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Abstract. We consider testing graph expansion in the bounded-degree
graph model. Specifically, we refer to algorithms for testing whether the
graph has a second eigenvalue bounded above by a given threshold or is
far from any graph with such (or related) property.
We present a natural algorithm aimed towards achieving the foregoing
task. The algorithm is given a (normalized) eigenvalue bound λ < 1,
oracle access to a bounded-degree N-vertex graph, and two additional
parameters ǫ, α > 0. The algorithm runs in time N0.5+α/poly(ǫ), and
accepts any graph having (normalized) second eigenvalue at most λ. We
believe that the algorithm rejects any graph that is ǫ-far from having
second eigenvalue at most λα/O(1), and prove the validity of this belief
under an appealing combinatorial conjecture.
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This work appeared as TR00-020 of ECCC. It is based on a research project
pursued in the years 1998–99, which was stuck at the gap outlined in Section 4.2.
The current revision is intentionally minimal, because the original publication
has triggered several subsequent works, which directly address the topic of this
work (see [8] and the references therein) or are indirectly inspired by it (see, e.g.,
[4]). For further discussion of subsequent work, see Section 5.

1 Introduction

This memo reports partial results regarding the task of testing whether a given
bounded-degree graph is an expander. That is, we refer to the “bounded-degree
model” of testing graph properties as formulated in [5]. In this model, the (ran-
domized) algorithm is given integers d and N , a distance parameter ǫ (as well
as some problem-specific parameters), and oracle access to a N -vertex graph G
with degree bound d; that is, query (v, i) ∈ [N ]× [d] is answered by the ith neigh-
bor of v in G (or by a special symbol in case v has less than i neighbors). For a
predetermined property P , the algorithm is required to accept (with probability
at least 2/3) any graph having property P , and reject (with probability at least
2/3) any graph that is ǫ-far from having property P , where distance between
graphs is defined as the fraction of edges (over dN) on which the graphs differ.

Loosely speaking, the specific property considered here is being an expander.
More precisely, for a given bound λ < 1, we consider the property, denoted Eλ,
of having a normalized by d adjacency matrix with second eigenvalue at most
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λ. Actually, we further relax the property testing formulation (as in [9]): Using
an additional parameter λ′ ≥ λ, we only require that

– the algorithm must accept (with probability at least 2/3) any graph having
property Eλ (i.e., having second eigenvalue at most λ); and

– the algorithm must reject (with probability at least 2/3) any graph that is ǫ-
far from having property Eλ′ (i.e., from any graph that has second eigenvalue
at most λ′).

Setting λ′ = λ we regain the more strict formulation of testing whether a graph
has second eigenvalue at most λ.

We mention that the Ω(
√

N) lower bound on “testing expansion” (presented
in [5]) continues to hold for the relaxed formulation, provided that λ′ < 1.
This is the case because the lower bound is established by showing that any
o(
√

N)-query algorithm fails to distinguish between a very good expander and
an unconnected graph with several huge connected components.1

In view of the foregoing, we shall be content with any sub-linear time algo-
rithm for testing expansion. Below, we present a parameterized family of algo-
rithms. For any α > 0, the algorithm has running-time n0.5+α/poly(ǫ) and is
supposed to satisfy the foregoing requirement with λ′ = λα/7. Unfortunately,
we only prove that this is indeed the case provided that a certain combinatorial
conjecture (presented in Section 4.2) holds.

2 Conventions and notation

We consider N -vertex graphs of degree bound d, which should be thought of as
fixed. We consider the stochastic matrix representing a canonical random walk
on this graph, where canonical is anything reasonable (e.g., go to each neighbor
with probability 1/2d). The eigenvalues below refer to this matrix.

Recall that λ denotes the claimed second eigenvalue (i.e., we need to accept
graphs having second eigenvalue at most λ), and ǫ denotes the distance param-
eter (i.e., we need to reject graphs that are ǫ-far from having second eigenvalue
at most λ′, where λ′ > λ is related to λ).

The algorithm presented next is parameterized by a small constant α > 0 that
determines both its complexity (i.e., O(N0.5+α/poly(ǫ))) and its performance
(i.e., λ′ = λα/O(1)). To be of interest, the algorithm must use α < 0.5.

