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Abstract. We survey known results regarding locally testable codes
and locally testable proofs (known as PCPs), with emphasis on the
length of these constructs. Local testability refers to approximately test-
ing large objects based on a very small number of probes, each retrieving
a single bit in the representation of the object. This yields super-fast
approximate-testing of the corresponding property (i.e., be a codeword
or a valid proof). We also review the related concept of local decodable
codes.
The survey consists of two independent (i.e., self-contained) parts that
cover the same material at different levels of rigor and detail. Still, in
spite of the repetitions, there may be a benefit in reading both parts.
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A previous version of this survey appeared as TR05-014 of ECCC; in fact, this
earlier version [36] is cited in the text, when reporting of subsequent develop-
ments. The current version also appeared in [38].

Part I: A high-level overview

The title of this survey refers to two types of objects (i.e., codes and proofs) and
two adjectives (i.e., local testability and short). A clarification of these terms is
in place.

Codes, proofs and their length. Codes are sets of strings (of equal length), typ-
ically, having a large pairwise distance. Equivalently, codes are viewed as map-
pings from short (k-bit) strings to longer (n-bit) strings, called codewords, such
that the codewords are distant from one another. We will focus on codes with
relative constant distance; that is, every two n-bit codewords are at distance
Ω(n) apart. The length of the code is measured in terms of the length of the
pre-image (i.e., we are interested in the growth of n as a function of k). Turning
to proofs, these are defined with respect to a verification procedure for asser-
tions of a certain length, and their length is measured in terms of the length
of the assertion. The verification procedure must satisfy the natural completeness
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and soundness properties: For valid assertions there should be strings, called
proofs, that are accepted (in conjunction with the assertion) by the verification
procedures, whereas for false assertions no such strings may exist. The reader
may envision proof systems for the set of satisfiable propositional formulae (i.e.,
assertions of satisfiability of given formulae).

Local testability. By local testability we mean that the object can be tested for
the natural property (i.e., being a codeword or a valid proof) using a small (typ-
ically constant)1 number of probes, each recovering individual bits in a standard
representation of the object. Thus, local testability allows for super-fast testing
of the corresponding objects. The tests are probabilistic and hence the result is
correct only with high probability.2 Furthermore, correctness refers to a relaxed
notion of deciding (which was formulated, in general terms, in the context of
property testing [58, 39]): It is required that valid objects be accepted with high
probability, whereas objects that are “far” from being valid should be rejected
with high probability. Specifically, in the case of codes, codewords should be
accepted (with high probability), whereas strings that are “far” from the code
should be rejected (with high probability). In the case of proofs, valid proofs
(which exist for correct assertions) should be accepted (with high probability),
whereas strings that are “far” from being valid proofs (and, in particular, all
strings in case no valid proofs exist) should be rejected (with high probability).3

Our notion of locally testable proofs is closely related to the notion of a
PCP (i.e., probabilistically checkable proof), and we will ignore the difference in
the sequel. The difference is that in the definition of locally testable proofs we
required rejection of strings that are far from any valid proof, also in the case
that valid proofs exists (i.e., the assertion is valid). In contrast, the standard
rejection criteria of PCPs refers only to false assertions. Still, all known PCP
constructions actually satisfy the stronger definition.

The very possibility of local testability. Indeed, local testability of either codes
or proofs is quite challenging, regardless of the issue of length:

– For codes, the simplest example of a locally testable code (of constant relative
distance) is the Hadamard code and testing it amounts to linearity testing.
However, the exact analysis of the natural linearity tester (of Blum, Luby
and Rubinfeld [22]) turned out to be highly complex (cf. [22, 6, 31, 12, 13, 10,
47]).

– For proofs, the simplest example of a locally testable proof is the “inner
verifier” of the PCP construction of Arora, Lund, Motwani, Sudan and
Szegedy [4], which in turn is based on the Hadamard code.

1 In this part, we associate local testability with tests that perform a constant number
of probes.

2 It is easy to see that deterministic tests will perform very poorly, and the same holds
with respect to probabilistic tests that make no error.

3 Indeed, in the case the assertion is false, there exist no valid proofs. In this case all
strings are defined to be far from a valid proof.
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In both cases, the constructed object has exponential length in terms of the
relevant parameter (i.e., the amount of information being encoded in the code
or the length of the assertion being proved).

Local testability at a polynomial blow-up. Achieving local testability by codes
and proofs that have polynomial length turns out to be even more challenging.

– In the case of codes, a direct interpretation of low-degree tests (cf. [6, 7,
35, 58, 34]), proposed in [34, 58], yields a locally testable code of quadratic
length over a sufficiently large alphabet. Similar (and actually better) results
for binary codes required additional ideas, and have appeared only later
(cf. [42]).

– The case of proofs is far more complex: Achieving locally testable proof of
polynomial length is essentially the contents of the celebrated PCP Theorem
of Arora, Lund, Motwani, Safra, Sudan and Szegedy [5, 4].

We focus on even shorter codes and proofs; specifically, codes and proofs of nearly
linear length. The latter term has been given quite different interpretations, and
here we adopt the most strict interpretation by which nearly linear means linear
up to polylogarithmic factors.

Local testability with a polylogarithmic (length) overhead: The ultimate goal is to
obtain locally testable codes and proofs of minimal length. The currently known
results get very close to obtaining this goal.

Theorem 1 (Dinur [26], building on [20]): There exist locally testable codes and
proofs of length that is only a polylogarithmic factor larger than the relevant
parameter. That is, the length function ℓ : N → N satisfies ℓ(k) = Õ(k) = k ·
poly(log k).

One may wonder whether or not a polylogarithmic overhead in inherent to local
testability of codes and proofs. This is indeed a fundamental open problem.

Open Problem 2 Do there exist locally testable codes and proofs of linear
length?

In the rest of this part of the survey, we motivate the study of short locally
testable objects, comment on the relation between such codes and proofs, and
discuss a somewhat related coding problem.

Motivation for the study of short locally testable codes and proofs

Local testability offers an extremely strong notion of efficient testing: The tester
makes only a constant number of bit probes, and determining the probed lo-
cations (as well as the final decision) is typically done in time that is poly-
logarithmic in the length of the probed object.

The length of an error-correcting code is widely recognized as one of the two
most fundamental parameters of the code (the second one being its distance). In
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particular, the length of the code is of major importance in applications, because
it determines the overhead involved in encoding information.

The same considerations apply also to proofs. However, in the case of proofs,
this obvious point was blurred by the indirect, unexpected and highly influential
applications of locally testable proofs (known as PCPs) to the theory of approx-
imation algorithms. In our view, the significance of locally testable proofs (i.e.,
PCPs) extends far beyond their applicability to deriving non-approximability
results. The mere fact that proofs can be transformed into a format that sup-
ports super-fast probabilistic verification is remarkable. From this perspective,
the question of how much redundancy is introduced by such a transformation is
a fundamental one. Furthermore, locally testable proofs (i.e., PCPs) have been
used not only to derive non-approximability results but also for obtaining posi-
tive results (e.g., CS-proofs [49, 54] and their applications [8, 24]), and the length
of the PCP affects the complexity of those applications.

Turning back to the celebrated application of PCP to the study of approx-
imation algorithms, we note that the length of PCPs is also relevant to non-
approximability results; specifically, the length of PCPs affects the tightness
with respect to the running time of the non-approximability results derived. For
example, suppose (exact) SAT has complexity 2Ω(n). The original PCP Theo-
rem [5, 4] only implies that approximating MaxSAT requires time 2nα

, for some
(small) α > 0. The work of [56] makes α arbitrarily close to 1, whereas the results

of [42, 21] further improve the lower bound to 2n1−o(1)

and the results of [20, 26]
yields a lower bound of 2n/poly(log n).4

On the relation between locally testable codes and proofs

Locally testable codes seem related to locally testable proofs (PCPs). In fact,
the use of codes with some “local testability” features is implicit in known PCP
constructions. Furthermore, the known constructions of locally testable proofs
(PCPs) provides a transformation of standard proofs (for say SAT) to locally
testable proofs (i.e., PCP-oracles) such that transformed strings are accepted
with probability one by the PCP verifier. Moreover, starting from different stan-
dard proofs, one obtains locally testable proofs that are far apart, and hence
constitute a good code. It is tempting to think that the PCP verifier yields a
codeword tester, but this is not really the case. Note that our definition of a lo-
cally testable proof requires rejection of strings that are far from any valid proof,
but it is not clear that the only valid proofs (w.r.t the constructed PCP verifier)
are those that are obtained by the aforementioned transformation of standard
proofs to locally testable ones.5 In fact, the standard PCP constructions accept
also valid proofs that are not in the range of the corresponding transformation.

4 Using [55] (or [27]) allows to achieve the lower bound of 2n1−o(1)

simultaneously
with optimal approximation ratios, but this is currently unknown for the better
lower bound of 2n/poly(log n).

5 Let alone that the standard definition of PCP refers only to the case of false asser-
tions, in which case all strings are far from a valid proof (which does not exist).
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In spite of the above, locally testable codes and proofs are related, and the
feeling is that locally testable codes are the combinatorial counterparts of locally
testable proofs (PCPs), which are complexity theoretic in nature. From that
perspective, one should expect (or hope) that it would be easier to construct
locally testable codes than it is to construct PCPs. This feeling was among
the main motivations of Goldreich and Sudan, and indeed their first result was
along this vein: They showed a relatively simple construction (i.e., simple in
comparison to PCP constructions) of a locally testable code of length ℓ(k) = kc

for any constant c > 1 [42, Sec. 3]. Unfortunately, their stronger result, providing
a locally testable code of shorter length (i.e., length ℓ(k) = k1+o(1)) is obtained
by constructing and using a corresponding locally testable proof (i.e., PCP).
Subsequent works have mostly followed this route, with the notable exception
of Meir’s work [52].

Locally Decodable Codes

Locally decodable codes are in some sense complimentary to local testable codes.
Here, one is given a slightly corrupted codeword (i.e., a string close to some
unique codeword), and is required to recover individual bits of the encoded in-
formation based on a constant number of probes (per recovered bit). That is, a
code is said to be locally decodable if whenever relatively few location are cor-
rupted, the decoder is able to recover each information-bit, with high probability,
based on a constant number of probes to the (corrupted) codeword.

The best known locally decodable codes are of strictly sub-exponential length.
Specifically, k information bits can be encoded by codewords of length n =
exp(ko(1)) that are locally decodable using three bit-probes (cf. [29], building
over [62]). The problem is related to the construction of (information theoretic
secure) Private Information Retrieval schemes, introduced in [25].

A natural relaxation of the definition of locally decodable codes requires that,
whenever few location are corrupted, the decoder should be able to recover most
of the individual information-bits (based on a constant number of queries), and
for the rest of the locations the decoder may output a fail symbol (but not the
wrong value). That is, the decoder must still avoid errors (with high probability),
but on a few bit-locations it is allowed to sometimes say “don’t know”. This
relaxed notion of local decodability can be supported by codes that have length
ℓ(k) = kc for any constant c > 1 (cf. [15]).

An obvious open problem is to separate locally decodable codes from relaxed

locally decodable codes. This may follow by either improving the Ω(k1+ 1
q−1 )

lower bound on the length of q-query locally decodable codes (of [46]), or by
providing relaxed locally decodable codes of length ℓ(k) = k1+o(1).

Part II: A more detailed and rigorous account

In this part we provide a general treatment of local testability. In contrast to
Part I, here we allow the tester to use a number of queries that is a (typically
small) predetermined function of the length parameter, rather than insisting on
a constant number of queries. The latter special case is indeed an important one.
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1 Introduction

Codes (i.e., error correcting codes) and proofs (i.e., automatically verifiable
proofs) are fundamental to computer science as well as to related disciplines
such as mathematics and computer engineering. Redundancy is inherent to error-
correcting codes, whereas testing validity is inherent to proofs. In this survey we
also consider less traditional combinations such as testing validity of codewords
and the use of proofs that contain redundancy. The reader may wonder why
we explore these non-traditional possibilities, and the answer is that they offer
various advantages (as will be elaborated next).

Testing the validity of codewords is natural in settings in which one may
want to take an action in case the codeword is corrupted. For example, when
storing data in an error correcting format, one may want to recover the data and
re-encode it whenever one finds that the current encoding is corrupted. Doing
so may allow to maintain the data integrity over eternity, although the encoded
bits may all get corrupted in the course of time. Of course, one can use the
error-correcting decoding procedure associated with the code in order to check
whether the current encoding is corrupted, but the question is whether one can
check (or just approximately check) this property much faster.

Loosely speaking, locally testable codes are error correcting codes that allow
for a super-fast testing of whether or not a give string is a valid codeword. In
particular, the tester works in sub-linear time and reads very few of the bits of
the tested object. Needless to say, the answer provided by such a tester can only
be approximately correct, but this would suffice in many applications (including
the one outlined above).

