
On the Average-Case Complexity of Property

Testing

Oded Goldreich

Abstract. Motivated by a study of Zimand (22nd CCC, 2007), we con-
sider the average-case complexity of property testing (focusing, for clar-
ity, on testing properties of Boolean strings). We make two observations:

1. In the context of average-case analysis with respect to the uniform
distribution (on all strings of a fixed length), property testing is
trivial. Specifically, either the yes-instances (i.e., instances having
the property) or the no-instances (i.e., instances that are far from
having the property) are exponentially rare, and thus the tester may
just reject (resp., accept) obliviously of the input.

2. Turning to average-case derandomization with respect to distribu-
tions that assigns noticeable probability mass to both yes-instances
and no-instances, we identify a natural class of distributions and
testers for which average-case derandomization results can be ob-
tained directly (i.e., without using randomness extractors). Further-
more, the resulting deterministic algorithm may preserve the non-
adaptivity of the original tester. (In contrast, Zimand’s argument
utilizes a strong type of randomness extractors and introduces adap-
tivity into the testing process.)

Keywords: Property Testing, Average-Case Complexity.

An early version of this work appeared as TR07-057 of ECCC.

1 Introduction

The starting point of this article is Zimand’s study of possible derandomiza-
tions of randomized sublinear-time algorithms [Z]. Zimand showed that ran-
domized sublinear-time algorithms can be derandomized yielding deterministic
algorithms of polynomially-related complexity that err on a negligible fraction
of the instances. Specifically, he showed that, for some fixed α > 0, any random-
ized algorithm of time-complexity T such that T (n) < nα can be emulated by a
poly(T)-time deterministic algorithm that errs on at most an exp(−Ω(T log T))
fraction of the instances. Needless to say, Zimand’s work (as well as the current
article) refers to a “direct access” model of computation in which each bit of
the input can be read at unit cost. Zimand noted the relevance of his work to
property testing, but our view is that this aspect of his work should be evalu-
ated with great care. Articulating this view is the main motivation of the current
article.

121

1.1 Average-case with respect to the uniform distribution

In discussing the theoretical significance of his work, Zimand says “it shows that
the properties that can be checked in sublinear time depend, except for a few
inputs, on just a few bits of the input and the locations of these bits can be found
very fast.”1 We fear that such a phrasing does not put adequate emphasis on the
exception clause (i.e., “except for a few inputs”). Furthermore, in our opinion,
the crux of property testing is dealing with non-typical (i.e., exceptional) inputs,
whereas dealing with random inputs is typically uninteresting.

We first note that average-case analysis with respect to the uniform distribu-
tion is not adequate in the context of testing properties of strings, which in turn
cover almost all types of property testing problems (e.g., testing graph properties
in the adjacency matrix model). The reason is that property testing problems
are special type of promise problems2 in which one should distinguish instances
having the property from instances that are far from any string having the prop-
erty. However, as shown in Section 2, for every property of n-bit strings either the

first set (i.e., instances having the property) or the second set (i.e., instances far
from having the property) has exponentially vanishing density. In the first (resp.,
second) case, a trivial tester that rejects (resp., accepts) every input (without
reading a single bit) is correct on all but a exponentially vanishing fraction of

all inputs, where the exceptional cases consists of all the yes-instances (resp.,
all the “far-away” instances).

Indeed, the average-case complexity of promise problems is meaningful only
with respect to distributions that assign noticeable probability mass to both yes-

instances and no-instances (because otherwise a trivial algorithm as above will
do). However, the uniform distribution cannot satisfy the latter condition in
the case of promise problems that correspond to property testing (of Boolean
strings).

1.2 A direct average-case derandomization for many natural cases

We thus turn to average-case derandomization with respect to distributions
that assigns noticeable probability mass to both yes-instances and no-instances
(i.e., “far-away” instances). While Zimand’s approach may be applicable to this
context too3, we identify a natural class of distributions and testers for which
average-case derandomization results can be obtained directly. Furthermore, we

1 See last paragraph of [Z, Sec. 1.0].
2 Recall that promise problems [ESY] are represented as pairs of non-intersecting sets

A, B ⊆ {0, 1}∗ and solving such problems requires distinguishing inputs in A from
inputs in B, while an arbitrary answer is allowed for inputs that are neither in A nor
in B. For such a promise problem we say that a string in A ∪ B satisfy the promise

(while strings outside A ∪ B violate the promise).
3 As shown in Section 2, such distributions must have min-entropy at most n−Ω(n),

while [Z] does not provide results for this range of paramters. Still it is possible that
the basic approach of [Z] coupled with a suitable randomness extractor (possibly
tailored for this application) may be applicable to such distributions.

