows thatPrh2Hmx` [jRh(x)j = 1] � min1=4<��1=2f�� �2g > 18 :Thus, Pr[M(x) 2 USR] � 1=(8(`+ 1)), and the theorem follows.Comment. Theorem 6.29 is sometimes stated as referring to the unique solutionproblem of SAT. In this case and when using a speci�c family of pairwise indepen-dent hashing functions, the use of the parsimonious reduction can be avoided. Fordetails see Exercise 6.37.Digest. The proof of Theorem 6.29 combines two reduction steps, which referto the NP-witness relation of SR;H , herein denoted R0. The main step is a many-to-one randomized reduction of the search problem of R (resp., of SR) to theproblem of �nding unique solutions for R0 (resp., to (USR0 ; SR0)). The second stepis a deterministic many-to-one reduction of the latter problem to the problem of�nding unique solutions for R. Indeed, the proof of Theorem 6.29 focuses on the�rst step, while the second step is provided by the parsimonious reduction of R0 toR (which is guaranteed by the hypothesis). As stated in the previous comment, inthe case of SAT there is a direct way of performing the second step.6.2.4 Uniform generation of solutionsRecall that approximately counting the number of solutions for a relation R is astraining of the decision problem SR (which asks for distinguishing the case thatsome solutions exist from the case that no solutions exist). We now turn to anew type of computational problems, which may be viewed as a straining of searchproblems. We refer to the task of generating a uniformly distributed solution for agiven instance, rather than merely �nding an adequate solution. Nevertheless, as



242 CHAPTER 6. RANDOMNESS AND COUNTINGwe shall see, for many natural problems (and all NP-complete ones) generating auniformly distributed solution is randomly reducible to �nding a solution.Needless to say, by de�nition, algorithms solving this (\uniform generation")task must be randomized. Focusing on relations in PC we consider two versionsof the problem, which di�er by the level of approximation provided for the desired(uniform) distribution.16De�nition 6.30 (uniform generation): Let R 2 PC and SR = fx : jR(x)j � 1g,and let � be a probabilistic process.1. We say that � solves the uniform generation problem of R if, on input x 2 SR,the process � outputs either an element of R(x) or a special symbol, denoted?, such that Pr[�(x) 2 R(x)] � 1=2 and for every y 2 R(x) it holds thatPr[�(x)=y j�(x)2R(x)] = 1=jR(x)j.2. For " : N ! [0; 1], we say that � solves the (1 � ")-approximate uniformgeneration problem of R if, on input x 2 SR, the distribution �(x) is "(jxj)-close17 to the uniform distribution on R(x).In both cases, without loss of generality, we may require that if x 62 SR thenPr[�(x) = ?] = 1. More generally, we may require that � never outputs a stringnot in R(x).Note that the error probability of uniform generation (as in Item 1) can be madeexponentially vanishing (in jxj) by employing error-reduction. In contrast, we arenot aware of any general way of reducing the deviation of an approximate uniformgeneration procedure (as in Item 2).18In x6.2.4.1 we show that, for many search problems, approximate uniform gener-ation is computationally equivalent to approximate counting. In x6.2.4.2 we presenta direct approach for solving the uniform generation problem of any search prob-lem in PC by using an oracle to NP . Thus, the uniform generation problem ofany NP-complete problem is randomly reducible to the problem itself (either in itssearch or decision version).6.2.4.1 Relation to approximate countingWe show that, for many natural search problems in PC, the approximate countingproblem associated with R is computationally equivalent to approximate uniformgeneration with respect to R. Speci�cally, we refer to search problems R 2 PCsuch that R0(x; y0) def= fy00 : (x; y0y00) 2 Rg is strongly parsimoniously reducible toR, where a strongly parsimonious reduction of R0 to R is a parsimonious reduction g16Note that a probabilistic algorithm running in strict polynomial-time is not able to output aperfectly uniform distribution on sets of certain sizes. Speci�cally, referring to the standard modelthat allows only for uniformly selected binary values, such algorithms cannot output a perfectlyuniform distribution on sets having cardinality that is not a power of two.17See Appendix D.1.1.18We note that in some cases, the deviation of an approximate uniform generation procedurecan be reduced. See discussion following Theorem 6.31.



6.2. COUNTING 243that is coupled with an e�ciently computable 1-1 mapping of pairs (g(x); y) 2 R topairs (x; h(x; y)) 2 R0 (i.e., h is e�ciently computable and h(x; �) is a 1-1 mappingof R(g(x)) to R0(x)). For technical reasons, we also assume that jg(x)j � jxj forevery x.19 Note that, for many natural search problems R, the corresponding R0is strongly parsimoniously reducible to R, where the additional technical conditionmay be enforced by adequate padding (cf., Exercise 2.30). This holds, in particular,for the search problems of SAT and Perfect Matching.Recalling that both types of approximation problems are parameterized by thelevel of precision, we obtain the following quantitative form of the aforementionedequivalence.Theorem 6.31 Let R 2 PC and let ` be a polynomial such that for every (x; y)2Rit holds that jyj � `(jxj). Suppose that R0 is strongly parsimoniously reducible toR, where R0(x; y0) def= fy00 : (x; y0y00) 2 Rg.1. From approximate counting to approximate uniform generation: Let "(n) =1=5`(n) and let � :N! (0; 1) be a function satisfying �(n) � exp(�poly(n)).Then, (1 � �)-approximate uniform generation for R is reducible in proba-bilistic polynomial-time to (1� ")-approximating #R.2. From approximate uniform generation to approximate counting: For everynon-increasing and noticeable " : N ! (0; 1) (i.e., "(n) � 1=poly(n) for ev-ery n), the problem of (1� ")-approximating #R is reducible in probabilisticpolynomial-time to (1 � "0)-approximate uniform generation problem of R,where "0(n) = "(n)=7`(n).In fact, Part 1 holds also in case R0 is just parsimoniously reducible to R.Note that the quality of the approximate uniform generation asserted in Part 1(i.e., �) is independent of the quality of the approximate counting procedure (i.e.,") to which the former is reduced, provided that the approximate counter performsbetter than some threshold. On the other hand, the quality of the approximatecounting asserted in Part 2 (i.e., ") does depend on the quality of the approximateuniform generation (i.e., "0), but cannot reach beyond a certain bound (i.e., no-ticeable relative deviation). Recall, that for problems that are NP-complete underparsimonious reductions the quality of approximate counting procedures can beimproved (see Exercise 6.33). However, Theorem 6.31 is most useful when appliedto problems that are not NP-complete, because for problems that are NP-completeboth approximate counting and uniform generation are randomly reducible to thecorresponding search problem (see Exercise 6.39).Proof: Throughout the proof, we assume for simplicity (and in fact without lossof generality) that R(x) 6= ; and R(x) � f0; 1g`(jxj).Towards Part 1, let us �rst reduce the uniform generation problem of R to#R (rather than to approximating #R). On input x 2 SR, we shall generate19This technical condition allows us to replace deviation bounds expressed in terms of jg(x)j bybounds expressed in terms of jxj, while relying on the fact that "(jg(x)j) � "(jxj) holds for anynon-increasing " :N!(0; 1).



244 CHAPTER 6. RANDOMNESS AND COUNTINGa uniformly distributed y 2 R(x) by randomly generating its bits one after theother. We proceed in iterations, entering the ith iteration with an (i � 1)-bitlong string y0 such that R0(x; y0) def= fy00 : (x; y0y00) 2 Rg is not empty. Withprobability jR0(x; y01)j=jR0(x; y0)j we set the ith bit to equal 1, and otherwise weset it to equal 0. We obtain both jR0(x; y01)j and jR0(x; y0)j by using a parsimoniousreduction g of R0 = f((x; y0); y00) : (x; y0y00) 2 Rg 2 PC to R. That is, we obtainjR0(x; y0)j by querying for the value of jR(g(x; y0))j. Ignoring integrality issues, allthis works perfectly (i.e., we generate an `(n)-bit string uniformly distributed inR(x)) as long as we have oracle access to #R. Since we only have oracle accessto an approximation of #R, a careful implementation of the foregoing idea is inplace.Let us denote the approximation oracle by A. Firstly, by adequate error reduc-tion, we may assume that, for every z, it holds that Pr[A(z) 2 (1�"(n)) �#R(z)] >1��0(jzj), where �0(n) = �(n)=`(n). In the rest of the analysis we ignore the proba-bility that the estimate of #R(z) provided by the randomized oracle A (on query z)deviates from the aforementioned interval. (We note that these rare events are theonly source of the possible deviation of the output distribution from the uniformdistribution on R(x).)20 Next, let us assume for a moment that A is deterministicand that for every x and y0 it holds thatA(g(x; y00)) +A(g(x; y01)) � A(g(x; y0)): (6.10)We also assume that the approximation is correct at the \trivial level" (where onemay just check whether or not (x; y) is in R); that is, for every y 2 f0; 1g`(jxj), itholds that A(g(x; y)) = 1 if (x; y) 2 R and A(g(x; y)) = 0 otherwise. (6.11)We modify the ith iteration of the foregoing procedure such that, when enteringwith the (i� 1)-bit long pre�x y0, we set the ith bit to � 2 f0; 1g with probabilityA(g(x; y0�))=A(g(x; y0)) and halt (with output ?) with the residual probability(i.e., 1� (A(g(x; y00))=A(g(x; y0)))� (A(g(x; y01))=A(g(x; y0)))). Indeed, Eq. (6.10)guarantees that the latter instruction is sound, since the two main probabilitiessum-up to at most 1. If we completed the last (i.e., `(jxj)th) iteration, then weoutput the `(jxj)-bit long string that was generated. Thus, as long as Eq. (6.10)holds (but regardless of other aspects of the quality of the approximation), everyy = �1 � � ��`(jxj) 2 R(x), is output with probabilityA(g(x;�1))A(g(x;�)) � A(g(x;�1�2))A(g(x;�1)) � � � A(g(x;�1�2 � � ��`(jxj)))A(g(x;�1�2 � � ��`(jxj)�1)) (6.12)which, by Eq. (6.11), equals 1=A(g(x;�)). Thus, the procedure outputs each ele-ment of R(x) with equal probability, and never outputs a non-? value that is out-side R(x). It follows that the quality of approximation only e�ects the probability20Note that the (negligible) e�ect of these rare events may not be easy to correct. For starters,we do not necessarily get an indication when these rare events occur. Furthermore, these rareevents may occur with di�erent probability in the di�erent invocations of algorithm A (i.e., ondi�erent queries).



6.2. COUNTING 245that the procedure outputs a non-? value (which in turn equals jR(x)j=A(g(x;�))).The key point is that, as long as Eq. (6.11) holds, the speci�c approximate valuesobtained by the procedure are immaterial { with the exception of A(g(x;�)), allthese values \cancel out".We now turn to enforcing Eq. (6.10) and Eq. (6.11). We may enforce Eq. (6.11)by performing the straightforward check (of whether or not (x; y) 2 R) ratherthan invoking A(g(x; y)).21 As for Eq. (6.10), we enforce it arti�cially by usingA0(x; y0) def= (1 + "(jxj))3(`(jxj)�jy0j) � A(g(x; y0)) instead of A(g(x; y0)). Recallingthat A(g(x; y0)) = (1� "(jxj)) � jR0(x; y0)j, we haveA0(x; y0) > (1 + "(jxj))3(`(jxj)�jy0j) � (1� "(jxj)) � jR0(x; y0)jA0(x; y0�) < (1 + "(jxj))3(`(jxj)�jy0j�1) � (1 + "(jxj)) � jR0(x; y0�)jand the claim (that Eq. (6.10) holds) follows by using (1� "(jxj)) � (1 + "(jxj))3 >(1+"(jxj)). Note that the foregoing modi�cation only e�ects the probability of out-putting a non-? value; this good event now occurs with probability jR0(x;�)j=A0(x; �),which is lower-bounded by (1 + "(jxj))�(3`(jxj)+1) > 1=2, where the inequality isdue to the setting of " (i.e., "(n) = 1=5`(n)). Finally, we refer to our assump-tion that A is deterministic. This assumption was only used in order to identifythe value of A(g(x; y0)) obtained and used in the (jy0j � 1)st iteration with thevalue of A(g(x; y0)) obtained and used in the jy0jth iteration. The same e�ect canbe obtained by just re-using the former value (in the jy0jth iteration) rather thanre-invoking A in order to obtain it. Part 1 follows.Towards Part 2, let use �rst reduce the task of approximating #R to thetask of (exact) uniform generation for R. On input x 2 SR, the reduction usesthe tree of possible pre�xes of elements of R(x) in a somewhat di�erent manner.Again, we proceed in iterations, entering the ith iteration with an (i� 1)-bit longstring y0 such that R0(x; y0) def= fy00 : (x; y0y00) 2 Rg is not empty. At the ithiteration we estimate the bigger among the two fractions jR0(x; y00)j=jR0(x; y0)jand jR0(x; y01)j=jR0(x; y0)j, by uniformly sampling the uniform distribution overR0(x; y0). That is, taking poly(jxj="0(jxj)) uniformly distributed samples in R0(x; y0),we obtain with overwhelmingly high probability an approximation of these frac-tions up to an additive deviation of at most "0(jxj). This means that we obtain arelative approximation up-to a factor of 1� 3"0(jxj) for the fraction (or fractions)that is (resp., are) bigger than 1=3. Indeed, we may not be able to obtain sucha good relative approximation of the other fraction (in the case that the otherfraction is very small), but this does not matter. It also does not matter thatwe cannot tell which is the bigger fraction among the two; it only matter thatwe use an approximation that indicates a quantity that is, say, bigger than 1=3.We proceed to the next iteration by augmenting y0 using the bit that correspondsto such a quantity. Speci�cally, suppose that we obtained the approximationsa0(y0) � jR0(x; y00)j=jR0(x; y0)j and a1(y0) � jR0(x; y01)j=jR0(x; y0)j. Then we ex-21Alternatively, we note that since A is a (1 � ")-approximator for " < 1 it must hold that#R0(z) = 0 implies A(z) = 0. Also, since " < 1=3, if #R0(z) = 1 then A(z) 2 (2=3; 4=3), whichmay be rounded to 1.



246 CHAPTER 6. RANDOMNESS AND COUNTINGtend y0 by the bit 1 if a1(y0) > a0(y0) and extend y0 by the bit 0 otherwise. Finally,when we reach y = �1 � � ��`(jxj) such that (x; y) 2 R, we outputa�1(�)�1 � a�2(�1)�1 � � �a�`(jxj) (�1�2 � � ��`(jxj)�1)�1 (6.13)where for each i it holds that a�i(�1�2 � � ��i�1) is (1� 3"0(jxj)) � jR0(x;�1�2����i)jjR0(x;�1�2����i�1)j .As in Part 1, actions regarding R0 (in this case uniform generation in R0) areconducted via the parsimonious reduction g to R. That is, whenever we need tosample uniformly in the set R0(x; y0), we sample the set R(g(x; y0)) and recoverthe corresponding element of R0(x; y0) by using the mapping guaranteed by thehypothesis that g is strongly parsimonious. Finally, note that so far we assumeda uniform generation procedure for R, but using an (1� "0)-approximate uniformgeneration merely means that all our approximations deviate by another additiveterm of "0. Thus, with overwhelmingly high probability, for each i it holds thata�i(�1�2 � � ��i�1) is (1� 6"0(jxj)) � jR0(x;�1�2 � � ��i)j=jR0(x;�1�2 � � ��i�1)j. It fol-lows that, on input x, when using an oracle that provides a (1 � "0)-approximateuniform generation for R, with overwhelmingly high probability, the output (asde�ned in Eq. (6.13)) is in`(jxj)Yi=1 �(1� 6"0(jxj))�1 � jR0(x;�1 � � ��i�1)jjR0(x;�1 � � ��i)j � (6.14)where the error probability is due to the unlikely case that in one of the iterationsour approximations deviates from the correct value by more than an additive devi-ation term of 2"0(n). Noting that Eq. (6.14) equals (1� 6"0(jxj))�`(jxj) � jR(x)j andusing (1� 6"0(jxj))�`(jxj) � (1� "(jxj)) (which holds for "0 = "=7`), Part 2 follows.6.2.4.2 A direct procedure for uniform generationWe conclude the current chapter by presenting a direct procedure for solving theuniform generation problem of any R 2 PC. This procedure uses an oracle to NP(or to SR itself in case it is NP-complete), which is unavoidable because solving theuniform generation problem of R implies solving the corresponding search prob-lem (which in turn implies deciding membership in SR). One advantage of thisprocedure, over the reduction presented in x6.2.4.1, is that it solves the uniformgeneration problem rather than the approximate uniform generation problem.We are going to use hashing again, but this time we use a family of hashingfunctions having a stronger \uniformity property" (see Appendix D.2.3). Speci�-cally, we will use a family of `-wise independent hashing functions mapping `-bitstrings to m-bit strings, where ` bounds the length of solutions in R, and rely onthe fact that such a family satis�es Lemma D.6. Intuitively, such functions parti-tion f0; 1g` into 2m cells and Lemma D.6 asserts that these partitions \uniformlyshatter" all su�ciently large sets. That is, for every set S � f0; 1g` of size 
(` �2m),the partition induced by almost every function in this family is such that each cell



6.2. COUNTING 247contains approximately jSj=2m elements of S. In particular, if jSj = �(` � 2m) theneach cell contains �(`) elements of S. We denote this family of functions by Hm̀,and rely on the fact that its elements have succinct and e�ective representation (asde�ned in Appendix D.2.1).Loosely speaking, the following procedure (for uniform generation) �rst selectsa random hashing function and tests whether it \uniformly shatters" the target setS = R(x). If this condition holds then the procedure selects a cell at random andretrieve all the elements of S residing in the chosen cell. Finally, the procedureeither outputs one of the retrieved elements or halts with no output, where eachretrieved element is output with a �xed probability p (which is independent of theactual number of elements of S that reside in the chosen cell). This guarantees thateach element e 2 S is output with the same probability (i.e., 2�m � p), regardlessof the number of elements of S that resides with e in the same cell.In the following construction, we assume that on input x we also obtain a goodapproximation to the size of R(x). This assumption can be enforced by usingan approximate counting procedure as a preprocessing stage. Alternatively, theideas presented in the following construction yield such an approximate countingprocedure.Construction 6.32 (uniform generation): On input x and m0x 2 fmx;mx + 1g,where mx def= blog2 jR(x)jc and R(x) � f0; 1g`, the oracle machine proceeds asfollows.1. Selecting a partition that \uniformly shatters" R(x). The machine sets m =max(0;m0x� log2 40`) and selects uniformly h 2 Hm̀. Such a function de�nesa partition of f0; 1g` into 2m cells22, and the hope is that each cell containsapproximately the same number of elements of R(x). Next, the machinechecks that this is indeed the case or rather than no cell contains more that120` elements of R(x) (i.e., more than twice the expected number). This isdone by checking whether or not (x; h; 1120`+1) is in the set S(1)R;H de�ned asfollowsS(1)R;H def= f(x0; h0; 1t) : 9v s.t. jfy : (x0; y)2R ^ h0(y)=vgj � tg (6.15)= f(x0; h0; 1t) : 9v; y1; :::; yt s.t.  (1)(x0; h0; v; y1; :::; yt)g;where  (1)(x0; h0; v; y1; :::; yt) holds if and only if y1<y2 � � �<yt and for everyj 2 [t] it holds that (x0; yj)2R ^ h0(yj)=v. Note that S(1)R;H 2 NP.If the answer is positive (i.e., there exists a cell that contains more that120` elements of R(x)) then the machine halts with output ?. Otherwise,the machine continues with this choice of h. In this case, no cell containsmore that 120` elements of R(x) (i.e., for every v 2 f0; 1gm, it holds thatjfy : (x; y) 2 R ^ h(y) = vgj � 120`). We stress that this is an absoluteguarantee that follows from (x; h; 1120`+1) 62 S(1)R;H .22For sake of uniformity, we allow also the case of m = 0, which is rather arti�cial. In thiscase all hashing functions in H 0̀ map f0; 1g` to the empty string, which is viewed as 00, and thusde�ne a trivial partition of f0; 1g` (i.e., into a single cell).



248 CHAPTER 6. RANDOMNESS AND COUNTING2. Selecting a cell and determining the number of elements of R(x) that arecontained in it. The machine selects uniformly v 2 f0; 1gm and determinessv def= jfy : (x; y)2R ^ h(y)=vgj by making queries to the following NP-setS(2)R;H def= f(x0; h0; v0; 1t) : 9y1; :::; yt s.t.  (1)(x0; h0; v0; y1; :::; yt)g: (6.16)Speci�cally, for i = 1; :::; 120`, it checks whether (x; h; v; 1i) is in S(2)R;H , andsets sv to be the largest value of i for which the answer is positive.3. Obtaining all the elements of R(x) that are contained in the selected cell,and outputting one of them at random. Using sv, the procedure reconstructsthe set Sv def= fy : (x; y)2R ^ h(y) = vg, by making queries to the followingNP-setS(3)R;H def= f(x0; h0; v0; 1t; j) : 9y1; :::; yt s.t.  (3)(x0; h0; v0; y1; :::; yt; j)g; (6.17)where  (3)(x0; h0; v0; y1; :::; yt; j) holds if and only if  (1)(x0; h0; v0; y1; :::; yt)holds and the jth bit of y1 � � � yt equals 1. Speci�cally, for j1 = 1; :::; sv andj2 = 1; :::; `, we make the query (x; h; v; 1sv ; (j1 � 1) � ` + j2) in order todetermine the jth2 bit of yj1 . Finally, having recovered Sv, the procedureoutputs each y 2 Sv with probability 1=120`, and outputs ? otherwise (i.e.,with probability 1� (sv=120`)).Recall that for jR(x)j = 
(`) and m = m0x � log2 40`, Lemma D.6 implies that,with overwhelmingly high probability (over the choice of h 2 Hm̀), each set fy :(x; y)2R ^ h(y)= vg has cardinality (1 � 0:5)jR(x)j=2m. Thus, ignoring the caseof jR(x)j = O(`), Step 1 can be easily adapted to yield an approximate countingprocedure for #R; see Exercise 6.38, which also handles the case of jR(x)j = O(`)by using ideas as in Step 2. However, our aim is to establish the following result.Proposition 6.33 Construction 6.32 solves the uniform generation problem of R.Proof: Intuitively, by Lemma D.6 (and the setting of m), with overwhelminglyhigh probability, a uniformly selected h 2 Hm̀ partitions R(x) into 2m cells, eachcontaining at most 120` elements. Following is the tedious proof of this fact. Sincem = max(0;m0x � log2 40`), we may focus on the case that m0x > log2 40` (as inthe other case jR(x)j � 2m0x+1 � 80`). In this case, by Lemma D.6 (using " = 0:5and m = m0x � log2 40` � log2 jR(x)j � log2 20` (which implies m � log2 jR(x)j �log2(5`="2))), with overwhelmingly high probability, each set fy : (x; y) 2 R ^h(y) = vg has cardinality (1 � 0:5)jR(x)j=2m. Using m0x > (log2 jR(x)j) � 1 (andm = m0x � log2 40`), it follows that jR(x)j=2m < 80` and hence each cell containsat most 120` elements of R(x). We also note that, using m0x � (log2 jR(x)j) + 1, itfollows that jR(x)j=2m � 20` and hence each cell contains at least 10` elements ofR(x).The key observation, stated in Step 1, is that if the procedure does not haltin Step 1 then it is indeed the case that h induces a partition in which each cell



6.2. COUNTING 249contains at most 120` elements of R(x). The fact that these cells may contain adi�erent number of elements is immaterial, because each element is output withthe same probability (i.e., 1=120`). What matters is that the average number ofelements in the various cells is su�ciently large, because this average number deter-mines the probability that the procedure outputs an element of R(x) (rather than?). Speci�cally, conditioned on not halting in Step 1, the probability that Step 3outputs some element of R(x) equals the average number of elements per cell (i.e.,jR(x)j=2m) divided by 120`. Recalling that for m > 0 (resp., m = 0) it holds thatjR(x)j=2m � 20` (resp., jR(x)j � 1), we conclude that in this case some elementof R(x) is output with probability at least 1=6 (resp., jR(x)j=120`). Recalling thatStep 1 halts with negligible probability, it follows that the procedure outputs someelement of R(x) with probability at least 0:99 �min((jR(x)j=120`); (1=6)).Comments. We can easily improve the performance of Construction 6.32 bydealing separately with the case m = 0. In such a case, Step 3 can be simpli�edand improved by uniformly selecting and outputting an element of S� (which equalsR(x)). Under this modi�cation, the procedure outputs some element of R(x) withprobability at least 1=6. In any case, recall that the probability that a uniformgeneration procedure outputs ? can be deceased by repeated invocations.Digest. Construction 6.32 is the culmination of the \hashing paradigm" thatis aimed at allowing various manipulations of arbitrary sets. In particular, asseen in Construction 6.32, hashing can be used in order to partition a large setinto an adequate number of small subsets that are of approximately the samesize. We stress that hashing is performed by randomly selecting a function in anadequate family. Indeed, the use of randomization for such purposes (i.e., allowingmanipulation of large sets) seems indispensable.Chapter NotesOne key aspect of randomized procedures is their success probability, which is ob-viously a quantitative notion. This aspect provides a clear connection betweenprobabilistic polynomial-time algorithms considered in Section 6.1 and the count-ing problems considered in Section 6.2 (see also Exercise 6.20). More appealingconnections between randomized procedures and counting problems (e.g., the ap-plication of randomization in approximate counting) are presented in Section 6.2.These connections justify the presentation of these two topics in the same chapter.Randomized algorithmsMaking people take an unconventional step requires compelling reasons, and indeedthe study of randomized algorithms was motivated by a few compelling examples.Ironically, the appeal of the two most famous examples (discussed next) has beensomewhat diminished due to subsequent �nding, but the fundamental questionsthat emerged remain fascinating regardless of the status of these two examples.



