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Abstract. We consider the size of circuits that perfectly hash an arbi-
trary subset S⊂{0, 1}n of cardinality 2k into {0, 1}m. We observe that,
in general, the size of such circuits is exponential in 2k−m, and provide
a matching upper bound.
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An early version of this work appeared as TR96-041 of ECCC. We later found out
that, in contrast to our previous impression, the lower bound has been known. In
fact, our lower bound argument is analogous to the one presented in [6, pp. 128-
129]. The current revision is quite minimal.

Summary

We consider the problem of perfectly hashing an arbitrary subset S ⊂{0, 1}n of
cardinality 2k into {0, 1}m, where k ≤ m. That is, given an arbitrary subset
S ⊂ {0, 1}n of cardinality 2k, we seek a function h : {0, 1}n → {0, 1}m so that
h(x) 6= h(y) for every two distinct x 6= y in S. Clearly, such a function always
exists, the question is what is its complexity; that is, what is the size of the
smallest circuit computing h. Two obvious upper bounds follow.

1. For every S⊂{0, 1}n, there is a circuit of size |S| · n that perfectly hashes S
into {0, 1}⌈log2

|S|⌉.
(The circuit is merely a look-up table for S.)

2. For every S⊂{0, 1}n, there is a circuit of size poly(n) that perfectly hashes
S into {0, 1}2⌈log

2
|S|⌉.

(The circuit implements a suitable function from a family of Universal2 Hash-
ing [2]. Such a family always contains perfect hashing functions for S [4].)

We show that these upper bounds are the best possible. That is:

Theorem 1 (lower bound): For every n, k and m ≤ n − 1, there exists a subset

S ⊂{0, 1}n of cardinality 2k such that perfectly hashing S into {0, 1}m requires

a circuit of size Ω(22k−m/n).

Interestingly, this lower bound is tight for all values of m ∈ [k, 2k] (and not
merely for m ∈ {k, 2k}). That is:

Theorem 2 (matching upper bound):1 For every n, m, k where k ≤ m ≤ 2k,

and every subset S ⊂ {0, 1}n of cardinality 2k, there exists a circuit of size

22k−m · poly(n) that perfectly hashes S into {0, 1}m.

1 We stress that the circuits guaranteed here cannot, in general, be simply described;
that is, this result is inherently nonuniform.
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1 Proof of Theorem 1

The proof follows by a simple counting argument, combining an upper bound
on the number of circuits of given size with a lower bound on the size of a
family of functions that can perfectly hash all subsets of size 2k. Improved lower
bounds for the latter appears in [3, 5, 7]. For sake of completeness, we prove a
weaker bound, which is sufficient for our purposes, and present the argument in
probabilistic terms.

Suppose, in contrary to Theorem 1, that for every subset S ⊂ {0, 1}n of

cardinality K
def
= 2k there exists a circuit of size o(22k−m/(2k−m)) that perfectly

hashes S into {0, 1}k. We will show that each circuit can serve as a perfect
hashing for too few K-subsets, and hence there are too few circuits to perfectly
hash all possible K-subsets. The main observation follows:

Lemma 1.1 (the fraction of sets that are perfectly hashed by any function):
For any m ≤ n − 1, let C : {0, 1}n → {0, 1}m be an arbitrary circuit, and let

S ⊂ {0, 1}n be a uniformly selected subset of cardinality K = 2k. Then, the

probability that C perfectly hashes S into {0, 1}m is at most 2−Ω(22k−m).

Proof: Let N
def
= 2n and M

def
= 2m. Clearly, we may assume that k ≤ m (as

otherwise the probability is zero). Let c1, ..., cM denote the sizes of the preimages
of the various m-bit strings under C (i.e., ci = |C−1(si)|, where si denotes the
ith (m-bit long) string by some order). Then, the probability we are interested
in is

∑

I⊆[M ]:|I|=K

∏

i∈I

(

ci

1

)

(

N
K

) ≤

(

M
K

)

· (N/M)K

(

N
K

)

=

K−1
∏

i=0

1 − (i/M)

1 − (i/N)

= exp

{

−
K−1
∑

i=1

ln

(

1 +
(i/M) − (i/N)

1 − (i/M)

)

}

< exp

{

−

K−1
∑

i=1

((i/M) − (i/N))

}

= exp

{

−
K · (K − 1)

2
·

(

1

M
−

1

N

)}

which for M ≤ N/2 yields 2−Ω(K2/M). The lemma follows.

