
Basing Non-Interactive Zero-Knowledge on

(Enhanced) Trapdoor Permutations: The State
of the art

Oded Goldreich

Abstract. The purpose of this article is to correct the inaccurate ac-
count of this subject that is provided in our two-volume work Foundation

of Cryptography. Specifically, as pointed out by Jonathan Katz, it seems
that the construction of Non-Interactive Zero-Knowledge proofs for NP
requires the existence of a doubly-enhanced collection of trapdoor per-
mutations (to be defined below). We stress that the popular candidate
collections of trapdoor permutations do satisfy this doubly-enhanced con-
dition. In fact, any collection of trapdoor permutations that has dense
and easily recognizable domain satisfies this condition.

Keywords: Non-Interactive Zero-Knowledge, Trapdoor Permutations

This article was completed in Nov. 2008, and appeared on the author’s webpage.

1 Introduction

The purpose of this article is to correct the inaccurate account of the construction
of Non-Interactive Zero-knowledge proofs (NIZK) forNP that is provided in [G1,
Sec. 4.10.2] and modified in [G2, Apdx. C.4.1]. We briefly recall the relevant facts.

In [G1, Rem. 4.10.6], a construction of NIZK for NP is sketched based on a
collection of trapdoor permutations in which each permutation fα has domain
{0, 1}|α|. This description is correct, but the problem is with the unsupported
claim (at the end of [G1, Rem. 4.10.6]) by which the construction can be extended
to arbitrary collections of trapdoor permutations (in which the domain of the
permutation fα may be a sparse subset of {0, 1}|α| and may not be easy to
recognize (although it is easy to sample from)).

In [G2, Apdx. C.4.1] it was claimed that such a construction (of NIZK for
NP) can be obtained based on any enhanced collections of trapdoor permuta-
tions, where the enhancement is as defined in [G2, Apdx. C.1]. But again, this
claim was not fully supported. Furthermore, as pointed out by Jonathan Katz, it
seems that this construction requires an additional enhancement. In this article
we define the resulting notion of a doubly-enhanced collection of trapdoor per-
mutations, and provide full details to the claim that using such permutations one
can construct NIZK for NP . We stress that the popular candidate collections
of trapdoor permutations do satisfy this doubly-enhanced condition. In fact,
any collection of trapdoor permutations that has dense and easily recognizable

302

domain satisfies this condition. More generally, if the domain-sampler S′ of an
enhanced collection of trapdoor permutations has a “reversed sampler” (which
given α, y generates a random r such that S′(α, r) = y), then this collection is
doubly-enhanced.

On the non-technical level, we believe that this unfortunate line of events
demonstrates the importance of not being tempted by hand-waving arguments
and working out detailed proofs. Indeed, we believe that the source of trouble is
that the basic idea is presented in [G1, Rem. 4.10.6] as a patch, and further mod-
ifications are also presented as patches (see [G2, Apdx. C.4.1]). These patches
are replaced by the detailed description provided in Section 3, which is the core
of the current article.

2 Background

In this section we recall the standard definition of non-interactive zero-knowledge
proof systems as well as the construction of such systems based on proof systems
in the hidden-bits model. Since proof systems for NP in the hidden-bits model
are known to exists (unconditionally, see [G1, Sec. 4.10.2]), our focus in this
article is on transforming such systems into standard NIZK systems. We stress
that intractability assumptions are used in the latter transformation.

The rest of this section is essentially reproduced from [G1, Sec. 4.10.1&4.10.2],
and its first subsection (i.e., Section 2.1) can be skipped by readers who are famil-
iar with the standard definition of non-interactive zero-knowledge proof systems.

2.1 The Basic Definition

Recall that the model of non-interactive (zero-knowledge) proof systems consists
of three entities: a prover, a verifier and a uniformly selected sequence of bits
(which can be thought of as being selected by a trusted third party). Both verifier
and prover can read the random sequence, and each can toss additional coins.
The interaction consists of a single message sent from the prover to the verifier,
who is then left with the decision (whether to accept or not). Here we present
only the basic definition that supports the case of proving a single assertion of
a-priori bounded length. Various extensions are presented in [G1, Sec. 4.10.3]
and in [G2, Sec. 5.4.4.4]; we recall that the construction of such stronger NIZKs
can be reduced to the construction of basic NIZKs (as defined below).