122

believe that our analysis provides a more illuminating account of what is actually
going on.

We recall that, in continuation to [GW], Zimand [Z] emulates the computa-
tion of the original randomized tester by applying a (special type of) randomness
extractor to the input, and replacing the coin tosses of the original tester with
corresponding outputs of the extractor. Consequently, even if the original tester
is non-adaptive (as is the case with many natural property testers), the result-
ing deterministic algorithm is adaptive (because the emulation step depends on
the bits read in the randomness-extraction step). In contrast, we show that, in
many natural cases, an average-case derandomization can be obtained by arbi-

trarily fixing the coins of the original tester.
To illustrate the point, let us consider the problem of testing whether a given

Boolean string has a majority of 1-values (or is far from any such string). In this
case, we may obtain a deterministic algorithm by inspecting the value of the first

few bits in the string, where this algorithm decides correctly on almost all n-bit
strings that have a number of 1-values that is bounded away from n/2; that is,
ruling by the majority of the inspected bits, we decide correctly on almost all
elements in the set of n-bit strings having Hamming weight outside the interval
[0.49n, 0.51n]. Furthermore, any fixed set of sufficiently many bit positions can
be used for this purpose. For a general treatment, see Section 3.

We illustrate the general treatment by considering the special case of testing
graph properties in the adjacency matrix model (as in, e.g., [GGR]). In this
setting (but also in other natural settings), the natural property testers use
their randomness solely for determining the bit positions to be examined in the
input. Furthermore, at the cost of squaring the query complexity, we may assume
that any graph property can be tested by using randomness in such a restricted
manner [GT]. In Section 3, we show that a deterministic tester that inspects the

subgraph induced by any fixed set of vertices (of adequate size) errs rarely with

respect to any distribution on labeled graphs that is invariant under isomorphism.

1.3 Additional comments

We note that, in many cases, it is easier to construct property testers that work
only on typical objects drawn from natural distributions rather than to construct
standard testers that work on all objects. This fact is mildly reflected by the
results shown in Section 3, where we convert standard (randomized) testers into
deterministic “average-case testers”; that is, here getting rid of randomization
is considered a simplification, but the query complexity of the resulting tester is
not smaller than the query complexity of the original tester.4 However, in many
natural examples (see one below), we can also reduce the query complexity.
Details follow.

Let us first emphasize the fact that, when considering worst-case complexity,
randomness is essential for testing natural properties (see, e.g., [GS], and note

4 Actually, the the query complexity of the resulting tester is somewhat larger than
the query complexity of the original tester.

123

that this is an unconditional result). Indeed, this result stand in contrast to the
aforementioned average-case testing results, and provides a formal sense in which
“average-case testing” is easier than standard (worst-case) testing. However, we
claim that things go beyond this sense: Detecting random objects that are far
from a property is typically easier than detecting arbitrary objects that are far
from this property.

Consider, for example, the notoriously hard problem of testing triangle-
freeness in the adjacency matrix model. As shown by Alon [A], testing triangle-
freeness requires a number of queries that is super-polynomial in the reciprocal
of the proximity parameter, denoted ǫ. In contrast, for a random graph of edge
density ǫ and any three vertices, with probability ǫ3, the subgraph induced by
these three vertices is a triangle.