250 CHAPTER 6. RANDOMNESS AND COUNTINGThese questions refer to the power of randomization in various computational set-tings, and in particular in the context of decision and search problems. We shallreturn to these questions after briey reviewing the story of the aforementionedexamples.The �rst example: primality testing. For more than two decades, primalitytesting was the archetypical example of the usefulness of randomization in the con-text of e�cient algorithms. The celebrated algorithms of Solovay and Strassen [206]and of Rabin [179], proposed in the late 1970's, established that deciding primalityis in coRP (i.e., these tests always recognize correctly prime numbers, but theymay err on composite inputs). (The approach of Construction 6.4, which only es-tablishes that deciding primality is in BPP, is commonly attributed to M. Blum.)In the late 1980's, Adleman and Huang [2] proved that deciding primality is in RP(and thus in ZPP). In the early 2000's, Agrawal, Kayal, and Saxena [3] showedthat deciding primality is actually in P . One should note, however, that strongevidence to the fact that deciding primality is in P was actually available fromthe start: we refer to Miller's deterministic algorithm [161], which relies on theExtended Riemann Hypothesis.The second example: undirected connectivity. Another celebrated exampleto the power of randomization, speci�cally in the context of log-space computa-tions, was provided by testing undirected connectivity. The random-walk algorithmpresented in Construction 6.12 is due to Aleliunas, Karp, Lipton, Lov�asz, and Rack-o� [5]. Recall that a deterministic log-space algorithm was found twenty-�ve yearslater (see Section 5.2.4 or [185]).Another famous example: polynomial identity testing. A third famousexample, which dates back to about the same period, is the polynomial identitytester of [62, 194, 235]. This tester, presented in x6.1.3.1, has found many applica-tions in complexity theory (some are implicit in subsequent chapters). Needless tosay, in the abstract setting of Construction 6.7, randomization is indispensable. In-terestingly, the computational version mentioned in Exercise 6.17 has so far resistedde-randomization attempts (cf. [130]).Other randomized algorithms. In addition to the three foregoing examples,several other appealing randomized algorithms are known. Con�ning ourselves tothe context of search and decision problems, we mention the algorithms for �ndingperfect matchings and minimum cuts in graphs (see, e.g., [87, Apdx. B.1] or [163,Sec. 12.4&10.2]), and note the prominent role of randomization in computationalnumber theory (see, e.g., [22] or [163, Chap. 14]). We mention that randomized al-gorithms are more abundant in the context of approximation problems (let alone inother computational settings (cf., e.g., Chapter 9, Appendix C, and Appendix D.3).For a general textbook on randomized algorithms, we refer the interested readerto [163].



6.2. COUNTING 251While it can be shown that randomization is essential in several importantcomputational settings (cf., e.g., Chapter 9, Section 10.1.2, Appendix C, and Ap-pendix D.3), a fundamental question is whether randomization is essential in thecontext of search and decision problems. The prevailing conjecture is that ran-domization is of limited help in the context of time-bounded and space-boundedalgorithms. For example, it is conjectured that BPP = P and BPL = L. Notethat such conjectures do not rule out the possibility that randomization is helpfulalso in these contexts, they merely says that this help is limited. For example, itmay be the case that any quadratic-time randomized algorithm can be emulatedby a cubic-time deterministic algorithm, but not by a quadratic-time deterministicalgorithm.On the study of BPP. The conjecture BPP = P is referred to as a full deran-domization of BPP, and can be shown to hold under some reasonable intractabilityassumptions. This result (and related ones) will be presented in Section 8.3. Inthe current chapter, we only presented uncoditional results regarding BPP likeBPP � P=poly and BPP � PH. Our presentation of Theorem 6.9 follows theproof idea of Lautemann [146]. A di�erent proof technique, which yields a weakerresult but found more applications (see, e.g., Theorems 6.27 and F.2), was pre-sented (independently) by Sipser [202].On the role of promise problems. In addition to their use in the formula-tion of Theorem 6.9, promise problems allow for establishing complete problemsand hierarchy theorems for randomized computation (see Exercises 6.14 and 6.15,respectively). We mention that such results are not known for the correspond-ing classes of standard decision problems. The technical di�culty is that we donot know how to enumerate and/or recognize probabilistic machines that utilize anon-trivial probabilistic decision rule.On the feasibility of randomized computation. Di�erent perspectives onthis question are o�ered by Chapter 8 and Appendix D.4. Speci�cally, as advocatedin Chapter 8, generating uniformly distributed bit sequences is not really necessaryfor implementing randomized algorithms; it su�ces to generate sequences that look(to their user) as if they are uniformly distributed. In many cases this leads to re-ducing the number of coin tosses in such implementations, and at times even to afull (e�cient) derandomization (see Sections 8.3 and 8.4). A less radical approachis presented in Appendix D.4, which deals with the task of extracting almost uni-formly distributed bit sequences from sources of weak randomness. Needless to say,these two approaches are complimentary and can be combined.Counting problemsThe counting class #P was introduced by Valiant [223], who proved that computingthe permanent of 0/1-matrices is #P-complete (i.e., Theorem 6.20). Interestingly,



252 CHAPTER 6. RANDOMNESS AND COUNTINGlike in the case of Cook's introduction of NP-completeness [55], Valiant's motivationwas determining the complexity of a speci�c problem (i.e., the permanent).Our presentation of Theorem 6.20 is based both on Valiant's paper [223] and onsubsequent studies (most notably [29]). Speci�cally, the high-level structure of thereduction presented in Proposition 6.21 as well as the \structured" design of theclause gadget is taken from [223], whereas the Deus Ex Machina gadget presentedin Figure 6.3 is based on [29]. The proof of Proposition 6.22 is also based on [29](with some variants). Turning back to the design of clause gadgets we regret notbeing able to cite and/or use a systematic study of this design problem.As noted in the main text, we decided not to present a proof of Toda's Theo-rem [215], which asserts that every set in PH is Cook-reducible to #P (i.e., The-orem 6.16). Appendix F.1 contains a proof of a related result, which implies thatPH is reducible to #P via probabilistic polynomial-time reductions. Alternativeproofs can be found in [132, 207, 215].Approximate counting and related problems. The approximation proce-dure for #P is due to Stockmeyer [209], following an idea of Sipser [202]. Ourexposition, however, follows further developments in the area. The randomizedreduction of NP to problems of unique solutions was discovered by Valiant andVazirani [225]. Again, our exposition is a bit di�erent.The connection between approximate counting and uniform generation (pre-sented in x6.2.4.1) was discovered by Jerrum, Valiant, and Vazirani [129], andturned out to be very useful in the design of algorithms (e.g., in the \Markov Chainapproach" (see [163, Sec. 11.3.1])). The direct procedure for uniform generation(presented in x6.2.4.2) is taken from [26].In continuation to x6.2.2.1, which is based on [135], we refer the interested readerto [128], which presents a probabilistic polynomial-time algorithm for approximat-ing the permanent of non-negative matrices. This fascinating algorithm is basedon the fact that knowing (approximately) certain parameters of a non-negativematrix M allows to approximate the same parameters for a matrix M 0, providedthat M and M 0 are su�ciently similar. Speci�cally, M and M 0 may di�er onlyon a single entry, and the ratio of the corresponding values must be su�cientlyclose to one. Needless to say, the actual observation (is not generic but rather)refers to speci�c parameters of the matrix, which include its permanent. Thus,given a matrix M for which we need to approximate the permanent, we consider asequence of matrices M0; :::;Mt �M such that M0 is the all 1's matrix (for whichit is easy to evaluate the said parameters), and each Mi+1 is obtained from Mi byreducing some adequate entry by a factor su�ciently close to one. This process of(polynomially many) gradual changes, allows to transform the dummy matrix M0into a matrix Mt that is very close to M (and hence has a permanent that is veryclose to the permanent of M). Thus, approximately obtaining the parameters ofMt allows to approximate the permanent of M .Finally, we mention that Section 10.1.1 provides a treatment of a di�erent typeof approximation problems. Speci�cally, when given an instance x (for a searchproblem R), rather than seeking an approximation of the number of solutions (i.e.,



6.2. COUNTING 253#R(x)), one seeks an approximation of the value of the best solution (i.e., besty 2 R(x)), where the value of a solution is de�ned by an auxiliary function.ExercisesExercise 6.1 Show that if a search (resp., decision) problem can be solved by aprobabilistic polynomial-time algorithm having zero failure probability, then theproblem can be solve by a deterministic polynomial-time algorithm.(Hint: replace the internal coin tosses by a �xed outcome that is easy to generate deterministically(e.g., the all-zero sequence).)Exercise 6.2 (randomized reductions) In continuation to the de�nitions pre-sented in Section 6.1.1, prove the following:1. If a problem � is probabilistic polynomial-time reducible to a problem thatis solvable in probabilistic polynomial-time then � is solvable in probabilisticpolynomial-time, where by solving we mean solving correctly except withnegligible probability.Warning: Recall that in the case that �0 is a search problem, we requiredthat on input x the solver provides a correct solution with probability at least1� �(jxj), but we did not require that it always returns the same solution.(Hint: without loss of generality, the reduction does not make the same query twice.)2. Prove that probabilistic polynomial-time reductions are transitive.3. Prove that randomized Karp-reductions are transitive and that they yield aspecial case of probabilistic polynomial-time reductions.De�ne one-sided error and zero-sided error randomized (Karp- and Cook-) reduc-tions, and consider the foregoing items when applied to them. Note that theimplications for the case of one-sided error are somewhat subtle.Exercise 6.3 (on the de�nition of probabilistically solving a search problem)In continuation to the discussion at the beginning of Section 6.1.2, suppose thatfor some probabilistic polynomial-time algorithm A and a positive polynomial pthe following holds: for every x 2 SR def= fz : R(z) 6= ;g there exists y 2 R(x)such that Pr[A(x) = y] > 0:5 + (1=p(jxj)), whereas for every x 62 SR it holds thatPr[A(x) = ?] > 0:5 + (1=p(jxj)).1. Show that there exists a probabilistic polynomial-time algorithm that solvesthe search problem of R with negligible error probability.(Hint: See Exercise 6.4 for a related procedure.)2. Reect on the need to require that one (correct) solution occurs with probabil-ity greater than 0:5+(1=p(jxj)). Speci�cally, what can we do if it is only guar-anteed that for every x 2 SR it holds that Pr[A(x) 2 R(x)] > 0:5+ (1=p(jxj))(and for every x 62 SR it holds that Pr[A(x) = ?] > 0:5 + (1=p(jxj)))?



254 CHAPTER 6. RANDOMNESS AND COUNTINGNote that R is not necessarily in PC. Indeed, in the case that R 2 PC we caneliminate the error probability for every x 62 SR, and perform error-reduction forx 2 SR as in the case of RP .Exercise 6.4 (error-reduction for BPP) For " : N ! [0; 1], let BPP" denotethe class of decision problems that can be solved in probabilistic polynomial-timewith error probability upper-bounded by ". Prove the following two claims:1. For every positive polynomial p and "(n) = (1=2)� (1=p(n)), the class BPP"equals BPP.2. For every positive polynomial p and "(n) = 2�p(n), the class BPP equalsBPP".Formulate a corresponding version for the setting of search problem. Speci�cally,for every input that has a solution, consider the probability that a speci�c solutionis output.Guideline: Given an algorithm A for the syntactically weaker class, consider an algo-rithm A0 that on input x invokes A on x for t(jxj) times, and rules by majority. For Part 1set t(n) = O(p(n)2) and apply Chebyshev's Inequality. For Part 2 set t(n) = O(p(n)) andapply the Cherno� Bound.Exercise 6.5 (error-reduction for RP) For � : N ! [0; 1], we de�ne the classof decision problem RP� such that it contains S if there exists a probabilisticpolynomial-time algorithm A such that for every x 2 S it holds that Pr[A(x) =1] � �(jxj) and for every x 62 S it holds that Pr[A(x) = 0] = 1. Prove the followingtwo claims:1. For every positive polynomial p, the class RP1=p equals RP .2. For every positive polynomial p, the class RP equals RP�, where �(n) =1� 2�p(n).(Hint: The one-sided error allows using an \or-rule" (rather than a \majority-rule") for thedecision.)Exercise 6.6 (error-reduction for ZPP) For � : N ! [0; 1], we de�ne the classof decision problem ZPP� such that it contains S if there exists a probabilisticpolynomial-time algorithmA such that for every x it holds that Pr[A(x) = �S(x)] ��(jxj) and Pr[A(x) 2 f�S(x);?g] = 1, where �S(x) = 1 if x 2 S and �S(x) = 0otherwise. Prove the following two claims:1. For every positive polynomial p, the class ZPP1=p equals ZPP.2. For every positive polynomial p, the class ZPP equals ZPP�, where �(n) =1� 2�p(n).



6.2. COUNTING 255Exercise 6.7 (an alternative de�nition of ZPP) We say that the decision prob-lem S is solvable in expected probabilistic polynomial-time if there exists a random-ized algorithm A and a polynomial p such that for every x 2 f0; 1g� it holds thatPr[A(x) = �S(x)] = 1 and the expected number of steps taken by A(x) is at mostp(jxj). Prove that S 2 ZPP if and only if S is solvable in expected probabilisticpolynomial-time.Guideline: Repeatedly invoking a ZPP algorithm until it yields an output other than ?yields an expected probabilistic polynomial-time solver. On the other hand, truncatingruns of an expected probabilistic polynomial-time algorithm once they exceed twice theexpected number of steps (and outputting ? on such runs), we obtain a ZPP algorithm.Exercise 6.8 Prove that for every S 2 NP there exists a probabilistic polynomial-time algorithm A such that for every x 2 S it holds that Pr[A(x) = 1] > 0 and forevery x 62 S it holds that Pr[A(x) = 0] = 1. That is, A has error probability atmost 1 � exp(�poly(jxj)) on yes-instances but never errs on no-instances. Thus,NP may be �ctitiously viewed as having a huge one-sided error probability.Exercise 6.9 Let BPP and coRP be classes of promise problems (as in Theo-rem 6.9).1. Prove that every problem in BPP is reducible to the set f1g 2 P by a two-sided error randomized Karp-reduction.2. Prove that if a set S is Karp-reducible toRP (resp., coRP) via a deterministicreduction then S 2 RP (resp., S 2 coRP).Exercise 6.10 (randomness-e�cient error-reductions) Note that standarderror-reduction (as in Exercise 6.4) yields error probability � at the cost of increas-ing the randomness complexity by a factor of O(log(1=�)). Using the randomness-e�cient error-reductions outlined in xD.4.1.3, show that error probability � can beobtained at the cost of increasing the randomness complexity from r to O(r) +1:5 log2(1=�). Note that this allows satisfying the hypothesis made in the illustra-tive paragraph of the proof of Theorem 6.9.Exercise 6.11 In continuation to the illustrative paragraph in the proof of Theo-rem 6.9, consider the promise problem �0 = (�0yes;�0no) such that �0yes = f(x; r0) :jr0j=p0(jxj) ^ (8r00 2 f0; 1gjr0j)A0(x; r0r00) = 1g and �0no = f(x; r0) : x 62Sg. Recallthat for every x it holds that Prr2f0;1g2p0(jxj) [A0(x; r) 6=�S(x)] < 2�(p0(jxj)+1).1. Show that mapping x to (x; r0), where r0 is uniformly distributed in f0; 1gp0(jxj),constitutes a one-sided error randomized Karp-reduction of S to �0.2. Show that �0 is in the promise problem class coRP .Exercise 6.12 (randomized versions of NP) In continuation to Footnote 7,consider the following two variants ofMA (which we consider the main randomizedversion of NP).



256 CHAPTER 6. RANDOMNESS AND COUNTING1. S 2 MA(1) if there exists a probabilistic polynomial-time algorithm V suchthat for every x 2 S there exists y 2 f0; 1gpoly(jxj) such that Pr[V (x; y)=1] �1=2, whereas for every x 62 S and every y it holds that Pr[V (x; y)=0] = 1.2. S 2 MA(2) if there exists a probabilistic polynomial-time algorithm V suchthat for every x 2 S there exists y 2 f0; 1gpoly(jxj) such that Pr[V (x; y)=1] �2=3, whereas for every x 62 S and every y it holds that Pr[V (x; y)=0] � 2=3.Prove thatMA(1) = NP whereasMA(2) =MA.Guideline: For the �rst part, note that a sequence of internal coin tosses that makesV accept (x; y) can be incorporated into y itself (yielding a standard NP-witness). Forthe second part, apply the ideas underlying the proof of Theorem 6.9, and note that anadequate sequence of shifts (to be used by the veri�er) can be incorporated in the singlemessage sent by the prover.Exercise 6.13 (BPP � ZPPNP) In continuation to the proof of Theorem 6.9,present a zero-error randomized reduction of BPP to NP , where all classes are thestandard classes of decision problems.Guideline: On input x, the ZPP-machine uniformly selects s = (s1; :::; sm), and for each� 2 f0; 1g makes the query (x; �; s), which is answered positively by the (coNP) oracle iffor every r it holds that _i(A(x; r � si) =�). The machine outputs � if and only if thequery (x; �; s) was answered positively, and outputs ? otherwise (i.e., both queries wereanswered negatively).Exercise 6.14 (completeness for promise problem versions of BPP) Referringto the promise problem version of BPP, present a promise problem that is completefor this class under (deterministic log-space) Karp-reductions.Guideline: The promise problem consists of yes-instances that are Boolean circuits thataccept at least a 2=3 fraction of their possible inputs and no-instances that are Booleancircuits that reject at least a 2=3 fraction of their possible inputs. The reduction isessentially the one provided in the proof of Theorem 2.21, and the promise is used in anessential way in order to provide a BPP-algorithm.Exercise 6.15 (hierarchy theorems for promise problem versions of BPtime)Fixing a model of computation, let BPtime(t) denote the class of promise prob-lems that are solvable by a randomized algorithm of time-complexity t that has atwo-sided error probability at most 1=3. (The standard de�nition refers only todecision problems.) Formulate and prove results analogous to Theorem 4.3 andCorollary 4.4.Guideline (by Dieter van Melkebeek): Apply the \delayed diagonalization" methodused to prove Theorem 4.6 rather than the simple diagonalization used in Theorem 4.3.Analogously to the proof of Theorem 4.6, for every � 2 f0; 1g, de�ne AM(x) = � ifPr[M 0(x) = �] � 2=3 and de�ne AM(x) = ? otherwise (i.e., if 1=3 < Pr[M 0(x) = 1] <2=3), whereM 0(x) denotes the computation ofM(x) truncated after t1(jxj) steps. For x 2[�M ; �M�1], de�ne f(x) = AM(x+1), where f(x) = ?means that x violates the promise.



6.2. COUNTING 257De�ne f(�M ) = 1 if AM (�M ) = 0 and f(�M ) = 0 otherwise (i.e., if AM (�M ) 2 f1;?g).Note that f(x) is computable in randomized time eO(t1(jxj + 1)) by emulating a singlecomputation of M 0(x) if x 2 [�M ; �M � 1] and emulating all computations of M 0(�M ) ifx = �M . Prove that the promise problem f cannot be solved in randomized time t1, bynoting that �M satis�es the promise and that for every x 2 [�M +1; �M ] that satis�es thepromise (i.e., f(x) 2 f0; 1g) it holds that if AM (x) = f(x) then f(x�1) = AM(x) 2 f0; 1g.Exercise 6.16 (extracting square roots modulo a prime) Using the follow-ing guidelines, present a probabilistic polynomial-time algorithm that, on input aprime P and a quadratic residue s (mod P ), returns r such that r2 � s (mod P ).1. Prove that if P � 3 (mod 4) then s(P+1)=4 mod P is a square root of thequadratic residue s (mod P ).2. Note that the procedure suggested in Item 1 relies on the ability to �nd anodd integer e such that se � 1 (mod P ). Indeed, once such e is found, wemay output s(e+1)=2 mod P . (In Item 1, we used e = (P � 1)=2, which is oddsince P � 3 (mod 4).)Show that it su�ces to �nd an odd integer e together with a residue t andan even integer e0 such that sete0 � 1 (mod P ), because s � se+1te0 �(s(e+1)=2te0=2)2.3. Given a prime P � 1 (mod 4), a quadratic residue s, and any quadraticnon-residue t (i.e., residue t such that t(P�1)=2 � �1 (mod P )), show thate and e0 as in Item 2 can be e�ciently found.234. Prove that, for a prime P , with probability 1=2 a uniformly chosen t 2f1; :::; Pg satis�es t(P�1)=2 � �1 (mod P ).Note that randomization is used only in the last item, which in turn is used onlyfor P � 1 (mod 4).Exercise 6.17 Referring to the de�nition of arithmetic circuits (cf. Appendix B.3),show that the following decision problem is in coRP : Given a pair of circuits(C1; C2) of depth d over a �eld that has more than 2d+1 elements, determinewhether the circuits compute the same polynomial.Guideline: Note that each of these circuits computes a polynomial of degree at most 2d.Exercise 6.18 (small-space randomized step-counter) As de�ned in Exer-cise 4.5, a step-counter is an algorithm that halts after issuing a number of \signals"as speci�ed in its input, where these signals are de�ned as entering (and leaving)23Write (P � 1)=2 = (2j0 + 1) � 2i0 , and note that s(2j0+1)�2i0 � 1 (mod P ), which maybe written as s(2j0+1)�2i0 t(2j0+1)�2i0+1 � 1 (mod P ). Given that for some i0 > i > 0 and j0it holds that s(2j0+1)�2i t(2j0+1)�2i0 � 1 (mod P ), show how to �nd i00 > i � 1 and j00 suchthat s(2j0+1)�2i�1 t(2j00+1)�2i00 � 1 (mod P ). (Extra hint: s(2j0+1)�2i�1 t(2j0+1)�2i0�1 � �1(mod P ) and t(2j0+1)�2i0 � �1 (mod P ).) Applying this reasoning for i0 times, we get whatwe need.