The model of non-interactive proofs seems closer in spirit to the model of
NP-proofs than to general interactive proofs. In a sense, the NP-proof model
is extended by allowing the prover and verifier to refer to a common random
string, as well as toss coins by themselves. Otherwise, as in case of NP-proofs,
the interaction is minimal (i.e., it is unidirectional (from the prover to the ver-
ifier)). Thus, in the definition below both the prover and verifier are ordinary
probabilistic machines that, in addition to the common-input, also get a uni-
formly distributed (common) reference-string. We stress that, in addition to the
aforementioned common input and common reference-string, both the prover

303

and verifier may toss coins and get auxiliary inputs. However, for sake of sim-
plicity, we present a definition for the case in which none of these machines gets
an auxiliary input (yet, they may both toss additional coins). Finally, note that
the verifier also gets as input the output produced by the prover.

Definition 1 (non-interactive proof system): A pair of probabilistic machines,

(P, V), is called a non-interactive proof system for a language L if V is polynomial-

time and the following two conditions hold:

– Completeness: For every x ∈ L, it holds that

Pr [V (x, R, P (x, R))=1] ≥
2

3

where R is a random variable uniformly distributed in {0, 1}poly(|x|).
– Soundness: For every x 6∈ L and every algorithm B, it holds that

Pr [V (x, R, B(x, R))=1] ≤
1

3

where R is a random variable uniformly distributed in {0, 1}poly(|x|).

The uniformly chosen string R is called the common reference-string.

As usual, the error probability in both conditions can be reduced (from 1
3) up

to 2−poly(|x|), by repeating the process sufficiently many times (using a sequence
of many independently chosen reference-strings). In stating the soundness con-
dition, we have deviated from the standard formulation that allows x 6∈ L to
be adversarially selected after R is fixed; the latter “adaptive” formulation of
soundness is used in [G1, Sec. 4.10.3], and it is easy to transform a system sat-
isfying the above (“non-adaptive”) soundness condition into one satisfying the
adaptive soundness condition (see [G1, Sec. 4.10.3]).

Every language in NP has a non-interactive proof system (in which no ran-
domness is used). However, this NP-proof system is unlikely to be zero-knowledge
(as defined next). The definition of zero-knowledge for the non-interactive model
is simplified by the fact that, since the verifier cannot affect the prover’s actions,
it suffices to consider the simulatability of the view of a single verifier (i.e., the
prescribed one). Actually, we can avoid considering the verifier at all (since its
view can be generated from the common reference-string and the message sent
by the prover).

Definition 2 (non-interactive zero-knowledge): A non-interactive proof system,

(P, V), for a language L is zero-knowledge if there exist a polynomial p and

a probabilistic polynomial-time algorithm M such that the probability ensem-

bles {(x, Up(|x|), P (x, Up(|x|)))}x∈L and {M(x)}x∈L are computationally indis-

tinguishable, where Um is a random variable uniformly distributed over {0, 1}m.

This definition too is “non-adaptive” (i.e., the common input may not depend on
the common reference-string). An adaptive formulation of zero-knowledge is pre-
sented and discussed in [G1, Sec. 4.10.3]. Note that zero-knowledge is actually a
property of the perscribed prover P , and so we may say that P is zero-knowledge.

304

2.2 The Hidden-Bits Model

A fictitious abstraction, which is nevertheless very helpful for the design of non-
interactive zero-knowledge proof systems, is the hidden bits model. In this model
the common reference-string is uniformly selected as before, but only the prover
can see all of it. The ‘proof’ that the prover sends to the verifier consists of two
parts; a ‘certificate’ and the specification of some bit positions in the common
reference-string. The verifier may only inspect the bits of the common reference-
string that reside in the locations that have been specified by the prover. Needless
to say, in addition, the verifier inspects the common input and the ‘certificate’.