Reservations regarding our own opinions. The direct average-case derandom-
izations presented in Section 3 refer to distributions that are invariant under
natural reshuffling of the presentation of the studied objects (e.g., in the case of
labeled graph we considered distribution that are invariant under isomorphism).
Although such distributions arise naturally in many cases, distributions that
lack this feature are natural in other cases. For example, consider a distribution
over real-valued vectors (or matrices) that is obtained by the following two-step
process: First a vector (resp., a matrix) is selected according to an arbitrary dis-
tribution, and then each of its entries is pertubed at random and independently
of anything else. The resulting distribution may not satisfy any of the invari-
ances considered in Section 3, but it does have high min-entropy. Recalling that
various natural properties of vectors (resp., matrices) can be tested in probabilis-
tic sublinear time (cf., e.g., [EKKRV,FK]), we note that Zimand’s approach [Z]
may5 be applicable in this case (and if so yield average-case derandomization of
natural appeal).

2 Average-case with respect to the uniform distribution

We start by recalling the setting of property testing (cf., e.g., [G,R]), when spe-
cialized to bit strings (of fixed length). We comment that other finite objects
can be naturally represented by such generic strings, and thus corresponding
properties can be naturally cast in this framework. The most notable exam-
ple is property testing of graphs in the adjacency matrix model (as introduced
in [GGR]).

For a generic length parameter n, we consider the set of all strings over
{0, 1}n, and an arbitrary property Pn ⊆ {0, 1}n. Property testing with respect
to a distance parameter ǫ > 0 corresponds to distinguishing inputs in Pn from
inputs in Γǫ(Pn), where

Γǫ(Pn)
def
= {x ∈ {0, 1}n : ∀z ∈ Pn ∆(x, z) > ǫ · n} (1)

5 See Footnote 3.

124

and ∆(x1 · · ·xn, z1 · · · zn) = |{i : xi 6= zi}| denotes the number of bits on which
x = x1 · · ·xn and z = z1 · · · zn disagree.6 That is, property testing with respect to
ǫ corresponds to deciding the promise problem (Pn, Γǫ(Pn)). However, as we shall
see, with respect to the uniform distribution on {0, 1}n, this promise problem is
trivial on the average. That is:

Theorem 2.1 ([AS, Thm. 7.5.3], reformulated): For every constant ǫ > 0 there

exists a constant c > 0 such that for every n if |Pn| ≥ 2−cn · 2n, then |Γǫ(Pn)| ≤
2−cn ·2n. More generally, if |Pn| ≥ ρ·2n and ǫ ≥

√

8 ln(1/ρ)
n , then |Γǫ(Pn)| ≤ ρ·2n.

Indeed, Theorem 2.1 can be reformulated by referring to a uniformly distributed
x ∈ {0, 1}n. This reformulation (of the special case of constant ǫ > 0) asserts that
(for some constant c > 0) either Prx[x ∈ Pn] < 2−cn or Prx[x ∈ Γǫ(Pn)] ≤ 2−cn.
In the first case, a tester that always reject is correct on all but at most a 2−cn

fraction of the n-bit inputs, whereas in the second case the same holds for a tester
that always accepts. Thus, property testing is trivial on the average with respect

to any distribution that has min-entropy m
def
= n− o(n) (i.e., a distribution Xn

such that of every x it holds that Pr[Xn =x] ≤ 2−m).7

Proof: The theorem is merely a reformulation of a well-known result regarding
the volume of balls around sets. Specifically, let Bd(S) denote the set of n-
bit long strings that are at distance at most d from some string in S (i.e.,

Bd(S)
def
= {x ∈ {0, 1}n : ∃y ∈ S s.t. ∆(x, y) ≤ d}). Then, Theorem 7.5.3 in [AS]

(see proof in the Appendix) asserts that if |S| ≥ e−λ2/2 · 2n, then |B2λ
√

n(S)| ≥
(1 − e−λ2/2) · 2n. Using S = Pn and λ =

√

2 ln(1/ρ), where ρ = |Pn|/2n, we
get |B√

8n ln(1/ρ)
(Pn)| ≥ (1− ρ) · 2n. Noting that Γǫ(Pn) = {0, 1}n \ Bǫn(Pn), the

general claim follows. The special case follows by noting that ρ = 2−cn implies
√

(8 ln(1/ρ))/n =
√

8c/ log e (and so using c = ǫ2/8 will do).