258 CHAPTER 6. RANDOMNESS AND COUNTINGa designated state (of the algorithm). Recall that a step-counter may be run inparallel to another procedure in order to suspend the execution after a predeter-mined number of steps (of the other procedure) has elapsed. Note that there existsa simple deterministic machine that, on input n, halts after issuing n signals whileusing O(1)+ log2 n space (and eO(n) time). The goal of this exercise is presenting a(randomized) step-counter that allows for many more signals while using the sameamount of space. Speci�cally, present a (randomized) algorithm that, on inputn, uses O(1) + log2 n space (and eO(2n) time) and halts after issuing an expectednumber of 2n signals. Furthermore, prove that, with probability at least 1�2�k+1,this step-counter halts after issuing a number of signals that is between 2n�k and2n+k.Guideline: Repeat the following experiment till reaching success. Each trial consists ofuniformly selecting n bits (i.e., tossing n unbiased coins), and is deemed successful if allbits turn out to equal the value 1 (i.e., all outcomes equal head). Note that such a trialcan be implemented by using space O(1) + log2 n (mainly for implementing a standardcounter for determining the number of bits). Thus, each trial is successful with probability2�n, and the expected number of trials is 2n.Exercise 6.19 (analysis of random walks on arbitrary undirected graphs)In order to complete the proof of Proposition 6.13, prove that if fu; vg is an edgeof the graph G = (V;E) then E[Xu;v] � 2jEj. Recall that, for a �xed graph, Xu;vis a random variable representing the number of steps taken in a random walk thatstarts at the vertex u until the vertex v is �rst encountered.Guideline: Let Zu;v(n) be a random variable counting the number of minimal pathsfrom u to v that appear along a random walk of length n, where the walk starts at thestationary vertex distribution (which is well-de�ned assuming the graph is not bipartite,which in turn may be enforced by adding a self-loop). On one hand, E[Xu;v + Xv;u] =limn!1(n=E[Zu;v(n)]), due to the memoryless property of the walk. On the other hand,letting �v;u(i) def= 1 if the edge fu; vg was traversed from v to u in the ith step of sucha random walk and �v;u(i) def= 0 otherwise, we have Pni=1 �v;u(i) � Zu;v(n) + 1 andE[�v;u(i)] = 1=2jEj (because, in each step, each directed edge appears on the walk withequal probability). It follows that E[Xu;v ] < 2jEj.Exercise 6.20 (the class PP � BPP and its relation to #P) In contrast toBPP, which refers to useful probabilistic polynomial-time algorithms, the class PPdoes not capture such algorithms but is rather closely related to #P. A decisionproblem S is in PP if there exists a probabilistic polynomial-time algorithm A suchthat, for every x, it holds that x 2 S if and only if Pr[A(x) = 1] > 1=2. Note thatBPP � PP. Prove that PP is Cook-reducible to #P and vise versa.Guideline: For S 2 PP (by virtue of the algorithm A), consider the relation R such that(x; r) 2 R if and only if A accepts the input x when using the random-input r 2 f0; 1gp(jxj),where p is a suitable polynomial. Thus, x 2 S if and only if jR(x)j > 2p(jxj)�1, whichin turn can de determined by querying the counting function of R. To reduce f 2 #Pto PP, consider the relation R 2 PC that is counted by f (i.e., f(x) = jR(x)j) and the



6.2. COUNTING 259decision problem Sf as de�ned in Proposition 6.15. Let p be the polynomial specifyingthe length of solutions for R (i.e., (x; y) 2 R implies jyj = p(jxj)), and consider thefollowing algorithm A0: On input (x;N), with probability 1=2, algorithm A0 uniformlyselects y 2 f0; 1gp(jxj) and accepts if and only if (x; y) 2 R, and otherwise (i.e., with theremaining probability of 1=2) algorithm A0 accepts with probability exactly 2p(jxj)�N+0:52p(jxj) .Prove that (x;N) 2 Sf if and only if Pr[A0(x) = 1] > 1=2.Exercise 6.21 (enumeration problems) For any binary relation R, de�ne theenumeration problem of R as a function fR : f0; 1g��N ! f0; 1g� [ f?g such thatfR(x; i) equals the ith element in jR(x)j if jR(x)j � i and fR(x; i) = ? otherwise.The above de�nition refers to the standard lexicographic order on strings, but anyother e�cient order of strings will do.241. Prove that, for any polynomially bounded R, computing #R is reducible tocomputing fR.2. Prove that, for any R 2 PC, computing fR is reducible to some problem in#P.Guideline: Consider the binary relation R0 = f(hx; bi; y) : (x; y) 2 R ^ y � bg,and show that fR is reducible to #R0. (Extra hint: Note that fR(x; i) = y if and onlyif jR0(hx; yi)j = i and for every y0 < y it holds that jR0(hx; y0i)j < i.)Exercise 6.22 (arti�cial #P-complete problems) Show that there exists a re-lation R 2 PC such that #R is #P-complete and SR = f0; 1g�. Furthermore, provethat for every R0 2 PC there exists R 2 PF \ PC such that for every x it holdsthat #R(x) = #R0(x) + 1. Note that Theorem 6.19 follows by starting with anyrelation R0 2 PC such that #R0 is #P-complete.Exercise 6.23 (computing the permanent of integer matrices) Prove thatcomputing the permanent of matrices with 0/1-entries is computationally equiva-lent to computing the number of perfect matchings in bipartite graphs.Guideline: Given a bipartite graph G = ((X;Y ); E), consider the matrixM representingthe edges between X and Y (i.e., the (i; j)-entry in M is 1 if the ith vertex of X isconnected to the jth entry of Y ), and note that only perfect matchings in G contributeto the permanent of M .Exercise 6.24 (computing the permanent modulo 3) Combining Proposition 6.21and Theorem 6.29, prove that for every �xed n > 1 that does not divide any powerof c, computing the permanent modulo n is NP-hard under randomized reductions.Since Proposition 6.21 holds for c = 210, hardness holds for every integer n > 1that is not a power of 2. (We mention that, on the other hand, for any �xed n = 2e,the permanent modulo n can be computed in polynomial-time [223, Thm. 3].)24An order of strings is a 1-1 and onto mapping � from the natural numbers to the set of allstrings. Such order is called e�cient if both � and its inverse are e�ciently computable. Thestandard lexicographic order satis�es �(i) = y if the string 1y is the (compact) binary expansionof the integer i; that is �(1) = �, �(2) = 0, �(3) = 1, �(4) = 00, etc.



260 CHAPTER 6. RANDOMNESS AND COUNTINGGuideline: Apply the reduction of Proposition 6.21 to the promise problem of decidingwhether a 3CNF formula has a unique satis�able assignment or is unsatis�able. Note thatfor any m it holds that cm 6� 0 (mod n).Exercise 6.25 (negative values in Proposition 6.21) Assuming P 6= NP , provethat Proposition 6.21 cannot hold for a set I containing only non-negative integers.Note that the claim holds even if the set I is not �nite (and even if I is the set ofall non-negative integers).Guideline: A reduction as in Proposition 6.21 yields a Karp-reduction of 3SAT to decidingwhether the permanent of a matrix with entries in I is non-zero. Note that the permanentof a non-negative matrix is non-zero if and only if the corresponding bipartite graph hasa perfect matching.Exercise 6.26 (high-level analysis of the permanent reduction) Establish thecorrectness of the high-level reduction presented in the proof of Proposition 6.21.That is, show that if the clause gadget satis�es the three conditions postulated inthe said proof, then each satisfying assignment of � contributes exactly cm to theSWCC of G� whereas unsatisfying assignments have no contribution.Guideline: Cluster the cycle covers of G� according to the set of track edges that theyuse (i.e., the edges of the cycle cover that belong to the various tracks). (Note thecorrespondence between these edges and the external edges used in the de�nition of thegadget's properties.) Using the postulated conditions (regarding the clause gadget) provethat, for each such set T of track edges, if the sum of the weights of all cycle covers thatuse the track edges T is non-zero then the following hold:1. The intersection of T with the set of track edges incident at each speci�c clausegadget is non-empty. Furthermore, if this set contains an incoming edge (resp.,outgoing edge) of some entry-vertex (resp., exit-vertex) then it also contains anoutgoing edge (resp., incoming edge) of the corresponding exit-vertex (resp., entry-vertex).2. If T contains an edge that belongs to some track then it contains all edges of thistrack. It follows that, for each variable x, the set T contains the edges of a singletrack associated with x.3. The tracks \picked" by T correspond to a single truth assignment to the variables of�, and this assignment satis�es � (because, for each clause, T contains an externaledge that corresponds to a literal that satis�es this clause).Note that di�erent sets of the aforementioned type yield di�erent satisfying assignments,and that each satisfying assignment is obtained from some set of the aforementioned type.Exercise 6.27 (analysis of the implementation of the clause gadget) Establishthe correctness of the implementation of the clause gadget presented in the proof ofProposition 6.21. That is, show that if the box satisfy the three conditions postu-lated in the said proof, then the clause gadget of Figure 6.4 satis�es the conditionspostulated for it.Guideline: Cluster the cycle covers of a gadget according to the set of non-box edges thatthey use, where non-box edges are the edges shown in Figure 6.4. Using the postulated



6.2. COUNTING 261conditions (regarding the box) prove that, for each set S of non-box edges, if the sum ofthe weights of all cycle covers that use the non-box edges S is non-zero then the followinghold:1. The intersection of S with the set of edges incident at each box must containtwo (non-seloop) edges, one incident at each of the box's terminals. Needless tosay, one edge is incoming and the other outgoing. Referring to the six edges thatconnects one of the six designated vertices (of the gadget) with the correspondingbox terminals as connectives, note that if S contains a connective incident at theterminal of some box then it must also contain the connective incident at the otherterminal. In such a case, we say that this box is picked by S,2. Each of the three (literal-designated) boxes that is not picked by S is \traversed"from left to right (i.e., the cycle cover contains an incoming edge of the left terminaland an outgoing edge of the right terminal). Thus, the set S must contain aconnective, because otherwise no directed cycle may cover the leftmost vertex shownin Figure 6.4. That is, S must pick some box.3. The set S is fully determined by the non-empty set of boxes that it picks.The postulated properties of the clause gadget follow, with c = b5.Exercise 6.28 (analysis of the design of a box for the clause gadget) Provethat the 4-by-4 matrix presented in Eq. (6.4) satis�es the properties postulated forthe \box" used in the second part of the proof of Proposition 6.21. In particular:1. Show a correspondence between the conditions required of the box and con-ditions regarding the value of the permanent of certain sub-matrices of theadjacency matrix of the graph.(Hint: For example, show that the �rst condition correspond to requiring that the valueof the permanent of the entire matrix equals zero. The second condition refers to sub-matrices obtained by omitting either the �rst row and fourth column or the fourth rowand �rst column.)2. Verify that the matrix in Eq. (6.4) satis�es the aforementioned conditions(regarding the value of the permanent of certain sub-matrices).Prove that no 3-by-3 matrix (and thus also no 2-by-2 matrix) can satisfy the afore-mentioned conditions.Exercise 6.29 (error reduction for approximate counting) Show that the er-ror probability � in De�nition 6.24 can be reduced from 1=3 (or even (1=2) +(1=poly(jxj)) to exp(�poly(jxj)).Guideline: Invoke the weaker procedure for an adequate number of times and take themedian value among the values obtained in these invocations.Exercise 6.30 (strong approximation for some #P-complete problems) Showthat there exists #P-complete problems (albeit unnatural ones) for which an ("; 0)-approximation can be found by a (deterministic) polynomial-time algorithm. Fur-thermore, the running-time depends polynomially on 1=".



262 CHAPTER 6. RANDOMNESS AND COUNTINGGuideline: Combine any #P-complete problem referring to some R1 2 PC with atrivial counting problem (e.g., the counting problem associated with the trivial relationR2 = [n2Nf(x; y) : x; y 2 f0; 1gng). Show that, without loss of generality, it holds that#R1(x) � 2jxj=2. Prove that the counting problem of R = f(x; 1y) : (x; y) 2 R1g [f(x; 0y) : (x; y) 2 R2g is #P-complete (by reducing from #R1). Present a deterministicalgorithm that, on input x and " > 0, outputs an ("; 0)-approximation of #R(x) in timepoly(jxj=") (Extra hint: distinguish between " � 2�jxj=2 and " < 2�jxj=2).Exercise 6.31 (relative approximation for DNF satisfaction) Referring tothe text of x6.2.2.1, prove the following claims.1. Both assumptions regarding the general setting hold in case Si = C�1i (1),where C�1i (1) denotes the set of truth assignments that satisfy the conjunc-tion Ci.Guideline: In establishing the second assumption note that it reduces to theconjunction of the following two assumptions:(a) Given i, one can e�ciently generate a uniformly distributed element of Si.Actually, generating a distribution that is almost uniform over Si su�ces.(b) Given i and x, one can e�ciently determine whether x 2 Si.2. Prove Proposition 6.26, relating to details such as the error probability in animplementation of Construction 6.25.3. Note that Construction 6.25 does not require exact computation of jSij. An-alyze the output distribution in the case that we can only approximate jSijup-to a factor of 1� "0.Exercise 6.32 (reducing the relative deviation in approximate counting)Prove that, for any R 2 PC and every polynomial p and constant � < 0:5, thereexists R0 2 PC such that (1=p; �)-approximation for #R is reducible to (1=2; �)-approximation for #R0. Furthermore, for any F (n) = exp(poly(n)), prove thatthere exists R00 2 PC such that (1=p; �)-approximation for #R is reducible to ap-proximating #R00 to within a factor of F with error probability �.Guideline (for the main part): For t(n) = �(p(n)), de�neR0 such that (y1; :::; yt(jxj)) 2R0(x) if and only if (8i) yi 2 R(x). Note that jR(x)j = jR0(x)j1=t(jxj), and thus ifa = (1� (1=2)) � jR0(x)j then a1=t(jxj) = (1� (1=2))1=t(jxj) � jR(x)j.Exercise 6.33 (deviation reduction in approximate counting, cont.) In con-tinuation to Exercise 6.32, prove that if R is NP-complete via parsimonious reduc-tions then, for every positive polynomial p and constant � < 0:5, the problem of(1=p; �)-approximation for #R is reducible to (1=2; �)-approximation for #R.(Hint: Compose the reduction (to the problem of (1=2; �)-approximation for #R0) provided inExercise 6.32 with the parsimonious reduction of #R0 to #R.)Prove that, for every function F 0 such that F 0(n) = exp(no(1)), we can also reducethe aforementioned problems to the problem of approximating #R to within afactor of F 0 with error probability �.



6.2. COUNTING 263Guideline: Using R00 as in Exercise 6.32, we encounter a technical di�culty. The issue isthat the composition of the (\amplifying") reduction of #R to #R00 with the parsimoniousreduction of #R00 to #R may increase the length of the instance. Indeed, the length of thenew instance is polynomial in the length of the original instance, but this polynomial maydepend on R00, which in turn depends on F 0. Thus, we cannot use F 0(n) = exp(n1=O(1))but F 0(n) = exp(no(1)) is �ne.Exercise 6.34 Referring to the procedure in the proof Theorem 6.27, show how touse an NP-oracle in order to determine whether the number of solutions that \passa random sieve" is greater than t. You are allowed queries of length polynomial inthe length of x; h and in the size of t.Guideline: Consider the set S0R;H def= f(x; i; h; 1t) : 9y1; :::; yt s.t.  0(x; h; y1; :::; yt)g,where  0(x; h; y1; :::; yt) holds if and only if the yj are di�erent and for every j it holdsthat (x; yj)2R ^ h(yj)=0i.Exercise 6.35 (parsimonious reductions and Theorem 6.29) Demonstrate theimportance of parsimonious reductions in Theorem 6.29 by proving that there ex-ists a search problem R 2 PC such that every problem in PC is reducible to R(by a non-parsimonious reduction) and still the the promise problem (USR; SR) isdecidable in polynomial-time.Guideline: Consider the following arti�cial witness relation R for SAT in which (�; �� ) 2R if � 2 f0; 1g and � satis�es �. Note that the standard witness relation of SAT is reducibleto R, but this reduction is not parsimonious. Also note that USR = ; and thus (USR; SR)is trivial.Exercise 6.36 In continuation to Exercise 6.35, prove that there exists a searchproblem R 2 PC such that #R is #P-complete and still the the promise problem(USR; SR) is decidable in polynomial-time. Provide one proof for the case that Ris PC-complete and another proof for R 2 PF .Guideline: For the �rst case, the relation R suggested in the guideline to Exercise 6.35will do. For the second case, rely on Theorem 6.20 and on the fact that it is easy todecide (USR; SR) when R is the corresponding perfect matching relation (by computingthe determinant).Exercise 6.37 Prove that SAT is randomly reducible to deciding unique solutionfor SAT, without using the fact that SAT is NP-complete via parsimonious reductions.Guideline: Follow the proof of Theorem 6.29, while using the family of pairwise inde-pendent hashing functions provided in Construction D.3. Note that, in this case, thecondition (� 2RSAT(�)) ^ (h(� ) = 0i) can be directly encoded as a CNF formula. Thatis, consider the formula �h such that �h(z) def= �(z) ^ (h(z)=0i), and note that h(z)=0ican be written as the conjunction of i conditions, where each condition is a CNF that islogically equivalent to the parity of some of the bits of z (where the identity of these bitsis determined by h).



264 CHAPTER 6. RANDOMNESS AND COUNTINGExercise 6.38 (an alternative procedure for approximate counting) AdaptStep 1 of Construction 6.32 so to obtain an approximate counting procedure for#R.Guideline: For m = 0; 1; :::`, the procedure invokes Step 1 of Construction 6.32 untila negative answer is obtained, and outputs 120` � 2m for the current value of m. ForjR(x)j > 80`, this yields a constant factor approximation of jR(x)j. In fact, we can obtaina better estimate by making additional queries at iteration m (i.e., queries of the form(x; h; 1i) for i = 10`; :::; 120`). The case jR(x)j � 80` can be treated by using Step 2 ofConstruction 6.32, in which case we obtain an exact count.Exercise 6.39 Let R be an arbitrary PC-complete search problem. Show thatapproximate counting and uniform generation for R can be randomly reduced todeciding membership in SR, where by approximate counting we mean a (1� (1=p)-approximation for any polynomial p.Guideline: Note that Construction 6.32 yields such procedures (see also Exercise 6.38),except that they make oracle calls to some other set in NP. Using the NP-completenessof SR, we are done.



Chapter 7The Bright Side of HardnessSo saying she donned her beautiful, glittering golden{Ambrosialsandals, which carry her ying like the wind over the vast landand sea; she grasped the redoubtable bronze-shod spear, so stoutand sturdy and strong, wherewith she quells the ranks of heroeswho have displeased her, the [bright-eyed] daughter of her mightyfather. Homer, Odyssey, 1:96{101The existence of natural computational problems that are (or seem to be) in-feasible to solve is usually perceived as bad news, because it means that we cannotdo things we wish to do. But these bad news have a positive side, because hardproblem can be \put to work" to our bene�t, most notably in cryptography.It seems that utilizing hard problems requires the ability to e�ciently generatehard instances, which is not guaranteed by the notion of worst-case hardness. Inother words, we refer to the gap between \occasional" hardness (e.g., worst-casehardness or mild average-case hardness) and \typical" hardness (with respect tosome tractable distribution). Much of the current chapter is devoted to bridgingthis gap, which is known by the term hardness ampli�cation. The actual applica-tions of typical hardness are presented in Chapter 8 and Appendix C.Summary: We consider two conjectures that are related to P 6= NP .The �rst conjecture is that there are problems that are solvable inexponential-time (i.e., in E) but are not solvable by (non-uniform) fam-ilies of small (say polynomial-size) circuits. We show that this worst-case conjecture can be transformed into an average-case hardness result;speci�cally, we obtain predicates that are strongly \inapproximable" bysmall circuits. Such predicates are used towards derandomizing BPPin a non-trivial manner (see Section 8.3).The second conjecture is that there are problems in NP (i.e., searchproblems in PC) for which it is easy to generate (solved) instances that265



266 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSare typically hard to solve (for a party that did not generate theseinstances). This conjecture is captured in the formulation of one-wayfunctions, which are functions that are easy to evaluate but hard toinvert (in an average-case sense). We show that functions that are hardto invert in a relatively mild average-case sense yield functions thatare hard to invert in a strong average-case sense, and that the latteryield predicates that are very hard to approximate (called hard-corepredicates). Such predicates are useful for the construction of general-purpose pseudorandom generators (see Section 8.2) as well as for a hostof cryptographic applications (see Appendix C).In the rest of this chapter, the actual order of presentation of the two aforemen-tioned conjectures and their consequences is reversed: We start (in Section 7.1)with the study of one-way functions, and only later (in Section 7.2) turn to thestudy of problems in E that are hard for small circuits.Teaching note: We list several reasons for preferring the aforementioned order ofpresentation. First, we mention the great conceptual appeal of one-way functions andthe fact that they have very practical applications. Second, hardness ampli�cationin the context of one-way functions is technically simpler than the ampli�cation ofhardness in the context of E . (In fact, Section 7.2 is the most technical text in thisbook.) Third, some of the techniques that are shared by both treatments seem easier tounderstand �rst in the context of one-way functions. Last, the current order facilitatesthe possibility of teaching hardness ampli�cation only in one incarnation, where thecontext of one-way functions is recommended as the incarnation of choice (for theaforementioned reasons).If you wish to teach hardness ampli�cation and pseudorandomness in the two afore-mentioned incarnations, then we suggest following the order of the current text. Thatis, �rst teach hardness ampli�cation in its two incarnations, and only next teach pseu-dorandomness in the corresponding incarnations.Prerequisites: We assume a basic familiarity with elementary probability theory(see Appendix D.1) and randomized algorithms (see Section 6.1). In particular,standard conventions regarding random variables (presented in Appendix D.1.1)and various \laws of large numbers" (presented in Appendix D.1.2) will be exten-sively used.7.1 One-Way FunctionsLoosely speaking, one-way functions are functions that are easy to evaluate buthard (on the average) to invert. Thus, in assuming that one-way functions exist,we are postulating the existence of e�cient processes (i.e., the computation of thefunction in the forward direction) that are hard to reverse. Analogous phenomenain daily life are known to us in abundance (e.g., the lighting of a match). Thus,the assumption that one-way functions exist is a complexity theoretic analogue ofour daily experience.



7.1. ONE-WAY FUNCTIONS 267One-way functions can also be thought of as e�cient ways for generating \puz-zles" that are infeasible to solve; that is, the puzzle is a random image of thefunction and a solution is a corresponding preimage. Furthermore, the person gen-erating the puzzle knows a solution to it and can e�ciently verify the validity of(possibly other) solutions to the puzzle. In fact, as explained in Section 7.1.1, everymechanism for generating such puzzles can be converted to a one-way function.The reader may note that when presented in terms of generating hard puzzles,one-way functions have a clear cryptographic avor. Indeed, one-way functionsare central to cryptography, but we shall not explore this aspect here (and ratherrefer the reader to Appendix C). Similarly, one-way functions are closely related to(general-purpose) pseudorandom generators, but this connection will be exploredin Section 8.2. Instead, in the current section, we will focus on one-way functionsper se.Teaching note: While we recommend including a basic treatment of pseudorandom-ness within a course on complexity theory, we do not recommend doing so with respectto cryptography. The reason is that cryptography is far more complex than pseudo-randomness (e.g., compare the de�nition of secure encryption to the the de�nition ofpseudorandom generators). The extra complexity is due to conceptual richness, whichis something good, except that some of these conceptual issues are central to cryptog-raphy but not to complexity theory. Thus, teaching cryptography in the context of acourse on complexity theory is likely to either overload the course with material thatis not central to complexity theory or cause a super�cial and misleading treatment ofcryptography. We are not sure as to which of these two possibilities is worse. Still, forthe bene�t of the interested reader, we have included an overview of the foundations ofcryptography as an appendix to the main text (see Appendix C).7.1.1 Generating hard instances and one-way functionsLet us start by examining the prophecy, made in the preface to this chapter, bywhich intractable problems can be used to our bene�t. The basic idea is thatintractable problems o�er a way of generating an obstacle that stands in the wayof our opponents and thus protects our interests. These opponents may be eitherreal (e.g., in the context of cryptography) or imaginary (e.g., in the context ofderandomization), but in both cases we wish to prevent them from seeing somethingor doing something. Hard obstacles seems useful towards this goal.Let us assume that P 6= NP or even that NP is not contained in BPP. Can weuse this assumption to our bene�t? Not really: The NP 6� BPP assumption refersto the worst-case complexity of problems, while bene�ting from hard problemsseems to require the ability to generate hard instances. In particular, the generatedinstances should be typically hard and not merely occasionally hard; that is, weseek average-case hardness and not merely worst-case hardness.Taking a short digression, we mention that in Section 7.2 we shall see that worst-case hardness (of NP or even E) can be transformed into average-case hardnessof E . Such a transformation is not known for NP itself, and in some applications(e.g., in cryptography) we do need the hard-on-the-average problem to be in NP .