Similarly, locally testable proofs are proofs that allow for a super-fast prob-
abilistic verification. Again, the tester works in sub-linear time and reads very
few of the bits of the tested object. The tester’s (a.k.a. verifier’s) verdict is only
correct with high probability, but this may suffice for many applications, where
the assertion is rather mundane but of great practical importance. In particular,
it suffices in applications in which proofs are used for establishing the correct-
ness of specific computations of practical interest. Lastly, we comment that such
locally testable proofs must be redundant (or else there would be no chance for
verifying them based on inspecting only a small portion of them).

Our focus is on relatively short locally testable codes and proofs, which is not
surprising in view of the fact that we envision such objects being actually used
in practice. Of course, we do not mean to suggest that one may use in practice
any of the constructions surveyed here (especially not the ones that provide
the stronger bounds). We rather argue that this direction of research may find
applications in practice. Furthermore, it may even be the case that some of the
current concepts and techniques may lead to such applications.

Organization: In Section 2 we provide a quite comprehensive definitional treat-
ment of locally testable codes and proofs, while relating them to PCPs, PCPs
of proximity, and property testing. In Section 3, we survey the main results
regarding locally testable codes and proofs as well as many of the underlying
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ideas. In Section 4 we consider locally decodable codes, which are somewhat
complementary to locally testable codes.

Caveat: Our exposition of locally testable/decodable codes is aimed at achiev-
ing the best possible length, regardless of whether or not the code is popular
(i.e., used in practice). Thus, we do not survey here results that refer to the
testing (and decoding) features of various popular codes, unless these features
are instructive for our aim.

2 Definitions

Local testability is formulated by considering oracle machines. That is, the tester
is an oracle machine, and the object that it tests is viewed as an oracle. For
simplicity, we confine ourselves to non-adaptive probabilistic oracle machines;
that is, machines that determine their queries based on their explicit input (which
in case of codes is merely a length parameter) and their internal coin tosses (but
not depending on previous oracle answers). When talking about oracle access to
a string w ∈ {0, 1}n we viewed w as a function w : {1, ..., n} → {0, 1}.

2.1 Codeword testers

We consider codes mapping sequences of k (input) bits into sequences of n ≥ k
(output) bits. Such a generic code is denoted by C : {0, 1}k → {0, 1}n, and the
elements of {C(x) : x∈{0, 1}k} ⊆ {0, 1}n are called codewords (of C).

The distance of a code C : {0, 1}k → {0, 1}n is the minimum (Hamming)
distance between its codewords; that is, minx 6=y{∆(C(x), C(y))}, where ∆(u, v)
denotes the number of bit-locations on which u and v differ. Throughout this
work, we focus on codes of linear distance; that is, codes C : {0, 1}k → {0, 1}n

of distance Ω(n).
The distance of w ∈ {0, 1}n from a code C : {0, 1}k → {0, 1}n, denoted

∆C(w), is the minimum distance between w and the codewords; that is, ∆C(w)
def
=

minx{∆(w, C(x))}. For δ ∈ [0, 1], the n-bit long strings u and v are said to be
δ-far (resp., δ-close) if ∆(u, v) > δ ·n (resp., ∆(u, v) ≤ δ ·n). Similarly, w is δ-far
from C (resp., δ-close to C) if ∆C(w) > δ · n (resp., ∆C(w) ≤ δ · n).

Definition 2.1 (codeword tests, basic version): Let C : {0, 1}k → {0, 1}n be a
code of distance d, and let q ∈ N and δ ∈ (0, 1). A q-local (codeword) δ-tester
for C is a probabilistic (non-adaptive) oracle machine M that makes at most q
queries and satisfies the following two conditions:

Accepting codewords (a.k.a. completeness): For any x ∈ {0, 1}k, given oracle
access to w = C(x), machine M accepts with probability 1. That is, Pr[MC(x)(1k)=
1] = 1, for any x ∈ {0, 1}k.

Rejection of non-codeword (a.k.a. soundness): For any w ∈ {0, 1}n that is δ-far
from C, given oracle access to w, machine M rejects with probability at least
1/2. That is, Pr[Mw(1k)=1] ≤ 1/2, for any w ∈ {0, 1}n that is δ-far from
C.
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We call q the query complexity of M , and δ the proximity parameter.

The above definition is interesting only in case δn is smaller than the covering
radius of C (i.e., the smallest r such that for every w ∈ {0, 1}n it holds that
∆C(w) ≤ r). Clearly, r ≥ d/2, and so the definition is certainly interesting in
the case that δ < d/2n, and indeed we will focus on this case. On the other
hand, observe that q = Ω(1/δ) must hold, which means that we focus on the
case that d = Ω(n/q).

We next consider families of codes C = {Ck : {0, 1}k → {0, 1}n(k)}k∈K , where
n, d : N → N and K ⊆ N, such that Ck has distance d(k). In accordance with
the above, our main interest is in the case that δ(k) < d(k)/2n(k). Furthermore,
seeking constant query complexity, we focus on the case d = Ω(n).

Definition 2.2 (codeword tests, asymptotic version): For functions n, d : N →
N, let C = {Ck : {0, 1}k → {0, 1}n(k)}k∈K be such that Ck is a code of distance
d(k). For functions q : N → N and δ : N → (0, 1), we say that a machine M is
a q-local (codeword) δ-tester for C = {Ck}k∈K if, for every k ∈ K, machine M
is a q(k)-local δ(k)-tester for Ck. Again, q is called the query complexity of M ,
and δ the proximity parameter.

Recall that being particularly interested in constant query complexity (and re-
calling that d(k)/n(k) ≥ 2δ(k) = Ω(1/q(k))), we focus on the case that d = Ω(n)
and δ is a constant smaller than d/2n. In this case, we may consider a stronger
definition.

Definition 2.3 (locally testable codes): Let n, d and C be as in Definition 2.2
and suppose that d = Ω(n). We say that C is locally testable if for every constant
δ > 0 there exists a constant q and a probabilistic polynomial-time oracle machine
M such that M is a q-local δ-tester for C.

We will be concerned of the growth rate of n as a function of k, for locally
testable codes C = {Ck : {0, 1}k → {0, 1}n(k)}k∈K of distance d = Ω(n). More
generally, for d = Ω(n), we will be interested in the trade-off between n, the
proximity parameter δ, and the query complexity q.

2.2 Proof testers

We start by recalling the standard definition of PCP. (For an introduction to
the subject as well as a wider perspective, see [37, Chap. 9]).

Definition 2.4 (PCP, standard definition): A probabilistically checkable proof
(PCP) system for a set S is a probabilistic (non-adaptive) polynomial-time oracle
machine (called a verifier), denoted V , satisfying

Completeness: For every x ∈ S there exists an oracle πx such that V , on input
x and access to oracle πx, always accepts x; that is, Pr[V πx(x)=1] = 1.
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Soundness: For every x 6∈ S and every oracle π, machine V , on input x and
access to oracle π, rejects x with probability at least 1

2 ; that is, Pr[V π(x) =
1] ≤ 1/2,

Let Qx(r) denote the set of oracle positions inspected by V on input x and

random-tape r ∈ {0, 1}poly(|x|). The query complexity of V is defined as q(n)
def
=

maxx∈{0,1}n,r∈{0,1}poly(n){|Qx(r)|}. The proof complexity of V is defined as p(n)
def
=

maxx∈{0,1}n{|⋃r∈{0,1}poly(n) Qx(r)|}.

Note that in the case that the verifier V uses a logarithmic number of coin
tosses, its proof complexity is polynomial. In general, the proof complexity is
upper-bounded by 2r · q, where r and q are the randomness complexity and the
query complexity of the proof tester. Thus, the trade-off between the query com-
plexity and the proof complexity is typically captured by the trade-off between
the query complexity and the randomness complexity. Furthermore, focusing
on the randomness complexity allows for better bounds when composing proofs
(cf. §3.2.2).

All known PCP constructions can be easily modified such that the oracle
locations accessed by V are a prefix of the oracle (i.e.,

⋃
r∈{0,1}poly(|x|) Qx(r) ⊆

{1, ..., p(|x|)}, for every x).6 (For simplicity, the reader may assume that this is
the case throughout the rest of this exposition.) More importantly, all known
PCP constructions can be easily modified to satisfy the following definition,
which is closer in spirit to the definition of locally testable codes.

Definition 2.5 (PCP, augmented): For functions q : N → N and δ : N → (0, 1),
we say that a PCP system V for a set S is a q-locally δ-testable proof system if
it has query complexity q and satisfies the following condition, which augments
the standard soundness condition.7

Rejecting invalid proofs: For every x ∈ {0, 1}∗ and every oracle π that is δ-far

from Πx
def
= {w : Pr[V w(x)=1] = 1}, machine V , on input x and access to

oracle π, rejects x with probability at least 1
2 .

The proof complexity of V is defined as in Definition 2.4.

Note that Definition 2.5 uses the tester V itself in order to define the set (denoted
Πx) of valid proofs (for x ∈ S). That is, V is used both to define the set of valid

6 Recall that p denotes the proof complexity of the system. In fact, for every x ∈
{0, 1}n, it holds that

S

r∈{0,1}poly(n) Qx(r) = {1, ..., p(n)}.
7 Definition 2.5 relies on two natural conventions:

1. All strings in Πx are of the same length, which equals |S

r∈{0,1}poly(n) Qx(r)|, where

Qx(r) is as in Definition 2.4. Furthermore, we consider only π’s of this length.
2. If Πx = ∅ (which happens if and only if x 6∈ S), then every π is considered δ-far

from Πx.

These conventions will also be used in Definition 2.6.
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proofs and to test for the proximity of a given oracle to this set. A more general
definition (presented next), refers to an arbitrary proof system, and lets Πx

equal the set of valid proofs (in that system) for x ∈ S. Obviously, it must hold
that Πx 6= ∅ if and only if x ∈ S. Typically, one also requires the existence of
a polynomial-time procedure that, on input a pair (x, π), determines whether
or not π ∈ Πx.8 For simplicity we assume that, for some function p : N → N

and every x ∈ {0, 1}∗, it holds that Πx ⊆ {0, 1}p(|x|). The resulting definition
follows.

Definition 2.6 (locally testable proofs): Suppose that, for some function p :
N → N and every x ∈ {0, 1}∗, it holds that Πx ⊆ {0, 1}p(|x|). For functions q :
N → N and δ : N → (0, 1), we say that a probabilistic (non-adaptive) polynomial-
time oracle machine V is a q-locally δ-tester for proofs in {Πx}x∈{0,1}∗ if V has
query complexity q and satisfies the following conditions:

Technical condition: On input x, machine V issues queries in {1, ..., p(|x|)}.
Accepting valid proofs: For every x ∈ {0, 1}∗ and every oracle π ∈ Πx, machine

V , on input x and access to oracle π, accepts x with probability 1.
Rejecting invalid proofs: For every x ∈ {0, 1}∗ and every oracle π that is δ-

far from Πx, machine V , on input x and access to oracle π, rejects x with
probability at least 1

2 .

The proof complexity of V is defined as p,9 and δ is called the proximity parameter.
In such a case, we say that Π = {Πx}x∈{0,1}∗ is q-locally δ-testable, and that
S = {x ∈ {0, 1}∗ : Πx 6= ∅} has q-locally δ-testable proofs of length p.
We say that Π is locally testable if for every constant δ > 0 there exists a constant
q such that Π is q-locally δ-testable. In such a case, we say that S has locally
testable proofs of length p.

This notion of locally testable proofs is closely related to the notion of proba-
bilistically checkable proofs (i.e., PCPs). The difference is that in the definition
of locally testable proofs we required rejection of strings that are far from any
valid proof, also in the case that valid proofs exists (i.e., the assertion is valid). In
contrast, the standard rejection criteria of PCPs refers only to false assertions.
Still, all known PCP constructions actually satisfy the stronger definition.10

Needless to say, the new term “locally testable proof” was introduced to
match the term “locally testable codes”. In retrospect, “locally testable proofs”

8 Recall that in the case that the verifier V uses a logarithmic number of coin tosses,
its proof complexity is polynomial (and so the “effective length” of the strings in
Πx must be polynomial in |x|). Furthermore, if in addition it holds that Πx = {w :
Pr[V w(x)=1] = 1}, then (scanning all possible coin tosses of) V yields a polynomial-
time procedure for determining whether a given pair (x, π) satisfies π ∈ Πx.

9 Note that by the technical condition, the current definition of the proof complexity
of V is lower-bounded by the definition used in Definition 2.4.

10 In some cases this holds only under a weighted version of the Hamming distance,
rather under the standard Hamming distance. Alternatively, these constructions can
be easily modified to work under the standard Hamming distance.
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seems a more fitting term than “probabilistically checkable proofs”, because it
stresses the positive aspect (of locality) rather than the negative aspect (of being
probabilistic). The latter perspective has been frequently advocated by Leonid
Levin.

2.3 Discussion

We first comment about a few definitional choices made above. Firstly, we chose
to present testers that always accept valid objects (i.e., accept valid codewords
(resp., valid proofs) with probability 1). This is more appealing than allowing
two-sided error, but the latter weaker notion is meaningful too. A second choice
was to fix the error probability (i.e., probability of accepting far from valid
objects), rather than introducing yet another parameter. Needless to say, the
error probability can be reduced by sequential applications of the tester.