Generalization. We note that Theorem 2.1 generalizes to properties of sequences
over any alphabet Σ. That is, for any property Pn ⊆ Σn, it holds that if |Pn| ≥
ρ · |Σ|n and ǫ ≥

√

8 ln(1/ρ)
n , then |Γǫ(Pn)| ≤ ρ · |Σ|n, where Γǫ(Pn) denotes the

set of n-long sequences over Σ that are ǫ-far from every sequence in Pn. (See
further details in the Appendix.)

3 A direct average-case derandomization for many

natural cases

In this section we show that, in many interesting settings of property testing,
average-case derandomization results can be obtained more directly than by fol-

6 An alternative exposition may refer to Boolean functions of the form f : [n] → {0, 1}.
In this case ∆(f, g) = |{i : f(i) 6=g(i)}|.

7 In fact, we may allow min-entropy m = n − (cn/2), where c is the constant in
Theorem 2.1. For such a distribution Xn (of min-entropy n − (cn/2)), it holds that
either Pr[Xn ∈ Pn] ≤ 2−cn/2 or Pr[Xn ∈ Γǫ(Pn)] ≤ 2−cn/2.

125

lowing the approach suggested by Zimand.8 We start by considering the concrete
setting of testing graph properties in the adjacency matrix model (as in [GGR]),
and later generalize the treatment to other settings. Indeed, the setting of test-
ing graph properties in the adjacency matrix model provides the most appealing
application of the general approach to be described later.

3.1 On testing graph properties in the adjacency matrix model

Recall that in this model (for testing graph properties), n-vertex graphs are
represented by Boolean strings of length n2. For technical reasons, we prefer to
represent such graphs as Boolean functions defined over the set of the

(

n
2

)

(un-
ordered) vertex-pairs, which is actually more natural (as well as non-redundant).
Note that the set of all permutations over [n] induces a transitive group of
permutations over these pairs, where the permutation π : [n] → [n] induces
a permutation that maps pairs of the form {i, j} to {π(i), π(j)}. Indeed, any
graph property is invariant under this group, which is hereafter referred to as
the group of vertex-relabeling; that is, G=([n], E) has the property if and only if
π(G)=([n], {{π(i), π(j)} : {i, j} ∈ E}) has this property.

Theorem 3.1 Let Gn be a graph property, referring to n-vertex graphs, and let

Xn be any arbitrary distribution of n-vertex graphs that is invariant under the

group of vertex-relabeling (i.e., for every permutation π : [n]→ [n] it holds that
Xn and π(Xn) are identically distributed). Suppose that the promise problem

(Gn, Γǫ(Gn)) can be decided correctly (in the worst case) by a probabilistic tester

of query complexity q(n, ǫ) and error probability at most 1/3. Then, for every k <
n/O(q(n, ǫ)2), there exists a deterministic algorithm of query complexity O(k ·
q(n, ǫ)2) that inspects only vertex pairs that correspond to the vertices 1, ..., O(k ·
q(n, ǫ)) and is correct on a random input Xn with probability at least 2−k.

As will be clear from the proof, we may use any O(k ·q(n, ǫ)) fixed vertices rather
than the vertex set {1, ..., O(k · q(n, ǫ))}.

Proof: By [GT, Thm. 2], we may convert the original tester into a canonical

tester that selects uniformly a set of n′ def
= O(q(n, ǫ)) vertices, denoted R, and ac-

cepts if and only if the subgraph induced by R has some predetermined (graph)

property G′n′ . By invoking the resulting (canonical) tester t
def
= O(k) times, we re-

duce its (worst-case) error probability to 2−k. We claim that the resulting tester,
denoted A, can be derandomized (for average-case performance) by merely using
any fixed set of t ·n′ vertices rather than a random set of t ·n′ vertices as selected
by A. We denote the resulting deterministic algorithm by D.

To prove the foregoing claim, we consider an arbitrary input graph G that
satisfies the promise (i.e., either G ∈ Gn or G is ǫ-far from Gn). By the foregoing
discussion we know that the probability that A errs on input G is at most

8 Here we ignore the question of the applicability of Zimand’s approach to distributions
of min entropy n − Ω(n); cf. Footnote 3.