268 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSIn this case, we currently need to assume that, for some problem in NP , it is thecase that hard instances are easy to generate (and not merely exist). That is, weassume that NP is \hard on the average" with respect to a distribution that ise�ciently sampleable. This assumption will be further discussed in Section 10.2.However, for the aforementioned applications (e.g., in cryptography) this as-sumption does not seem to su�ce either: we know how to utilize such \hard onthe average" problems only when we can e�ciently generate hard instances coupledwith adequate solutions.1 That is, we assume that, for some search problem inPC (resp., decision problem in NP), we can e�ciently generate instance-solutionpairs (resp., yes-instances coupled with corresponding NP-witnesses) such that theinstance is hard to solve (resp., hard to verify as belonging to the set). Needless tosay, the hardness assumption refers to a person that does not get the solution (resp.,witness). Thus, we can e�ciently generate hard \puzzles" coupled with solutions,and so we may present to others hard puzzles for which we know a solution.Let us formulate the foregoing discussion. Referring to De�nition 2.3, we con-sider a relation R in PC (i.e., R is polynomially bounded and membership in R canbe determined in polynomial-time), and assume that there exists a probabilisticpolynomial-time algorithm G that satis�es the following two conditions:1. On input 1n, algorithm G always generates a pair in R such that the �rstelement has length n. That is, Pr[G(1n) 2 R \ (f0; 1gn � f0; 1g�)] = 1.2. It is typically infeasible to �nd solutions to instances that are generated byG; that is, when only given the �rst element of G(1n), it is infeasible to�nd an adequate solution. Formally, denoting the �rst element of G(1n) byG1(1n), for every probabilistic polynomial-time (solver) algorithm S, it holdsthat Pr[(G1(1n); S(G1(1n)) 2 R] = �(n), where � vanishes faster than anypolynomial fraction (i.e., for every positive polynomial p and all su�cientlylarge n it is the case that �(n) < 1=p(n)).We call G a generator of solved intractable instances for R. We will show that sucha generator exists if and only if one-way functions exist, where one-way functionsare functions that are easy to evaluate but hard (on the average) to invert. Thatis, a function f :f0; 1g�!f0; 1g� is called one-way if there is an e�cient algorithmthat on input x outputs f(x), whereas any feasible algorithm that tries to �nd apreimage of f(x) under f may succeed only with negligible probability (where theprobability is taken uniformly over the choices of x and the algorithm's coin tosses).Associating feasible computations with probabilistic polynomial-time algorithmsand negligible functions with functions that vanish faster than any polynomialfraction, we obtain the following de�nition.De�nition 7.1 (one-way functions): A function f :f0; 1g�!f0; 1g� is called one-way if the following two conditions hold:1We wish to stress the di�erence between the two gaps discussed here. Our feeling is thatthe non-usefulness of worst-case hardness (per se) is far more intuitive than the non-usefulness ofaverage-case hardness that does not correspond to an e�cient generation of \solved" instances.



7.1. ONE-WAY FUNCTIONS 2691. Easy to evaluate: There exist a polynomial-time algorithm A such that A(x) =f(x) for every x 2 f0; 1g�.2. Hard to invert: For every probabilistic polynomial-time algorithm A0, everypolynomial p, and all su�ciently large n,Prx2f0;1gn [A0(f(x); 1n) 2 f�1(f(x))] < 1p(n) (7.1)where the probability is taken uniformly over all the possible choices of x 2f0; 1gn and all the possible outcomes of the internal coin tosses of algorithmA0.Algorithm A0 is given the auxiliary input 1n so as to allow it to run in time poly-nomial in the length of x, which is important in case f drastically shrinks its input(e.g., jf(x)j = O(log jxj)). Typically (and, in fact, without loss of generality, seeExercise 7.1), f is length preserving, in which case the auxiliary input 1n is re-dundant. Note that A0 is not required to output a speci�c preimage of f(x); anypreimage (i.e., element in the set f�1(f(x))) will do. (Indeed, in case f is 1-1,the string x is the only preimage of f(x) under f ; but in general there may beother preimages.) It is required that algorithm A0 fails (to �nd a preimage) withoverwhelming probability, when the probability is also taken over the input distri-bution. That is, f is \typically" hard to invert, not merely hard to invert in some(\rare") cases.Proposition 7.2 The following two conditions are equivalent:1. There exists a generator of solved intractable instances for some R 2 NP.2. There exist one-way functions.Proof Sketch: Suppose that G is such a generator of solved intractable instancesfor some R 2 NP, and suppose that on input 1n it tosses `(n) coins. For simplicity,we assume that `(n) = n, and consider the function g(r) = G1(1jrj; r), whereG(1n; r) denotes the output of G on input 1n when using coins r (and G1 is asin the foregoing discussion). Then g must be one-way, because an algorithm thatinverts g on input x = g(r) obtains r0 such that G1(1n; r0) = x and G(1n; r0) mustbe in R (which means that the second element of G(1n; r0) is a solution to x). Incase `(n) 6= n (and assuming without loss of generality that `(n) � n), we de�neg(r) = G1(1n; s) where n is the largest integer such that `(n) � jrj and s is the`(n)-bit long pre�x of r.Suppose, on the other hand, that f is a one-way function (and that f islength preserving). Consider G(1n) that uniformly selects r 2 f0; 1gn and out-puts (f(r); r), and let R def= f(f(x); x) : x 2 f0; 1g�g. Then R is in PC and Gis a generator of solved intractable instances for R, because any solver of R (oninstances generated by G) is e�ectively inverting f on f(Un).



270 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSComments. Several candidates one-way functions and variation on the basicde�nition appear in Appendix C.2.1. Here, for the sake of future discussions, wede�ne a stronger version of one-way functions, which refers to the infeasibility ofinverting the function by non-uniform circuits of polynomial-size. We seize theopportunity and use an alternative technical formulation, which is based on theprobabilistic conventions in Appendix D.1.1.2De�nition 7.3 (one-way functions, non-uniformly hard): A one-way function f :f0; 1g� ! f0; 1g� is said to be non-uniformly hard to invert if for every family ofpolynomial-size circuits fCng, every polynomial p, and all su�ciently large n,Pr[Cn(f(Un); 1n) 2 f�1(f(Un))] < 1p(n)We note that if a function is infeasible to invert by polynomial-size circuits then it ishard to invert by probabilistic polynomial-time algorithms; that is, non-uniformity(more than) compensates for lack of randomness. See Exercise 7.2.7.1.2 Ampli�cation of Weak One-Way FunctionsIn the forgoing discussion we have interpreted \hardness on the average" in a verystrong sense. Speci�cally, we required that any feasible algorithm fails to solvethe problem (e.g., invert the one-way function) almost always (i.e., except withnegligible probability). This interpretation is indeed the one that is suitable forvarious applications. Still, a weaker interpretation of hardness on the average,which is also appealing, only requires that any feasible algorithm fails to solve theproblem often enough (i.e., with noticeable probability). The main thrust of thecurrent section is showing that the mild form of hardness on the average can betransformed into the strong form discussed in Section 7.1.1. Let us �rst de�ne themild form of hardness on the average, using the framework of one-way functions.Speci�cally, we de�ne weak one-way functions.De�nition 7.4 (weak one-way functions): A function f :f0; 1g�!f0; 1g� is calledweakly one-way if the following two conditions hold:1. Easy to evaluate: As in De�nition 7.1.2. Weakly hard to invert: There exists a positive polynomial p such that forevery probabilistic polynomial-time algorithm A0 and all su�ciently large n,Prx2f0;1gn [A0(f(x); 1n) 62 f�1(f(x))] > 1p(n) (7.2)where the probability is taken uniformly over all the possible choices of x 2f0; 1gn and all the possible outcomes of the internal coin tosses of algorithmA0. In such a case, we say that f is 1=p-one-way.2Speci�cally, letting Un denote a random variable uniformly distributed in f0; 1gn , we maywrite Eq. (7.1) as Pr[A0(f(Un); 1n) 2 f�1(f(Un))] < 1=p(n), recalling that both occurrences ofUn refer to the same sample.



7.1. ONE-WAY FUNCTIONS 271Here we require that algorithm A0 fails (to �nd an f -preimage for a random f -image) with noticeable probability, rather than with overwhelmingly high prob-ability (as in De�nition 7.1). For clarity, we will occasionally refer to one-wayfunctions as in De�nition 7.1 by the term strong one-way functions.We note that, assuming that one-way functions exist at all, there exists weakone-way functions that are not strongly one-way (see Exercise 7.3). Still, any weakone-way function can be transformed into a strong one-way function. This is indeedthe main result of the current section.Theorem 7.5 (ampli�cation of one-way functions): The existence of weak one-way functions implies the existence of strong one-way functions.Proof Sketch: The construction itself is straightforward. We just parse the argu-ment to the new function into su�ciently many blocks, and apply the weak one-wayfunction on the individual blocks. That is, suppose that f is 1=p-one-way, for somepolynomial p, and consider the following functionF (x1; :::; xt) = (f(x1); :::; f(xt)) (7.3)where t def= n � p(n) and x1; :::; xt 2 f0; 1gn.(Indeed F should be extended to strings of length outside fn2 � p(n) : n 2 Ng andthis extension must be hard to invert on all preimage lengths.)3We warn that the hardness of inverting the resulting function F is not estab-lished by mere \combinatorics" (i.e., considering, for any S � f0; 1gn, the relativevolume of St in (f0; 1gn)t, where S represents the set of f -preimages that aremapped by f to an image that is \easy to invert"). Speci�cally, one may not as-sume that the potential inverting algorithm works independently on each block.Indeed this assumption seems reasonable, but we do not know if nothing is lostby this restriction. (In fact, proving that nothing is lost by this restriction is aformidable research project.) In general, we should not make assumptions regard-ing the class of all e�cient algorithms (as underlying the de�nition of one-wayfunctions), unless we can actually prove that nothing is lost by such assumptions.The hardness of inverting the resulting function F is proved via a so called\reducibility argument" (which is used to prove all conditional results in the area).By a reducibility argument we actually mean a reduction, but one that is analyzedwith respect to average case complexity. Speci�cally, we show that any algorithmthat inverts the resulting function F with non-negligible success probability canbe used to construct an algorithm that inverts the original function f with successprobability that violates the hypothesis (regarding f). In other words, we reducethe task of \strongly inverting" f (i.e., violating its weak one-wayness) to the taskof \weakly inverting" F (i.e., violating its strong one-wayness). In particular, oninput y = f(x), the reduction invokes the F -inverter (polynomially) many times,each time feeding it with a sequence of random f -images that contains y at a3One simple extension is de�ning F (x) to equal F (x1; :::; xn�p(n)), where n is the largest integersatisfying n2p(n) � jxj and xi is the ith consecutive n-bit long string in x (i.e., x = x1 � � �xn�p(n)x0,where x1; :::; xn�p(n) 2 f0; 1gn).



272 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSrandom location. (Indeed such a sequence corresponds to a random image of F .)Details follow.Suppose towards the contradiction that F is not strongly one-way; that is, thereexists a probabilistic polynomial-time algorithm B0 and a polynomial q(�) so thatfor in�nitely many m'sPr[B0(F (Um))2F�1(F (Um))] > 1q(m) (7.4)Focusing on such a generic m and assuming (see Footnote 3) that m = n2p(n), wepresent the following probabilistic polynomial-time algorithm, A0, for inverting f .On input y and 1n (where supposedly y = f(x) for some x 2 f0; 1gn), algorithm A0proceeds by applying the following probabilistic procedure, denoted I , on input yfor t0(n) times, where t0(�) is a polynomial that depends on the polynomials p andq (speci�cally, we set t0(n) def= 2n2 � p(n) � q(n2p(n))).Procedure I (on input y and 1n):For i = 1 to t(n) def= n � p(n) do begin(1) Select uniformly and independently a sequence of strings x1; :::; xt(n) 2 f0; 1gn.(2) Compute (z1; :::; zt(n)) B0(f(x1); :::; f(xi�1); y; f(xi+1); :::; f(xt(n)))(Note that y is placed in the ith position instead of f(xi).)(3) If f(zi) = y then halt and output zi.(This is considered a success).endUsing Eq. (7.4), we now present a lower bound on the success probability of al-gorithm A0, deriving a contradiction to the theorem's hypothesis. To this end wede�ne a set, denoted Sn, that contains all n-bit strings on which the procedure Isucceeds with probability greater than n=t0(n). (The probability is taken only overthe coin tosses of procedure I). Namely,Sn def= �x2f0; 1gn : Pr[I(f(x))2f�1(f(x))] > nt0(n)�In the next two claims we shall show that Sn contains all but at most a 1=2p(n)fraction of the strings of length n, and that for each string x 2 Sn algorithm A0inverts f on f(x) with probability exponentially close to 1. It will follow that A0inverts f on f(Un) with probability greater than 1� (1=p(n)), in contradiction tothe theorem's hypothesis.Claim 7.5.1: For every x 2SnPr �A0(f(x))2f�1(f(x))� > 1� 2�nThis claim follows directly from the de�nitions of Sn and A0.Claim 7.5.2: jSnj > �1� 12p(n)� � 2n



7.1. ONE-WAY FUNCTIONS 273The rest of the proof is devoted to establishing this claim, and indeed combiningClaims 7.5.1 and 7.5.2, the theorem follows.The key observation is that, for every i 2 [t(n)] and every xi 2 f0; 1gn n Sn, itholds that Pr hB0(F (Un2p(n)))2F�1(F (Un2p(n))) ���U (i)n = xi i� Pr �I(f(xi)) 2 f�1(f(xi))� � nt0(n)where U (1)n ; :::; U (n�p(n))n denote the n-bit long blocks in the random variable Un2p(n).It follows that� def= Pr hB0(F (Un2p(n)))2F�1(F (Un2p(n))) ^ �9i s.t. U (i)n 2f0; 1gn n Sn�i� t(n)Xi=1 Pr hB0(F (Un2p(n)))2F�1(F (Un2p(n))) ^ U (i)n 2f0; 1gn n Sni� t(n) � nt0(n) = 12q(n2p(n))where the equality is due to t0(n) = 2n2 � p(n) � q(n2p(n)) and t(n) = n � p(n). Onthe other hand, using Eq. (7.4), we have� � Pr �B0(F (Un2p(n)))2F�1(F (Un2p(n)))� � Pr h(8i)U (i)n 2Sni� 1q(n2p(n)) � Pr [Un2Sn]t(n) :Using t(n) = n � p(n), we get Pr[Un 2 Sn] > (1=2q(n2p(n)))1=(n�p(n)), which impliesPr[Un 2 Sn] > 1 � (1=2p(n)) for su�ciently large n. Claim 7.5.2 follows, and sodoes the theorem.Digest. Let us recall the structure of the proof of Theorem 7.5. Given a weakone-way function f , we �rst constructed a polynomial-time computable functionF with the intention of later proving that F is strongly one-way. To prove thatF is strongly one-way, we used a reducibility argument. The argument transformse�cient algorithms that supposedly contradict the strong one-wayness of F intoe�cient algorithms that contradict the hypothesis that f is weakly one-way. HenceF must be strongly one-way. We stress that our algorithmic transformation, whichis in fact a randomized Cook reduction, makes no implicit or explicit assumptionsabout the structure of the prospective algorithms for inverting F . Such assumptions(e.g., the \natural" assumption that the inverter of F works independently on eachblock) cannot be justi�ed (at least not at our current state of understanding of thenature of e�cient computations).We use the term a reducibility argument, rather than just saying a reductionso as to emphasize that we do not refer here to standard (worst-case complexity)reductions. Let us clarify the distinction: In both cases we refer to reducing the



274 CHAPTER 7. THE BRIGHT SIDE OF HARDNESStask of solving one problem to the task of solving another problem; that is, we usea procedure solving the second task in order to construct a procedure that solvesthe �rst task. However, in standard reductions one assumes that the second taskhas a perfect procedure solving it on all instances (i.e., on the worst-case), andconstructs such a procedure for the �rst task. Thus, the reduction may invoke thegiven procedure (for the second task) on very \non-typical" instances. This cannotbe allowed in our reducibility arguments. Here, we are given a procedure thatsolves the second task with certain probability with respect to a certain distribution.Thus, in employing a reducibility argument, we cannot invoke this procedure onany instance. Instead, we must consider the probability distribution, on instancesof the second task, induced by our reduction. In our case (as in many cases)the latter distribution equals the distribution to which the hypothesis (regardingsolvability of the second task) refers, but in general these distributions need onlybe \su�ciently close" in an adequate sense (which depends on the analysis). Inany case, a careful consideration of the distribution induced by the reducibilityargument is due. (Indeed, the same issue arises in the context of reductions among\distributional problems" considered in Section 10.2.)An information theoretic analogue. Theorem 7.5 (or rather its proof) has anatural information theoretic (or \probabilistic") analogue that refers to the am-pli�cation of the success probability by repeated experiments: If some event occurswith probability p in a single experiment, then the event will occur with very highprobability (i.e., 1�e�n) when the experiment is repeated n=p times. The analogyis to evaluating the function F at a random input, where each block of this inputmay be viewed as an attempt to hit the noticeable \hard region" of f . The readeris probably convinced at this stage that the proof of Theorem 7.5 is much morecomplex than the proof of the information theoretic analogue. In the informationtheoretic context the repeated experiments are independent by de�nition, whereasin the computational context no such independence can be guaranteed. (Indeed, theindependence assumption corresponds to the naive argument discussed at the be-ginning of the proof of Theorem 7.5.) Another indication to the di�erence betweenthe two settings follows. In the information theoretic setting, the probability thatthe event did not occur in any of the repeated trials decreases exponentially withthe number of repetitions. In contrast, in the computational setting we can onlyreach an unspeci�ed negligible bound on the inverting probabilities of polynomial-time algorithms. Furthermore, for all we know, it may be the case that F can bee�ciently inverted on F (Un2p(n)) with success probability that is sub-exponentiallydecreasing (e.g., with probability 2�(log2 n)3), whereas the analogous informationtheoretic bound is exponentially decreasing (i.e., e�n).7.1.3 Hard-Core PredicatesOne-way functions per se su�ce for one central application: the construction ofsecure signature schemes (see Appendix C.6). For other applications, one relies notmerely on the infeasibility of fully recovering the preimage of a one-way function,



7.1. ONE-WAY FUNCTIONS 275but rather on the infeasibility of meaningfully guessing bits in the preimage. Thelatter notion is captured by the de�nition of a hard-core predicate.Recall that saying that a function f is one-way means that given a typical y(in the range of f) it is infeasible to �nd a preimage of y under f . This does notmean that it is infeasible to �nd partial information about the preimage(s) of yunder f . Speci�cally, it may be easy to retrieve half of the bits of the preimage(e.g., given a one-way function f consider the function f 0 de�ned by f 0(x; r) def=(f(x); r), for every jxj= jrj). We note that hiding partial information (about thefunction's preimage) plays an important role in more advanced constructs (e.g.,pseudorandom generators and secure encryption). With this motivation in mind,we will show that essentially any one-way function hides speci�c partial informationabout its preimage, where this partial information is easy to compute from thepreimage itself. This partial information can be considered as a \hard core" of thedi�culty of inverting f . Loosely speaking, a polynomial-time computable (Boolean)predicate b, is called a hard-core of a function f if no feasible algorithm, given f(x),can guess b(x) with success probability that is non-negligibly better than one half.
f(x)

x

b(x)The solid arrows depict easily computable transformationwhile the dashed arrows depict infeasible transformations.Figure 7.1: The hard-core of a one-way function { an illustration.De�nition 7.6 (hard-core predicates): A polynomial-time computable predicateb : f0; 1g� ! f0; 1g is called a hard-core of a function f if for every probabilisticpolynomial-time algorithm A0, every positive polynomial p(�), and all su�cientlylarge n's Pr [A0(f(x))=b(x)] < 12 + 1p(n)where the probability is taken uniformly over all the possible choices of x 2 f0; 1gnand all the possible outcomes of the internal coin tosses of algorithm A0.



276 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSNote that for every b : f0; 1g� ! f0; 1g and f : f0; 1g� ! f0; 1g�, there exist obviousalgorithms that guess b(x) from f(x) with success probability at least one half (e.g.,the algorithm that, obliviously of its input, outputs a uniformly chosen bit). Also, ifb is a hard-core predicate (of any function) then it follows that b is almost unbiased(i.e., for a uniformly chosen x, the di�erence jPr[b(x)=0]� Pr[b(x)=1]j must be anegligible function in n).Since b itself is polynomial-time computable, the failure of e�cient algorithms toapproximate b(x) from f(x) (with success probability that is non-negligibly higherthan one half) must be due either to an information loss of f (i.e., f not beingone-to-one) or to the di�culty of inverting f . For example, for � 2 f0; 1g andx0 2f0; 1g�, the predicate b(�x0) = � is a hard-core of the function f(�x0) def= 0x0.Hence, in this case the fact that b is a hard-core of the function f is due to the factthat f loses information (speci�cally, the �rst bit: �). On the other hand, in thecase that f loses no information (i.e., f is one-to-one) a hard-core for f may existonly if f is hard to invert. In general, the interesting case is when being a hard-coreis a computational phenomenon rather than an information theoretic one (whichis due to \information loss" of f). It turns out that any one-way function has amodi�ed version that possesses a hard-core predicate.Theorem 7.7 (a generic hard-core predicate): For any one-way function f , theinner-product mod 2 of x and r, denoted b(x; r), is a hard-core of f 0(x; r) =(f(x); r).In other words, Theorem 7.7 asserts that, given f(x) and a random subset S � [jxj],it is infeasible to guess �i2Sxi signi�cantly better than with probability 1=2, wherex = x1 � � �xn is uniformly distributed in f0; 1gn.Proof Sketch: The proof is by a so-called \reducibility argument" (see Sec-tion 7.1.2). Speci�cally, we reduce the task of inverting f to the task of predictingthe hard-core of f 0, while making sure that the reduction (when applied to inputdistributed as in the inverting task) generates a distribution as in the de�nition ofthe predicting task. Thus, a contradiction to the claim that b is a hard-core of f 0yields a contradiction to the hypothesis that f is hard to invert. We stress thatthis argument is far more complex than analyzing the corresponding \probabilis-tic" situation (i.e., the distribution of (r; b(X; r)), where r 2 f0; 1gn is uniformlydistributed and X is a random variable with super-logarithmic min-entropy (whichrepresents the \e�ective" knowledge of x, when given f(x))).4Our starting point is a probabilistic polynomial-time algorithm B that satis�es,for some polynomial p and in�nitely many n's, Pr[B(f(Xn); Un) = b(Xn; Un)] >(1=2) + (1=p(n)), where Xn and Un are uniformly and independently distributedover f0; 1gn. Using a simple averaging argument, we focus on a " def= 1=2p(n)4The min-entropy of X is de�ned as minvflog2(1=Pr[X = v])g; that is, if X has min-entropy mthen maxvfPr[X = v]g = 2�m. The Leftover Hashing Lemma (see Appendix D.2) implies that,in this case, Pr[b(X;Un) = 1jUn] = 12 � 2�
(m), where Un denotes the uniform distribution overf0; 1gn.