In the rest of this section, we consider an array of definitional issues. First,
we consider two natural strengthenings of the definition of local testability
(cf. §2.3.1). We next discuss the relation of local testability to property test-
ing (cf. §2.3.2), and the relation of locally testable proofs to PCP of proximity
(as defined in [15], cf. §2.3.3). Finally, we discuss the relation between locally
testable codes and proofs (cf. §2.3.4), and the motivation for the study of short
local testable codes and proofs (cf. §2.3.5).11 Finally (in §2.3.6), we mention a
weaker definition, which seem natural only in the context of codes.

2.3.1 Stronger definitions. The definitions of testers presented so far, allow
for the construction of a different tester for each relevant value of the proximity
parameter. However, whenever such testers are actually constructed, they tend
to be “uniform” over all relevant values of the proximity parameter. Thus, it is
natural to present a single tester for all relevant values of the proximity param-
eter, provide this tester with the said parameter, allow it to behave accordingly,
and measure its query complexity as a function of that parameter. For exam-
ple, we may strengthen Definition 2.3, by requiring the existence of a function
q : (0, 1) → N and an oracle machine M such that, for every constant δ > 0, all
(sufficiently large) k and all w ∈ {0, 1}n(k), the following conditions hold:

1. On input (1k, δ), machine M makes q(δ) queries.
2. If w is a codeword of C then Pr[Mw(1k, δ) = 1] = 1.
3. If w is δ-far from {C(x) : x ∈ {0, 1}k} then Pr[Mw(1k, δ) = 1] ≤ 1/2.

An analogous strengthening applies to Definition 2.6. A special case of interest
is when q(δ) = O(1/δ). In this case, it makes sense to ask whether or not an even
stronger “uniformity” condition may hold. Like in Definitions 2.1 and 2.2 (resp.,
Definitions 2.5 and 2.6), the tester M is not given the proximity parameter (and
so its query complexity cannot depend on it), but we only require it to reject

11 The text of §2.3.5 is almost identical to a corresponding motivational text that
appears in Part I.
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with probability proportional to the distance of the oracle from the relevant set.
For example, we may strengthen Definition 2.3, by requiring the existence of an
oracle machine M and a constant q such that, for every constant δ > 0, every
(sufficiently large) k and w ∈ {0, 1}n(k), the following conditions hold:

1. On input 1k, machine M makes q queries.

2. If w is a codeword of C then Pr[Mw(1k, δ) = 1] = 1.

3. If w is δ-far from {C(x) : x ∈ {0, 1}k} then Pr[Mw(1k, δ) = 1] < 1 − Ω(δ).

2.3.2 Relation to Property Testing. Locally testable codes (and their cor-
responding testers) are essentially special cases of property testing algorithms,
as defined in [58, 39]. Specifically, the property being tested is membership in
a predetermined code. The only difference between the definitions presented in
Section 2.1 and the formulation that is standard in the property testing litera-
ture is that in the latter the tester is given the proximity parameter as input and
determines its behavior (and in particular the number of queries) accordingly.
This difference is eliminated in the first strengthening outlined in §2.3.1, while
the second strengthening is related to the notion of proximity oblivious testing
(cf. [40]). We note, however, that most of the property testing literature is con-
cerned with “natural” objects (e.g., graphs, sets of points, functions) presented
in a “natural” form rather than with objects designed artificially to withstand
errors (i.e., codewords of error correcting codes).

Our general formulation of proof testing (i.e., Definition 2.6) can be viewed
as a generalization of property testing. That is, we view the set Πx as a set
of objects having a certain x-dependent property (rather than as a set of valid
proofs for some property of x). In other words, Definition 2.6 allows to consider
properties that are parameterized by auxiliary information (i.e., x), whereas
traditional property testing may be viewed as referring to the case that x only
determines the length of strings in Πx (e.g., Πx = ∅ for every x 6∈ {1}∗ or,
equivalently, Πx = Πy for every |x| = |y|).12

2.3.3 Relation to PCPs of Proximity. Our definition of a locally testable
proof is related but different from the definition of a PCP of proximity (appearing
in [15]).13 We start by reviewing the definition of a PCP of proximity.

Definition 2.7 (PCPs of Proximity): A PCP of proximity for a set S with proxim-
ity parameter δ is a probabilistic (non-adaptive) polynomial-time oracle machine,
denoted V , satisfying

12 In fact, in the context of property testing, the length of the oracle must always be
given to the tester (although some sources neglect to state this fact).

13 We mention that PCPs of proximity are almost identical to Assignment Testers,
defined independently by Dinur and Reingold [28]. Both notions are (important)
special cases of the general definition of a “PCP spot-checker” formulated before
in [30].
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Completeness: For every x ∈ S there exists a string πx such that V always accepts
when given access to the oracle (x, πx); that is, Pr[V x,πx(1|x|)=1] = 1.

Soundness: For every x that is δ-far from S ∩ {0, 1}|x| and for every string π,
machine V rejects with probability at least 1

2 when given access to the oracle

(x, π); that is, Pr[Mx,π(1|x|)=1] ≤ 1/2.

The query complexity of V is defined as in case of PCP, but here also queries to
the x-part are counted.

The oracle (x, π) is actually a concatenation of two oracles: the input-oracle x
(which replaces an explicitly given input in the definitions of PCPs and locally
testable proofs), and a proof-oracle π (exactly as in the prior definitions). Note
that Definition 2.7 refers to the distance of the input-oracle to S, whereas locally
testable proofs refer to the distance of the proof-oracle from the set Πx of valid
proofs of membership of x ∈ S.

Still, PCPs of proximity can be defined within the framework of locally
testable proofs. Specifically, consider an extension of Definition 2.6, where (rel-
ative) distances are measured according to a weighted Hamming distance; that
is, for a weight function ω : {1, ..., n} → [0, 1] and u, v ∈ {0, 1}n, we let
δω(u, v) =

∑n
i=1 ω(i) · ∆(ui, vi). (Indeed, the standard notion of relative dis-

tance between u, v ∈ {0, 1}n is obtained by δω(u, v) when using the uniform
weighting function (i.e., ω(i) = 1/n for every i ∈ {1, ..., n}).) Now, Definition 2.7
can be viewed as a special case of (the extended) Definition 2.6 when applied to
the (rather artificial) set of proofs Π1n = {(x, π) : x ∈ S ∩ {0, 1}n ∧ π ∈ Π ′

x},
where Π ′

x = {π : Pr[V x,π(1|x|) = 1] = 1}, by using the weighted Hamming
distance δω for ω that is uniform on the input-part of the oracle; that is, for

(x, π), (x′, π′) ∈ {0, 1}n+p, we use δω((x, π), (x′, π′))
def
= ∆(x, x′)/n, which cor-

responds to ω(i) = 1/n if i ∈ {1, ..., n} and ω(i) = 0 otherwise. Alternatively,
weights can be approximately replaced by repetitions (provided that the tester
checks the consistency of the repetitions).14

We mention that PCPs of proximity (of constant query complexity) yield a
simple way of obtaining locally testable codes. More generally, we can combine
any code C0 with any PCP of proximity V , and obtain a q-locally testable code
with distance essentially determined by C0 and rate determined by V , where
q is the query complexity of V . Specifically, x will be encoded by appending
c = C0(x) by a proof that c is a codeword of C0, and distances will be determined

14 That is, given a verifier V as in Definition 2.7, and denoting by n and p = p(n)
the sizes of the two parts of its oracle, we consider proofs of length t · n + p, where
t = p/o(n) (e.g., t = (p/n) · log n). We consider a verifier V ′ with syntax as in
Definition 2.6 that, on input 1n and oracle access to w = (u1, ..., ut, v) ∈ {0, 1}t·n+p,
where ui ∈ {0, 1}n and v ∈ {0, 1}p, selects uniformly i ∈ {1, ..., t} and invokes
V ui,v(1n). In addition, V ′ performs a number of repetition tests that is inversely
proportional to the proximity parameter, where in each test V ′ selects uniformly
i, i′ ∈ {1, ..., t} and j ∈ {1, ..., n} and checks that ui and ui′ agree on their j-th bit.
Thus, V ′ essentially emulates the PCP of proximity V , and the fact that V satisfies
Definition 2.7 can be captured by saying that V ′ satisfies Definition 2.6.
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by the weighted Hamming distance that assigns uniform weights to the first part
of the new code. As in the previous paragraph, these weights can be implemented
by making suitable repetitions.

Finally, we comment that the definition of a PCP of proximity can be ex-
tended by providing the verifier with part of the input in an explicit form.
That is, referring to Definition 2.7, we let x = (x′, x′′), and provide V with
explicit input (x′, 1|x|) and input-oracle x′′ (rather than with explicit input 1|x|

and input-oracle x). Clearly, the extended formulation implies PCP as a special
case (i.e., x′′ = λ). More interestingly, an extended PCP of proximity for a set
of pairs R (e.g., the witness relation of an NP-set), yields a PCP for the set

S
def
= {x′ : ∃x′′ s.t. (x′, x′′) ∈ R}.

2.3.4 Relating locally testable codes and proofs. Locally testable codes
can be thought of as the combinatorial counterparts of the complexity theoretic
notion of locally testable proofs (PCPs). This perspective raises the question of
whether one of these notions implies (or is useful towards the understanding of)
the other.

Do PCPs imply locally testable codes? The use of codes with features related
to local testability is implicit in known PCP constructions. Furthermore, the
known constructions of locally testable proofs (PCPs) provides a transformation
of standard proofs (for say SAT) to locally testable proofs (i.e., PCP-oracles), such
that transformed strings are accepted with probability one by the PCP verifier.
Specifically, denoting by Sx the set of standard proofs referring to an assertion

x, there exists a polynomial-time mapping fx of Sx to Rx
def
= {fx(y) : y ∈ Sx}

such that for every π ∈ Rx it holds that Pr[V π(x) = 1] = 1, where V is the PCP
verifier. Moreover, starting from different standard proofs, one obtains locally
testable proofs that are far apart, and hence constitute a good code (i.e., for
every x and every y 6= y′ ∈ Sx, it holds that ∆(fx(y), fx(y′)) ≥ Ω(|fx(y)|)). It
is tempting to think that the PCP verifier yields a codeword tester, but this is
not really the case. Note that Definition 2.5 requires rejection of strings that are
far from any valid proof (i.e., any string far from Πx), but it is not clear that
the only valid proofs (w.r.t V ) are those in Rx (i.e., the proofs obtained by the
transformation fx of standard proofs (in Sx) to locally testable ones).15 In fact,
the standard PCP constructions accept also valid proofs that are not in the range
of the corresponding transformation (i.e., fx); that is, Πx as in Definition 2.5
is a strict subset of Rx (rather than Πx = Rx). We comment that most known
PCP constructions can be (non-trivially)16 modified to yield Πx = Rx, and thus
to yield a locally testable code (but this is not necessarily the best way to design
locally testable codes, see one alternative in §2.3.3).

15 Let alone that Definition 2.4 refers only to the case of false assertions, in which case
all strings are far from a valid proof (which does not exist).

16 The interested reader is referred to [42, Sec. 5.2] for a discussion of typical problems
that arise.
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Do locally testable codes imply PCPs? Saying that locally testable codes are the
combinatorial counterparts of locally testable proofs (PCPs), raises the expecta-
tion (or hope) that it would be easier to construct locally testable codes than it
is to construct PCPs. The reason being that combinatorial objects (e.g., codes)
should be easier to understand than complexity theoretic ones (e.g., PCPs). In-
deed, this feeling was among the main motivations of Goldreich and Sudan, and
their first result (cf. [42, Sec. 3]) was along this vein: They showed a relatively
simple construction (i.e., simple in comparison to PCP constructions) of a lo-
cally testable code of length ℓ(k) = kc for any constant c > 1. Unfortunately,
their stronger result, providing a locally testable code of shorter length (i.e.,
length ℓ(k) = k1+o(1)) is obtained by constructing (cf. [42, Sec. 4]) and using
(cf. [42, Sec. 5]) a corresponding locally testable proof (i.e., PCP). Subsequent
works have mostly followed this route, with the notable exception of Meir’s
work [52], which provides a combinatorial construction of a locally testable code
that does not seem to yield a corresponding locally testable proof.17

2.3.5 Motivation for the study of short locally testable codes and
proofs. Local testability offers an extremely strong notion of efficient testing:
The tester makes only a constant number of bit probes, and determining the
probed locations (as well as the final decision) is typically done in time that is
poly-logarithmic in the length of the probed object. Recall that the tested object
is supposed to be related to some primal object; in the case of codes, the probed
object is supposed to encode the primal object, whereas in the case of proofs the
probed object is supposed to help verify some property of the primal object. In
both cases, the length of the secondary (probed) object is of natural concern,
and this length is stated in terms of the length of the primary object.