Definition 3 (proof systems in the Hidden Bits Model): A pair of probabilistic

machines, (P, V), is called a hidden-bits proof system for L if V is polynomial-

time and the following two conditions hold:

– Completeness: For every x ∈ L, it holds that

Pr [V (x, RI , I, π)=1] ≥
2

3

where (I, π)
def
= P (x, R), R is a random variable uniformly distributed in

{0, 1}poly(|x|) and RI is the substring of R at positions I ⊆ {1, 2, ..., poly(|x|)}.
That is, RI = ri1 · · · rit

, where R = r1 · · · rt and I = (i1, ..., it).
– Soundness: For every x 6∈ L and every algorithm B, it holds that

Pr [V (x, RI , I, π)=1] ≤
1

3

where (I, π)
def
= B(x, R), R is a random variable uniformly distributed in

{0, 1}poly(|x|) and RI is the substring of R at positions I ⊆ {1, 2, ..., poly(|x|)}.

In both cases, I is called the set of revealed bits and π is called the certificate.

Zero-knowledge is defined as in Def. 2, except that here we need to simulate

(x, RI , P (x, R)) = (x, RI , I, π) rather than (x, R, P (x, R)).

As stated above, we do not suggest the Hidden-Bits Model as a realistic model.
The importance of the model stems from two facts. Firstly, it is a ‘clean’ model
that facilitates the design of proof systems (in it), and secondly proof systems
in the Hidden-Bits Model can be easily transformed into non-interactive proof
systems (i.e., the realistic model). The transformation (which utilizes a one-way
permutation f with hard-core b) follows.

Construction 4 (from Hidden Bits proof systems to non-interactive ones): Let

(P, V) be a hidden-bits proof system for L, and suppose that f :{0, 1}∗→{0, 1}∗

and b : {0, 1}∗→ {0, 1} are polynomial-time computable. Furthermore, let m =
poly(n) denote the length of the common reference-string for common inputs

of length n, and suppose that f is 1-1 and length preserving. Following is a

specification of a non-interactive system, denoted (P ′, V ′):

305

– Common Input: x ∈ {0, 1}n.

– Common Reference-String: s = (s1, ..., sm), where each si is in {0, 1}n.

– Prover (denoted P ′):
1. Computes ri = b(f−1(si)), for i = 1, 2, ..., m.

2. Invokes P to obtain (I, π) = P (x, r1 · · · rm).

The prover P ′ outputs (I, π, pI), where pI
def
= (f−1(si1) · · · f

−1(sit
)) for I =

(i1, ..., it).
That is, P ′ augments the proof (I, π), obtained from P , with the f -preimages

of the blocks in the reference-string that have indices in I. These preimages

reveal the values of the corresponding “revealed” bits in the hidden-bits model,

while the values of the other bits remain essentially hidden.

– Verifier (denoted V ′), given prover’s output (I, π, (p1 · · · pt)):
1. Checks that sij

= f(pj), for each ij ∈ I.
In case a mismatch is found, V ′ halts and rejects.

2. Computes ri = b(pi), for i = 1, ..., t. Let r = r1, ..., rt.

3. Invokes V on (x, r, I, π), and accepts if and only if V accepts.

That is, using the pj’s, the verifier V ′ reconstructs the the values of the

corresponding “revealed” bits in the hidden-bits model, and invokes V on

these values.

We comment that P ′ is not perfect (or statistical) zero-knowledge even in case
P is. Furthermore (and more central to this article), the prover P ′ may not be
implemented in polynomial-time even if P is (and even with the help of auxiliary
inputs). See further discussion in the next section.

Proposition 5 (analysis of Construction 4): Let (P, V), L, f , b and (P ′, V ′)
be as in Construction 4. Then, (P ′, V ′) is a non-interactive proof system for L,

provided that Pr[b(Un)=1] = 1
2 . Furthermore, if P is zero-knowledge and b is a

hard-core of f , then P ′ is zero-knowledge too.

Proof: To see that (P ′, V ′) is a non-interactive proof system for L we note
that uniformly chosen strings si ∈ {0, 1}n induce uniformly distributed bits
ri ∈ {0, 1}. This follows by ri = b(f−1(si)), the fact that f is one-to-one, and
the fact that b(f−1(Un)) ≡ b(Un) is unbiased. Thus, the actions of the parties
in the real model (i.e., in Construction 4) perfectly emulate the actions of the
parties in the hidden bits model.

Note that if b is a hard-core of f , then b is almost unbiased (i.e., Pr[b(Un)=
1] = 1

2 ± µ(n), where µ is a negligible function), and the said emulation is
only guaranteed to be almost-perfect (i.e., deviates negligibly from the original).
Thus, saying that b is a hard-core for f essentially suffices for concluding that
(P ′, V ′) is a non-interactive proof system for L.