7.1. ONE-WAY FUNCTIONS 277fraction of the x's for which Pr[B(f(x); Un) = b(x; Un)] > (1=2) + " holds. We willshow how to use B in order to invert f , on input f(x), provided that x is in thisgood set (which has density ").As a warm-up, suppose for a moment that, for the aforementioned x's, algorithmB succeeds with probability p such that p > 34 + 1=poly(jxj) rather than p >12 + 1=poly(jxj). In this case, retrieving x from f(x) is quite easy: To retrieve theith bit of x, denoted xi, we randomly select r 2 f0; 1gjxj, and obtain B(f(x); r) andB(f(x); r�ei), where ei = 0i�110jxj�i and v�u denotes the addition mod 2 of thebinary vectors v and u. A key observation underlying the foregoing scheme as wellas the rest of the proof is that b(x; r�s) = b(x; r) � b(x; s), which can be readilyveri�ed by writing b(x; y) = Pni=1 xiyi mod 2 and noting that addition modulo 2of bits corresponds to their XOR. Now, note that if both B(f(x); r) = b(x; r)and B(f(x); r� ei) = b(x; r� ei) hold, then B(f(x); r) � B(f(x); r� ei) equalsb(x; r) � b(x; r�ei) = b(x; ei) = xi. The probability that both B(f(x); r)= b(x; r)and B(f(x); r�ei)= b(x; r�ei) hold, for a random r, is at least 1 � 2 � (1 � p) >12 + 1poly(jxj) . Hence, repeating the foregoing procedure su�ciently many times(using independent random choices of such r's) and ruling by majority, we retrievexi with very high probability. Similarly, we can retrieve all the bits of x, andhence invert f on f(x). However, the entire analysis was conducted under (theunjusti�able) assumption that p > 34+ 1poly(jxj) , whereas we only know that p > 12+"for " = 1=poly(jxj).The problem with the foregoing procedure is that it doubles the original errorprobability of algorithm B on inputs of the form (f(x); �). Under the unrealistic(foregoing) assumption that B's average error on such inputs is non-negligiblysmaller than 14 , the \error-doubling" phenomenon raises no problems. However, ingeneral (and even in the special case where B's error is exactly 14 ) the foregoingprocedure is unlikely to invert f . Note that the average error probability of B (fora �xed f(x), when the average is taken over a random r) can not be decreasedby repeating B several times (e.g., for every x, it may be that B always answercorrectly on three quarters of the pairs (f(x); r), and always err on the remainingquarter). What is required is an alternative way of using the algorithm B, a waythat does not double the original error probability of B.The key idea is generating the r's in a way that allows applying algorithmB only once per each r (and i), instead of twice. Speci�cally, we will invoke Bon (f(x); r� ei) in order to obtain a \guess" for b(x; r� ei), and obtain b(x; r)in a di�erent way (which does not involve using B). The good news is that theerror probability is no longer doubled, since we only use B to get a \guess" ofb(x; r� ei). The bad news is that we still need to know b(x; r), and it is notclear how we can know b(x; r) without applying B. The answer is that we canguess b(x; r) by ourselves. This is �ne if we only need to guess b(x; r) for oner (or logarithmically in jxj many r's), but the problem is that we need to know(and hence guess) the value of b(x; r) for polynomially many r's. The obviousway of guessing these b(x; r)'s yields an exponentially small success probability.Instead, we generate these polynomially many r's such that, on one hand they are\su�ciently random" whereas, on the other hand, we can guess all the b(x; r)'s



278 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSwith noticeable success probability.5 Speci�cally, generating the r's in a speci�cpairwise independent manner will satisfy both these (conicting) requirements. Westress that in case we are successful (in our guesses for all the b(x; r)'s), we canretrieve x with high probability. Hence, we retrieve x with noticeable probability.A word about the way in which the pairwise independent r's are generated(and the corresponding b(x; r)'s are guessed) is indeed in place. To generate m =poly(jxj) many r's, we uniformly (and independently) select ` def= log2(m+1) stringsin f0; 1gjxj. Let us denote these strings by s1; :::; s`. We then guess b(x; s1) throughb(x; s`). Let us denote these guesses, which are uniformly (and independently)chosen in f0; 1g, by �1 through �`. Hence, the probability that all our guessesfor the b(x; si)'s are correct is 2�` = 1poly(jxj) . The di�erent r's correspond tothe di�erent non-empty subsets of f1; 2; :::; `g. Speci�cally, for every such subsetJ , we let rJ def= �j2Jsj . The reader can easily verify that the rJ 's are pairwiseindependent and each is uniformly distributed in f0; 1gjxj; see Exercise 7.5. Thekey observation is that b(x; rJ ) = b(x;�j2Jsj) = �j2Jb(x; sj). Hence, our guessfor b(x; rJ ) is �j2J�j , and with noticeable probability all our guesses are correct.Wrapping-up everything, we obtain the following procedure, where " = 1=poly(n)represents a lower-bound on the advantage of B in guessing b(x; �) for an " fractionof the x's (i.e., for these good x's it holds that Pr[B(f(x); Un) = b(x; Un)] > 12 +").Inverting procedure (on input y = f(x) and parameters n and "):Set ` = log2(n="2) +O(1).(1) Select uniformly and independently s1; :::; s` 2 f0; 1gn.Select uniformly and independently �1; :::; �` 2 f0; 1g.(2) For every non-empty J � [`], compute rJ = �j2Jsj and �J = �j2J�j .(3) For i = 1; :::; n determine the bit zi according to the majority voteof the (2` � 1)-long sequence of bits (�J�B(f(x); rJ�ei));6=J�[`].(4) Output z1 � � � zn.Note that the \voting scheme" employed in Step 3 uses pairwise independent sam-ples (i.e., the rJ 's), but works essentially as well as it would have worked withindependent samples (i.e., the independent r's).6 That is, for every i and J , itholds that Prs1;:::;s` [B(f(x); rJ�ei) = b(x; rJ�ei)] > (1=2)+", where rJ = �j2Jsj ,and (for every �xed i) the events corresponding to di�erent J 's are pairwise inde-pendent. It follows that if for every j 2 [`] it holds that �j = b(x; sj), then forevery i and J we havePrs1;:::;s` [�J �B(f(x); rJ�ei) = b(x; ei)] (7.5)5Alternatively, we can try all polynomially many possible guesses. In such a case, we shalloutput a list of candidates that, with high probability, contains x. (See Exercise 7.6.)6Our focus here is on the accuracy of the approximation obtained by the sample, and not somuch on the error probability. We wish to approximate Pr[b(x; r) � B(f(x); r�ei) = 1] up toan additive term of ", because such an approximation allows to correctly determine b(x; ei). Apairwise independent sample of O(t="2) points allows for an approximation of a value in [0; 1] upto an additive term of " with error probability 1=t, whereas a totally random sample of the samesize yields error probability exp(�t). Since we can a�ord setting t = poly(n) and having errorprobability 1=2n, the di�erence in the error probability between the two approximation schemesis not important here. For a wider perspective see Appendix D.1.2 and D.3.



7.1. ONE-WAY FUNCTIONS 279= Prs1;:::;s` [B(f(x); rJ�ei) = b(x; rJ�ei)] > 12 + "where the equality is due to �J = �j2J�j = b(x; rJ ) = b(x; rJ�ei)� b(x; ei). Notethat Eq. (7.5) refers to the correctness of a single vote for b(x; ei). Using m =2` � 1 = O(n="2) and noting that these (Boolean) votes are pairwise independent,we infer that the probability that the majority of these votes is wrong is upper-bounded by 1=2n. Using a union bound on all i's, we infer that with probability atleast 1=2, all majority votes are correct and thus x is retrieved correctly. Recall thatthe foregoing is conditioned on �j = b(x; sj) for every j 2 [`], which in turn holdswith probability 2�` = (m + 1)�1 = 
("2=n) = 1=poly(n). Thus, x is retrievedcorrectly with probability 1=poly(n), and the theorem follows.Digest. Looking at the proof of Theorem 7.7, we note that it actually refersto an arbitrary black-box Bx(�) that approximates b(x; �); speci�cally, in the caseof Theorem 7.7 we used Bx(r) def= B(f(x); r). In particular, the proof does notuse the fact that we can verify the correctness of the preimage recovered by thedescribed process. Thus, the proof actually establishes the existence of a poly(n=")-time oracle machine that, for every x 2 f0; 1gn, given oracle access to any Bx :f0; 1gn ! f0; 1g satisfyingPrr2f0;1gn [Bx(r) = b(x; r)] � 12 + " (7.6)outputs x with probability at least poly("=n). Speci�cally, x is output with proba-bility at least p def= 
("2=n). Noting that x is merely a string for which Eq. (7.6)holds, it follows that the number of strings that satisfy Eq. (7.6) is at most 1=p.Furthermore, by iterating the foregoing procedure for eO(1=p) times we can obtainall these strings (see Exercise 7.7).Theorem 7.8 (Theorem 7.7, revisited): There exists a probabilistic oracle ma-chine that, given parameters n; " and oracle access to any function B : f0; 1gn !f0; 1g, halts after poly(n=") steps and with probability at least 1=2 outputs a list ofall strings x 2 f0; 1gn that satisfyPrr2f0;1gn [B(r) = b(x; r)] � 12 + ";where b(x; r) denotes the inner-product mod 2 of x and r.This machine can be modi�ed such that, with high probability, its output list doesnot include any string x such that Prr2f0;1gn [B(r) = b(x; r)] < 12 + "2 .Theorem 7.8 means that if given some information about x it is hard to recoverx, then given the same information and a random r it is hard to predict b(x; r).This assertion is proved by the counter-positive (see Exercise 7.14). Indeed, theforegoing statement is in the spirit of Theorem 7.7 itself, except that it refers to any\information about x" (rather than to the value f(x)). To demonstrate the point,



280 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSlet us rephrase the foregoing statement as follows: for every randomized process �,if given s it is hard to obtain �(s) then given s and a random r it is hard to predictb(�(s); r).7A coding theory perspective. Theorem 7.8 can be viewed as a list decodingprocedure for the Hadamard Code, where the Hadamard encoding of a string x 2f0; 1gn is the 2n-bit long string containing b(x; r) for every r 2 f0; 1gn. In contrastto standard decoding in which the task is recovering the unique information that isencoded in the codeword that is closest to the given string, in list decoding the taskis recovering all strings having encoding that is at a speci�ed distance from thegiven string.8 We mention that list decoding is applicable and valuable in the casethat the speci�ed distance does not allow for unique decoding (i.e., the speci�eddistance is greater than half the distance of the code).Applications of hard-core predicates. Turning back to hard-core predicates,we mention that they play a central role in the construction of general-purpose pseu-dorandom generators (see Section 8.2), commitment schemes and zero-knowledgeproofs (see Sections 9.2.2 and C.4.3), and encryption schemes (see Appendix C.5).7.1.4 Reections on hardness ampli�cationLet us take notice that something truly amazing happens in Theorems 7.5 and 7.7.We are not talking merely of using an assumption to derive some conclusion; this iscommon practice in Mathematics and Science (and was indeed done several timesin previous chapters, starting with Theorem 2.28). The thing that is special aboutTheorems 7.5 and 7.7 (and we shall see more of this in Section 7.2 as well as inSections 8.2 and 8.3) is that a relatively mild intractability assumption is shown toimply a stronger intractability result.This strengthening of an intractability phenomenon (a.k.a hardness ampli�-cation) takes place while we admit that we do not understand the intractabilityphenomenon (because we do not understand the nature of e�cient computation).Nevertheless, hardness ampli�cation is enabled by the use of the counter-positive,which in this case is called a reducibility argument. At this point things look lessmiraculous: a reducibility argument calls for the design of a procedure (i.e., a re-duction) and a probabilistic analysis of its behavior. The design and analysis ofsuch procedures may not be easy, but it is certainly within the standard exper-tise of computer science. The fact that hardness ampli�cation is achieved via thiscounter-positive is best represented in the statement of Theorem 7.8.7Indeed, Theorem 7.7 is obtained as a special case by letting �(s) be uniformly distributed inf�1(s).8Further discussion of error-correcting codes and list-decoding is provided in Appendix E.1.



7.2. HARD PROBLEMS IN E 2817.2 Hard Problems in EAs in Section 7.1, we start with the assumption P 6= NP and seek to use it toour bene�t. Again, we shall actually use a seemingly stronger assumption; herethe strengthening is in requiring worst-case hardness with respect to non-uniformmodels of computation (rather than average-case hardness with respect to thestandard uniform model). Speci�cally, we shall assume that NP cannot be solvedby (non-uniform) families of polynomial-size circuits; that is, NP is not containedin P=poly (even not in�nitely often).Our goal is to transform this worst-case assumption into an average-case con-dition, which is useful for our applications. Since the transformation will not yielda problem in NP but rather one in E , we might as well take the seemingly weakerassumption by which E is not contained in P=poly (see Exercise 7.9). That is,our starting point is actually that there exists an exponential-time solvable decisionproblem such that any family of polynomial-size circuit fails to solve it correctly onall but �nitely many input lengths.9A di�erent perspective on our assumption is provided by the fact that E con-tains problems that cannot be solved in polynomial-time (cf.. Section 4.2.1). Thecurrent assumption goes beyond this fact by postulating the failure of non-uniformpolynomial-time machines rather than the failure of (uniform) polynomial-timemachines.Recall that our goal is to obtain a predicate (i.e., a decision problem) that iscomputable in exponential-time but is inapproximable by polynomial-size circuits.For sake of later developments, we formulate a general notion of inapproximability.De�nition 7.9 (inapproximability, a general formulation): We say that f : f0; 1g� !f0; 1g is (S; �)-inapproximable if for every family of S-size circuits fCngn2N and allsu�ciently large n it holds thatPr[Cn(Un) 6= f(Un)] � �(n)2 (7.7)We say that f is T -inapproximable if it is (T; 1� (1=T ))-inapproximable.We chose the speci�c form of Eq. (7.7) such that the \level of inapproximability"represented by the parameter � will range in (0; 1) and increase with the valueof �. Speci�cally, (almost-everywhere) worst-case hardness for circuits of size Sis represented by (S; �)-inapproximability with �(n) = 2�n+1 (i.e., in this casePr[C(Un) 6= f(Un)] � 2�n for every circuit Cn of size S(n)). On the other hand, nopredicate can be (S; �)-inapproximable for �(n) = 1� 2�n even with S(n) = O(n)(i.e., Pr[C(Un) = f(Un)] � 0:5 + 2�n�1 holds for some linear-size circuit; seeExercise 7.10).We note that Eq. (7.7) can be interpreted as an upper-bound on the correlationof each adequate circuit with f (i.e., Eq. (7.7) is equivalent to E[�(C(Un); f(Un))] �9Note that our starting point is actually stronger than assuming the existence of a function fin E n P=poly. Such an assumption would mean that any family of polynomial-size circuit failsto compute f correctly on in�nitely many input lengths, whereas our starting point postulatesfailures on all but �nitely many lengths.



282 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS1 � �(n), where �(�; �) = 1 if � = � and �(�; �) = �1 otherwise).10 Thus, T -inapproximability means that no family of size T circuits can correlate f betterthan 1=T .We note that the existence of a non-uniformly hard one-way function (as inDe�nition 7.3) implies the existence of an exponential-time computable predicatethat is T -inapproximable for every polynomial T . (For details see Exercise 7.21.)However, our goal in this section is to establish this conclusion under a seeminglyweaker assumption.On almost everywhere hardness. We highlight the fact that both our as-sumptions and conclusions refer to almost everywhere hardness. For example, ourstarting point is not merely that E is not contained in P=poly (or in other circuitsize classes to be discussed), but rather that this is the case almost everywhere.Note that by saying that f has circuit complexity exceeding S, we merely meanthat there are in�nitely many n's such that no circuit of size S(n) can compute fcorrectly on all inputs of length n. In contrast, by saying that f has circuit com-plexity exceeding S almost everywhere, we mean that for all but �nite many n's nocircuit of size S(n) can computes f correctly on all inputs of length n. (Indeed, it isnot known whether an \in�nitely often" type of hardness implies a corresponding\almost everywhere" hardness.)The class E. Recall that E denote the class of exponential-time solvable decisionproblems (equivalently, exponential-time computable Boolean predicates); that is,E = ["Dtime(t"), where t"(n) def= 2"n.The rest of this section. We start (in Section 7.2.1) with a treatment of as-sumptions and hardness ampli�cation regarding polynomial-size circuits, whichsu�ce for non-trivial derandomization of BPP. We then turn (in Section 7.2.2) toassumptions and hardness ampli�cation regarding exponential-size circuits, whichyield a \full" derandomization of BPP (i.e., BPP = P). In fact, both sectionscontain material that is applicable to various other circuit-size bounds, but themotivational focus is as stated.Teaching note: Section 7.2.2 is advanced material, which is best left for independentreading. Furthermore, for one of the central results (i.e., Lemma 7.23) only an outlineis provided and the interested reader is referred to the original paper [125].7.2.1 Ampli�cation wrt polynomial-size circuitsOur goal here is to prove the following result.Theorem 7.10 Suppose that for every polynomial p there exists a problem in Ehaving circuit complexity that is almost-everywhere greater than p. Then there existpolynomial-inapproximable Boolean functions in E; that is, for every polynomial pthere exists a p-inapproximable Boolean function in E.10Indeed, E[�(X;Y )] = Pr[X=Y ]� Pr[X 6=Y ] = 1� 2Pr[X 6=Y ].



7.2. HARD PROBLEMS IN E 283Theorem 7.10 is used towards deriving a meaningful derandomization of BPPunder the aforementioned assumption (see Part 2 of Theorem 8.19). We presenttwo proofs of Theorem 7.10. The �rst proof proceeds in two steps:1. Starting from the worst-case hypothesis, we �rst establish some mild level ofaverage-case hardness (i.e., a mild level of inapproximability). Speci�cally,we show that for every polynomial p there exists a problem in E that is(p; ")-inapproximable for "(n) = 1=n3.2. Using the foregoing mild level of inapproximability, we obtain the desiredstrong level of inapproximability (i.e., p0-inapproximability for every polyno-mial p0). Speci�cally, for every two polynomials p1 and p2, we prove that if thefunction f is (p1; 1=p2)-inapproximable, then the function F (x1; :::; xt(n)) =�t(n)i=1 f(xi), where t(n) = n�p2(n) and x1; :::; xt(n) 2 f0; 1gn, is p0-inapproximablefor p0(t(n) � n) = p1(n)
(1)=poly(t(n)). This claim is known as Yao's XORLemma and its proof is far more complex than the proof of its informationtheoretic analogue (discussed at the beginning of x7.2.1.2).The second proof of Theorem 7.10 consists of showing that the construction em-ployed in the �rst step, when composed with Theorem 7.8, actually yields thedesired end result. This proof will uncover a connection between hardness ampli�-cation and coding theory. Our presentation will thus proceed in three correspondingsteps (presented in x7.2.1.1-7.2.1.3, and schematically depicted in Figure 7.2).
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Figure 7.2: Proofs of hardness ampli�cation: organization7.2.1.1 From worst-case hardness to mild average-case hardnessThe transformation of worst-case hardness into average-case hardness (even in amild sense) is indeed remarkable. Note that worst-case hardness may be due toa relatively small number of instances, whereas even mild forms of average-casehardness refer to a very large number of possible instances.11 In other words, weshould transform hardness that may occur on a negligible fraction of the instances11Indeed, worst-case hardness with respect to polynomial-size circuits cannot be due to a poly-nomial number of instances, because a polynomial number of instances can be hard-wired into



284 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSinto hardness that occurs on a noticeable fraction of the instances. Intuitively, weshould \spread" the hardness of few instances (of the original problem) over all (ormost) instances (of the transformed problem). The counter-positive view is thatcomputing the value of typical instances of the transformed problem should enablesolving the original problem on every instance.The aforementioned transformation is based on the self-correction paradigm,to be reviewed �rst. The paradigm refers to functions g that can be evaluatedat any desired point by using the value of g at a few random points, where eachof these points is uniformly distributed in the function's domain (but indeed thepoints are not independently distributed). The key observation is that if g(x) canbe reconstructed based on the value of g at t such random points, then such areconstruction can tolerate a 1=3t fraction of errors (regarding the values of g).Thus, if we can correctly obtain the value of g on all but at most a 1=3t fractionof its domain, then we can probabilistically recover the correct value of g at anypoint with very high probability. It follows that if no probabilistic polynomial-timealgorithm can correctly compute g in the worst-case sense, then every probabilisticpolynomial-time algorithm must fail to correctly compute g on more than a 1=3tfraction of its domain.The archetypical example of a self-correctable function is any m-variate poly-nomial of individual degree d over a �nite �eld F such that jF j > dm + 1. Thevalue of such a polynomial at any desired point x can be recovered based on thevalues of dm + 1 points (other than x) that reside on a random line that passesthrough x. Note that each of these points is uniformly distributed in Fm, which isthe function's domain. (For details, see Exercise 7.11.)Recall that we are given an arbitrary function f 2 E that is hard to computein the worst-case. Needless to say, this function is not necessarily self-correctable(based on relatively few points), but it can be extended into such a function.Speci�cally, we extend f : [N ]! f0; 1g (viewed as f : [N1=m]m ! f0; 1g) to an m-variate polynomial of individual degree d over a �nite �eld F such that jF j > dm+1and (d + 1)m = N . Intuitively, in terms of worst-case complexity, the extendedfunction is at least as hard as f , which means that it is hard (in the worst-case).The point is that the extended function is self-correctable and thus its worst-casehardness implies that it must be at least mildly hard in the average-case. Detailsfollow.Construction 7.11 (multi-variate extension)12: For any function fn : f0; 1gn !f0; 1g, a �nite �eld F , a set H � F and an integer m such that jH jm = 2n andjF j > (jH j � 1)m + 1, we consider the function f̂n : Fm ! F de�ned as the m-variate polynomial of individual degree jH j�1 that extends fn : Hm ! f0; 1g. Thatsuch circuits. Still, for all we know, worst-case hardness may be due to a small super-polynomialnumber of instances (e.g., nlog2 n instances). In contrast, even mild forms of average-case hardnessmust be due to an exponential number of instances (i.e., 2n=poly(n) instances).12The algebraic fact underlying this construction is that for any function f : Hm ! F thereexists a unique m-variate polynomial f̂ : Fm ! F of individual degree jHj�1 such that for everyx 2 Hm it holds that f̂(x) = f(x). This polynomial is called a multi-variate polynomial extensionof f , and it can be found in poly(jHjm log jF j)-time. For details, see Exercise 7.12.



7.2. HARD PROBLEMS IN E 285is, we identify f0; 1gn with Hm, and de�ne f̂n as the unique m-variate polynomialof individual degree jH j � 1 that satis�es f̂n(x) = fn(x) for every x 2 Hm, wherewe view f0; 1g as a subset of F .Note that f̂n can be evaluated at any desired point, by evaluating fn on its entiredomain, and determining the unique m-variate polynomial of individual degreejH j�1 that agrees with fn onHm (see Exercise 7.12). Thus, for f : f0; 1g� ! f0; 1gin E , the corresponding f̂ (de�ned by separately extending the restriction of f toeach input length) is also in E . For the sake of preserving various complexitymeasures, we wish to have jFmj = poly(2n), which leads to setting m = n= log2 n(yielding jH j = n and jF j = poly(n)). In particular, in this case f̂n is de�ned overstrings of length O(n). The mild average-case hardness of f̂ follows by the forgoingdiscussion. In fact, we state and prove a more general result.Theorem 7.12 Suppose that there exists a Boolean function f in E having cir-cuit complexity that is almost-everywhere greater than S. Then, there exists anexponential-time computable function f̂ : f0; 1g� ! f0; 1g� such that jf̂(x)j � jxjand for every family of circuit fC 0n0gn02N of size S0(n0) = S(n0=O(1))=poly(n0) itholds that Pr[C 0n0(Un0) 6= f̂(Un0)] > (1=n0)2. Furthermore, f̂ does not depend on S.Theorem 7.12 seems to complete the �rst step of the proof of Theorem 7.10, ex-cept that we desire a Boolean function rather than a function that merely doesnot stretch its input. The extra step of obtaining a Boolean function that is(poly(n); n�3)-inapproximable is taken in Exercise 7.13.13 Essentially, if f̂ is hardto compute on a noticeable fraction of its inputs then the Boolean predicate thaton input (x; i) returns the ith bit of f̂(x) must be mildly inapproximable.Proof Sketch: Given f as in the hypothesis and for every n 2 N , we consider therestriction of f to f0; 1gn, denoted fn, and apply Construction 7.11 to it, whileusing m = n= logn, jH j = n and n2 < jF j = poly(n). Recall that the resultingfunction f̂n maps strings of length n0 = log2 jFmj = O(n) to strings of lengthlog2 jF j = O(log n). Following the foregoing discussion, we shall show that circuitsthat approximate f̂n too well yield circuits that compute fn correctly on each input.Using the hypothesis regarding the size of the latter, we shall derive a lower-boundon the size of the former. The actual (reducibility) argument proceeds as follows.We �x an arbitrary circuit C 0n0 that satis�esPr[C 0n0(Un0) = f̂n(Un0)] � 1� (1=n0)2 > 1� (1=3t); (7.8)where t def= (jH j � 1)m + 1 = o(n2) exceeds the total degree of f̂n. Using theself-correction feature of f̂n, we observe that by making t oracle calls to C 0n0 we canprobabilistically recover the value of (f̂n and thus of) fn on each input, with proba-bility at least 2=3. Using error-reduction and (non-uniform) derandomization as in13A quantitatively stronger bound can be obtained by noting that the proof of Theorem 7.12actually establishes an error lower-bound of 
((log n0)=(n0)2) and that jf̂(x)j = O(log jxj).