The length of codewords in an error-correcting code is widely recognized as
one of the two most fundamental parameters of the code (the second one being
the code’s distance). In particular, the length of the code is of major impor-
tance in applications, because it determines the overhead involved in encoding
information.

As argued in Section 1, the same considerations apply also to proofs. However,
in the case of proofs, this obvious point was blurred by the indirect, unexpected
and highly influential applications of PCPs to the theory of approximation algo-
rithms. In our view, the significance of locally testable proofs (or PCPs) extends
far beyond their applicability to deriving non-approximability results. The mere
fact that proofs can be transformed into a format that supports super-fast prob-
abilistic verification is remarkable. From this perspective, the question of how
much redundancy is introduced by such a transformation is a fundamental one.
Furthermore, locally testable proofs (i.e., PCPs) have been used not only to
derive non-approximability results but also for obtaining positive results (e.g.,

17 We mention that the prior work of Ben-Sasson and Sudan [20] also shows some
deviation from this route (i.e., it reversed the course to the “right one”): First codes
are constructed, and next they are used towards the construction of proofs (rather
than the other way around).
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CS-proofs [49, 54] and their applications [8, 24]), and the length of the PCP af-
fects the complexity of those applications.

Turning back to the celebrated application of PCP to the study of approx-
imation algorithms, we note that the length of PCPs is also relevant to non-
approximability results; specifically, the length of PCPs affects the tightness
with respect to the running time of the non-approximability results derived from
these PCPs. For example, suppose (exact) SAT has complexity 2Ω(n). The origi-
nal PCP Theorem [5, 4] only implies that approximating MaxSAT requires time
2nα

, for some (small) α > 0. The work of [56] makes α arbitrarily close to 1,

whereas the results of [42, 21] further improve the lower bound to 2n1−o(1)

and
the results of [20, 26] yields a lower bound of 2n/poly(log n). We mention that the

result of [55] (cf. [27]) allows to achieve the lower bound of 2n1−o(1)

simultane-
ously with optimal approximation ratios, but this is currently unknown for the
better lower bound of 2n/poly(log n).

2.3.6 A weaker definition. One of the concrete motivations for local testable
codes refers to settings in which one may want to re-encode the information when
discovering that the codeword is corrupted. In such a case, assuming that re-
encoding is based solely on the corrupted codeword, one may assume (or rather
needs to assume) that the corrupted codeword is not too far from the code.
Thus, the following version of Definition 2.1 may suffice for various applications.

Definition 2.8 (weak codeword tests): Let C : {0, 1}k → {0, 1}n be a code of
distance d, and let q ∈ N and δ1, δ2 ∈ (0, 1) be such that δ1 < δ2. A weak
q-local (codeword) (δ1, δ2)-tester for C is a probabilistic (non-adaptive) oracle
machine M that makes at most q queries, accepts any codeword, and rejects non-
codewords that are both δ1-far and δ2-close to C. That is, the rejection condition
of Definition 2.1 is modified as follows.

Rejection of non-codeword (weak version): For any w ∈ {0, 1}n such that ∆C(w) ∈
[δ1n, δ2n], given oracle access to w, machine M rejects with probability at
least 1/2.

Needless to say, there is something highly non-intuitive in this definition: It re-
quires rejection of non-codewords that are somewhat far from the code, but not
the rejection of codewords that are very far from the code. Still, such weak code-
word testers may suffice in some applications. Interestingly, such weak codeword
testers do exist and even achieve linear length (cf. [59, Chap. 5]). We note that
the non-monotonicity of the rejection probability of testers has been observed
before, the most famous example being linearity testing (cf. [22] and [10]).
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2.4 A confused history

There is a fair amount of confusion regarding credits for some of the definitions
presented in this section.18 We refer mainly to the definition of locally testable
codes. This definition (or at least a related notion)19 is arguably implicit in [7]
as well as in subsequent works on PCP (see §2.3.4). Furthermore, the defini-
tion of locally testable codes has appeared independently in the works of Friedl
and Sudan [34] and Rubinfeld and Sudan [58] as well as in the PhD Thesis of
Arora [3].

3 Results and Ideas

We review the known constructions of locally testable codes and proofs, start-
ing from codes and proofs of exponential length and concluding with codes and
proofs of nearly linear length. We mention that random linear codes (of lin-
ear length) require any codeword tester to read a linear number of bits of the
codeword [18], providing an indication to the non-triviality of local testability.

3.1 The mere existence of locally testable codes and proofs

The mere existence of locally testable codes and proofs, regardless of their length,
is non-obvious. Thus, we start by recalling the simplest constructions known.

3.1.1 The Hadamard Code is locally testable. The simplest example of
a locally testable code (of constant relative distance) is the Hadamard code. This
code, denoted CHad, maps x ∈ {0, 1}k to a string, of length n = 2k, that provides
the evaluation of all GF(2)-linear functions at x; that is, the coordinates of the

codeword are associated with linear functions ℓ(z) =
∑k

i=1 ℓizi and so CHad(x)ℓ =

ℓ(x) =
∑k

i=1 ℓixi. Testing whether a string w ∈ {0, 1}2k

is a codeword amounts
to linearity testing. This is the case because w is a codeword of CHad if and only if,
when viewed as a function w : {0, 1}k → {0, 1}, it is linear (i.e., w(z) =

∑k
i=1 cizi

for some ci’s, or equivalently w(y + z) = w(y) + w(z) for all y, z). Specifically,
local testability is achieved by uniformly selecting y, z ∈ {0, 1}k and checking
whether w(y + z) = w(y) + w(z). The exact analysis of this natural tester, due
to Blum, Luby and Rubinfeld [22], turned out to be highly complex (cf. [22, 6,
31, 12, 13, 10, 47]). Denoting by rej(w) the probability that the test rejects the

18 Some confusion exists also with respect to some of the results and constructions
described in Section 3, but in comparison to what will be discussed here the latter
confusion is minor.

19 The related notion refers to the following relaxed notion of codeword testing: For
two fixed good codes C1 ⊆ C2 ⊂ {0, 1}n, one has to accept (with high probability)
every codeword of C1, but reject (with high probability) every string that is far from
being a codeword of C2. Indeed, our definitions refer to the special (natural) case
that C2 = C1, but the more general case suffices for the construction of PCPs (and
is implicitly achieved in most of them).
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string w and by R(δ) be the minimum of rej(w) taken over all strings that are
at distance δ · |w| from CHad, it is known that R(δ) ≥ Γ (δ), where the function
Γ : [0, 0.5] → [0, 1] is defined as follows:

Γ (x)
def
=






3x − 6x2 0 ≤ x ≤ 5/16
45/128 5/16 ≤ x ≤ τ2 where τ2 ≈ 44.9962/128
x + δ(x) τ2 ≤ x ≤ 1/2,

where δ(x)
def
= 1376x3(1 − 2x)12.

(1)

The lower bound Γ is composed of three different bounds with “phase tran-
sitions” at x = 5

16 and at x = τ2 (where τ2 ≈ 44,9962
128 is the solution to

x + δ(x) = 45/128).20 It was shown in [10] that the first segment of this bound
(i.e., for x ∈ [0, 5/16]) is the best possible, and that the first “phase transi-
tions” (i.e., at x = 5

16 ) is indeed a reality; in other words, R = Γ in the interval
[0, 5/16].21 We highlight the fact that the detection probability of the aforemen-
tioned test does not increase monotonically with the distance (of the string from
the code), since Γ decreases in the interval [1/4, 5/16] (while equaling R in this
interval).

Other codes. We mention that Reed-Muller Codes of constant order are also
locally testable [1]. These codes have sub-exponential length, but are quite pop-
ular in practice. The Long Code is also locally testable [11], but this code has
double-exponential length (and was introduced merely for the design of PCPs).22

3.1.2 The Hadamard-Based PCP of [4]. The simplest example of a locally
testable proof (for a set not known to be in BPP) is the “inner verifier” of the
PCP construction of Arora, Lund, Motwani, Sudan and Szegedy [4], which in
turn is based on the Hadamard code. Specifically, proofs of the satisfiability of
a given system of quadratic equations over GF(2) are presented by providing a
Hadamard encoding of the outer-product of a satisfying assignment with itself
(i.e., a satisfying assignment α ∈ {0, 1}n is presented by CHad(β), where β =

(βi,j)i,j∈[n] and βi,j = αiαj). Given an alleged proof π ∈ {0, 1}2n2

, the proof-
tester proceeds as follows:

1. Tests that π is indeed a codeword of the Hadamard Code. If the test passes
then w is close to some CHad(β), for an arbitrary β = (βi,j)i,j∈[n].

2. Tests that the aforementioned β is indeed an outer-product of some α ∈
{0, 1}n with itself. Note that the Hadamard encoding of α is supposed to

20 The third segment is due to [47], which improves over the prior bound of [10] that
asserted R(x) ≥ max(45/128, x) for every x ∈ [5/16, 1/2].

21 In contrast, the lower bound provided by the other two segments (i.e., for x ∈
[5/16, 1/2]) is unlikely to be tight, and in particular it is unlikely that the “phase
transitions” at x = τ2 represents the behavior of R itself. Also note that δ(x) >
59(1 − 2x)12 for every x > τ2, but δ(x) < 0.0001 for every x < 1/2.

22 Interestingly, the best results are obtained by using a relaxed notion of local testa-
bility [44, 45].
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be part of the Hadamard encoding of β (because
∑n

i=1 ciαi =
∑n

i=1 ciα
2
i

is supposed to equal
∑n

i=1 ciβi,i). So we would like to test that the lat-
ter codeword matches the former one. Specifically, we wish to test whether
(βi,j)i,j∈[n] equals (αiαj)i,j∈[n] (i.e., the equality of two matrices). This can
be done by uniformly selecting (r1, ..., rn), (s1, ..., sn) ∈ {0, 1}n, and compar-
ing

∑
i,j risjβi,j and

∑
i,j risjαiαj = (

∑
i riαi)(

∑
j sjαj).

The above would have been fine if w = CHad(β), but we only know that w is
close to CHad(β). The Hadamard encoding of α is a tiny part of the latter, and
so we should not try to retrieve the latter directly (because this tiny part
may be totally corrupted). Instead, we use the paradigm of self-correction
(cf. [22]): In general, for any fixed c = (ci,j)i,j∈[n], whenever we wish to
retrieve

∑n
i=1 ci,jβi,j , we uniformly select r = (ri,j)i,j∈[n] and retrieve both

w(r) and w(r + c). Thus, we obtain a self-corrected value of w(c); that is, if
w is δ-close to CHad(β) then w(r + c)−w(r) =

∑n
i=1 ci,jβi,j with probability

at least 1 − 2δ (over the choice of r).
Using self-correction, we indirectly obtain bits in CHad(α), for α = (αi)i∈[n] =
(βi,i)i∈[n]. Similarly, we can obtain any other desired bit in CHad(β), which
in turn allows us to test whether (βi,j)i,j∈[n] = (αiαj)i,j∈[n]. In fact, we are
checking whether (βi,j)i,j∈[n] = (βi,iβj,j)i,j∈[n], by comparing

∑
i,j risjβi,j

and (
∑

i riβi,i)(
∑

j sjβj,j), for randomly selected (r1, ..., rn), (s1, ..., sn) ∈
{0, 1}n.

3. Finally, we need to check whether the aforementioned α satisfies the given
system of equations. Towards this end, we uniformly selects a linear combi-
nation of the equations, and check whether α satisfies the resulting (single)
equation. Note that the value of the corresponding linear expression (in
quadratic (and linear) forms) appears as a bit of the Hadamard encoding of
β, but again we retrieve it from w by using self correction.

One key observation underlying the analysis of Steps 2 and 3 is that for (u1, ..., un) 6=
(v1, ...., vn) ∈ {0, 1}n, if we uniformly select (r1, ...., rn) ∈ {0, 1}n then Pr[

∑
i riui =∑

i rivi] = 1/2. Similarly, for n-by-n matrices A 6= B, when r, s ∈ {0, 1}n are

uniformly selected (vectors), it holds that Pr[As = Bs] = 2−rank(A−B) and it
follows that Pr[rAs = rBs] ≤ 3/4.

3.2 Locally testable codes and proofs of polynomial length

The constructions presented in Section 3.1 have exponential length in terms of
the relevant parameter (i.e., the amount of information being encoded in the
code or the length of the assertion being proved). Achieving local testability by
codes and proofs that have polynomial length turns out to be more challenging.

3.2.1 Locally testable codes of quadratic length. A direct interpretation
of low-degree tests (cf. [6, 7, 35, 58, 34]), proposed by Friedl and Sudan [34] and
Rubinfeld and Sudan [58], yields a locally testable code of quadratic length over a
sufficiently large alphabet. Similar (and actually better) results for binary codes
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required additional ideas, and have appeared only later (cf. [42]). We sketch
both constructions below, starting with locally testable codes over very large
alphabets (which are defined analogously to the binary case).