To see that P ′ is zero-knowledge note that we can convert an efficient sim-
ulator for P into an efficient simulator for P ′. Specifically, we first invoke the
P -simulator and obtain a triple (α, I, π), where α denotes the (simulated) se-
quence of revealed bits, I denotes their positions in the common reference-string,
and π denotes the simulated certificate. Next, for each revealed bit of value σ,

306

we uniformly select a string r ∈ {0, 1}n such that b(r) = σ and place f(r) in the
corresponding position in the common reference-string (being simulated for P ′).
That is, if the said bit corresponds to position i ∈ I, then we place f(r) in the ith

block of the reference-string. For each unrevealed bit (i.e., bit position i /∈ I), we
uniformly select a string s ∈ {0, 1}n and place it in the corresponding position
in the common reference-string (i.e., place s in the ith block of the reference-
string). The output of the P ′-simulator consists of the common reference-string
generated as above, the sequence of all r’s generated by the P ′-simulator for bits
revealed by the P -simulator (i.e., bit in I), and the pair (I, π) as in the output
of the P -simulator. Following is a rigorous description of the P ′-simulator, when
invoked on input x ∈ {0, 1}n and using the P -simulator, denoted M .

1. Obtain (x, (σ1, ..., σt), (i1, ..., it), π)←M(x).
2. For every j = 1, .., t, select uniformly pj ∈ {0, 1}n such that b(pj) = σj and

set sij
= f(pj).

3. For every i ∈ [m] \ {ij : j = 1, .., t}, select si uniformly in {0, 1}n.
4. Output (x, (s1, ..., sm), ((i1, ..., it), π, (p1, ..., pt))).

That is the sequence (s1, ..., sm) is the simulated “common reference-string”
whereas the triple ((i1, ..., it), π, (p1, ..., pt)) is the simulated proof.

Using the hypothesis that b is a hard-core of f , it follows that the output of the
P ′-simulator is computationally indistinguishable from the verifier’s view (when
receiving a proof from P ′). Note that the only difference between the simulation
output and the real execution is that in the real execution the blocks of the
(actual) reference-string match the values of the bits of the (imaginary) reference-
string that is given to P (and only partially revealed to V). In contrast, in the
simulation, the blocks that correspond to unrevealed bits (in the hidden bits
model) do not necessarily match the values of these (imaginary) unrevealed bits.1

However, this difference is computationally indistinguishable (by the hypothesis
that b is a hard-core of f).

3 Efficient Implementations of the Prover of
Construction 4

As hinted in Section 2.2, in general, the strategy P ′ (described in Construction 4)
may not be efficiently implemented given black-box access to P . What is needed
for such an efficient implementation is the ability (of P ′) to invert f . On the other

1 To illustrate the issue, consider a strategy P (for the hidden bits model) that just
reveals m/3 bits in the m-bit long reference-string such that each revealed bit holds
the value 1. Then, the corresponding P ′ reveals the corresponding f -preimages of
m/3 blocks in the m-block long reference-string (i.e., the f -preimage of a block is
sent only if the value of this preimage under b equals 1). However, the simulator
constructed for P ′ generates a simulated m-block long reference-string in which the
f -preimages that are not revealed are random (rather than being suitablly biased
towards evaluating to 0 under b).

307

hand, for P ′ to be zero-knowledge f must be one-way. The obvious solution is to
use a collection of trapdoor permutations and let the prover know the trapdoor.

The basic construction is presented based on a collection of trapdoor permu-
tations that have simple domains (i.e., the domain of each permutation is the set
of all strings of some fixed string). Furthermore, the collection should have the
property that its members can be efficiently recognized (i.e., given a description
of a function one can efficiently decide whether it is in the collection).

3.1 The basic construction

Using such a collection of trapdoor permutations, P ′ starts by selecting a per-
mutation f over {0, 1}n such that it knows its trapdoor, and proceeds as in
Construction 4, except that it also appends the description of f to the ‘proof’.
Indeed, the knowledge of the trapdoor allows P ′ to invert f on any element in
f ’s domain. The verifier acts as in Construction 4 with respect to the function
f specified in the proof. In addition the verifier also checks that f is indeed in
the collection.