126

2−k. Let π denote a uniformly distributed permutation of [n], and consider the
graph π(G) obtained from G by relabeling its vertices according to π. Note that
π(G) ∈ Gn if and only if G ∈ Gn (and, likewise, π(G) is ǫ-far from Gn iff G is
ǫ-far from Gn). On the other hand, the distribution of the view of A on input G
is identical to distribution of the view of D on input π(G), because a random π
maps any fixed set of vertices to a uniformly distributed set of vertices. We stress
that the first probability space is defined over the coin tosses of A, whereas the
second probability space is defined over the random relabeling π. We conclude
that the probability that D errs on input π(G) is at most 2−k.

By the hypothesis that Xn is invariant under the group of vertex-relabeling,
it follows that Xn can be described by a process in which one first selects a
random graph G (possibly G ← Xn), and then outputs π(G), where π is a
uniformly distributed permutation of [n]. Note that if G violates the promise,
then so does π(G), whereas if G satisfies the promise, then the probability that
D errs on input π(G) is at most 2−k. It follows that D errs on input Xn with
probability at most 2−k.

3.2 Generalization

Theorem 3.1 can be extended in various ways. We first note that most natural
testers (not only in the setting of testing graph properties in the adjacency
matrix model) are “kind of canonical” in the sense that they select some random
set of “pivots” and consider small sets of bit-locations as determined by these
pivots. That is, randomization is only used in these testers for the selection of
the pivots, which induce queries that are each uniformly distributed. Thus, the
strategy of the proof of Theorem 3.1 can be applied, resulting in a deterministic
algorithm that uses a fixed set of pivots and errs with probability at most 2−k

on any input distribution that is invariant under permutations that correspond
to mapping among sets of pivots. To formalize the above discussion, we need
some definitions.

We turn back to properties of n-bit strings, which we actually view as func-
tions from [n] to {0, 1}. More generally, we shall consider properties of functions
from [n] to an arbitrary alphabet Σ. For any set (or rather group) Π of permu-
tations over [n], we say that the property Pn (of such functions) is Π-invariant

if for every f : [n] → Σ and every π ∈ Π it holds that f ∈ Pn if and only
(f ◦ π) ∈ Pn, where (f ◦ π)(i) = f(π(i)) (for every i ∈ [n]). In the following def-
inition, “normality” amounts to non-adaptivity augmented by the requirement
that the final decision is deterministic and only depends on the oracle answers,
whereas “Π-normality” corresponds to the mapping between the aforementioned
pivots.

Definition 3.2 (normal testers): Let Π be a permutation group over [n] and Pn

be a Π-invariant property. We say that a tester for Pn is normal if there exists

a query-generating algorithm Q and a verdict predicate V such that on internal

coins ω ∈ {0, 1}r and oracle access to any f : [n] → Σ the tester accepts if

127

and only if V (f(i1), ..., f(iq)) = 1, where (i1, ..., iq) = Q(ω). That is, the tester

queries the function at locations i1, ..., iq, which are determined by Q(ω) and

accepts if and only if the predicate V evaluates to 1 on the q-tuple of answers.

We say that the tester is Π-normal if the following two conditions hold.

1. For every ω, ω′ ∈ {0, 1}r there exists π ∈ Π such that Q(ω′) = π(Q(ω)),
where π(i1, ..., iq) = (π(i1), ..., π(iq)).

2. For every ω ∈ {0, 1}r and π ∈ Π there exists ω′ ∈ {0, 1}r such that Q(ω′) =
π(Q(ω)).

Note that, by definition, a normal tester is non-adaptive. The justification for
referring to the two additional conditions by the term Π-normalily is provided by
the following Fact 3.3. But let us first mention that, indeed, the canonical graph
property testers (as defined in [GT] and used in the proof of Theorem 3.1) are
normal. Furthermore, they are Π(vr)-normal for the group Π(vr) of all vertex-
relabeling. Other examples of normal testers are discussed at the end of this
section.

Fact 3.3 Let Π and Pn be as in Definition 3.2, and suppose that V and Q are

as rerquired of a normal tester for Pn. Then, this tester is Π-normall if and only

if for every ω ∈ {0, 1}r and uniformly distributed π ∈ Π it holds that π(Q(ω)) is

uniformly distributed in S
def
= {Q(ω′) : ω′ ∈ {0, 1}r} (i.e., for every ω, ω′ ∈ {0, 1}r

it holds that Prπ∈Π [π(Q(ω))=Q(ω′)] = 1/|S|).