We will consider a code C : Σk → Σn of linear distance, with |Σ| ≫ k
and n > k2. For parameters m ≪ d < log k (such that k < dm), consider a
finite field F of size O(d) and an alphabet Σ = F d+1 (see below).23 Viewing the
information as an m-variant polynomial p of total degree d over F , we encode
it by providing its value on all possible lines over Fm, where each such line
is defined by two points in Fm. Actually, the value of p on such a line can
be represented by a univariate polynomial of degree d. Thus, the code maps

log2 |F |(m+d
d ) > (d/m)m log |F | bits of information (which may be viewed as

k
def
= (d/m)m/(d + 1) ≈ dm−1/mm long sequences over Σ = F d+1) to sequences

of length n
def
= |F |2m = O(d)2m over Σ. Note that the smaller m, the better the

rate (i.e., relation of n to k) is, but this comes at the expense of using a larger
alphabet. In particular, we consider two instantiations:

1. Using d = mm, we get k ≈ mm2−2m and n = m2m2+o(m), which yields
n ≈ exp(

√
log k) · k2 and log |Σ| = log |F |d+1 ≈ d log d ≈ exp(

√
log k).

2. Letting d = mc for any constant c > 1, we get k ≈ m(c−1)m and n =
m2cm+o(m), which yields n ≈ k2c/(c−1) and log |Σ| ≈ d log d ≈ (log k)c.

As for the codeword tester, it uniformly selects two intersecting lines and checks
that the corresponding univariate polynomials agree on the point of intersection.
Thus, this tester makes two queries (to an oracle over the alphabet Σ). The
analysis of this tester reduces to the analysis of the corresponding low degree
test, undertaken in [4, 56].

The above tester uses only two queries, but the entire description (which
refers to codes over a large alphabet) deviates from the bulk of our treat-
ment, which has focused on a binary alphabet. We comment that 2-query locally
testable binary codes are essentially impossible (cf., [14]), but we have already
seem that 3-query tests are possible. A natural way of reducing the alphabet size
of codes is via the well-known paradigm of concatenated codes [32].24 However,
local testability can be maintained only in special cases. In particular, observe
that, for each of the two queries made by the tester of C, the tester does not need
the entire polynomial represented in Σ = F d+1, but rather only its value at a spe-
cific point. Thus, encoding Σ by an error correcting code that supports recovery

23 Indeed, it would have been more natural to present the code as a mapping from
sequences over F to sequences over Σ = F d+1. Following the convention of using the
same alphabet for both the information and the codeword, we just pack every d + 1
elements of F as an element of Σ.

24 A concatenated code is obtained by encoding the symbols of an “outer code” (using
the coding method of the “inner code”). Specifically, let C1 : Σk1

1 → Σn1
1 be the outer

code and C2 : Σk2
2 → Σn2

2 be the inner code, where Σ1 ≡ Σk2
2 . Then, the concate-

nated code C : Σk1k2
2 → Σn1n2

2 is obtained by C(x1, ..., xk1) = (C2(y1), ..., C2(yn1)),
where xi ∈ Σk2

2 ≡ Σ1 and (y1, ..., yn1) = C1(x1, ..., xk1). Using a good inner code for
relatively short sequences, allows to transform good codes for a large alphabet into
good codes for a smaller alphabet.
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of the said value while using a constant number of probes will do.25 In particular,
for integers h, e such that d + 1 = he, Goldreich and Sudan used an encoding of
F d+1 = Fhe

by sequences of length |F |eh over F , and provided a testing and re-
covery procedure that makes O(e) queries [42, Sec. 3.3]. We mention that the case
of e = 1 and |F | = 2 corresponds to the Hadamard code, and that a bigger con-
stant e allow for shorter codes. The resulting concatenated code, C′, is a locally
testable code over F , and has length n·O(d)eh = n·exp((e log d)·d1/e). Using con-

stant e = 2c and setting d = mc ≈ (log k)c, we get n ≈ k2c/(c−1)·exp(Õ(log k)1/2)
and |F | = poly(log k). Finally, a binary locally testable code is obtained by con-
catenating C′ with the Hadamard code, while noting that the latter supports
a “local recovery” property that suffices to emulate the tester for C′. In par-
ticular, the tester of C′ merely checks a linear (over F ) equation referring to
a constant number of F -elements, and for F = GF (2ℓ), this can be emulated
by checking related random linear combinations of the bits representing these
elements, which in turn can be locally recovered (or rather self-corrected) from
the Hadamard code. The final result is a locally testable (binary) code of nearly
quadratic length.26

3.2.2 Locally testable proofs of polynomial length: The PCP Theo-
rem. The case of proofs is far more complex: Achieving locally testable proofs
of polynomial length is essentially the contents of the celebrated PCP Theorem
of Arora, Lund, Motwani, Safra, Sudan and Szegedy [5, 4]. The construction
is analogous to (but far more complex than) the one presented in the case of
codes:27 First one constructs proofs over a large alphabet, and next one com-
poses such proofs with corresponding “inner” proofs (over a smaller alphabet,
and finally a binary one). Our exposition focuses on the construction of these
proof systems and blurs the issues involved in their composition.28

The first step is to introduce the following NP-complete problem. The input
to the problem consists of a finite field F , a subset H ⊂ F of size ⌊|F |1/15⌋, an
integer m < |H |, and a (3m + 4)-variant polynomial P : F 3m+4 → F of total
degree 3m|H | + O(1). The problem is to determine whether there exists an m-
variant (“assignment”) polynomial A : Fm → F of total degree m|H | such that
P (x, z, y, τ, A(x), A(y), A(z)) = 0 for every x, y, z ∈ Hm and τ ∈ {0, 1}3 ⊂ H .

25 Indeed, this property is related to locally decodable codes, to be discussed in Sec-
tion 4. Here we need to recover one out of |F | specific linear combinations of the
encoded (d + 1)-long sequence of F -symbols. In contrast, locally decodable refers to
recovering one out of the original F -symbols of the (d + 1)-long sequence.

26 Actually, the aforementioned result is only implicit in [42], because Goldreich and
Sudan apply these ideas directly to a truncated version of the low-degree based code.

27 Our presentation reverses the historical order in which the corresponding results (for
codes and proofs) were achieved. That is, the constructions of locally testable proofs
of polynomial length predated the coding counterparts.

28 This section is significantly more complex than the rest of this article, and some
readers may prefer to skip it and proceed directly to Section 3.3. For further details
regarding the proof composition paradigm, the reader is referred to [37, Sec. 9.3.2].
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Note that the problem-instance can be explicitly described by a sequence of
|F |3m+4 log2 |F | bits, whereas the solution sought can be explicitly described by
a sequence of |F |m log2 |F | bits. We comment that the NP-completeness of the
aforementioned problem can be proved via a reduction from 3SAT, by identifying
the variables of the formula with Hm and essentially letting P be a low-degree
extension of a function f : H3m ×{0, 1}3 → {0, 1} that encodes the structure of
the formula (by considering all possible 3-clauses). In fact, the resulting P has
degree |H | in each of the first 3m variables and constant degree in each of the
other variables, and this fact can be used to improve the parameters below (but
not in a fundamental way).

The proof that a given input P satisfies the aforementioned condition con-
sists of an m-variant polynomial A : Fm → F (which is supposed to be of
total degree m|H |) as well as 3m + 4 auxiliary polynomials Ai : F 3m+1 → F ,
for i = 1, ..., 3m + 1 (each supposedly of degree (3m|H | + O(1)) · m|H |). The
polynomial A is supposed to satisfy the conditions of the problem, and in par-
ticular P (x, z, y, τ, A(x), A(y), A(z)) = 0 should hold for every x, y, z ∈ Hm and

τ ∈ {0, 1}3 ⊂ H . Furthermore, A0(x, z, z, τ)
def
= P (x, z, y, τ, A(x), A(y), A(z))

should vanish on H3m+1. The auxiliary polynomials are given to assist the ver-
ification of the latter condition. In particular, it should be the case that Ai

vanishes on F iH3m+1−i, a condition that is easy to test for A3m+1 (assuming
that A3m+1 is a low degree polynomial). Checking that Ai−1 agrees with Ai on
F i−1H3m+1−(i−1), for i = 1, ..., 3m+1, and that all Ai’s are low degree polynomi-
als, establishes the claim for A0. Thus, testing an alleged proof (A, A1, ..., A3m+1)
is performed as follows:

1. Testing that A is a polynomial of total degree m|H |. This is done by selecting
a random line through Fm, and testing whether A restricted to this line
agrees with a degree m|H | univariate polynomial.

2. Testing that, for i = 1, ..., 3m + 1, the polynomial Ai is of total degree

d
def
= (3m|H | + O(1)) · m|H |. Here we select a random line through F 3m+1,

and test whether Ai restricted to this line agrees with a degree d univariate
polynomial.

3. Testing that, for i = 1, ..., 3m + 1, the polynomial Ai agrees with Ai−1 on
F i−1H3m+1−(i−1). This is done by uniformly selecting r′ = (r1, ..., ri−1) ∈
F i−1 and r′′ = (ri+1, ..., r3m+1) ∈ F 3m+1−i, and comparing Ai−1(r

′, e, r′′) to
Ai(r

′, e, r′′), for every e ∈ H . In addition, we check that both functions when
restricted to the axis-parallel line (r′, ·, r′′) agree with a univariate polyno-
mial of degree d.29 We stress that the values of A0 are computed according
to the given polynomial P by accessing A at the appropriate locations (i.e.,
by definition A0(x, z, z, τ) = P (x, z, y, τ, A(x), A(y), A(z))).

4. Testing that A3m+1 vanishes on F 3m+1. This is done by uniformly selecting
r ∈ F 3m+1, and testing whether F (r) = 0.

29 Thus, effectively, we are self-correcting the values at H (on the said line), based on
the values at F (on that line).
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The above description (which follows [60, Apdx. C]) is somewhat different than
the original presentation in [4], which in turn follows [6, 7, 31].30 The above tester
may be viewed as making O(m|F |) queries to an oracle over the alphabet F , or
alternatively, as making O(m|F | log |F |) binary queries.31 Note that we have
already obtained a highly non-trivial tester. It makes O(m|F | log |F |) queries

in order to verify a claim regarding an input of length n
def
= |F |3m+4 log2 |F |.

Using m = log n/ log log n, |H | = log n and |F | = poly(log n), we have obtained
a tester of poly-logarithmic query complexity.

To further reduce the query complexity, one invokes the “proof composi-
tion” paradigm, introduced by Arora and Safra [5]. Specifically, one composes
an “outer” tester (as described above) with an “inner” tester that checks the
residual condition that the “outer” tester determines for the answers it obtains.
This composition is more problematic than one suspects, because we wish the
“inner” tester to perform its task without reading its entire input (i.e., the an-
swers to the “outer” tester). This seems quite paradoxical, since it is not clear
how the “inner” tester can operate without reading its entire input. The problem
can be resolved by using a “proximity tester” (i.e., a PCP of proximity) as an
“inner” tester, provided that it suffices to have such a proximity test (for the an-
swers to the “outer” tester). Thus, the challenge is to reach a situation in which
the “outer” tester is robust in the sense that, when the assertion is false, the
answers obtained by this tester are far from being convincing (i.e., they are far
from any sequence of answers that is accepted by this tester). Two approaches
towards obtaining such robust testers are known.

– One approach, introduced in [4], is to convert the “outer” tester into one
that makes a constant number of queries over some larger alphabet, and
furthermore have the answer be presented in an error correcting format.
Thus, robustness is guaranteed by the fact that the answers correspond to a
constant-length sequence of codewords, and so any two (properly formatted)
sequences are at constant relative distance of one another.

The implementation of this approach consists of two steps (and is based on
some specifics). The first step is to convert the “outer” tester into one that
makes a constant number of queries over some larger alphabet. This step
uses the so-called parallelization technique (cf. [50, 4]). Next, one applies an
error correcting code to these O(1) longer answers, and assumes that the
“proximity tester” can handle inputs presented in this format (i.e., that it
can test an input that is presented by an encoding of a constant number of
its parts).32

30 The point is that the sum-check, which originates in [51], is replaced by an analogous
process (which happens to be non-adaptive).

31 Another alternative perspective is obtained by applying so-called parallelization
(cf. [50, 4]). The result is a test making a constant number of queries that are each
answered by strings of length poly(|F |).

32 The aforementioned assumption holds trivially in case one uses a generic “proximity
tester” (i.e., a PCP of proximity or an Assignment Tester) as done in [28]. But the
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– An alternative approach, pursued and advocated in [15], is to take advantage
of the specific structure of the queries, “bundle” the answers together and
furthermore show that the “bundled” answers are “robust” in a sense that fits
proximity testing. In particular, the (generic) parallelization step is avoided,
and is replaced by a closer analysis of the specific (outer) tester. We will
demonstrate this approach next.