Both the completeness and the zero-knowledge conditions follow exactly as
in the proof of Proposition 5. For the soundness condition we need to consider all
possible members of the collection (w.l.o.g., there are at most 2n such permuta-
tions). For each such permutation, the argument is as before, and our soundness
claim thus follows by a counting argument (as applied in [G1, Sec. 4.10.3]). Ac-
tually, we also need to repeat the (P, V) system for O(n) times, so to first reduce
the soundness error to 1

3 · 2
−n.

The foregoing text is reproduced from [G1, Rem. 4.10.6] and is indeed valid.
The only problem is that it refers to a restricted notion of a collection of trapdoor
permutations. Specifically, when compared with the general definition of such
collections (as provided in [G1, Def. 2.4.5]), the foregoing description corresponds
to the special case in which for every index α the domain of the permutation fα

(i.e., the permutation described by α) equals {0, 1}|α|. In contrast, in general,
the domain of fα may be an arbitrary subset of {0, 1}|α| (as long as this subset
is easy to sample from). The focus of this article is on trying to extend the
foregoing construction by using more general forms of trapdoor permutations.

3.2 Extending the basic construction

We start by recalling the (general) definition of a collection of trapdoor permu-
tations, and considering a couple of enhancements.

Enhanced collections of trapdoor permutations. Recall that a collection

of trapdoor permutations, as defined in [G1, Def. 2.4.5], is a collection of finite
permutations, denoted {fα : Dα → Dα}, accompanied by four probabilistic
polynomial-time algorithms, denoted I, S, F and B (for index, sample, forward

and backward), such that the following (syntactic) conditions hold:

308

1. On input 1n, algorithm I selects a random n-bit long index α of a permutation
fα, along with a corresponding trapdoor τ ;

2. On input α, algorithm S samples the domain of fα, returning an almost
uniformly distributed element in it;

3. For any x in the domain of fα, given α and x, algorithm F returns fα(x)
(i.e., F (α, x) = fα(x));

4. For any y in the range of fα if (α, τ) is a possible output of I(1n), then,
given τ and y, algorithm B returns f−1

α (y) (i.e., B(τ, y) = f−1
α (y)).

The standard hardness condition (as in [G1, Def. 2.4.5]) refers to the difficulty of
inverting fα on a uniformly distributed element of its range, when given only the
range-element and the index α. That is, letting I1(1

n) denote the first element
in the output of I(1n) (i.e., the index), it is required that, for every probabilistic
polynomial-time algorithm A (resp., every non-uniform family of polynomial-size
circuit A = {An}n), it holds that

Pr[A(I1(1
n), fI1(1n)(S(I1(1

n))) = S(I1(1
n))] = µ(n), (1)

where µ denotes a generic negligible function. Namely, A (resp., An) fails to
invert fα on fα(x), where α and x are selected by I and S as above. An equivalent
way of writing Eq. (1) is

Pr[A(I1(1
n), S′(I1(1

n), Rn)) = f−1
I1(1n)(S

′(I1(1
n), Rn))] = µ(n), (2)

where S′ is the residual two-input (deterministic) algorithm obtained from S
when treating the coins of the latter as an auxiliary input, and Rn denote the
distribution of the coins of S on n-bit long inputs. That is, A fails to invert fα

on x, where α and x are selected as above.

Enhanced trapdoor permutations. Although the foregoing definition suffices for
many applications, in some cases we will need an enhanced hardness condition.
Specifically, we will require that it is hard to invert fα on a random input x (in
the domain of fα) even when given the coins used by S in the generation of x.
(Note that, given these coins (and the index α), the resulting domain element x
is easily determined, and so we may omit it from the input given to the potential
inverter.)

Definition 6 (enhanced trapdoor permutations [G2, Def. C.1.1]): Let {fα :
Dα → Dα} be a collection of trapdoor permutations as in [G1, Def. 2.4.5]. We

say that this collection is enhanced (and call it an enhanced collection of trapdoor

permutations) if, for every probabilistic polynomial-time algorithm A, it holds

that

Pr[A(I1(1
n), Rn) = f−1

I1(1n)(S
′(I1(1

n)), Rn))] = µ(n), (3)

where S′ and µ are as above. The non-uniform version is defined analogously.