Proof: Clearly, the latter (“distributional”) condition implies the two condi-
tion in Definition 3.2. To see that the other direction, we show that Π-normality
implies that, for any fixed ω, ω′, ω′′ ∈ {0, 1}r, it holds that pω,ω′ = pω,ω′′ , where

pa,b
def
= Prπ∈Π [π(Q(a)) = Q(b)]. The latter claim can be proved by fixing any

permutation π0 that satisfies Q(ω′′) = π0(Q(ω′)), and observing that a ran-
dom permutation in Π can be written as π0 ◦ π′, where π ∈ Π is uniformly
distributed. Hence, pω,ω′′ = Prπ′∈Π [(π0 ◦ π′)(Q(ω)) = Q(ω′′)], which equals
Prπ′∈Π [π′(Q(ω))=Q(ω′)].

Theorem 3.4 (Theorem 3.1, generalized): Let Π be a permutation group over

[n] and Pn be a Π-invariant property. Let Xn be a distribution over functions

from [n] to Σ such that for every such function f and every π ∈ Π it holds

Pr[Xn =f] = Pr[Xn =f ◦ π]. Suppose that the promise problem (Pn, Γǫ(Pn)) can

be decided correctly (in the worst case) by a Π-normal tester of query complexity

q(n, ǫ) and error probability at most 1/3. Then, for every k < n/O(q(n, ǫ)), there

exists a (non-adaptive) deterministic algorithm that inspects the function value

at O(k · q(n, ǫ)) fixed and predetermined positions and is correct on a random

Xn with probability at least 2−k.

A distribution Xn as in the hypothesis of Theorem 3.4 is called Π-invariant.

Proof: The deterministic algorithm, denoted D, is obtained by fixing the
coins to the query-generating algorithm Q. For example, we may query the

128

input function f at locations (i1, ..., iq) = Q(0r), and accept if and only if
V (f(i1), ..., V (iq)) = 1. (Recall that V represents a fixed predicate.) As in the
proof of Theorem 3.1, we actually apply this construction after reducing the
error probability of the original tester to 2−k.

To analyze the success probability of D on input Xn, we fix any function
f and consider the function distribution f ◦ π, where π ∈ Π is uniformly dis-
tributed. As in the proof of Theorem 3.1, the distribution of the view of the
original tester on input f is identical to distribution of the view of the deter-
ministic algorithm D on the randomized input f ◦ π. (Here we use Fact 3.3.)
We conclude that if f ∈ Pn ∪ Γǫ(Pn), then the probability that D errs on the
input distribution f ◦ π is at most 2−k. Again, using the hypothesis that Xn

is Π-invariant, we conclude that the probability that D errs on input Xn is at
most 2−k.

Corollaries. Indeed, Theorem 3.1 follows as a special case of Theorem 3.4 by
invoking [GT, Thm. 2] (and referring to the group of vertex-relabeling permu-
tations). Next, we illustrate the applicability of Theorem 3.4 to testing low-
degree polynomials (see, e.g., [RS]) and to testing monotone functions (see,
e.g., [GGLRS]).

– In the case of low-degree tests (see, e.g., [RS]), for some finite field F , we
are given a function f : Fm → F and wish to test whether it is a low-
degree polynomial. The standard test selects uniformly at random a line
in Fm, queries some points that reside on fixed locations on this line and
accepts if and only if an adequate interpolation condition holds. This tester
is clearly normal. Furthermore, this tester is Π-normal, where Π is the group
of all full-rank affine transformations of Fm (because such transformations
define a transitive operation on the set of all pairs of different points).9

Thus, Theorem 3.4 can be applied to any distribution of functions that is
Π-invariant.