First, we show how the queries of the aforementioned tester can be “bundled”
(into a constant number of bundles). In particular, we consider the following
“bundling” that accommodates all types of tests (and in particular the m + 1
different sub-tests performed in Steps 2 and 3). Consider

B(x1, ...., x3m+1) = (A1(x1, x2, ...., x3m+1), A2(x2, ...., x3m+1, x1), ..., A3m+1(x3m+1, x1, ...., x3m))

and perform all 3m + 1 tests of Step (3) by selecting uniformly (r2, ..., r3m+1) ∈
F 3m and querying B at (e, r2, ..., r3m+1) and (r3m+1, e, ..., r3m) for all e ∈ F .
Thus, all 3m + 1 tests of Step (3) can be performed by retrieving the values of
B on a single axis parallel random line through F 3m+1. Furthermore, note that
all 3m + 1 tests of Step (2) can be performed by retrieving the values of B on a
single (arbitrary) random line through F 3m+1. Finally, observe that these tests
are “robust” in the sense that if, for some i, the function Ai is (say) 0.01-far
from satisfying the condition (i.e., being low-degree or agreeing with Ai−1) then
with constant probability many of the values of Ai on an appropriate random
line will not fit to what is needed. This robustness property is inherited by
B, as well as by B′ (resp., A′) that is obtained by applying a good binary
error-correcting code on B (resp., on A). Thus, we may replace A and the Ai’s
by A′ and B′, and conduct all all tests by making O(m2|F | log |F |) queries to
A′ : Fm × [O(log |F |)] → {0, 1} and B′ : F 3m+1 × [O(log |F |3m+1)] → {0, 1}.
The robustness property asserts that if the original polynomial P had no solution
(i.e., an A as above) then the answers obtained by the tester will be far from
satisfying the residual decision predicate of the tester.

Once the robustness property of the resulting (“outer”) tester fits the proxim-
ity testing feature of the “inner tester”, composition is possible. Indeed, we com-
pose the “outer” tester with an “inner tester” that checks whether the residual
decision predicate of the “outer tester” is satisfies. The benefit of this composi-
tion is that the query complexity is reduced from poly-logarithmic to polynomial
in a double-logarithm. At this point we can afford the Hadamard-Based proof
tester (because the overhead in the proof complexity will only be exponential
in a polynomial in a double-logarithmic function), and obtain a locally testable
proof of polynomial length. That is, we compose the poly(log log)-query tester
(acting as an outer tester) with the Hadamard-Based tester (acting as an inner
tester), and obtain a locally testable proof of polynomial length (as asserted by
the PCP Theorem).

aforementioned approach can be (and was in fact originally) applied with a specific
“proximity tester” that can only handle inputs presented in one specific format
(cf. [4]).
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Digest: the proof composition paradigm. The PCP Theorem asserts a PCP sys-
tem that obtains simultaneously the minimal possible randomness and query
complexity (up to a multiplicative factor, assuming that P 6= NP). The foregoing
construction obtains this remarkable result by combining two different PCPs: the
first PCP obtains logarithmic randomness but uses poly-logarithmically many
queries, whereas the second PCP uses a constant number of queries but has
polynomial randomness complexity. We stress that each of these two PCP sys-
tems is highly non-trivial and very interesting by itself. We also highlight the fact
that these PCPs are combined using a very simple composition method (which
refers to auxiliary properties such as robustness and proximity testing). Details
follow.33

Loosely speaking, the proof composition paradigm refers to composing two
proof systems such that the “inner” verifier is used for probabilistically verifying
the acceptance criteria of the “outer” verifier. That is, the combined verifier
selects coins for the “outer” verifier, determines the corresponding locations that
the “outer” verifier wishes to inspect (in the proof), and verifies that the “outer”
verifier would have accepted the values that reside in these locations. The latter
verification is performed by invoking the “inner” verifier, without reading the
values residing in all the aforementioned locations. Indeed, the aim is to conduct
this (“composed”) verification while using much fewer queries than the query
complexity of the “outer” proof system. In particular, the inner verifier cannot
afford to read its input, which makes the composition more subtle than the term
suggests.

In order for the proof composition to work, the combined verifiers should
satisfy some auxiliary conditions. Specifically, the outer verifier should be robust
in the sense that its soundness condition guarantee that, with high probabil-
ity, the oracle answers are “far” from satisfying the residual decision predicate
(rather than merely not satisfying it).34 The inner verifier is given oracle access
to its input and is charged for each query made to it, but is only required to
reject (with high probability) inputs that are far from being valid (and, as usual,
accept inputs that are valid). That is, the inner verifier is actually a verifier of
proximity.

Composing two such PCPs yields a new PCP, where the new proof oracle
consists of the proof oracle of the “outer” system and a sequence of proof oracles
for the “inner” system (one “inner” proof per each possible random-tape of the
“outer” verifier). The resulting verifier selects coins for the outer-verifier and
uses the corresponding “inner” proof in order to verify that the outer-verifier
would have accepted under this choice of coins. Note that such a choice of coins
determines locations in the “outer” proof that the outer-verifier would have
inspected, and the combined verifier provides the inner-verifier with oracle access

33 Our presentation of the composition paradigm follows [15], rather than the original
presentation of [5, 4].

34 Furthermore, the latter predicate, which is well-defined by the non-adaptive nature
of the outer verifier, must have a circuit of size bounded by a polynomial in the
number of queries.
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to these locations (which the inner-verifier considers as its input) as well as
with oracle access to the corresponding “inner” proof (which the inner-verifier
considers as its proof-oracle).

The quantitative effect of such a composition is easy to analyze. Specifically,
composing an outer-verifier of randomness-complexity r′ and query-complexity
q′ with an inner-verifier of randomness-complexity r′′ and query-complexity q′′

yields a PCP of randomness-complexity r(n) = r′(n) + r′′(q′(n)) and query-
complexity q(n) = q′′(q′(n)), because q′(n) represents the length of the input (or-
acle) that is accessed by the inner-verifier. Thus, assuming q′′(m) ≪ m, the query
complexity is significantly decreased (from q′(n) to q′′(q′(n))), while the increase
in the randomness complexity is moderate provided that r′′(q′(n)) ≪ r′(n). Fur-
thermore, the verifier resulting from the composition inherits the robustness
features of the composed verifier, which is important in case we wish to compose
the resulting verifier with another inner-verifier.

3.3 Locally testable codes and proofs of nearly linear length

We now move on to even shorter codes and proofs; specifically, codes and proofs
of nearly linear length. The latter term has been given quite different interpre-
tations, and we start by sorting these out. Currently, this taxonomy is relevant
mainly for second-level discussions and review of some past works.35

3.3.1 Types of nearly linear functions. A few common interpretations of
this term are listed below (going from the most liberal to the most strict one).

T1-nearly linear: A very liberal notion, which seems at the verge of an abuse
of the term, refers to a sequence of functions fǫ : N → N such that, for every
ǫ > 0, it holds that fǫ(n) ≤ n1+ǫ. That is, each function is actually of the
form n 7→ nc, for some constant c > 1, but the sequence as a whole can be
viewed as approaching linearity.
The PCP of Polishchuk and Spielman [56] and the simpler locally testable
code of Goldreich and Sudan [42, Thm. 2.4] have nearly linear length in this
sense.

T2-nearly linear: A more reasonable notion of nearly linear functions refers
to individual functions f such that f(n) = n1+o(1). Specifically, for some
function ǫ : N → [0, 1] that goes to zero, it holds that f(n) ≤ n1+ǫ(n).
Common sub-types include the following:
1. ǫ(n) = 1/ log log n.
2. ǫ(n) = 1/(logn)c for some constant c ∈ (0, 1).

The locally testable codes and proofs of [42, 21, 15] have nearly linear
length in this sense. Specifically, in [42, Sec. 4-5] and [21] any c > 1/2
will do, whereas in [15] any c > 0 will do.

35 Things were different when the original version of this text [36] was written. At that
time, only T2-nearly linear length was know for O(1)-local testability, and the T3-
nearly linear result achieved by Dinur [26] seemed a daring conjecture (which was,
nevertheless, stated in [36, Conj. 3.3]).
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3. ǫ(n) = exp((log log n)c)
log n for some constant c ∈ (0, 1).

Note that poly(log log n) < exp((log log n)c) < (log n)o(1), for any con-
stant c ∈ (0, 1).

Indeed, the case in which ǫ(n) = O(log log n)
log n (or so) deserves a special cate-

gory, presented next.
T3-nearly linear: The strongest notion interprets near-linearity as linearity

up to a poly-logarithmic (or quasi-poly-logarithmic) factor. In the former

case f(n) = Õ(n)
def
= poly(log n) ·n, which corresponds to the case of f(n) ≤

n1+ǫ(n) with ǫ(n) = O(log log n)/ logn, whereas the latter case corresponds
to ǫ(n) = poly(log log n)/ logn (i.e., in which case f(n) ≤ (log n)poly(log log n) ·
n).
The recent results of [20, 26] refer to this notion.

We note that while [20, 26] achieve T3-nearly linear length, the low-error results
of [55, 27] only achieve T2-nearly linear length.

3.3.2 Local testability with nearly linear length. The celebrated gap
amplification technique of Dinur [26] is best known for providing an alternative
proof of the PCP Theorem. However, applying this technique to a PCP that
was (previously) provided by Ben-Sasson and Sudan [20] yields locally testable
codes and proofs of T3-nearly linear length. In particular, the overhead in the
code and proof length is only polylogarithmic in the length of the primal object
(which establishes [36, Conj. 3.3]).

Theorem 3.1 (Dinur [26], building on [20]): There exists a constant q and a
poly-logarithmic function f : N → N such that there exist q-locally testable codes
and proofs of length f(k) ·k, where k denotes the length of the actual information
(i.e., the assertion in case of proofs and the encoded information in case of codes).

The proof of Theorem 3.1 combines the PCP system of Ben-Sasson and Su-
dan [20] with the gap amplification method of Dinur [26]. The latter is reviewed in
§3.3.3. We mention that the PCP system of [20] is based on the NP-completeness

of a certain code (of length n = Õ(k)), and on a randomized reduction of testing
whether a given n-bit long string is a codeword to a constant number of similar
tests that refer to

√
n-bit long strings. Applying this reduction log log n times

yields a PCP of query complexity poly(log n) and length Õ(n), which in turn
yields a 3-query “PCP with soundness error 1 − 1/poly(log n)”.

We mention that in the original version of this survey [36], we conjectured
that a polylogarithmic (length) overhead is inherent to local testability (or, at
least, that linear length O(1)-local testability is impossible). We currently have
mixed feelings with respect to this conjecture (even when confined to proofs),
and thus rephrase it as an open problem.

Open Problem 3.2 Determine whether there exist locally testable codes and
proofs of linear length.
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3.3.3 The gap amplification method. Essentially, Theorem 3.1 is proved
by applying the gap amplification method (of Dinur [26]) to the (weak) PCP
system constructed by Ben-Sasson and Sudan [20]. The latter PCP system has

length ℓ(k) = Õ(k), but its soundness error is 1−1/poly(log k) (i.e., its rejection
probability is at least 1/poly(log k)). Each application of the gap amplification
step doubles the rejection probability while essentially maintaining the initial
complexities. That is, in each step, the constant query complexity of the verifier
is preserved and its randomness complexity is increased only by a constant term
(and so the length of the PCP oracle is increased only by a constant factor).
Thus, starting from the system of [20] and applying O(log log k) amplification
steps, we essentially obtain Theorem 3.1. (Note that a PCP system of polynomial
length can be obtained by starting from a trivial “PCP” system that has rejection
probability 1/poly(k), and applying O(log k) amplification steps.)

In order to describe the aforementioned process we need to redefine PCP sys-
tems so as to allow arbitrary soundness error. In fact, for technical reasons, it is
more convenient to describe the process as an iterated reduction of a “constraint
satisfaction” problem to itself. Specifically, we refer to systems of 2-variable con-
straints, which are readily represented by (labeled) graphs such that the vertices
correspond to (non-Boolean) variables and the edges are associated with con-
straints.

Definition 3.3 (CSP with 2-variable constraints): For a fixed finite set Σ, an
instance of CSP consists of a graph G = (V, E) (which may have parallel edges
and self-loops) and a sequence of 2-variable constraints Φ = (φe)e∈E associated
with the edges, where each constraint has the form φe : Σ2 → {0, 1}. The value
of an assignment α : V → Σ is the number of constraints satisfied by α; that is,
the value of α is |{(u, v) ∈ E : φ(u,v)(α(u), α(v)) = 1}|. We denote by vlt(G, Φ)
(standing for violation) the fraction of unsatisfied constraints under the best
possible assignment; that is,

vlt(G, Φ) = min
α:V →Σ

{ |{(u, v) ∈ E : φ(u,v)(α(u), α(v)) = 0}|
|E|

}

.

(2)

For various functions τ : N → (0, 1], we will consider the promise problem
gapCSPΣ

τ , having instances as above, such that the yes-instances are fully satis-
fiable instances (i.e., vlt = 0) and the no-instances are pairs (G, Φ) for which
vlt(G, Φ) ≥ τ(|G|) holds, where |G| denotes the number of edges in G.