Note that the special case of [G1, Def. 2.4.5] in which the domain of fα equals
{0, 1}|α| satisfies Definition 6 (because, without loss of generality, the sampling

309

algorithm S′ may satisfy S′(α, r) = r). This implies that modified versions of the
RSA and Rabin collections satisfy Definition 6. More natural versions of both
collections can also be shown to satisfy Definition 6. For further discussion see
the Appendix.

Doubly-enhanced trapdoor permutations. Although collection of enhanced trap-
door permutations suffice for the construction of Oblivious Transfer (see [G2,
Sec. 7.3.2]), it seems that they do not suffice for our current purpose of provid-
ing an efficient implementation of the prover of Construction 4.2 Thus, we further
enhance Definition 6 so to provide for such an implementation. Specifically, we
will require that, given α, it is feasible to generate a random pair (x, r) such that
r is uniformly distributed in {0, 1}poly(|α|) and x is a preimage of S′(α, r) under
fα; that is, we should generate a random x ∈ Dα along with coins that fit the
generation of fα(x) (rather than coins that fit the generation of x).

Definition 7 (doubly-enhanced trapdoor permutations): Let {fα : Dα → Dα}
be an enhanced collection of trapdoor permutations (as in Def. 6). We say that this

collection is doubly-enhanced (and call it a doubly-enhanced collection of trapdoor

permutations) if there exists a probabilistic polynomial-time algorithm that on

input α outputs a pair (x, r) such that r is distributed identically to R|α| and

fα(x) = S′(α, r).

We note that Definition 7 is satisfied by any collection of trapdoor permuta-
tions that has a reversed domain-sampler (i.e., a probabilistic polynomial-time
algorithm that on input (α, y) outputs a string that is uniformly distributed in
{r : S′(α, r) = y}).

A useful relaxation of Definition 7 allows r to be distributed almost-identically
(rather than identically) to R|α|, where by almost-identical distributions we mean
that the corresponding variation distance is negligible (i.e., the distributions
are statistically close). Needless to say, in this case the definition of a reversed
domain-sampler should be relaxed accordingly.

We stress that suitable implementations of the popular candidate collections
of trapdoor permutations (e.g., the RSA and Rabin collections) do satisfy the
foregoing doubly-enhanced condition. In fact, any collection of trapdoor permu-
tations that has dense and easily recognizable domains satisfies this condition.
For further details see the Appendix.

Actually implementing the prover. Recall that the basic construction pre-
sented in Section 3.1 relies on two extra properties of the collection of trapdoor
permutations.

2 We mention that the enhancement of Definition 6 was intended to suffice for both
purposes. Indeed, in [G2, Apdx. C.4] it was claimed that enhanced trapdoor per-
mutations do suffice for providing an efficient implementation of the prover of Con-
struction 4. Needless to say, we retract this claim here. Further historical comments
appear in Section 4.

310

1. It was assumed that the set of possible descriptions of the possible per-
mutations, denoted I, is easily recognizable (i.e., the support of I(1n) is
recognizable in poly(n)-time).

2. It was assumed that the domain of every permutation fα equals {0, 1}|α|.

The first assumption was waived by Bellare and Yung [BY], and we briefly
sketch their underlying idea first. This relaxation is crucial, since no candidate
collection of trapdoor permutations that satisfies this assumption is known (i.e.,
for all popular candidates, the corresponding index set I is not known to be
efficiently recognizable).

The problem that arises is that the prover may select (and send) a function
that is not in the collection (i.e., an index α that is not in I). In such a case, the
function is not necessarily 1-1, and, consequently, the soundness property may be
violated. This concern can be addressed by using a (simple) non-interactive (zero-
knowledge) proof for convincing the verifier that the function is “typically 1-1”
(or, equivalently, is “almost onto the designated range”). The proof proceeds by
presenting preimages (under the function) of random elements that are specified
in the reference string. Note that, for any fixed polynomial p, we can only prove
that the function is 1-1 on at least a 1−(1/p(n)) fraction of the designated range
(i.e., {0, 1}n), yet this suffices for moderate soundness of the entire proof system
(which in turn can be amplified by repetitions). For further details, consult [BY].