3 The algorithm

We set L = 1.5 lnN
ln(1/λ) . This guarantees that a graph with second eigenvalue at

most λ mixes well in L steps (i.e., the deviation in max-norm of the end proba-
bility from the uniform distribution is at most N−1.5). The following algorithm
evaluates the distance of the end probability (of an L-step random walk starting

1 In the latter case, the graph has (normalized) second eigenvalue equal 1.
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at a fixed vertex) from the uniform probability distribution. It is based on the
fact that the uniform distribution over a set has the smallest possible collision
probability, among all distributions over this set.

Repeat the following steps t
def
= Θ(1/ǫ) times:

1. Select uniformly a start vertex, denoted s.

2. Perform m
def
= Θ(N0.5+α/ǫ) random walks of length L, starting from vertex s.

3. Count the number of pairwise collisions between the endpoints of the fore-
going m walks.

4. If the count is greater than 1+0.5·N−α/2

N ·
(
m
2

)
, then reject.

If all repetitions were completed without rejection, then accept.

Comment: Random walks were used before in the context of testing graph prop-
erties (in the bounded-degree model). Specifically, Õ(

√
N/poly(ǫ)) such walks

were used by the bipartitness tester of [6]. Needless to say, random walks seem
much more natural here.

4 Analysis

Fixing any start vertex s, we denote by ps,v the probability that a random walk
of length L starting at s ends in v. The collision probability of L-walks starting at

s is given by ∑

v

p2
s,v ≥ 1

N .
(1)

By our choice of L, if the graph has eigenvalue at most λ, then (for any starting
vertex s) the collision probability of L-walks starting at s is very close to 1/N
(i.e., is smaller than (1/N) + (1/N2)).

4.1 Approximation of the collision probabilities

The first issue to address is the approximation to Eq. (1) provided by Steps (2)–
(3) of the algorithm.

Lemma 1 With probability at least 1−(1/3t), the (normalized) empirical count2

computed in Steps (2)–(3) is within a factor of 1 ± 1
4 · N−α/2 of the value of

Eq. (1).

Thus, with probability at least 2/3, all approximations provided by the algo-
rithms are within a factor of 1 ± 1

4 · N−α/2 of the correct value.

Proof: For every i < j, define a 0-1 random variable ζi,j such that ζi,j = 1 if the

endpoint of the ith path is equal to the endpoint of the jth path. Clearly, µ
def
=

2 That is, the number of pairwise collisions divided by
`

m
2

´

.
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E[ζi,j ] =
∑

v p2
s,v, for every i < j. Using Chebyshev’s inequality we bound the

probability that the count provided by Steps (2)–(3) deviates from its (correct)

expected value. Let P
def
= {(i, j) : 1 ≤ i < j ≤ m} and δ = 1

4 · N−α/2. Then:

Pr




∣∣∣∣∣∣

∑

(i,j)∈P

ζi,j − |P | · µ

∣∣∣∣∣∣
> δ · |P | · µ


 ≤

Var[
∑

(i,j)∈P ζi,j ]

(δ · |P | · µ)2 .

(2)

Denote ζi,j
def
= ζi,j − µ. The rest of the proof needs to deal with the fact that

the random variables associated with P are not pairwise independent. Specif-
ically, for four distinct i, j, i′, j′, indeed ζi,j and ζi′,j′ are independent, and so
E[ζi,jζi′,j′ ] = E[ζi,j ] · E[ζi′,j′ ] = 0; but for i < j 6= k the random variables ζi,j

and ζi,k are not independent (since they both depend on the same ith walk).
Still, it holds that

Var




∑

(i,j)∈P

ζi,j



 = E







∑

(i,j)∈P

ζi,j




2



=
∑

(i,j)∈P

E
[
ζ
2

i,j

]
+ 5 ·

∑

1≤i<j<k≤m

E
[
ζi,jζi,k

]

< |P | · µ + m3 ·
∑

v

p3
s,v.

since ζi,jζi,k = 1 if and only if all three random walks end at the same vertex.
Using (

∑
v p3

s,v)
1/3 ≤ (

∑
v p2

s,v)1/2, and m2 < 3 · |P |, we obtain

Var



∑

(i,j)∈P

ζi,j


 ≤ |P | · µ + (3|P |)3/2 · µ3/2 < 6 · (|P | · µ)3/2 . (3)

Combining Eq. (2) and (3), we obtain

Pr





∣∣∣∣∣∣

∑

(i,j)∈P

ζi,j − |P | · µ

∣∣∣∣∣∣
> δ · |P | · µ



 <
6

δ2 · (|P | · µ)1/2
.