Note that 3SAT is reducible to gapCSPΣ0
τ0

for Σ0 = {F, T}3 and τ0(m) = 1/m
(e.g., replace each clause by a vertex, and use edge constraints that enforce
mutually consistent and satisfying assignments to each pair of clauses). Fur-
thermore, the PCP system of [20] yields a reduction of 3SAT to gapCSPΣ0

τ1
for

τ1(m) = 1/poly(log m) where the size of the graph is nearly linear in the length
of the input formula. Our goal is to reduce gapCSPΣ0

τ0
(or rather gapCSPΣ0

τ1
) to

gapCSPΣ
c , for some fixed finite Σ and constant c > 0, where in the case of

gapCSPΣ0
τ1

we wish the reduction to preserve the length of the instance up to a
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polylogarithmic factor. The PCP Theorem (resp., a PCP of nearly linear length)
follows by showing a simple PCP system for gapCSPΣ

c . As noted above, the re-
duction is obtained by repeated applications of an amplification step that is
captured by the following lemma.

Lemma 3.4 (amplifying reduction of gapCSP to itself): For some finite Σ and
constant c > 0, there exists a polynomial-time computable function f such that,
for every instance (G, Φ) of gapCSPΣ, it holds that (G′, Φ′) = f(G, Φ) is an
instance of gapCSPΣ and the two instances are related as follows:

1. If vlt(G, Φ) = 0 then vlt(G′, Φ′) = 0.
2. vlt(G′, Φ′) ≥ min(2 · vlt(G, Φ), c).
3. |G′| = O(|G|).

That is, satisfiable instances are mapped to satisfiable instances, whereas in-
stances that violate a ν fraction of the constraints are mapped to instances that
violate at least a min(2ν, c) fraction of the constraints. Furthermore, the mapping
increases the number of edges (in the instance) by at most a constant factor. We
stress that both Φ and Φ′ consists of Boolean constraints defined over Σ2. Thus,
by iteratively applying Lemma 3.4 for a logarithmic (resp., double-logarithmic)
number of times, we reduce gapCSPΣ

τ0
(resp., gapCSPΣ

τ1
) to gapCSPΣ

c .

Outline of the proof of Lemma 3.4: Before turning to the proof, let us
highlight the difficulty that it needs to address. Specifically, the lemma asserts a
“violation amplifying effect” (i.e., Items 1 and 2), while maintaining the alphabet
Σ and allowing only a moderate increase in the size of the graph (i.e., Item 3).
Waiving the latter requirements allows a relatively simple proof that mimics
(an augmented version of) the “parallel repetition” of the corresponding PCP.
Thus, the challenge is significantly decreasing the “size blow-up” that arises from
parallel repetition and maintaining a fixed alphabet. The first goal (i.e., Item 3)
calls for a suitable derandomization, and indeed we shall use a “pseudorandom”
generator based on random walks on expander graphs. The second goal (i.e.,
fixed alphabet) can be handled by using the proof composition paradigm, which
was outlined in §3.2.2.

The lemma is proved by presenting a three-step reduction. The first step is a
pre-processing step that makes the underlying graph suitable for further analysis
(e.g., the resulting graph will be an expander). The value of vlt may decrease
during this step by a constant factor. The heart of the reduction is the second
step in which we increase vlt by any desired constant factor. This is done by
a construction that corresponds to taking a random walk of constant length on
the current graph. The latter step also increases the alphabet Σ, and thus a
post-processing step is employed to regain the original alphabet (by using any
inner PCP systems; e.g., the one presented in §3.1.2). Details follow.

We first stress that the aforementioned Σ and c, as well as the auxiliary
parameters d and t (to be introduced in the following two paragraphs), are fixed
constants that will be determined such that various conditions (which arise in
the course of our argument) are satisfied. Specifically, t will be the last parameter
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to be determined (and it will be made greater than a constant that is determined
by all the other parameters).

We start with the pre-processing step. Our aim in this step is to reduce the
input (G, Φ) of gapCSPΣ to an instance (G1, Φ1) such that G1 is a d-regular
expander graph.36 Furthermore, each vertex in G1 will have at least d/2 self-
loops, the number of edges will be preserved up to a constant factor (i.e.,
|G1| = O(|G|)), and vlt(G1, Φ1) = Θ(vlt(G, Φ)). This step is quite simple:
essentially, the original vertices are replaced by expanders of size proportional
to their degree, and a big (dummy) expander is “superimposed” on the resulting
graph.

The main step is aimed at increasing the fraction of violated constraints by
a sufficiently large constant factor. The intuition underlying this step is that the
probability that a random (t-edge long) walk on the expander G1 intersects a
fixed set of edges is closely related to the probability that a random sample of (t)
edges intersects this set. Thus, we may expect such walks to hit a violated edge
with probability that is min(Θ(t ·ν), c), where ν is the fraction of violated edges.
Indeed, the current step consists of reducing the instance (G1, Φ1) of gapCSPΣ

to an instance (G2, Φ2) of gapCSPΣ′

such that Σ′ = Σdt

and the following holds:

1. The vertex set of G2 is identical to the vertex set of G1, and each t-edge
long path in G1 is replaced by a corresponding edge in G2, which is thus a
dt-regular graph.

2. The constraints in Φ2 refer to each element of Σ′ as a Σ-labeling of the
(“distance ≤ t”) neighborhood of a vertex, and mandates that the two cor-
responding labelings (of the endpoints of the G2-edge) are consistent as well
as satisfy Φ1. That is, the following two types of conditions are enforced by
the constraints of Φ2:
(consistency): If vertices u and w are connected in G1 by a path of length

at most t and vertex v resides on this path, then the Φ2-constraint asso-
ciated with the G2-edge between u and w mandates the equality of the
entries corresponding to vertex v in the Σ′-labeling of vertices u and w.

(satisfying Φ1): If the G1-edge (v, v′) is on a path of length at most t start-
ing at u, then the Φ2-constraint associated with the G2-edge that cor-
responds to this path enforces the Φ1-constraint that is associated with
(v, v′).

Clearly, |G2| = dt−1 · |G1| = O(|G1|), because d is a constant and t will be set
to a constant. (Indeed, the relatively moderate increase in the size of the graph
corresponds to the low randomness-complexity of selecting a random walk of
length t in G1.)

36 A d-regular graph is a graph in which each vertex is incident to exactly d edges.
Loosely speaking, an expander graph has the property that each moderately bal-
anced cut (i.e., partition of its vertex set) has relatively many edges crossing it. An
equivalent definition, also used in the actual analysis, is that, except for the largest
eigenvalue (which equals d), all the eigenvalues of the corresponding adjacency ma-
trix have absolute value that is bounded away from d.
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Turning to the analysis of this step, we note that vlt(G1, Φ1) = 0 implies
vlt(G2, Φ2) = 0. The interesting fact is that the fraction of violated constraints
increases by a factor of Ω(

√
t); that is, vlt(G2, Φ2) ≥ min(Ω(

√
t·vlt(G1, Φ1)), c).

Here we merely provide a rough intuition and refer the interested reader to [26].
We may focus on any Σ′-labeling of the vertices of G2 that is consistent with
some Σ-labeling of G1, because relatively few inconsistencies (among the Σ-
values assigned to a vertex by the Σ′-labeling of other vertices) can be ignored,
while relatively many such inconsistencies yield violation of the “equality con-
straints” of many edges in G2. Intuitively, relying on the hypothesis that G1

is an expander, it follows that the set of violated edge-constraints (of Φ1) with
respect to the aforementioned Σ-labeling causes many more edge-constraints of
Φ2 to be violated (because each edge-constraint of Φ1 is enforced by many edge-
constraints of Φ2). The point is that any set F of edges of G1 is likely to appear
on a min(Ω(t) · |F |/|G1|, Ω(1)) fraction of the edges of G2 (i.e., t-paths of G1).
(Note that the claim would have been obvious if G1 were a complete graph, but
it also holds for an expander.)37

The factor of Ω(
√

t) gained in the second step makes up for the constant
factor lost in the first step (as well as the constant factor to be lost in the last
step). Furthermore, for a suitable choice of the constant t, the aforementioned
gain yields an overall constant factor amplification (of vlt). However, so far we
obtained an instance of gapCSPΣ′

rather than an instance of gapCSPΣ , where
Σ′ = Σdt

. The purpose of the last step is to reduce the latter instance to an
instance of gapCSPΣ . This is done by viewing the instance of gapCSPΣ′

as a PCP-
system,38 and composing it with an inner-verifier using the proof composition
paradigm outlined in §3.2.2. We stress that the inner-verifier used here needs only
handle instances of constant size (i.e., having description length O(dt log |Σ|)),
and so the verifier presented in §3.1.2 will do. The resulting PCP-system uses

randomness r
def
= log2 |G2| + O(dt log |Σ|)2 and a constant number of binary

queries, and has rejection probability Ω(vlt(G2, Φ2)), which is independent of
the choice of the constant t. For Σ = {0, 1}O(1), we can obtain an instance
of gapCSPΣ that has a Ω(vlt(G2, Φ2)) fraction of violated constraints. Further-
more, the size of the resulting instance (which is used as the output (G′, Φ′) of the
three-step reduction) is O(2r) = O(|G2|), where the equality uses the fact that
d and t are constants. Recalling that vlt(G2, Φ2) ≥ min(Ω(

√
t · vlt(G1, Φ1)), c)

and vlt(G1, Φ1) = Ω(vlt(G, Φ)), this completes the (outline of the) proof of the
entire lemma. ⊓⊔

Reflection. In contrast to the proof outlined in §3.2.2. which combines two re-
markable constructs by using a simple composition method, the current proof
of the PCP Theorem is based on developing a powerful “combining method”
that improves the quality of the main system to which it is applied. This new

37 We mention that, due to a technical difficulty, it is easier to establish the claimed
bound of Ω(

√
t · vlt(G1, Φ1)) rather than Ω(t · vlt(G1, Φ1)).

38 The PCP-system referred to here has arbitrary soundness error (i.e., it rejects the
instance (G2, Φ2) with probability vlt(G2, Φ2) ∈ [0, 1]).
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method, captured by the amplification step (Lemma 3.4), does not merely ob-
tain the best of the combined systems, but rather obtains a better system than
the one given. However, the quality-amplification offered by Lemma 3.4 is rather
moderate, and thus many applications are required in order to derive the desired
result. Taking the opposite perspective, one may say that remarkable results are
obtained by a gradual process of many moderate amplification steps.

3.4 Additional considerations

Our motivation for studying locally testable codes and proofs referred to super-
fast testing, but our actual definitions have focused on the query complexity
of these testers. While the query complexity of testing has a natural appeal,
the hope is that low query complexity testers would also yield super-fast testing.
Indeed, in the case of codes, it is typically the case that the testing time is related
to the query complexity. However, in the case of proofs there is a seemingly
unavoidable (linear) dependence of the verification time on the input length.
This (linear) dependence can be avoided if one considers PCP-of-Proximity (see
Section 2.3.3) rather than standard PCP. But even in this case, additional work
is needed in order to derive testers that work is sub-linear time. The interested
reader is referred to [16, 53].

4 Locally Decodable Codes

Locally decodable codes are complimentary to local testable codes. Recall that
the latter are required to allow for super-fast rejection of strings that are far from
being codewords (while accepting all codewords). In contrast, in case of locally
decodable codes, we are guaranteed that the input is close to a codeword, and
are required to recover individual bits of the encoded information based on a
small number of probes (per recovered bit). As in case of local testability, the
case when the operation (in this case decoding) is performed based on a constant
number of probes is of special interest.

Local decodability is of natural practical appeal, which in turn provides ad-
ditional motivation for local testability. The point is that it makes little sense
to try to recover part of the data when the codeword is too corrupt. Thus, one
should first apply local testability to check that the received codeword is not too
corrupt, and apply local decodability only in case the codeword test passes.

4.1 Definitions

We follow the conventions of Section 2.1, but extend the treatment to codes over
any finite alphabet Σ (rather than insisting on Σ = {0, 1}).

Definition 4.1 (locally decodable codes, basic version): Let C : Σk → Σn be
a code, and let q ∈ N and δ ∈ (0, 1). A q-local δ-decoder for C is a probabilistic
(non-adaptive) oracle machine M that makes at most q queries and satisfies the
following condition:
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Local recovery from somewhat corrupted codewords: For every i ∈ [k] and x =
(x1, ..., xk) ∈ Σk, and any w ∈ Σn that is δ-close to C(x), on input i and
oracle access to w, machine M outputs xi with probability at least 2/3. That
is, Pr[Mw(1k, i)=xi] > 2/3, for any w ∈ Σn that is δ-far from C(x).

We call q the query complexity of M , and δ the proximity parameter.

Note that the proximity parameter must be smaller than the covering radius of
the code (as otherwise the definition cannot possibly be satisfied (at least for
some w and i)). One may strengthen Definition 4.1 by requiring that the bits of
an uncorrupted codeword be always recovered correctly (rather than with high
probability); that is, for every i ∈ [k] and x = (x1, ..., xk) ∈ Σk, it must hold
that Pr[MC(x)(1k, i) = xi] = 1. Turning to families of codes, we present the
following definition (which potentially allows the alphabet to grow with k).