286 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSthe proof of Theorem 6.3,14 we obtain a circuit of size n3 � jC 0n0 j that computes fn.By the hypothesis n3 � jC 0n0 j > S(n), and so jC 0n0 j > S(n0=O(1))=poly(n0). Recallingthat C 0n0 is an arbitrary circuit that satis�es Eq. (7.8), the theorem follows.Digest. The proof of Theorem 7.12 is actually a worst-case to average-case re-duction. That is, the proof consists of a self-correction procedure that allows forthe evaluation of f at any desired n-bit long point, using oracle calls to any circuitthat computes f̂ correctly on a 1� (1=n0)2 fraction of the n0-bit long inputs. Werecall that if f 2 E then f̂ 2 E , but we do not know how to preserve the complexityof f in case it is in NP . (Various indications to the di�culty of a worst-case toaverage-case reduction for NP are known; see, e.g., [40].)We mention that the ideas underlying the proof of Theorem 7.12 have beenapplied in a large variety of settings. For example, we shall see applications ofthe self-correction paradigm in x9.3.2.1 and in x9.3.2.2. Furthermore, in x9.3.2.2we shall re-encounter the very same multi-variate extension used in the proof ofTheorem 7.12.7.2.1.2 Yao's XOR LemmaHaving obtained a mildly inapproximable predicate, we wish to obtain a stronglyinapproximable one. The information theoretic context provides an appealing sug-gestion: Suppose that X is a Boolean random variable (representing the mildinapproximability of the aforementioned predicate) that equals 1 with probability". Then XORing the outcome of n=" independent samples of X yields a bit thatequals 1 with probability 0:5� exp(�
(n)). It is tempting to think that the sameshould happen in the computational setting. That is, if f is hard to approximatecorrectly with probability exceeding 1 � " then XORing the output of f on n="non-overlapping parts of the input should yield a predicate that is hard to approx-imate correctly with probability that is non-negligibly higher than 1=2. The latterassertion turns out to be correct, but (even more than in Section 7.1.2) the proofof the computational phenomenon is considerably more complex than the analysisof the information theoretic analogue.Theorem 7.13 (Yao's XOR Lemma): There exist a universal constant c > 0 suchthat the following holds. If, for some polynomials p1 and p2, the Boolean function fis (p1; 1=p2)-inapproximable, then the function F (x1; :::; xt(n)) = �t(n)i=1 f(xi), wheret(n) = n � p2(n) and x1; :::; xt(n) 2 f0; 1gn, is p0-inapproximable for p0(t(n) � n) =p1(n)c=t(n)1=c. Furthermore, the claim holds also if the polynomials p1 and p2 arereplaced by any integer functions.14First, we apply the foregoing probabilistic procedure O(n) times and take a majority vote.This yields a probabilistic procedure that, on input x 2 f0; 1gn, invokes C0n0 for o(n3) times andcomputes fn(x) correctly with probability greater than 1 � 2�n. Finally, we just �x a sequenceof random choices that is good for all 2n possible inputs, and obtain a circuit of size n3 � jC0n0 jthat computes fn correctly on every n-bit input.



7.2. HARD PROBLEMS IN E 287Combining Theorem 7.12 (and Exercise 7.13), and Theorem 7.13, we obtain a proofof Theorem 7.10. (Recall that an alternative proof is presented in x7.2.1.3.)We note that proving Theorem 7.13 seems more di�cult than proving Theo-rem 7.5 (i.e., the ampli�cation of one-way functions), due to two issues. Firstly,unlike in Theorem 7.5, the computational problems are not in PC and thus wecannot e�ciently recognize correct solutions to them. Secondly, unlike in Theo-rem 7.5, solutions to instances of the transformed problem do not correspond ofthe concatenation of solutions for the original instances, but are rather a functionof the latter that losses almost all the information about the latter. The proof ofTheorem 7.13 presented next deals with each of these two di�culties separately.Several di�erent proofs of Theorem 7.13 are known. As just stated, the proofthat we present is conceptually appealing because it deal separately with two unre-lated di�culties. Furthermore, this proof bene�ts most from the material alreadypresented in Section 7.1. The proof proceeds in two steps:1. First we prove that the corresponding \direct product" function P (x1; :::; xt(n)) =(f(x1); :::; f(xt(n))) is di�cult to compute in a strong average-case sense.2. Next we establish the desired result by an application of Theorem 7.8.Thus, given Theorem 7.8, our main focus is on the �rst step, which is of independentinterest (and is thus generalized from Boolean functions to arbitrary ones).Theorem 7.14 (The Direct Product Lemma): Let p1 and p2 be two polynomials,and suppose that f : f0; 1g� ! f0; 1g� is such that for every family of p1-sizecircuits, fCngn2N, and all su�ciently large n 2 N , it holds that Pr[Cn(Un) 6=f(Un)] > 1=p2(n). Let P (x1; :::; xt(n)) = (f(x1); :::; f(xt(n))), where x1; :::; xt(n) 2f0; 1gn and t(n) = n � p2(n). Then, for any "0 : N ! [0; 1], setting p0 such thatp0(t(n) � n) = p1(n)=poly(t(n)="0(t(n) � n)), it holds that every family of p0-sizecircuits, fC 0mgm2N, satis�es Pr[C 0m(Um) = P (Um)] < "0(m). Furthermore, theclaim holds also if the polynomials p1 and p2 are replaced by any integer functions.In particular, for an adequate constant c > 0, selecting "0(t(n) � n) = p1(n)�c, weobtain p0(t(n) � n) = p1(n)c=t(n)1=c, and so "0(m) � 1=p0(m).Deriving Theorem 7.13 from Theorem 7.14. Theorem 7.13 follows fromTheorem 7.14 by considering the function P 0(x1; :::; xt(n); r) = b(f(x1) � � � f(xt(n)); r),where f is a Boolean function, r 2 f0; 1gt(n), and b(y; r) is the inner-productmodulo 2 of the t(n)-bit long strings y and r. Note that, for the correspondingP , we have P 0(x1; :::; xt(n); r) � b(P (x1; :::; xt(n)); r), whereas F (x1; :::; xt(n)) =P 0(x1; :::; xt(n); 1t(n)). Intuitively, the inapproximability of P 0 should follow fromthe strong average-case hardness of P (via Theorem 7.8), whereas it should be pos-sible to reduce the approximation of P 0 to the approximation of F (and thus derivethe desired inapproximability of F ). Indeed, this intuition does not fail, but detail-ing the argument seems a bit cumbersome (and so we only provide the clues here).Assuming that f is (p1; 1=p2)-inapproximable, we �rst apply Theorem 7.14 (with"0(t(n) � n) = p1(n)�c) and then apply Theorem 7.8 (see Exercise 7.14), inferring



288 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSthat P 0 is p0-inapproximable for p0(t(n) � n) = p1(n)
(1)=poly(t(n)). The less obvi-ous part of the argument is reducing the approximation of P 0 to the approximationof F . The key observation is thatP 0(x1; :::; xt(n); r) = F (z1; :::; zt(n))� Mi:ri=0 f(zi) (7.9)where zi = xi if ri = 1 and is an arbitrary n-bit long string otherwise. Now, ifsomebody provides us with samples of the distribution (Un; f(Un)), then we canuse these samples in the role of the pairs (zi; f(zi)) for the indices i that satisfyri = 0. Considering a best choice of such samples (i.e., one for which we obtain thebest approximation of P 0), we obtain a circuit that approximates P 0 (by using acircuit that approximates F and the said choices of samples). (The details are leftfor Exercise 7.16.) Theorem 7.13 follows.Proving Theorem 7.14. Note that Theorem 7.14 is closely related to Theo-rem 7.5; see Exercise 7.17 for details. This suggests employing an analogous proofstrategy; that is, converting circuits that violate the theorem's conclusion into cir-cuits that violate the theorem's hypothesis. We note, however, that things weremuch simpler in the context of Theorem 7.5: there we could (e�ciently) checkwhether or not a value contained in the output of the circuit that solves the direct-product problem constitutes a correct answer for the corresponding instance of thebasic problem. Lacking such an ability in the current context, we shall have touse such values more carefully. Loosely speaking, we shall take a weighted ma-jority vote among various answers, where the weights reect our con�dence in thecorrectness of the various answers.We establish Theorem 7.14 by applying the following lemma that provides quan-titative bounds on the feasibility of computing the direct product of two functions.In this lemma, fYmgm2N and fZmgm2N are independent probability ensembles suchthat Ym; Zm 2 f0; 1gm, and Xn = (Y`(n); Zn�`(n)) for some function ` : N ! N .The lemma refers to the success probability of computing the direct product func-tion F : f0; 1g�! f0; 1g� de�ned by F (yz) = (F1(y); F2(z)), where jyj = `(jyzj),when given bounds on the success probability of computing F1 and F2 (separately).Needless to say, these probability bounds refer to circuits of certain sizes. We stressthat the lemma is not symmetric with respect to the two functions: it guarantees astronger (and in fact lossless) preservation of circuit sizes for one of the functions(which is arbitrarily chosen to be F1).Lemma 7.15 (Direct Product, a quantitative two argument version): For fYmg,fZmg, F1, F2, `, fXng and F as in the foregoing, let �1(�) be an upper-bound onthe success probability of s1(�)-size circuits in computing F1 over fYmg. That is,for every such circuit family fCmgPr[Cm(Ym)=F1(Ym)] � �1(m):Likewise, suppose that �2(�) is an upper-bound on the probability that s2(�)-sizecircuits compute F2 over fZmg. Then, for every function " :N!R , the function



7.2. HARD PROBLEMS IN E 289� de�ned as �(n) def= �1(`(n)) � �2(n� `(n)) + "(n)is an upper-bound on the probability that families of s(�)-size circuits correctly com-pute F over fXng, wheres(n) def= min�s1(`(n)) ; s2(n� `(n))poly(n="(n))�:Theorem 7.14 is derived from Lemma 7.15 by using a careful induction, whichcapitalizes on the highly quantitative form of Lemma 7.15 and in particular on thefact that no loss is incurred for one of the two functions that are used. We �rstdetail this argument, and next establish Lemma 7.15 itself.Deriving Theorem 7.14 from Lemma 7.15. We write P (x1; x2; :::; xt(n)) asP (t(n))(x1; x2; :::; xt(n)), where P (i)(x1; :::; xi) = (f(x1); :::; f(xi)) and P (i)(x1; :::; xi) �(P (i�1)(x1; :::; xi�1); f(xi)). For any function ", we shall prove by induction on ithat circuits of size s(n) = p1(n)=poly(t(n)="(n)) cannot compute P (i)(Ui�n) withsuccess probability greater than (1�(1=p2(n))i+(i�1) �"(n), where p1 and p2 are asin Theorem 7.14. Thus, no s(n)-size circuit can compute P (t(n))(Ut(n)�n) with suc-cess probability greater than (1�(1=p2(n))t(n)+(t(n)�1)�"(n) = exp(�n)+(t(n)�1) � "(n). Recalling that this is established for any function ", Theorem 7.14 follows(by using "(n) = "0(t(n) �n)=t(n), and observing that the setting s(n) = p0(t(n) �n)satis�es s(n) = p1(n)=poly(t(n)="(n))).Turning to the induction itself, we �rst note that its basis (i.e., i = 1) isguaranteed by the theorem's hypothesis (i.e., the hypothesis of Theorem 7.14regarding f). The induction step (i.e., from i to i + 1) will be proved by us-ing Lemma 7.15 with F1 = P (i) and F2 = f , along with the parameter setting�(i)1 (i �n) = (1� (1=p2(n))i+(i� 1) � "(n), s(i)1 (i �n) = s(n), �(i)2 (n) = 1� (1=p2(n))and s(i)2 (n) = poly(n="(n)) � s(n) = p1(n). Details follow.Note that the induction hypothesis (regarding P (i)) implies that F1 satis�es thehypothesis of Lemma 7.15 (w.r.t size s(i)1 and success rate �(i)1 ), whereas the theo-rem's hypothesis regarding f implies that F2 satis�es the hypothesis of Lemma 7.15(w.r.t size s(i)2 and success rate �(i)2 ). Thus, F = P (i+1) satis�es the lemma's conclu-sion with respect to circuits of size min(s(i)1 (i �n); s(i)2 (n)=poly(n="(n))) = s(n) andsuccess rate �(i)1 (i �n) ��(i)2 (n)+"(n) which is upper-bounded by (1� (1=p2(n))i+1+i � "(n). This completes the induction step.We stress the fact that we used induction for a non-constant number of steps,and that this was enabled by the highly quantitative form of the inductive claim andthe small loss incurred by the inductive step. Speci�cally, the size bound did notdecrease during the induction (although we could a�ord a small additive loss in eachstep, but not a constant factor loss). Likewise, the success rate su�ered an additiveincrease of "(n) in each step, which was accommodated by the inductive claim.Thus, assuming the correctness of Lemma 7.15, we have established Theorem 7.14.



290 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSProof of Lemma 7.15: Proceeding (as usual) by the contrapositive, we considera family of s(�)-size circuits fCngn2N that violates the lemma's conclusion; that is,Pr[Cn(Xn) = F (Xn)] > �(n). We will show how to use such circuits in order toobtain either circuits that violate the lemma's hypothesis regarding F1 or circuitsthat violate the lemma's hypothesis regarding F2. Towards this end, it is instructiveto write the success probability of Cn in a conditional form, while denoting the ithoutput of Cn(x) by Cn(x)i (i.e., Cn(x) = (Cn(x)1; Cn(x)2)):Pr[Cn(Y`(n); Zn�`(n))=F (Y`(n); Zn�`(n))]= Pr[Cn(Y`(n); Zn�`(n))1=F1(Y`(n))]� Pr[Cn(Y`(n); Zn�`(n))2=F2(Zn�`(n)) jCn(Y`(n); Zn�`(n))1=F1(Y`(n))]:The basic idea is that if the �rst factor is greater than �1(`(n)) then we imme-diately derive a circuit (i.e., C 0n(y) = Cn(y; Zn�`(n))1) contradicting the lemma'shypothesis regarding F1, whereas if the second factor is signi�cantly greater than�2(n � `(n)) then we can obtain a circuit contradicting the lemma's hypothesisregarding F2. The treatment of the latter case is indeed not obvious. The ideais that a su�ciently large sample of (Y`(n); F1(Y`(n))), which may be hard-wiredinto the circuit, allows using the conditional probability space (in such a circuit)towards an attempt to approximate F2. That is, on input z, we select uniformly astring y satisfying Cn(y; z)1 = F1(y) (from the aforementioned sample), and out-put Cn(y; z)2. For a �xed z, sampling of the conditional space (i.e., y's satisfyingCn(y; z)1 = F1(y)) is possible provided that Pr[Cn(Y`(n); z)1=F1(Y`(n))] holds withnoticeable probability. The last caveat motivates a separate treatment of z's havinga noticeable value of Pr[Cn(Y`(n); z)1=F1(Y`(n))] and of the rest of z's (which areessentially ignored). Details follow.Let us �rst simplify the notations by �xing a generic n and using the abbre-viations C = Cn, " = "(n), ` = `(n), Y = Y`, and Z = Yn�`. We call z goodif Pr[C(Y; z)1 = F1(Y )] � "=2 and let G be the set of good z's. Next, ratherthan considering the event C(Y; Z) = F (Y; Z), we consider the combined eventC(Y; Z)=F (Y; Z) ^ Z2G, which occurs with almost the same probability (up toan additive error term of "=2). This is the case because, for any z 62 G, it holdsthat Pr[C(Y; z)=F (Y; z)] � Pr[C(Y; z)1=F1(Y )] < "=2and thus z's that are not good do not contribute much to Pr[C(Y; Z) =F (Y; Z)];that is, Pr[C(Y; Z)=F (Y; Z) ^ Z2G] is lower-bounded by Pr[C(Y; Z)=F (Y; Z)] �"=2. Using Pr[C(Y; z)=F (Y; z)] > �(n) = �1(`) � �2(n� `) + ", we havePr[C(Y; Z)=F (Y; Z) ^ Z2G] > �1(`) � �2(n� `) + "2 : (7.10)We proceed according to the forgoing outline, �rst showing that if Pr[C(Y; Z)1 =F1(Y )] > �1(`) then we immediately derive circuits violating the hypothesis con-cerning F1. Actually, we prove something stronger (which we will actually need forthe other case).Claim 7.15.1: For every z, it holds that Pr[C(Y; z)1=F1(Y )] � �1(`).



7.2. HARD PROBLEMS IN E 291Proof: Otherwise, using any z 2 f0; 1gn�` that satis�es Pr[C(Y; z)1 = F1(Y )] >�1(`), we obtain a circuit C 0(y) def= C(y; z)1 that contradicts the lemma's hypothesisconcerning F1. 2Using Claim 7.15.1, we show how to obtain a circuit that violates the lemma'shypothesis concerning F2, and doing so we complete the proof of the lemma.Claim 7.15.2: There exists a circuit C 00 of size s2(n� `) such thatPr[C 00(Z)=F2(Z)] � Pr[C(Y; Z)=F (Y; Z) ^ Z2G]�1(`) � "2> �2(n� `)Proof: The second inequality is due to Eq. (7.10), and thus we focus on establish-ing the �rst inequality. We construct the circuit C 00 as suggested in the foregoingoutline. Speci�cally, we take a poly(n=")-large sample, denoted S, from the distri-bution (Y; F1(Y )) and let C 00(z) def= C(y; z)2, where (y; v) is a uniformly selectedamong the elements of S for which C(y; z)1 = v holds. Details follow.Let m be a su�ciently large number that is upper-bounded by a polynomialin n=", and consider a random sequence of m pairs, generated by taking m in-dependent samples from the distribution (Y; F1(Y )). We stress that we do notassume here that such a sample, denoted S, can be produced by an e�cient (uni-form) algorithm (but, jumping ahead, we remark that such a sequence can be�xed non-uniformly). For each z 2 G � f0; 1gn�`, we denote by Sz the set ofpairs (y; v) 2 S for which C(y; z)1 = v. Note that Sz is a random sample of theresidual probability space de�ned by (Y; F1(Y )) conditioned on C(Y; z)1 = F1(Y ).Also, with overwhelmingly high probability, jSzj = 
(n="2), because z 2 G im-plies Pr[C(Y; z)1=F1(Y )] � "=2 and m = 
(n="3).15 Thus, for each z 2 G, withoverwhelming probability (taken over the choices of S), the sample Sz providesa good approximation to the conditional probability space.16 In particular, withprobability greater than 1� 2�n, it holds thatjf(y; v) 2 Sz : C(y; z)2=F2(z)gjjSz j � Pr[C(Y; z)2=F2(z) jC(Y; z)1=F1(Y )]� "2 :(7.11)Thus, with positive probability, Eq. (7.11) holds for all z 2 G � f0; 1gn�`. Thecircuit C 00 computing F2 is now de�ned as follows. The circuit will contain a setS = f(yi; vi) : i = 1; :::;mg (i.e., S is \hard-wired" into the circuit C 00) such thatthe following two conditions hold:1. For every i 2 [m] it holds that vi = F1(yi).2. For each good z the set Sz = f(y; v)2S : C(y; z)1=vg satis�es Eq. (7.11).(In particular, Sz is not empty for any good z.)15Note that the expected size of Sz is m � "=2 = 
(n="2). Using Cherno� Bound, we getPrS [jSzj < m"=4] = exp(�
(n="2)) < 2�n.16For Tz = fy : C(y; z)1 = F1(y)g, we are interested in a sample S0 of Tz such thatjfy 2 S0 : C(y; z)2=F2(z)gj=jS0j approximates Pr[C(Y; z)2 = F2(z) jY 2 Tz] up-to an additiveterm of "=2. Using Cherno� Bound again, we note that a random S0 � Tz of size 
(n="2)provides such an approximation with probability greater than 1� 2�n.



292 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSOn input z, the circuit C 00 �rst determines the set Sz, by running C form times andchecking, for each i = 1; :::;m, whether or not C(yi; z) = vi. In case Sz is empty,the circuit returns an arbitrary value. Otherwise, the circuit selects uniformly apair (y; v) 2 Sz and outputs C(y; z)2. (The latter random choice can be eliminatedby an averaging argument; see Exercise 7.15.) Using the de�nition of C 00 andEq. (7.11), we have:Pr[C 00(Z)=F2(Z)] � Xz2GPr[Z=z] � Pr[C 00(z)=F2(z)]= Xz2GPr[Z=z] � jf(y; v) 2 Sz : C(y; z)2=F2(z)gjjSzj� Xz2GPr[Z=z] � �Pr[C(Y; z)2=F2(z) jC(Y; z)1=F1(Y )] � "2�= Xz2GPr[Z=z] � �Pr[C(Y; z)2=F2(z) ^ C(Y; z)1=F1(Y )]Pr[C(Y; z)1=F1(Y )] � "2�Next, using Claim 7.15.1, we have:Pr[C 00(Z)=F2(Z)] �  Xz2GPr[Z=z] � Pr[C(Y; z)=F (Y; z)]�1(`) ! � "2= Pr[C(Y; Z)=F (Y; Z) ^ Z2G]�1(`) � "2Finally, using Eq. (7.10), the claim follows. 2This completes the proof of the lemma.Comments. Firstly, we wish to call attention to the care with which an inductiveargument needs to be carried out in the computational setting, especially when anon-constant number of inductive steps is concerned. Indeed, our inductive proofof Theorem 7.14 involves invoking a quantitative lemma (i.e., Lemma 7.15) thatallows to keep track of the relevant quantities (e.g., success probability and circuitsize) throughout the induction process. Secondly, we mention that Lemma 7.15(as well as Theorem 7.14) has a uniform complexity version that assumes that onecan e�ciently sample the distribution (Y`(n); F1(Y`(n))) (resp., (Un; f(Un))). Fordetails see [99]. Indeed, a good lesson from the proof of Lemma 7.15 is that non-uniform circuits can \e�ectively sample" any distribution. Lastly, we mention thatTheorem 7.5 (the ampli�cation of one-way functions) and Theorem 7.13 (Yao'sXOR Lemma) also have (tight) quantitative versions (see, e.g., [88, Sec. 2.3.2] and[99, Sec. 3], respectively).7.2.1.3 List decoding and hardness ampli�cationRecall that Theorem 7.10 was proved in x7.2.1.1-7.2.1.2, by �rst constructing amildly inapproximable predicate via Construction 7.11, and then amplifying its



7.2. HARD PROBLEMS IN E 293hardness via Yao's XOR Lemma. In this subsection we show that the construc-tion used in the �rst step (i.e., Construction 7.11) actually yields a strongly in-approximable predicate. Thus, we provide an alternative proof of Theorem 7.10.Speci�cally, we show that a strongly inapproximable predicate (as asserted in The-orem 7.10) can be obtained by combining Construction 7.11 (with a suitable choiceof parameters) and the inner-product construction (of Theorem 7.8). The mainingredient of this argument is captured by the following result.Proposition 7.16 Suppose that there exists a Boolean function f in E having cir-cuit complexity that is almost-everywhere greater than S, and let " : N ! [0; 1] sat-isfying "(n) > 2�n. Let fn be the restriction of f to f0; 1gn, and let f̂n be the func-tion obtained from fn when applying Construction 7.1117 with jH j = n="(n) andjF j = jH j3. Then, the function f̂ : f0; 1g� ! f0; 1g�, de�ned by f̂(x) = f̂jxj=3(x),is computable in exponential-time and for every family of circuit fC 0n0gn02N of sizeS0(n0) = poly("(n0=3)=n0) � S(n0=3) it holds that Pr[C 0n0(Un0) = f̂(Un0)] < "0(n0) def="(n0=3).Before turning to the proof of Proposition 7.16, let us describe how it yields analternative proof of Theorem 7.10. Firstly, for some  > 0, Proposition 7.16 yieldsan exponential-time computable function f̂ such that jf̂(x)j � jxj and for ev-ery family of circuit fC 0n0gn02N of size S0(n0) = S(n0=3)=poly(n0) it holds thatPr[C 0n0(Un0) = f̂(Un0)] < 1=S0(n0). Combining this with Theorem 7.8 (cf. Ex-ercise 7.14), we infer that P (x; r) = b(f̂(x); r), where jrj = jf̂(x)j � jxj, is S00-inapproximable for S00(n00) = S0(n00=2)
(1)=poly(n00). In particular, for every poly-nomial p, we obtain a p-inapproximable predicate in E by applying the foregoingwith S(n) = poly(n; p(n)). Thus, Theorem 7.10 follows.Teaching note: The following material is very advanced and is best left for indepen-dent reading. Furthermore, its understanding requires being comfortable with basicnotions of error-correcting codes (as presented in Appendix E.1).Proposition 7.16 is proven by observing that the transformation of fn to f̂nconstitutes a \good" code (see xE.1.1.4) and that any such code provides a worst-case to (strongly) average-case reduction. We start by de�ning the class of codesthat su�ces for the latter reduction, while noting that the code underlying themapping fn 7! f̂n is actually stronger than needed.De�nition 7.17 (e�cient codes supporting implicit decoding): For �xed functionsq; ` : N ! N and � : N ! [0; 1], the mapping � : f0; 1g� ! f0; 1g� is said tobe e�cient and supports implicit decoding with parameters q; `; � if it satis�es thefollowing two conditions:17Recall that in Construction 7.11 we have jHjm = 2n, which may yield a non-integer m if weinsist on jHj = n="(n). This problem was avoided in the proof of Theorem 7.12 (where jHj = nwas used), but is more acute in the current context because of " (e.g., we may have "(n) = 2�2n=7).Thus, we should either relax the requirement jHjm = 2n (e.g., allow 2n � jHjm < 22n) or relaxthe requirement jHj = n="(n). However, for the sake of simplicity, we ignore this issue in thepresentation.