Using µ ≥ 1/N and |P | > m2

4 = Θ(N1+2α

ǫ2 ), the denominator is at least δ2·Θ(Nα

ǫ ).

Recalling that δ = 1
4 · N−α/2 and t = O(1/ǫ), the lemma follows.

As an immediate corollary we get:

Corollary 2 If the graph has second eigenvalue at most λ, then the foregoing
algorithm accepts it with probability at least 2/3.

Another immediate corollary is the following:
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Corollary 3 Suppose that for at least a ǫ/O(1) fraction of the vertices s in G

the collision probability of L-walks starting at s is greater than 1+0.8N−α/2

N . Then,
the algorithm rejects with probability at least 2/3.

Thus, if a graph passes the test (with probability greater than 1/3), then it must
have less than (ǫ/O(1)) ·N exceptional vertices; that is, vertices s for which the

collision probability of L-walks starting at s is greater than 1+0.8N−α/2

N .

Comment: Note that by changing parameters in the algorithm (i.e., t = Θ(Nα/ǫ)
and m = Θ(N0.5+2α/ǫ)), we can make the fraction of exceptional vertices smaller
than ǫN−α. This may help in closing the gap (described in Section 4.2), and only
increases the complexity from N0.5+α/poly(ǫ) to N0.5+3α/poly(ǫ).

4.2 The gap

We believe that the following conjecture (or something similar to it) is true.

Conjecture: Let G be an N -vertex graph of degree-bound d. Suppose that for
all but at most ǫ/O(1) fraction of the vertices s in G the collision probability

of L-walks starting at s is at most 1+0.8N−α/2

N . Then, G is ǫ-close to a N -vertex
graph (of degree-bound d) in which the collision probability of L-walks starting

at any vertex is at most 1+N−α/2

N .

The conjecture is very appealing: Suppose that you add ǫdN edges connecting
at random the exceptional vertices to the rest of the graph. Ignoring for a moment
the issue of preserving the degree bounds, this seems to work – but we cannot
prove it. Indeed, one can show that the previously exceptional vertices now enjoy
rapid mixing, but it is not clear that the added edges will not cause harm to the
mixing properties of the previously non-exceptional vertices.

4.3 Finishing it off

Once the gap is closed, we have the following situation: If the algorithm rejects
with probability smaller than 2/3, then the input graph is ǫ-close to a graph
in which the collision probability of L-walks starting at any vertex is at most
1+N−α/2

N . But the excess of the collision probability beyond 1/N is nothing but
the square of the distance, in norm 2, of the probability vector (ps,v)v∈[N ] from
the uniform probability vector (i.e., (

∑
v p2

s,v) − (1/N) =
∑

v(ps,v − (1/N))2).
Thus, for every s the distance, in norm 2, of the probability vector (ps,v)v∈[N ]

from the uniform probability vector is at most
√

N−α/2

N = N−(0.5+β), where

β = α/4.
The plan now is to “reverse” the standard eigenvalue to rapid-mixing con-

nection. That is, infer from the rapid-mixing feature that the graph has a small
second eigenvalue. Such a lemma has appeared in [7]:
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Lemma 4 (Lemma 4.6 in [7]): Consider a regular connected graph on N ver-
tices, let A be its normalized adjacency matrix and λ2 denote the absolute value
of the second eigenvalue of A. Let ℓ be an integer and ∆ℓ denote an upper bound
on the maximum, taken over all possible start vertices s, of the difference in
norm 2 between the distribution induced by an ℓ-step random walk starting at s
and the uniform distribution. Then λ2 ≤ (N · ∆ℓ)

1/ℓ.