– In the case of testing monotonicity (see, e.g., [GGLRS]), for some ordered
set S, we are given a function f : Sm → R and wish to test whether it is
monotone (i.e., whether f(α) ≤ f(β) for every α = (α1, ..., αm) and β =
(β1, ..., βm) such that αi ≤ βi for every i ∈ [m]). In the case that S =
{0, 1}, the standard test selects uniformly at random two points in Sm that
differ in a single coordinate, queries f on these two points, and accepts
if and only if an adequate inequality holds. This tester is clearly normal.
Furthermore, monotonicity is Π-invariant for the group Π that consists of
all permutations π : Sm → Sm such that π(α1, ..., αm) = (απ′(1), ..., απ′(m))
for some permutation π′ : [m] → [m]. Unfortunately, the foregoing tester
is not Π-invariant, because the permutations in Π preserve the Hamming
weight of strings in {0, 1}m.
In order to apply Theorem 3.4, we decouple the foregoing tester into m tests
such that the i-th test selects uniformly an m-bit string α of Hamming weight

9 Note that our notion of normality is closely related (but not identical) to the notion
of linear invariances studied in [KS].

129

i and queries f on this string and on a random string obtained from α by
setting one of its 1-entries to zero. Each of these testers is Π-invariant, and
so we may apply an adequate extension of Theorem 3.4 that refers to testing
properties by a conjunction of several tests.

We comment that similar ideas can be applied even to non-adaptive testers,
which seems essential to settings such as testing properties of bounded-degree
graphs in the incidence list model (of [GR1]). For example, note that the testers
presented in [GR1,GR2] only employ comparison-based computations; that is,
they can described in terms of operations such as select a random vertex,
select a random neighbor of a given vertex, and test equality of two

given vertices.10 Thus, the operation of these algorithms is maintained when
we relabel the vertices. Consequently, they can be derandomized analogously
to the proof of Theorem 3.1, resulting in an algorithm that uses a fixed set of
vertices and a fixed set of neighbor indices.11

Acknowledgments

I am grateful to Omer Reingold and Ronen Shaltiel for extremely useful and
insightful discussions. I am also grateful to Marius Zimand for correcting my
initial impression by which [Z] can handle any source of linear min-entropy.

Appendix: Generalization of Theorem 2.1

We first detail the generalization of Theorem 2.1 to properties of sequences over
any alphabet Σ. This requires generalizing the definition of Γǫ as follows (for
any Pn ⊆ Σn):

Γǫ(Pn)
def
= {x ∈ Σn : ∀z ∈ Pn ∆(x, z) > ǫ · n} (2)

where ∆(x1 · · ·xn, z1 · · · zn) = |{i : xi 6= zi}| denotes the number of position in
the sequence on which x = x1 · · ·xn and z = z1 · · · zn disagree.

Theorem 2.1, generalized. For any property Pn ⊆ Σn, it holds that if |Pn| ≥
ρ · |Σ|n and ǫ ≥

√

8 ln(1/ρ)
n , then |Γǫ(Pn)| ≤ ρ · |Σ|n.

Proof: The proof of Theorem 2.1 generalizes easily, because the proof of Theo-
rem 7.5.3 in [AS] applies (without any change) also to the general case. For sake

10 Many of these algorithms also use the operation of retrieving all neighbors of a
given vertex, which can be emulated by successively selecting a random neighbor
for sufficiently many times. We also note that in [GR1,GR2] the incidence-lists are
sorted, but this is immaterial to the algorithms. For simplicity, here we refer to
unsorted incidence-lists.

11 Alternatively, the bounded-degree graph model can be handled by the formalism
introduced in the subsequent work of [GK].

130

of self-containment, we reproduce the proof of [AS, Thm. 7.5.3]. Indeed, the
original text refers to Σ = {0, 1} but it actually holds for any finite Σ (provided
that ∆ and Γǫ are defined as above).

Fixing any Pn ⊆ Σn, define ∆Pn
(x) = minz∈Pn

{∆(x, z)}, and consider a uni-
formly distributed ω ∈ Σn. Then, the theorem’s statement can be reformulated
as asserting that if Prω[∆Pn

(ω)=0] ≥ ρ, then Prω[∆Pn
(ω)>

√

8n ln(1/ρ)] ≤ ρ. In
order to prove this claim, we introduce a martingale (cf. [AS, Chap. 7]), ζ0, ..., ζn,
such that