294 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS1. Encoding (or e�ciency): The mapping � is polynomial-time computable.It is instructive to view � as mapping N-bit long strings to sequences oflength `(N) over [q(N)], and to view each (codeword) �(x) 2 [q(jxj)]`(jxj) asa mapping from [`(jxj)] to [q(jxj)].2. Decoding (in implicit form): There exists a polynomial p such that the fol-lowing holds. For every w : [`(N)]! [q(N)] and every x2 f0; 1gN such that�(x) is (1��(N))-close to w, there exists an oracle-aided18 circuit C of sizep((logN)=�(N)) such that, for every i 2 [N ], it holds that Cw(i) equals theith bit of x.The encoding condition implies that ` is polynomially bounded. The decodingcondition refers to any �-codeword that agrees with the oracle w : [`(N)]! [q(N)]on an �(N) fraction of the `(N) coordinates, where �(N) may be very small.We highlight the non-triviality of the decoding condition: There are N bits ofinformation in x, while the size of the circuit C is only p((logN)=�(N)) and yet Cshould be able to recover any desired entry of x by making queries to w, which maybe a highly corrupted version of �(x). Needless to say, the number of queries madeby C is upper-bounded by its size (i.e.,p((logN)=�(N))). On the other hand, thedecoding condition does not refer to the complexity of obtaining the aforementionedoracle-aided circuits.Let us relate the transformation of fn to f̂n, which underlies Proposition 7.16,to De�nition 7.17. We view fn as a binary string of length N = 2n (representingthe truth-table of fn : Hm ! f0; 1g) and analogously view f̂n : Fm ! F as anelement of F jF jm = FN3 (or as a mapping from [N3] to [jF j]).19 Recall that thetransformation of fn to f̂n is e�cient. We mention that this transformation alsosupports implicit decoding with parameters q; `; � such that `(N) = N3, �(N) ="(n), and q(N) = (n="(n))3, where N = 2n. The latter fact is highly non-trivial,but establishing it is beyond the scope of the current text (and the interested readeris referred to [213]).We mention that the transformation of fn to f̂n enjoys additional features,which are not required in De�nition 7.17 and will not be used in the current context.For example, there are at most O(1=�(2n)2) codewords (i.e., f̂n's) that are (1 ��(2n))-close to any �xed w : [`(2n)]! [q(2n)], and the corresponding oracle-aidedcircuits can be constructed in probabilistic p(n=�(2n))-time.20 These results are18Oracle-aided circuits are de�ned analogously to oracle Turing machines. Alternatively, wemay consider here oracle machines that take advice such that both the advice length and themachine's running time are upper-bounded by p((logN)=�(N)). The relevant oracles may beviewed either as blocks of binary strings that encode sequences over [q(N)] or as sequences over[q(N)]. Indeed, in the latter case we consider non-binary oracles, which return elements in [q(N)].19Recall that N = 2n = jHjm and jF j = jHj3. Hence, jF jm = N3.20The construction may yield also oracle-aided circuits that compute the decoding of codewordsthat are almost (1 � �(2n))-close to w. That is, there exists a probabilistic p(n=�(2n))-timealgorithm that outputs a list of circuits that, with high probability, contains an oracle-aidedcircuit for the decoding of each codeword that is (1� �(2n))-close to w. Furthermore, with highprobability, the list contains only circuits that decode codewords that are (1 � �(2n)=2)-close tow.



7.2. HARD PROBLEMS IN E 295termed \list decoding with implicit representations" (and we refer the interestedreader again to [213]).Our focus is on showing that e�cient codes that supports implicit decodingsu�ce for worst-case to (strongly) average-case reductions. We state and prove ageneral result, noting that in the special case of Proposition 7.16 gn = f̂n (and`(2n) = 23n).Theorem 7.18 Suppose that there exists a Boolean function f in E having cir-cuit complexity that is almost-everywhere greater than S, and let " : N ! [0; 1].Consider a polynomial ` : N ! N such that n 7! log2 `(2n) is a 1-1 map of theintegers, and let m(n) = log2 `(2n); e.g., if `(N) = N3 then m(n) = 3n. Supposethat the mapping � : f0; 1g� ! f0; 1g� is e�cient and supports implicit decodingwith parameters q; `; � such that �(N) = "(blog2Nc). De�ne gn : [`(2n)]! [q(2n)]such that gn(i) equals the ith element of �(hfni) 2 [q(2n)]`(2n), where hfni denotesthe 2n-bit long description of the truth-table of fn. Then, the function g : f0; 1g� !f0; 1g�, de�ned by g(z) = gm�1(jzj)(z), is computable in exponential-time and forevery family of circuit fC 0n0gn02N of size S0(n0) = poly("(m�1(n0))=n0) �S(m�1(n0))it holds that Pr[C 0n0(Un0) = g(Un0)] < "0(n0) def= "(m�1(n0)).Proof Sketch: First note that we can generate the truth-table of fn in exponential-time, and by the encoding condition of � it follows that gn can be evaluated inexponential-time. The average-case hardness of g is established via a reducibil-ity argument as follows. We consider a circuit C 0 = C 0n0 of size S0 such thatPr[C 0n0(Un0) = g(Un0)] < "0(n0), let n = m�1(n0), and recall that "0(n0) = "(n) =�(2n). Then, C 0 : f0; 1gn0 ! f0; 1g (viewed as a function) is (1 � �(2n))-close tothe function gn, which in turn equals �(hfni). The decoding condition of � assertsthat we can recover each bit of hfni (i.e., evaluate fn) by an oracle-aided circuitD of size p(n=�(2n)) that uses (the function) C 0 as an oracle. Combining (thecircuit C 0) with the oracle-aided circuit D, we obtain a (standard) circuit of sizep(n=�(2n)) � S0(n0) < S(n) that computes fn. The theorem follows (i.e., the viola-tion of the conclusion regarding g implies the violation of the hypothesis regardingf).Advanced comment. For simplicity, we formulated De�nition 7.17 in a crudemanner that su�ces for the proving Proposition 7.16, where q(N) = ((log2N)=�(N))3.The issue is the existence of codes that satisfy De�nition 7.17: In general, suchcodes may exist only when using a more careful formulation of the decoding condi-tion that refers to codewords that are (1� ((1=q(N)) + �(N)))-close to the oraclew : [`(N)]! [q(N)] rather than being (1� �(N))-close to it.21 Needless to say, thedi�erence is insigni�cant in the case that �(N)� 1=q(N) (as in Proposition 7.16),21Note that this is the \right" formulation, because in the case that �(N) < 1=q(N) it seemsimpossible to satisfy the decoding condition (as stated in De�nition 7.17). Speci�cally, a random`(N)-sequence over [q(N)] is expected to be (1 � (1=q(N)))-close to any �xed codeword, andwith overwhelmingly high probability it will be (1 � ((1 � o(1))=q(N)))-close to almost all thecodewords, provided `(N) � q(N)2. But in case N > poly(q(N)), we cannot hope to recoveralmost all N-bit long strings based on poly(q(N) logN) bits of advice (per each of them).



296 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSbut it is signi�cant in case we care about binary codes (i.e., q(N) = 2, or codesover other small alphabets). We mention that Theorem 7.18 can be adapted tothis context (of q(N) = 2), and directly yields strongly inapproximable predicates.For details, see Exercise 7.18.7.2.2 Ampli�cation wrt exponential-size circuitsFor the purpose of stronger derandomization of BPP, we start with a stronger as-sumption regarding the worst-case circuit complexity of E and turn it to a strongerinapproximability result.Theorem 7.19 Suppose that there exists a decision problem L 2 E having almost-everywhere exponential circuit complexity; that is, there exists a constant b > 0 suchthat, for all but �nitely many n's, any circuit that correctly decides L on f0; 1gnhas size at least 2b�n. Then, for some constant c > 0 and T (n) def= 2c�n, there existsa T -inapproximable Boolean function in E.Theorem 7.19 can be used for deriving a full derandomization of BPP (i.e., BPP =P) under the aforementioned assumption (see Part 1 of Theorem 8.19).Theorem 7.19 follows as a special case of Proposition 7.16 (combined with The-orem 7.8; see Exercise 7.19). An alternative proof, which uses di�erent ideas thatare of independent interest, will be briey reviewed next. The starting point of thelatter proof is a mildly inapproximable predicate, as provided by Theorem 7.12.However, here we cannot a�ord to apply Yao's XOR Lemma (i.e., Theorem 7.13),because the latter relates the size of circuits that strongly fail to approximate apredicate de�ned over poly(n)-bit long strings to the size of circuits that fail tomildly approximate a predicate de�ned over n-bit long strings. That is, Yao'sXOR Lemma asserts that if f : f0; 1gn ! f0; 1g is mildly inapproximable bySf -size circuits then F : f0; 1gpoly(n) ! f0; 1g is strongly inapproximable by SF -size circuits, where SF (poly(n)) is polynomially related to Sf (n). In particular,SF (poly(n)) < Sf (n) seems inherent in this reasoning. For the case of polynomiallower-bounds, this is good enough (i.e., if Sf can be an arbitrarily large polynomialthen so can SF ), but for Sf (n) = exp(
(n)) we cannot obtain SF (m) = exp(
(m))(but rather only obtain SF (m) = exp(m
(1))).The source of trouble is that ampli�cation of inapproximability was achievedby taking a polynomial number of independent instances. Indeed, we cannot hopeto amplify hardness without applying f on many instances, but these instancesneed not be independent. Thus, the idea is to de�ne F (r) = �poly(n)i=1 f(xi), wherex1; :::; xpoly(n) 2 f0; 1gn are generated from r and still jrj = O(n). That is, weseek a \derandomized" version of Yao's XOR Lemma. In other words, we seek a\pseudorandom generator" of a type appropriate for expanding r to dependent xi'ssuch that the XOR of the f(xi)'s is as inapproximable as it would have been forindependent xi's.2222Indeed, this falls within the general paradigm discussed in Section 8.1. Furthermore, this sug-gestion provides another perspective on the connection between randomness and computationaldi�culty, which is the focus of much discussion in Chapter 8 (see, e.g., x8.2.7.2).



7.2. HARD PROBLEMS IN E 297Teaching note: In continuation to Footnote 22, we note that there is a strong con-nection between the rest of this section and Chapter 8. On top of the aforementionedconceptual aspect, we will use technical tools from Chapter 8 towards establishing thederandomized version of the XOR Lemma. These tools include pairwise independencegenerators (see Section 8.5.1), random walks on expanders (see Section 8.5.3), and theNisan-Wigderson Construction (Construction 8.17). Indeed, recall that Section 7.2.2 isadvanced material, which is best left for independent reading.The pivot of the proof is the notion of a hard region of a Boolean function.Loosely speaking, S is a hard region of a Boolean function f if f is strongly inap-proximable on a random input in S; that is, for every (relatively) small circuit Cn,it holds that Pr[Cn(Un) = f(Un)jUn 2 S] � 1=2. By de�nition, f0; 1g� is a hardregion of any strongly inapproximable predicate. As we shall see, any mildly inap-proximable predicate has a hard region of density related to its inapproximabilityparameter. Loosely speaking, hardness ampli�cation will proceed via methods forgenerating related instances that hit the hard region with su�ciently high proba-bility. But, �rst let us study the notion of a hard region.7.2.2.1 Hard regionsWe actually generalize the notion of hard regions to arbitrary distributions. Theimportant special case of uniform distributions (on n-bit long strings) is obtainedfrom De�nition 7.20 by letting Xn equal Un (i.e., the uniform distribution overf0; 1gn). In general, we only assume that Xn 2 f0; 1gn.De�nition 7.20 (hard region relative to arbitrary distribution): Let f :f0; 1g�!f0; 1g be a Boolean predicate, fXngn2N be a probability ensemble, s :N !N and" :N! [0; 1].� We say that a set S is a hard region of f relative to fXngn2N with respectto s(�)-size circuits and advantage "(�) if for every n and every circuit Cn ofsize at most s(n), it holds thatPr[Cn(Xn)=f(Xn)jXn2S] � 12 + "(n):� We say that f has a hard region of density �(�) relative to fXngn2N (withrespect to s(�)-size circuits and advantage "(�)) if there exists a set S thatis a hard region of f relative to fXngn2N (with respect to the foregoingparameters) such that Pr[Xn2Sn] � �(n).Note that a Boolean function f is (s; 1� 2")-inapproximable if and only if f0; 1g�is a hard region of f relative to fUngn2N with respect to s(�)-size circuits andadvantage "(�). Thus, strongly inapproximable predicates (e.g., S-inapproximablepredicates for super-polynomial S) have a hard region of density 1 (with respect toa negligible advantage).23 But this trivial observation does not provide hard regions23Likewise, mildly inapproximable predicates have a hard region of density 1 with respect toan advantage that is noticeably smaller than 1=2.



298 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS(with respect to a small (i.e., close to zero) advantage) for mildly inapproximablepredicates. Providing such hard regions is the contents of the following theorem.Theorem 7.21 (hard regions for mildly inapproximable predicates): Let f :f0; 1g�!f0; 1g be a Boolean predicate, fXngn2N be a probability ensemble, s :N! N , and� : N ! [0; 1] such that �(n) > 1=poly(n). Suppose that, for every circuit Cn ofsize at most s(n), it holds that Pr[Cn(Xn) = f(Xn)] � 1 � �(n). Then, for every" :N! [0; 1], the function f has a hard region of density �0(�) relative to fXngn2Nwith respect to s0(�)-size circuits and advantage "(�), where �0(n) def= (1�o(1)) ��(n)and s0(n) def= s(n)=poly(n="(n)).In particular, if f is (s; 2�)-inapproximable then f has a hard region of density�0(�) � �(�) relative to the uniform distribution (with respect to s0(�)-size circuitsand advantage "(�)).Proof Sketch:24 The proof proceeds by �rst establishing that fXng is \related" to(or rather \dominates") an ensemble fYng such that f is strongly inapproximableon fYng, and next showing that this implies the claimed hard region. Indeed, thisnotion of \related ensembles" plays a central role in the proof.For � :N! [0; 1], we say that fXng �-dominates fYng if for every x it holds thatPr[Xn= x] � �(n) � Pr[Yn = x]. In this case we also say that fYng is �-dominatedby fXng. We say that fYng is critically �-dominated by fXng if for every x eitherPr[Yn=x] = (1=�(n)) � Pr[Xn=x] or Pr[Yn=x] = 0.25The notions of domination and critical domination play a central role in theproof, which consists of two parts. In the �rst part (Claim 7.21.1), we provethat, for fXng and � as in the theorem's hypothesis, there exists a ensemble fYngthat is �-dominated by fXng such that f is strongly inapproximable on fYng. Inthe second part (Claim 7.21.2), we prove that the existence of such a dominatedensemble implies the existence of an ensemble fZng that is critically �0-dominatedby fXng such that f is strongly inapproximable on fZng. Finally, we note thatsuch a critically dominated ensemble yields a hard region of f relative to fXng,and the theorem follows.Claim 7.21.1: Under the hypothesis of the theorem it holds that there exists aprobability ensemble fYng that is �-dominated by fXng such that, for every s0(n)-size circuit Cn, it holds thatPr[Cn(Yn)=f(Yn)] � 12 + "(n)2 : (7.12)Proof: We start by assuming, towards the contradiction, that for every distri-bution Yn that is �-dominated by Xn there exists a s0(n)-size circuits Cn suchthat Pr[Cn(Yn) = f(Yn)] > 0:5 + "0(n), where "0(n) = "(n)=2. One key observa-tion is that there is a correspondence between the set of all distributions that are24See details in [99, Apdx. A].25Actually, we should allow one point of exception; that is, relax the requirement by sayingthat for at most one string x 2 f0; 1gn it holds that 0 < Pr[Yn=x] < Pr[Xn=x]=�(n). This pointhas little e�ect on the proof, and is ignored in our presentation.



7.2. HARD PROBLEMS IN E 299each �-dominated by Xn and the set of all the convex combinations of critically �-dominated (by Xn) distributions; that is, each �-dominated distribution is a convexcombinations of critically �-dominated distributions and vice versa (cf., a specialcase in xD.4.1.1). Thus, considering an enumeration Y (1)n ; :::; Y (t)n of the critically�-dominated (by Xn) distributions, we conclude that for every distribution � on[t] there exists a s0(n)-size circuits Cn such thattXi=1 �(i) � Pr[Cn(Y (i)n ) = f(Y (i)n )] > 0:5 + "0(n): (7.13)Now, consider a �nite game between two players, where the �rst player selects a crit-ically �-dominated (by Xn) distribution, and the second player selects a s0(n)-sizecircuit and obtains a payo� as determined by the corresponding success probability;that is, if the �rst player selects the ith critically dominated distribution and thesecond player selects the circuit C then the payo� equals Pr[C(Y (i)n ) = f(Y (i)n )].Eq. (7.13) may be interpreted as saying that for any randomized strategy for the�rst player there exists a deterministic strategy for the second player yielding aver-age payo� greater than 0:5+"0(n). The Min-Max Principle (cf. von Neumann [227])asserts that in such a case there exists a randomized strategy for the second playerthat yields average payo� greater than 0:5 + "0(n) no matter what strategy is em-ployed by the �rst player. This means that there exists a distribution, denoted Dn,on s0(n)-size circuits such that for every i it holds thatPr[Dn(Y (i)n ) = f(Y (i)n )] > 0:5 + "0(n); (7.14)where the probability refers both to the choice of the circuit Dn and to the randomvariable Yn. Let Bn = fx : Pr[Dn(x) = f(x)] � 0:5 + "0(n)g. Then, Pr[Xn 2Bn] < �(n), because otherwise we reach a contradiction to Eq. (7.14) by de�ningYn such that Pr[Yn= x] = Pr[Xn=x]=Pr[Xn 2 Bn] if x 2 Bn and Pr[Yn =x] = 0otherwise.26 By employing standard ampli�cation to Dn, we obtain a distributionD0n over poly(n="0(n)) � s0(n)-size circuits such that for every x 2 f0; 1gn n Bn itholds that Pr[D0n(x) = f(x)] > 1 � 2�n. It follows that there exists a s(n)-sizedcircuit Cn such that Cn(x) = f(x) for every x 2 f0; 1gn n Bn, which implies thatPr[Cn(Xn) = f(Xn)] � Pr[Xn 2 f0; 1gn n Bn] > 1 � �(n), in contradiction to thetheorem's hypothesis. The claim follows. 2We next show that the conclusion of Claim 7.21.1 (which was stated for ensemblesthat are �-dominated by fXng) essentially holds also when allowing only critically�-dominated (by fXng) ensembles. The following precise statement involves someloss in the domination parameter � (as well as in the advantage ").Claim 7.21.2: If there exists a probability ensemble fYng that is �-dominatedby fXng such that for every s0(n)-size circuit Cn it holds that Pr[Cn(Yn) =26Note that Yn is �-dominated by Xn, whereas by the hypothesis Pr[Dn(Yn) = f(Yn)] �0:5+"0(n). Using the fact that any �-dominated distribution is a convex combination of critically�-dominated distributions, it follows that Pr[Dn(Y (i)n ) = f(Y (i)n )] � 0:5 + "0(n) holds for somecritically �-dominated Y (i)n .



300 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSf(Yn)] � 0:5 + ("(n)=2), then there exists a probability ensemble fZng that iscritically �0-dominated by fXng such that for every s0(n)-size circuit Cn it holdsthat Pr[Cn(Zn) = f(Zn)] � 0:5 + "(n).In other words, Claim 7.21.2 asserts that the function f has a hard region ofdensity �0(�) relative to fXng with respect to s0(�)-size circuits and advantage "(�),thus establishing the theorem. The proof of Claim 7.21.2 uses the ProbabilisticMethod (cf. [10]). Speci�cally, we select a set Sn at random by including eachn-bit long string x with probabilityp(x) def= �(n) � Pr[Yn=x]Pr[Xn=x] � 1 (7.15)independently of the choice of all other strings. It can be shown that, with highprobability over the choice of Sn, it holds that Pr[Xn 2 Sn] � �(n) and thatPr[Cn(Xn) = f(Xn)jXn 2Sn] < 0:5 + "(n) for every circuit Cn of size s0(n). Thelatter assertion is proved by a union bound on all relevant circuits, while showingthat for each such circuit Cn, with probability 1� exp(�s0(n)2) over the choice ofSn, it holds that jPr[Cn(Xn) = f(Xn)jXn 2 Sn] � Pr[Cn(Yn) = f(Yn)]j < "(n)=2.For details, see [99, Apdx. A]. (This completes the proof of the theorem.)7.2.2.2 Hardness ampli�cation via hard regionsBefore showing how to use the notion of a hard region in order to prove a deran-domized version of Yao's XOR Lemma, we show how to use it in order to provethe original version of Yao's XOR Lemma (i.e., Theorem 7.13).An alternative proof of Yao's XOR Lemma. Let f , p1, and p2 be asin Theorem 7.13. Then, by Theorem 7.21, for �0(n) = 1=3p2(n) and s0(n) =p1(n)
(1)=poly(n), the function f has a hard region S of density �0 (relative tofUng) with respect to s0(�)-size circuits and advantage 1=s0(�). Thus, for t(n) =n � p2(n) and F as in Theorem 7.13, with probability at least 1� (1� �0(n))t(n) =1 � exp(�
(n)), one of the t(n) random (n-bit long) blocks of F resides in S(i.e., the hard region of f). Intuitively, this su�ces for establishing the stronginapproximability of F . Indeed, suppose towards the contradiction that a small(i.e., p0(t(n) � n)-size) circuit Cn can approximate F (over Ut(n)�n) with advantage"(n) + exp(�
(n)), where "(n) > 1=s0(n). Then, the "(n) term must be due tot(n) �n-bit long inputs that contain a block in S. Using an averaging argument, wecan �rst �x the index of this block and then the contents of the other blocks, andinfer the following: for some i 2 [t(n)] and x1; :::; xt(n) 2 f0; 1gn it holds thatPr[Cn(x0; Un; x00) = F (x0; Un; x00) jUn 2 S] � 12 + "(n)where x0 = (x1; :::; xi�1) 2 f0; 1g(i�1)�n and x00 = (xi+1; :::; xt(n)) 2 f0; 1g(t(n)�i)�n.Hard-wiring i 2 [t(n)], x0 = (x1; :::; xi�1) and x00 = (xi+1; :::; xt(n)) as well as� def= �j 6=if(xj) in Cn, we obtain a contradiction to the (established) fact that



7.2. HARD PROBLEMS IN E 301S is a hard region of f (by using the circuit C 0n(z) = Cn(x0; z; x00) � �). Thus,Theorem 7.13 follows (for any p0(t(n) � n) � s0(n)� 1).Derandomized versions of Yao's XOR Lemma. We �rst show how to usethe notion of a hard region in order to amplify very mild inapproximability toa constant level of inapproximability. Recall that our goal is to obtain such anampli�cation while applying the given function on many (related) instances, whereeach instance has length that is linearly related to the length of the input of theresulting function. Indeed, these related instances are produced by applying anadequate \pseudorandom generator" (see Chapter 8). The following ampli�cationutilizes a pairwise independence generator (see Section 8.5.1), denoted G, thatstretches 2n-bit long seeds to sequences of n strings, each of length n.Lemma 7.22 (derandomized XOR Lemma up to constant inapproximability):Suppose that f : f0; 1g� ! f0; 1g is (T; �)-inapproximable, for �(n) > 1=poly(n),and assume for simplicity that �(n) � 1=n. Let b denote the inner-product mod 2predicate, and G be the aforementioned pairwise independence generator. ThenF1(s; r) = b(f(x1) � � � f(xn); r), where jrj = n = jsj=2 and (x1; :::; xn) = G(s), is(T 0; �0)-inapproximable for T 0(n0) = T (n0=3)=poly(n0) and �0(n0) = 
(n0 � �(n0=3)).Needless to say, if f 2 E then F1 2 E . By applying Lemma 7.22 for a constantnumber of times, we may transform an (T; 1=poly)-inapproximable predicate intoan (T 00;
(1))-inapproximable one, where T 00(n00) = T (n00=O(1))=poly(n00).Proof Sketch: As in the foregoing proof (of the original version of Yao's XORLemma), we �rst apply Theorem 7.21. This time we set the parameters so to inferthat, for �(n) = �(n)=3 and t0(n) = T (n)=poly(n), the function f has a hard regionS of density � (relative to fUng) with respect to t0(�)-size circuits and advantage0:01. Next, as in x7.2.1.2, we shall consider the corresponding (derandomized)direct product problem; that is, the function P1(s) = (f(x1); :::; f(xn)), wherejsj = 2n and (x1; :::; xn) = G(s). We will �rst show that P1 is hard to computeon an 
(n � �(n)) fraction of the domain, and the quanti�ed inapproximality of F1will follow.One key observation is that, by Exercise 7.20, with probability at least �(n) def=n � �(n)=2, at least one of the n strings output by G(U2n) resides in S. Intuitively,we expect every t0(n)-sized circuit to fail in computing P1(U2n) with probabilityat least 0:49�(n), because with probability �(n) the sequence G(U2n) contains anelement in the hard region of f (and in this case the value can be guessed correctlywith probability at most 0:51). The actual proof relies on a reducibility argument,which is less straightforward than the argument used in the non-derandomized case.For technical reasons27, we use the condition �(n) < 1=2n (which is guaranteedby the hypothesis that �(n) � 1=n and our setting of �(n) = �(n)=3). In thiscase Exercise 7.20 implies that, with probability at least �(n) def= 0:75 � n � �(n),at least one of the n strings output by G(U2n) resides in S. We shall show that27The following argument will rely on the fact that �(n) � (n) > 0:51n � �(n), where (n) =
(�(n)).