Note that by the foregoing, we have ∆L < N−(0.5+β). This does not give anything
useful when applying the lemma directly. Instead, we apply the lemma after
bounding ∆ℓ for ℓ = O(L). (This strategy may be an oversight, but that’s how
we argue it now.)

Claim 5 Let ∆ℓ be define as in Lemma 4. Then ∆kℓ ≤ (
√

N · ∆ℓ)
k, for every

integer k.

Proof: Let B = Aℓ be the stochastic matrix representing an ℓ-step random
walk, and let ~e1, ..., ~eN denote probability vectors in which all the mass is on
one vertex. Let ~ν denote the uniform probability vector. Then ∆ℓ (resp., ∆kℓ)
equals the maximum of ‖B~ei − ~ν‖ (resp., ‖Bk~ei − ~ν‖) taken over all the ~ei’s.

Considering the basis of ~ei’s, let ~z be an arbitrary zero-sum vector (such as
~ei − ~ν). That is, ~z is written in the basis of ~ei’s as ~z =

∑
i zi~ei, and

∑
i zi = 0.

We obtain

‖B~z‖ =

∥∥∥∥∥B
(
∑

i

zi~ei

)
−
∑

i

ziB~ν

∥∥∥∥∥

=

∥∥∥∥∥
∑

i

ziB(~ei − ~ν)

∥∥∥∥∥

≤
∑

i

‖ziB(~ei − ~ν)‖

=
∑

i

|zi| · ‖B(~ei − ~ν)‖

≤
(
∑

i

|zi|
)

· ∆ℓ .

Since
∑

i |zi| ≤
√

N ·
√∑

i z2
i =

√
N · ‖~z‖, we get

‖B~z‖ ≤
√

N · ∆ℓ · ‖~z‖.

Using B~ν = ~ν, we get for every i

‖Bk~ei − ~ν‖ = ‖B(Bk−1~ei − ~ν)‖
≤ ∆ℓ ·

√
N · ‖Bk−1~ei − ~ν‖

<
(
∆ℓ ·

√
N
)k
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and the claim follows.

Combining Lemma 4 and Claim 5, we obtain the following

Corollary 6 Suppose that for every s the distance, in norm 2, of the probability
vector (ps,v)v∈[N ] from the uniform probability vector is at most N−(0.5+β). Then,
for every constant γ < 2β/3, the second eigenvalue of the graph is at most λγ .

So once the gap is filled, we are done (using β = α/4 and γ ≈ 2β/3).

Proof: Let λ′ be the second eigenvalue of the graph. Then, for every k we have

λ′ ≤ (N · ∆kL)
1/kL

[Lemma 4]

≤
(

N ·
(√

N · ∆L

)k
)1/kL

[Claim 5]

≤
(
N ·

(
N−β

)k)1/kL

[hypothesis]

= exp
(

(1−kβ)·ln N
kL

)

.

Substituting for L = 1.5 ln N
ln(1/λ) , we get

(1 − kβ) · lnN

kL
=

(1 − kβ) · lnN

k · ((1.5 lnN)/ ln(1/λ))

= −
(

2β

3
− 2

3k

)
· ln(1/λ)

< −γ · ln(1/λ),

for sufficiently large k (since γ < 2β/3). We get λ′ < λγ , and the corollary
follows.

Comment: We have λ′ ≤ λγ for any γ < 2β/3 = α/6 (e.g., γ = α/7 will do). One
may be able to increase the exponent (i.e., γ) somewhat, but a linear dependency
(of the exponent γ) on α seems unavoidable (under the current approach).

5 Subsequent work

Subsequent works, culiminating in [8], have addressed the problem of testing ex-
pansion of graphs. These subsequent works refer to a combinatorial definition of
graph expansion, rather than to the algebraic definition of eigenvalues. Although
both definitions are related (see [1, 2] or [3, Sec. 9.2]), the translation is not tight.
Still, for some values of λ < λ′ < 1, these works resolve the open problem raised
in our work.

In addition, the current work has inspired work on testing distributions, as
initiated in [4]. Specifically, these works use the observation that the empirical
collision count of O(

√
N) samples taken from a distribution over [N ] provides an

approximation to the distance of this distribution from the uniform distribution.
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