Deriving Theorem 1. Adding up the contribution of all possible circuits, while
applying Lemma 1.1 to each of them, we conclude that if too few circuits are
considered then not all K-subsets can be perfectly hashed. Specifically, there are

sO(s) possible circuits of size s, and so we need sO(s) ·2−Ω(22k−m) ≥ 1. Theorem 1
follows.
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2 Proof of Theorem 2

We consider two cases. In the case that m ≤ k + log2 n, the theorem follows by
constructing an obvious circuit that maps each string in S to its rank (in S)
represented as an m-bit long string. This circuit has size |S| · n ≤ 22k−m · n2

(since k ≤ 2k − m + log2 n), and the theorem follows.
The less obvious case is when m ≥ k + log2 n. Here we use a family of n-

wise independent functions mapping {0, 1}n onto {0, 1}ℓ, where ℓ
def
= m − log2 n.

Function in such a family can be evaluated by poly(n)-size circuits (cf. [1]). We
consider the collisions caused by a uniformly chosen function from this family
applied to S. Specifically,

Lemma 2.1 (hashing by n-wise independence functions): Let H be a family of

functions {h : {0, 1}n →{0, 1}ℓ} such that Probh∈H [∧n
i=1h(αi) =βi] = 2−nℓ, for

every n distinct α1, ..., αn ∈ {0, 1}n and for every β1, ..., βn ∈ {0, 1}ℓ. Then, for

every S ⊂{0, 1}n of cardinality 2k ≤ 2ℓ, there exists h ∈ H such that

1. No value has more than n preimages under h; that is, |h−1(β) ∩ S| ≤ n, for

every β ∈ {0, 1}ℓ.

2. At most 22k−ℓ values have more than one preimage under h; that is, |{β ∈
{0, 1}ℓ : |h−1(β) ∩ S| > 1}| ≤ 22k−ℓ.

Proof: Fixing an arbitrary 2k-subset, S, and uniformly selecting h ∈ H , we
consider the probability that the two items (above) hold. Firstly, we consider
the probability that h maps n elements of S to the same image. Using the n-
wise independence of the family H , the probability of this event is bounded
by

(

2k

n

)

· 2−ℓn <
2kn

n!
· 2−kn <

1

2

where the first inequality uses ℓ = m − log2 n ≥ k. Thus, the probability that
Item (1) does not hold is less than 1/2. Next, we consider the probability that
Item (2) does not hold. We start by using the pairwise independence of H to
note that the collision probability is 2−ℓ (i.e., Probh∈H [h(α1)=h(α2)] = 2−ℓ, for
any α1 6= α2 ∈ {0, 1}n). It follows that the expected number of h-images that
have more than a single preimage in S is bounded above by the expected number

of collisions; that is, by
(

2k

2

)

· 2−ℓ < 1
2 · 22k−ℓ. Applying Markov’s Inequality, we

conclude that the probability that Item (2) does not hold is less than 1/2. The
lemma follows.

Deriving Theorem 2. Fixing an arbitrary 2k-subset, S ⊂ {0, 1}n, and using
Lemma 2.1, we present a circuit that perfectly hashes S into {0, 1}m (where
m ≥ k + log2 n). Our construction uses the double hashing paradigm (see, e.g.,
[4]). Let h :{0, 1}n→{0, 1}m−log

2
n be as guaranteed by the lemma (w.r.t the set

S). We define a perfect hashing function f :{0, 1}n→{0, 1}m for S by letting

f(α)
def
= h(α) ◦ rankS∩h−1(h(α))(α)
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where rankR(α) is an log2 n-bit long string representing the rank of α among the
elements of R. A circuit computing the function f is constructed as follows. For
each β having more than a unique h-preimage in S, we maintain a table ranking
these preimages in S. By Item (1) of Lemma 2.1 such a table need only contain
n entries, whereas by Item (2) we only need 22k−ℓ such tables. (If a string, α,
does not appear in any of the tables, then f(α) = h(α) ◦ 0log

2
n.) The size of the

circuit is poly(n) + 22k−ℓ ·n2 = poly(n) + 22k−m · n3, and so Theorem 2 follows.
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