302 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSevery (t0(n)� poly(n))-sized circuit fails in computing P1 with probability at least(n) = 0:3�(n). As usual, the claim is proved by a reducibility argument. Let G(s)idenote the ith string in the sequence G(s) (i.e., G(s) = (G(s)1; :::; G(s)n)), and notethat given i and x we can e�ciently sample G�1i (x) def= fs2f0; 1g2n : G(s)i=xg.Given a circuit Cn that computes P1(U2n) correctly with probability 1� (n), weconsider the circuit C 0n that, on input x, uniformly selects i 2 [n] and s 2 G�1i (x),and outputs the ith bit in Cn(s). Then, by the construction (of C 0n) and thehypothesis regarding Cn, it holds thatPr[C 0n(Un)=f(Un)jUn2S] � nXi=1 1n � Pr[Cn(U2n)=P1(U2n)jG(U2n)i2S]� Pr[Cn(U2n)=P1(U2n) ^ 9iGi(U2n)i2S]n �maxifPr[G(U2n)i2S]g� (1� (n))� (1� �(n))n � �(n)= 0:7�(n)n � �(n) > 0:52 :This contradicts the fact that S is a hard region of f with respect to t0(�)-size circuitsand advantage 0:01. Thus, we have established that every (t0(n) � poly(n))-sizedcircuit fails in computing P1 with probability at least (n) = 0:3�(n).Having established the hardness of P1, we now infer the mild inapproximabilityof F1, where F1(s; r) = b(P1(s); r). It su�ces to employ the simple (warm-up)case discussed at the beginning of the proof of Theorem 7.7 (where the predic-tor errs with probability less than 1=4, rather than the full-edged result thatrefers to prediction error that is only smaller than 1=2). Denoting by �C(s) =Prr2f0;1gn [C(s; r) 6=b(P1(s); r)] the prediction error of the circuit C, we recall thatif �C(s) � 0:24 then C can be used to recover P1(s). Thus, for circuits C of sizeT 0(3n) = t0(n)=poly(n) it must hold that Prs[�C(s)>0:24] � (n). It follows thatEs[�C(s)] > 0:24(n), which means that every T 0(3n)-sized circuits fails to com-pute (s; r) 7! b(P1(s); r) with probability at least �(jsj+ jrj) def= 0:24 � (jrj). Thismeans that F1 is (T 0; 2�)-inapproximable, and the lemma follows (when noting that�(n0) = 
(n0 � �(n0=3))).The next lemma o�ers an ampli�cation of constant inapproximability to stronginapproximability. Indeed, combining Theorem 7.12 with Lemmas 7.22 and 7.23,yields Theorem 7.19 (as a special case).Lemma 7.23 (derandomized XOR Lemma starting with constant inapproxima-bility): Suppose that f : f0; 1g� ! f0; 1g is (T; �)-inapproximable, for some con-stant �, and let b denote the inner-product mod 2 predicate. Then there exists anexponential-time computable function G such that F2(s; r) = b(f(x1) � � � f(xn); r),where (x1; :::; xn) = G(s) and n = 
(jsj) = jrj = jx1j = � � � = jxnj, is T 0-inapproximable for T 0(n0) = T (n0=O(1))
(1)=poly(n0).



7.2. HARD PROBLEMS IN E 303Again, if f 2 E then F2 2 E .Proof Outline:28 As in the proof of Lemma 7.22, we start by establishinga hard region of density �=3 for f (this time with respect to circuits of sizeT (n)
(1)=poly(n) and advantage T (n)�
(1)), and focus on the analysis of the(derandomized) direct product problem corresponding to computing the functionP2(s) = (f(x1); :::; f(xn)), where jsj = O(n) and (x1; :::; xn) = G(s). The \gen-erator" G is de�ned such that G(s0s00) = G1(s0) � G2(s00), where js0j = js00j,jG1(s0)j = jG2(s00)j, and the following conditions hold:1. G1 is the Expander Random Walk Generator discussed in Section 8.5.3. Itcan be shown that G1(UO(n)) outputs a sequence of n strings such that forany set S of density �, with probability 1 � exp(�
(�n)), at least 
(�n)of the strings hit S. Note that this property is inherited by G, providedjG1(s0)j = jG2(s00)j for any js0j = js00j. It follows that, with probability1 � exp(�
(�n)), a constant fraction of the xi's in the de�nition of P2 hitthe hard region of f .It is tempting to say that small circuits cannot compute P2 better than withprobability exp(�
(�n)), but this is clear only in the case that the xi's thathit the hard region are distributed independently (and uniformly) in it, whichis hardly the case here. Indeed, G2 is used to handle this problem.2. G2 is the \set projection" system underlying Construction 8.17; speci�cally,G2(s) = (sS1 ; :::; sSn), where each Si is an n-subset of [jsj] and the Si's havepairwise intersections of size at most n=O(1).29 An analysis as in the proofof Theorem 8.18 can be employed for showing that the dependency amongthe xi's does not help for computing a particular f(xi) when given xi as wellas all the other f(xj)'s. (Note that this property of G2 is inherited by G.)The actual analysis of the construction (via a guessing game presented in [125,Sec. 3]), links the success probability of computing P2 to the advantage of guessingf on its hard region. The interested reader is referred to [125].Digest. Both Lemmas 7.22 and 7.23 are proved by �rst establishing correspond-ing derandomized versions of the \direct product" lemma (Theorem 7.14); in fact,the core of these proofs is proving adequate derandomized \direct product" lemmas.We call the reader's attention to the seemingly crucial role of this step (especiallyin the proof of Lemma 7.23): We cannot treat the values f(x1); :::f(xn) as if theywere independent (at least not for the generator G as postulated in these lemmas),and so we seek to avoid analyzing the probability of correctly computing the XORof all these values. In contrast, we have established that it is very hard to correctlycompute all n values, and thus XORing a random subset of these values yields astrongly inapproximable predicate. (Note that the argument used in Exercise 7.1628For details, see [125].29Recall that sS denotes the projection of s on coordinates S � [jsj]; that is, for s = �1 � � ��kand S = fij : j = 1; :::; ng, we have sS = �i1 � � ��in .



304 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSfails here, because the xi's are not independent, which is the reason that we XORa random subset of these values rather than all of them.)Chapter NotesThe notion of a one-way function was suggested by Di�e and Hellman [63]. Thenotion of weak one-way functions as well as the ampli�cation of one-way functions(i.e., Theorem 7.5) were suggested by Yao [231]. A proof of Theorem 7.5 has �rstappeared in [84].The concept of hard-core predicates was suggested by Blum and Micali [37].They also proved that a particular predicate constitutes a hard-core for the \DLPfunction" (i.e., exponentiation in a �nite �eld), provided that the latter functionis one-way. The generic hard-core predicate (of Theorem 7.7) was suggested byLevin, and proven as such by Goldreich and Levin [96]. The proof presented herewas suggested by Racko�. We comment that the original proof has its own merits(cf., e.g., [102]).The construction of canonical derandomizers (see Section 8.3) and, speci�cally,the Nisan-Wigderson framework (i.e., Construction 8.17) has been the driving forcebehind the study of inapproximable predicates in E . Theorem 7.10 is due to [20],whereas Theorem 7.19 is due to [125]. Both results rely heavily of variants of Yao'sXOR Lemma, to be reviewed next.Like several other fundamental insights attributed to Yao's paper [231], Yao'sXOR Lemma (i.e., Theorem 7.13) is not even stated in [231] but is rather dueto Yao's oral presentations of his work. The �rst published proof of Yao's XORLemma was given by Levin (see [99, Sec. 3]). The proof presented in x7.2.1.2 isdue to Goldreich, Nisan and Wigderson [99, Sec. 5].The notion of a hard region and its applications to proving the original versionof Yao's XOR Lemma as well as the �rst derandomization of it (i.e., Lemma 7.22)are due to Impagliazzo [123]. The second derandomization (i.e., Lemma 7.23) aswell as Theorem 7.19 are due to Impagliazzo and Wigderson [125].Theorem 7.12 is due to [20], and the presentation in x7.2.1.1 is based on thiswork. The connection between list decoding and hardness ampli�cation (i.e.,x7.2.1.3), yielding an alternative proof of Theorem 7.19, is due to Sudan, Trevisan,and Vadhan [213].Hardness ampli�cation for NP has been the subject of recent attention: Anampli�cation of mild inapproximability to strong inapproximability is providedin [118], and an indication to the impossibility of a worst-case to average-casereductions (at least non-adaptive ones) is provided in [40].ExercisesExercise 7.1 Prove that if one way-functions exist then there exists one-way func-tions that are length preserving (i.e., jf(x)j = jxj for every x 2 f0; 1gn).



7.2. HARD PROBLEMS IN E 305Guideline: Clearly, for some polynomial p, it holds that jf(x)j < p(jxj) for all x. Assume,without loss of generality that n 7! p(n) is 1-1 and increasing, and let p�1(m) = n ifp(n) � m < p(n + 1). De�ne f 0(z) = f(x)01jzj�jf(x)j�1, where x is the p�1(jzj)-bit longpre�x of z.Exercise 7.2 Prove that if a function f is hard to invert in the sense of De�ni-tion 7.3 then it is hard to invert in the sense of De�nition 7.1.Guideline: Consider a sequence of internal coin tosses that maximizes the probabilityin Eq. (7.1).Exercise 7.3 Assuming the existence of one-way functions, prove that there existsa weak one-way function that is not strongly one-way.Exercise 7.4 (a universal one-way function (by L. Levin)) Using the notionof a universal machine, present a polynomial-time computable function that is hardto invert (in the sense of De�nition 7.1) if and only if there exist one-way functions.Guideline: Consider the function F that parses its input into a pair (M;x) and emulatesjxj3 steps of M on input x. Note that if there exists a one-way function that can beevaluated in cubic time then F is a weak one-way function. Using padding, prove thatthere exists a one-way function that can be evaluated in cubic time if and only if thereexist one-way functions.Exercise 7.5 For ` > 1, prove that the following 2` � 1 samples are pairwiseindependent and uniformly distributed in f0; 1gn. The samples are generated byuniformly and independently selecting ` strings in f0; 1gn. Denoting these stringsby s1; :::; s`, we generate 2` � 1 samples corresponding to the di�erent non-emptysubsets of f1; 2; :::; `g such that for subset J we let rJ def= �j2Jsj .Guideline: For J 6= J 0, it holds that rJ�rJ0 = �j2Ksj , where K denotes the symmetricdi�erence of J and J 0. See related material in Section 8.5.1.Exercise 7.6 (a variant on the proof of Theorem 7.7) Provide a detailed pre-sentation of the alternative procedure outlined in Footnote 5. That is, prove thatfor every x 2 f0; 1gn, given oracle access to any Bx : f0; 1gn ! f0; 1g that satis�esEq. (7.6), this procedure makes poly(n=") steps and outputs a list of strings that,with probability at least 1=2, contains x.Exercise 7.7 (proving Theorem 7.8) Recall that the proof of Theorem 7.7 es-tablishes the existence of a poly(n=")-time oracle machine M such that, for everyB : f0; 1gn ! f0; 1g and every x 2 f0; 1gn that satisfy Prr[B(r) = b(x; r)] � 12 + ",it holds that Pr[MB(n; ") = x] = 
("2=n). Show that this implies Theorem 7.8.(Indeed, an alternative proof can be derived by adapting Exercise 7.6.)Guideline: Apply a \coupon collector" argument.Exercise 7.8 A polynomial-time computable predicate b :f0; 1g�!f0; 1g is calleda universal hard-core predicate if for every one-way function f , the predicate b is



306 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSa hard-core of f . Note that the predicate presented in Theorem 7.7 is \almostuniversal" (i.e., for every one-way function f , that predicate is a hard-core off 0(x; r) = (f(x); r), where jxj = jrj). Prove that there exist no universal hard-core predicate.Guideline: Let b be a candidate universal hard-core predicate, and let f be an arbitraryone-way function. Then consider the function f 0(x) = (f(x); b(x)).Exercise 7.9 Prove that if NP is not contained in P=poly then neither is E .Furthermore, for every S : N ! N , if some problem in NP does not have circuitsof size S then for some constant " > 0 there exists a problem in E that does nothave circuits of size S0, where S0(n) = S(n"). Repeat the exercise for the \almosteverywhere" case.Guideline: Although NP is not known to be in E , it is the case that SAT is in E , whichimplies that NP is reducible to a problem in E . For the \almost everywhere" case, addressthe fact that the said reduction may not preserve the length of the input.Exercise 7.10 For every function f : f0; 1gn ! f0; 1g, present a linear-size circuitCn such that Pr[C(Un) = f(Un)] � 0:5 + 2�n. Furthermore, for every t � 2n�1,present a circuit Cn of size O(t � n) such that Pr[C(Un) = f(Un)] � 0:5 + t � 2�n.Warning: you may not assume that Pr[f(Un) = 1] = 0:5.Exercise 7.11 (self-correction of low-degree polynomials) Let d;m be in-tegers, and F be a �nite �eld of cardinality greater than t def= dm + 1. Letp : Fm ! F be a polynomial of individual degree d, and �1; :::; �t be t distinctnon-zero elements of F .1. Show that, for every x; y 2 Fm, the value of p(x) can be e�ciently computedfrom the values of p(x + �1y); :::; p(x + �ty), where x and y are viewed asm-ary vectors over F .2. Show that, for every x 2 Fm and � 2 F n f0g, if we uniformly select r 2 Fmthen the point x+ �r is uniformly distributed in Fm.Conclude that p(x) can be recovered based on t random points, where each pointis uniformly distributed in Fm.Exercise 7.12 (low degree extension) Prove that for any H � F and everyfunction f : Hm ! F there exists an m-variate polynomial f̂ : Fm ! F ofindividual degree jH j � 1 such that for every x 2 Hm it holds that f̂(x) = f(x).Guideline: De�ne f̂(x) = Pa2Hm �a(x) � f(a), where �a is an m-variate of individualdegree jHj�1 such that �a(a) = 1 whereas �a(x) = 0 for every x 2 Hm nfag. Speci�cally,�a1;:::;am(x1; :::; xm) =Qmi=1Qb2Hnfaig((xi � b)=(ai � b)).Exercise 7.13 Suppose that f̂ and S0 are as in the conclusion of Theorem 7.12.Prove that there exists a Boolean function g in E that is (S00; ")-inapproximablefor S00(n0 +O(log n0)) = S0(n0)=n0 and "(m) = 1=m3.Guideline: Consider the function g de�ned such that g(x; i) equals the ith bit of f̂(x).



7.2. HARD PROBLEMS IN E 307Exercise 7.14 (a generic application of Theorem 7.8) For any ` : N!N ,let h : f0; 1g� ! f0; 1g� be a function such that jh(x)j = `(jxj) for every x 2 f0; 1g�,and fXngn2N be a probability ensemble. Suppose that, for some s : N ! N and" : N ! [0; 1], for every family of s-size circuits fCngn2N and all su�ciently large nit holds that Pr[Cn(Xn) = h(Xn)] � "(n). Suppose that s0 : N ! N and "0 : N ![0; 1] satisfy s0(n + `(n)) � s(n)=poly(n="0(n + `(n))) and "0(n + `(n)) � 2"(n).Show that Theorem 7.8 implies that for every family of s0-size circuits fC 0n0gn02Nand all su�ciently large n0 = n+ `(n) it holds thatPr[C 0n+`(n)(Xn; U`(n)) = b(h(Xn); U`(n))] � 12 + "0(n+ `(n)):Note that if Xn is uniform over f0; 1gn then the predicate h0(x; r) = b(h(x); r),where jrj = jh(x)j, is (s0; 1 � 2"0)-inapproximable. Conclude that, in this case, if"(n) = 1=s(n) and s0(n+ `(n)) = s(n)
(1)=poly(n), then h0 is s0-inapproximable.Exercise 7.15 (derandomization via averaging arguments) Let C : f0; 1gn�f0; 1gm ! f0; 1g` be a circuit, which may represent a \probabilistic circuit" thatprocesses the �rst input using a sequence of choices that are given as a secondinput. Let X and Z be two independent random variables distributed over f0; 1gnand f0; 1gm, respectively, and let � be a Boolean predicate (which may representa success event regarding the behavior of C). Prove that there exists a stringz 2 f0; 1gm such that for Cz(x) def= C(x; z) it holds that Pr[�(X;Cz(X)) = 1] �Pr[�(X;C(X;Z))=1].Exercise 7.16 (from \selective XOR" to \standard XOR") Let f be a Booleanfunction, and b(y; r) denote the inner-product modulo 2 of the equal-length strings yand r. Suppose that F 0(x1; :::; xt(n); r) def= b(f(x1) � � � f(xt(n)); r), where x1; :::; xt(n) 2f0; 1gn and r 2 f0; 1gt(n), is T 0-inapproximable. Assuming that n 7! t(n) �n is 1-1,prove that F (x) def= F 0(x; 1t0(jxj)), where t0(t(n) �n) = t(n), is T -inapproximable forT (m) = T (m+ t0(m))�O(m).Guideline: Reduce the approximation of F 0 to the approximation of F . An importantobservation is that for any x = (x1; :::; xt(n)), x0 = (x01; :::; x0t(n)), and r = r1 � � � rt(n) suchthat x0i = xi if ri = 1, it holds that F 0(x; r) = F (x0) � �i:ri=0f(x0i). This suggests anon-uniform reduction of F 0 to F , which uses \adequate" z1; :::; zt(n) 2 f0; 1gn as well asthe corresponding values f(zi)'s as advice. On input x1; :::; xt(n); r1 � � � rt(n), the reductionsets x0i = xi if ri = 1 and x0i = zi otherwise, makes the query x0 = (x01; :::; x0t(n)) to F ,and returns F (x0) �i:ri=0 f(zi). Analyze this reduction in the case that z1; :::; zt(n) 2f0; 1gn are uniformly distributed, and infer that they can be set to some �xed values (seeExercise 7.15).Exercise 7.17 (Theorem 7.14 versus Theorem 7.5) Consider a generalizationof Theorem 7.14 in which f and P are functions from strings to sets of strings suchthat P (x1; :::; xt) = f(x1)� � � � � f(xt).1. Prove that if for every family of p1-size circuits, fCngn2N, and all su�cientlylarge n 2 N , it holds that Pr[Cn(Un) 62 f(Un)] > 1=p2(n) then for every



308 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSfamily of p0-size circuits, fC 0mgm2N, it holds that Pr[C 0m(Um) 2 P (Um)] <"0(m), where "0 and p0 are as in Theorem 7.14. Further generalize the claimby replacing fUngn2N with an arbitrary distribution ensemble fXngn2N, andreplacing Um by a t(n)-fold Cartesian product of Xn (where m = t(n) � n).2. Show that the foregoing generalizes both Theorem 7.14 and a non-uniformcomplexity version of Theorem 7.5.Exercise 7.18 (re�nement of the main theme of x7.2.1.3) Consider the fol-lowing modi�cation of De�nition 7.17, in which the decoding condition refers toan agreement threshold of (1=q(N)) + �(N) rather than to a threshold of �(N).The modi�ed de�nition reads as follows (where p is a �xed polynomial): For everyw : [`(N)]! [q(N)] and x2f0; 1gN such that �(x) is (1� ((1=q(N)) +�(N)))-closeto w, there exists an oracle-aided circuit C of size p((logN)=�(N)) such that Cw(i)yields the ith bit of x for every i 2 [N ].1. Formulate and prove a version of Theorem 7.18 that refers to the modi�edde�nition (rather than to the original one).Guideline: The modi�ed version should refer to computing g(Um(n)) with successprobability greater than (1=q(n)) + "(n) (rather than greater than "(n)).2. Prove that, when applied to binary codes (i.e., q � 2), the version in Item 1yields S00-inapproximable predicates, for S00(n0) = S(m�1(n0))
(1)=poly(n0).3. Prove that the Hadamard Code allows implicit decoding under the modi�edde�nition (but not according to the original one).30Guideline: This is the actual contents of Theorem 7.8.Show that if � : f0; 1gN ! [q(N)]`(N) is a (non-binary) code that allows implicitdecoding then encoding its symbols by the Hadamard code yields a binary code(f0; 1gN ! f0; 1g`(N)�2dlog2 q(N)e) that allows implicit decoding. Note that e�cientencoding is preserved only if q(N) � poly(N).Exercise 7.19 (using Proposition 7.16 to prove Theorem 7.19) Prove The-orem 7.19 by combining Proposition 7.16 and Theorem 7.8.Guideline: Note that, for some  > 0, Proposition 7.16 yields an exponential-time com-putable function f̂ such that jf̂(x)j � jxj and for every family of circuit fC0n0gn02N ofsize S0(n0) = S(n0=3)=poly(n0) it holds that Pr[C0n0(Un0 ) = f̂(Un0 )] < 1=S0(n0). Com-bining this with Theorem 7.8, infer that P (x; r) = b(f̂(x); r), where jrj = jf̂(x)j � jxj, isS00-inapproximable for S00(n00) = S(n00=2)
(1)=poly(n00). Note that if S(n) = 2
(n) thenS00(n00) = 2
(n00).Exercise 7.20 LetG be a pairwise independent generator (i.e., as in Lemma 7.22),S � f0; 1gn and � def= jSj=2n. Prove that, with probability at least min(n��; 1)=2, at30Needless to say, the Hadamard Code is not e�cient (for the trivial reason that its codewordshave exponential length).



7.2. HARD PROBLEMS IN E 309least one of the n strings output by G(U2n) resides in S. Furthermore, if � � 1=2nthen this probability is at least 0:75 � n � �.Guideline: Using the pairwise independence property and employing the Inclusion-Exclusion formula, we lower-bound the aforementioned probability by n � � � �n2� � �2.If � � 1=n then the claim follows, otherwise we employ the same reasoning to the �rst1=� elements in the output of G(U2n).Exercise 7.21 (one-way functions versus inapproximable predicates) Provethat the existence of a non-uniformly hard one-way function (as in De�nition 7.3)implies the existence of an exponential-time computable predicate that is T -inapproximable(as per De�nition 7.9), for every polynomial T .Guideline: Suppose �rst that the one-way function f is length-preserving and 1-1. Con-sider the hard-core predicate b guaranteed by Theorem 7.7 for g(x; r) = (f(x); r), de�nethe Boolean function h such that h(z) = b(g�1(z)), and show that h is T -inapproximablefor every polynomial T . For the general case a di�erent approach seems needed. Specif-ically, given a (length preserving) one-way function f , consider the Boolean function hde�ned as h(z; i; �) = 1 if and only if the ith bit of the lexicographically �rst element inf�1(z) = fx : f(x) = zg equals �. (In particular, if f�1(z) = ; then h(z; i; �) = 0 forevery i and �.)31 Note that h is computable in exponential-time, but is not (worst-case)computable by polynomial-size circuits. Applying Theorem 7.10, we are done.

31Thus, h may be easy to computed in the average-case sense (e.g., if f(x) = 0jxjf 0(x) for someone-way function f 0).
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