Definition 4.2 (locally decodable codes, asymptotic version): For functions
n, σ : N → N, let C = {Ck : [σ(k)]k → [σ(k)]n(k)}k∈K . We say that C is a
local decodable code if there exist constants δ > 0 and q and a machine M that
is a q-local δ-decoder for Ck, for every k ∈ K.

We mention that locally decodable codes are related to (information theoretic
secure) Private Information Retrieval (PIR) schemes, introduced in [25]. In the
latter a user wishes to recover a bit of data from a k-bit long database, copies
of which are held by s servers, without revealing any information to any single
server. To that end, the user (secretly) communicates with each of the servers,
and the issue is to minimize the total amount of communication. As we shall
see, certain s-server PIR schemes yield 2s-locally decodable codes of length ex-
ponential in the communication complexity of the PIR.

Related notions of local recovery. The notion of local decodability is a special
case of a general notion of local recovery, where one may be required to recover
an arbitrary function f : Σk → {0, 1}∗ of the original information based on a
constant number of probes to the (corrupted) codeword. The function f must
be restricted in two ways: Firstly, it should have a small range (e.g., its range
may be Σ), and secondly it should come from a small predetermined set F of
functions. Definition 4.1 may be recast in these terms, by considering the set of
projection functions (i.e., {fi : Σk → Σ} where fi(x1, ..., xk) = xi). We believe
that this is the most natural special case of the general notion of local recovery.
In §3.2.1 we referred to another special case, where the alphabet is associated
with a finite field F and the recovery function fe : F k → F is one out of |F |
possible linear functions (specifically, fe(x1, ..., xk) =

∑k
i=1 ei−1xi, for e ∈ F ).39

Another natural case (also used in §3.2.1) is that of the recovery of (correct)
symbols of the codeword, which may be viewed as self-correction. (In this case
each admissible function determines one codeword symbol as a function of the
encoded message.)

39 Indeed, the value fe(x1, ..., xk) is the evaluation at e of the polynomial p(ζ) =
Pk

i=1 xiζ
i−1 represented by the coefficients (x1, ..., xk).
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4.2 Results

The best known locally decodable codes are of strictly sub-exponential length;
that is, k information bits can be encoded by codewords of length n = exp(ko(1))
that are locally decodable (cf. [29], building on [62]). This result disproves [36,
Conj. 4.4],

Theorem 4.3 (Efremenko [29], building on Yekhanin [62]): For some δ > 0
there exists a code C : {0, 1}k → {0, 1}n that has a 3-local δ-decoder such that n =

exp(2
eO(

√
log k)) = exp(ko(1)). Furthermore, 2d-local decodability can be obtained

with n = exp(2
eO( d

√
log k)).

In this section we only outline a couple of codes of lesser performance. Specif-
ically, we will present longer codes that are O(1)-locally decodable as well as
shorter codes that are poly(log k)-locally decodable.

4.2.1 Locally decodable codes of sub-exponential length. For any d ≥
1, there is a simple construction of a 2d-locally 2−d−2-decodable binary code of

length n = 2d·k1/d

. For h = k1/d, we identify [k] with [h]d, and view x ∈ {0, 1}k as
(xi1,...,id

)i1,...,id∈[h]. We encode x by providing the parity of all xi1,...,id
residing in

each of the (2h)d sub-cubes of [h]d; that is, for every (S1, ..., Sd) ∈ 2[h]×· · ·×2[h],
we provide

C(x)S1,...,Sd
= ⊕i1∈S1,...,id∈Sd

xi1,...,id
. (3)

Indeed, the Hadamard code is the special case in which d = 1. To recover
the value of xi1,...,id

, at any desired (i1, ..., id) ∈ [h]d, the decoder uniformly
selects (R1, ..., Rd) ∈ 2[h] × · · · × 2[h], and recovers the (possibly corrupted)
values C(x)S1,...,Sd

, where each Sj either equals Rj or equals Rj△{ij}, where
R△{i} = R \ {i} if i ∈ R and R△{i} = R ∪ {i} otherwise. The key observa-
tion is that each of the decoder’s queries is uniformly distributed. Thus, with
probability at least 3/4, XORing the 2d answers, yields the desired result (be-
cause ⊕S1∈{R1,R1△{i1}},...,Sd∈{Rd,Rd△{id}}C(x)S1,...,Sd

equals C(x){i1},...,{id} =
xi1,...,id

).

We comment that a related code (of length n = 2dd·k1/d

) allows for recov-
ery based on d + 1 (rather 2d) queries. The original presentation, due to [2]
(building on [25]), is in terms of PIR schemes (with s = (d + 1)/2 servers and

overall communication dd · k1/d = exp(Õ(s)) · k1/(2s−1)). In particular, in the
case that d = 2, we use two servers, sending (R1, R2, R3) to one server and
(R1△{i1}, R2△{i2}, R3△{i3}) to the other server. Upon receiving (S1, S2, S3),
each server replies with the bit C(x)S1,S2,S3 as well as the three k1/3-bit long se-
quences (C(x)S1△{i},S2,S3

)i∈[k1/3], (C(x)S1,S2△{i},S3
)i∈[k1/3], and (C(x)S1,S2,S3△{i})i∈[k1/3 ],

which contain the bits C(x)S1△{i1},S2,S3
, C(x)S1,S2△{i2},S3

, and C(x)S1,S2,S3△{i3}.
Thus, the user obtains the bits C(x)R1,R2,R3 , C(x)R1△{i1},R2,R3

, C(x)R1,R2△{i2},R3
,

and C(x)R1,R2,R3△{i3} from the first server, and the bits CR1△{i1},R2△{i2},R3△{i3},
CR1,R2△{i2},R3△{i3}, CR1△{i1},R2,R3△{i3}, CR1△{i1},R2△{i2},R3} from the second
server.
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The corresponding locally decodable code is obtained by a generic transfor-
mation that applies to any PIR scheme with s servers, in which the user makes
uniformly distributed queries of length qst(k), gets answers of length ans(k),
and recovers the desired value by XORing some predetermined bits contained
in the answers. In this case, the resulting code will contain the Hadamard en-
coding of each of the possible answers provided by each of the servers; that
is, if the j-th server answers according to Aj(x, q) ∈ {0, 1}ans(k), where x ∈
{0, 1}k and q ∈ {0, 1}qst(k), then C(x)j,q,ℓ = CHad(Aj(x, q))ℓ, for every ℓ ∈
{0, 1}ans(k). Thus, the length of the code is s · 2qst(k) · 2ans(k). Now, on in-
put i ∈ [k], the decoder emulates the PIR user, obtaining the query sequence
(q1, ..., qs) and the desired linear combinations (ℓ1, ...., ℓs). It uniformly selects
r1, ..., rs ∈ {0, 1}ans(k), queries the (possibly corrupted) codeword at locations
(1, q1, r1), (1, q1, r1 ⊕ ℓ1), ..., (s, qs, rs), (s, qs, rs ⊕ ℓs), and XORs the correspond-
ing 2s answers. Note that each of these queries is uniformly distributed in {j}×
{0, 1}qst(k) ×{0, 1}ans(k), for some j ∈ [s], and that C(x)j,qj ,rj ⊕C(x)j,qj ,rj⊕ℓj =
CHad(Aj(x, qj))ℓj .

4.2.2 Polylog-local decoding for codes of nearly linear length. We will
consider a code C : Σk → Σn of linear distance, while identifying Σ with a finite
field (denoted F ). For parameters h and m = logh k, consider a finite field F
of size O(m · h), and a subset H ⊂ F of size h. Viewing the information as a
function f : Hm → F , we encode it by providing the values of its low-degree
extension f̂ : Fm → F on all points in F , where f̂ is an m-variant polynomial
of degree |H | − 1 in each variable. Thus, the code maps k = hm long sequences
over F (which may be viewed as hm log |F | bits of information) to sequences

of length n
def
= |F |m = O(mh)m = O(m)m · k over F . This code has relative

distance mh/|F |. Note that the smaller m, the better the rate (i.e., relation of
n to k) is, but this comes at the expense of using a larger alphabet F (as well
as larger query complexity of the decoder presented below).

The decoder works by applying the self-correction paradigm. Given a point
x ∈ Hm and access to an oracle w : Fm → F that is 1/2-close to f̂ , the value of
f(x) is recovered by uniformly selecting a line through x, querying for the |F |
values of w along the line, finding the degree mh univariate polynomial with the
greatest agreement with these values, and evaluating it at the appropriate point.
Thus, we obtain an |F |-local decoder.

Using a constant m, we obtain an O(k1/m)-locally decodable code of constant
rate (i.e., n = O(k)), over an alphabet of size O(k1/m). On the other hand,
using m = ǫ log k/ log log k (for any constant ǫ > 0), we obtain a poly(log k)-
locally decodable code of length n = k1+ǫ, over an alphabet of size poly(log k).
Concatenation with any reasonable40 binary code (coupled with a trivial decoder
that reads the entire codeword), yields a binary poly(log k)-locally decodable
code of length n = k1+ǫ.

40 Indeed, we may use any good code (i.e., linear length and linear distance), as such
can be easily constructed for block length O(log log k). But we can even use the
Hadamard code, because the length overhead caused by it in this setting is negligible.
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4.2.3 Lower bounds. It is known that locally decodable codes cannot be
T2-nearly linear:41 Specifically, any q-locally decodable code C : Σk → Σn must

satisfy n = Ω(k1+ 1
q−1 ) (cf. [46]). For q = 2 and Σ = {0, 1}, an exponential lower

bound is known (cf. [48], following [41]).
We mention that our past conjectures regarding lower bounds for locally

decodable (binary) codes were disproved twice. Our conjectured lower bound of
n > exp(kΩ(1/q)) for q-locally decodable codes was disproved by [9], and our
conjectured lower bound of n > exp(kΩ(1)) for any locally decodable code was
disproved by [29] (after being vastly shaken by [62]). Given this history, we dare
not make any further conjectures, but instead pose the following open problem.

Open Problem 4.4 Determine whether there exist locally decodable codes of
polynomial length.

Recall that we know, for a fact, that T2-nearly linear length is impossible, and
it is very tempting to conjecture that T1-nearly linear length is impossible too
(i.e., any locally decodable code C : Σk → Σn requires n > k1+Ω(1)). Still, let
us pose this too as an open problem.

4.3 Relaxations

In light of the fact that locally decodable codes cannot be T2-nearly linear, it is
natural to seek relaxations to the notion of locally decodable codes. One natural
relaxation requires local recovery of most individual information-bits, allowing
for recovery-failure (but not error) on the rest [15]: That is, it is requires that,
whenever few location are corrupted, the decoder should be able to recover
most of the individual information-bits, based on a constant number of queries,
and for the rest of the locations the decoder may output a fail symbol (but
not the wrong value). Augmenting these requirements by the requirement that
whenever the codeword is not corrupted – all bits are recovered correctly (with
high probability), yields the following definition.

Definition 4.5 (locally decodable codes, relaxed): For functions n, σ : N → N,
let C = {Ck : {0, 1}k → {0, 1}n(k)}k∈K . For q ∈ N and δ, ρ ∈ (0, 1), a q-local
relaxed (δ, ρ)-decoder for C is a probabilistic (non-adaptive) oracle machine M
that makes at most q queries and satisfies the following conditions:

Local recovery from uncorrupted codewords: For every i ∈ [k] and x = (x1, ..., xk) ∈
Σk, it holds that Pr[MC(x)(1k, i)=xi] > 2/3,

Relaxed local recovery from somewhat corrupted codewords: For every x = (x1, ..., xk) ∈
Σk, and any w ∈ Σn that is δ-close to C(x), the following two conditions
hold:

1. For every i ∈ [k], it holds that Pr[MC(x)(1k, i)∈{xi,⊥}] > 2/3, where
⊥ is a special (“failure”) symbol.

41 See terminology in §3.3.1.
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2. There exists a set Iw ⊆ [k] of size at least ρk such that, for every i ∈ Iw,
it holds that Pr[MC(x)(1k, i)=xi] > 2/3.42

In such a case, C is said to be locally relaxed-decodable.

It turns out (cf. [15]) that Condition 2, in the relaxed recovery requirement, es-
sentially follows from the other requirements. That is, codes satisfying the other
requirements can be transformed into locally relaxed-decodable codes, while es-
sentially preserving their rate (and distance). Furthermore, the resulting codes
satisfy the following stronger form of Condition 2: There exists a set Iw ⊆ [k]
of density at least 1 − O(∆(w, C(x))/n) such that for every i ∈ Iw it holds that
Pr[MC(x)(1k, i)=xi] > 2/3.

Theorem 4.6 [15]: There exist locally relaxed-decodable codes of T1-nearly lin-
ear length. Specifically, for every ǫ > 0, there exists codes of length n = k1+ǫ

that have a O(1/ǫ2)-local relaxed (Ω(ǫ), 1 − O(ǫ))-decoder.

An obvious open problem is to separate locally decodable codes from relaxed
ones. This may follow by either improving the aforementioned lower bound on
the length of locally decodable codes or by providing relaxed locally decodable
codes of T2-nearly linear length.
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