ζi = ζi(ω) = |Σ|−(n−i) ·
∑

ri+1,...,rn∈Σ

∆Pn
(ω1 · · ·ωiri+1 · · · rn) (3)

where ω = ω1 · · ·ωn. (Indeed, ζn(ω) = ∆Pn
(ω) and ζ0 = Eω[ζn].) Note that

actually ζi only depends on ω1 · · ·ωi. Indeed, the martingale condition holds
(i.e., for every fixed ω1 · · ·ωi, it holds that Eωi+1

[ζi+1|ζi] = ζi) and |ζi+1−ζi| ≤ 1
(because |∆Pn

(x) − ∆Pn
(x′)| ≤ ∆(x, x′)). By the Martingale Tail Inequality

(cf. [AS, Thm. 7.2.1]) we have

Prω[ζn < ζ0 − λ
√

n] < e−λ2/2 (4)

Prω[ζn > ζ0 + λ
√

n] < e−λ2/2 (5)

Setting λ =
√

2 log(1/ρ) (so that ρ = e−λ2/2) and contrasting Eq. (4) with
Pr[ζn = 0] ≥ ρ, we conclude that ζ0 ≤ λ

√
n. Thus, Eq. (5) implies Pr[ζn >

2λ
√

n] < ρ, and the theorem follows.

References

[A] N. Alon. Testing subgraphs of large graphs. Random Structures and Algo-

rithms, Vol. 21, pages 359–370, 2002.
[AS] N. Alon and J.H. Spencer. The Probabilistic Method. John Wiley & Sons,

Inc., 1992. Second edition, 2000.
[EKKRV] F. Ergun, S. Kannan, S.R. Kumar, R. Rubinfeld, and M. Viswanathan.

Spot-Checkers. In 30th STOC, pages 259–268, 1998.

[ESY] S. Even, A.L. Selman, and Y. Yacobi. The Complexity of Promise Problems
with Applications to Public-Key Cryptography. Inform. and Control, Vol. 61,
pages 159–173, 1984.

[FK] A. Frieze and R. Kanan. Quick approximation to matrices and applications.
Combinatorica, Vol. 19 (2), pages 175–220, 1999.

[G] O. Goldreich. A Brief Introduction to Property Testing. This volume.
[GGLRS] O. Goldreich, S. Goldwasser, E. Lehman, D. Ron, and A. Samorodnitsky.

Testing Monotonicity. Combinatorica, Vol. 20 (3), pages 301–337, 2000.

[GGR] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection
to learning and approximation. Journal of the ACM, pages 653–750, July
1998.

[GK] O. Goldreich and T. Kaufman. Proximity Oblivious Testing and the Role of
Invariances. ECCC, TR10-058.

131

[GR1] O. Goldreich and D. Ron. Property testing in bounded degree graphs. Al-

gorithmica, pages 302–343, 2002.
[GR2] O. Goldreich and D. Ron. A sublinear bipartite tester for bounded degree

graphs. Combinatorica, Vol. 19 (3), pages 335–373, 1999.
[GS] O. Goldreich and O. Sheffet. On the randomness complexity of property test-

ing. Computational Complexity, Vol. 19 (1), pages 99–133, 2010. Extended
abstract in Proc. of RANDOM’07.

[GT] O. Goldreich and L. Trevisan. Three theorems regarding testing graph prop-
erties. Random Structures and Algorithms, Vol. 23 (1), pages 23–57, August
2003.

[GW] O. Goldreich and A. Wigderson, Derandomization that is rarely wrong from
short advice that is typically good. In the proceedings of RANDOM’02,
Springer LNCS, Vol. 2483, pages 209–223, 2002.

[KS] T. Kaufman and M. Sudan. Algebraic Property Testing: The Role of Invari-
ances. In 40th STOC, pages 403–412, 2008.

[R] D. Ron. Algorithmic and Analysis Techniques in Property Testing. Founda-

tions and Trends in TCS, Vol. 5 (2), pages 73–205, 2010.
[RS] R. Rubinfeld and M. Sudan. Robust characterization of polynomials with

applications to program testing. SIAM Journal on Computing, 25(2), pages
252–271, 1996.

[Z] M. Zimand. On derandomizing probabilistic sublinear-time algorithms. In
the Proc. of the 22nd IEEE Conference on Computational Complexity, pages
1–9, 2007.