Note that this solution extends to the case that the collection of permuta-
tions {fα : Dα → Dα}α∈I does not satisfy Dα = {0, 1}|α|, but is rather an
arbitrary collection of doubly-enhanced trapdoor permutations. In this case the
reference string will contain a sequence of coin-sequences to be used by the
domain-sampling algorithm (rather than consisting of elements of the function’s
domain). By virtue of the extra condition in Definition 7, we can simulate the
inverting of each domain element by generating a pair (x, r), placing r on the
reference string, and providing x as the inverse of S′(α, r) under fα. (See an
analogous discussion in next paragraph.)

We now turn to the second aforementioned assumption; that is, the assump-
tion that the domain of fα equals {0, 1}|α| (i.e., Dα = {0, 1}|α|). We would have
liked to waive this assumption completely, but are only able to do so in the
case that the collection of trapdoor permutations is doubly-enhanced. The basic
idea is letting the reference string consist of coin-sequences to be used by the
domain-sampling algorithm (rather than of elements of the function’s domain).
The corresponding domain elements, which depend on the choice of the index
α, are then obtained by applying the domain-sampling algorithm to these coin-
sequences. The enhanced hardness property (stated in Def. 6) is used in order
to note that the corresponding preimages under fα are not revealed by these
coin-sequences, whereas the additional enhancement (stated in Def. 7) is used
for arguing that revealing such preimages does not reveal additional knowledge.
That is, the two additional properties (stated in Def. 6 and Def. 7) are used in the
(analysis of the) simulation and not in the proof system itself. For sake of sim-
plicity, in the following exposition, we again use the (problematic) assumption
by which I is efficiently recognizable.

311

Construction 8 (Construction 4, revised): Let (P, V) be a zero-knowledge hidden-

bits proof system for L with exponentially vanishing soundness error (i.e., sound-
ness error at most 2−n−2), and let m = poly(n) denote the length of the com-

mon reference-string for common inputs of length n. Suppose that {fα : Dα →
Dα}α∈I is a doubly-enhanced collection of trapdoor permutations, where I is effi-

ciently recognizable, and b :{0, 1}∗→{0, 1} is a corresponding hard-core predicate

(i.e., b(f−1
α (S′(α, Uℓ))) is infeasible to predict when given (α, Uℓ)).

3 Following is

a specification of a non-interactive system, denoted (P ′, V ′):

– Common Input: x ∈ {0, 1}n.

– Prover’s auxiliary input: w.

– Common Reference-String: s = (s1, ..., sm), where each si is in {0, 1}ℓ and ℓ
is the number of coins used by the domain-sampler when given an n-bit long

index of a permutation.

– Prover (denoted P ′):

1. Select at random an n-bit long index α and a corresponding trapdoor τ ;

i.e., (α, τ)← I(1n).
2. Using the trapdoor τ , compute ri = b(f−1

α (S′(α, si))), for i = 1, 2, ..., m.

3. Invokes P to obtain (I, π) = P (x, w, r1 · · · rm).

The prover P ′ outputs (α, I, π, pI), where pI
def
= (f−1

α (S′(α, si1)) · · · f
−1
α (S′(α, sit

)))
for I = (i1, ..., it).

– Verifier (denoted V ′), given prover’s output (α, I, π, (p1 · · · pt)):

1. Check if α ∈ I, otherwise halts and rejects.
2. Check that S′(α, sij

) = fα(pj), for each ij ∈ I.
In case a mismatch is found, V ′ halts and rejects.

3. Compute ri = b(pi), for i = 1, ..., t. Let r = r1, ..., rt.

4. Invoke V on (x, r, I, π), and accepts if and only if V accepts.

Clearly, the foregoing strategy P ′ is efficient, provided that so is P .

Proposition 9 (Proposition 5, revised) Let (P, V), L, f , b and (P ′, V ′) be as in

Construction 8. Then, (P ′, V ′) is a zero-knowledge non-interactive proof system

for L.

Proof: Following the proof of Proposition 5, we note that for any fixed choice
α ∈ I∩{0, 1}n the soundness error is at most 2−n−2. Taking a union bound over
all possible α ∈ I ∩ {0, 1}n and discarding all α 6∈ I (by virtue of the explicit
check), we establish that (P ′, V ′) is a non-interactive proof system for L.

To show that P ′ is zero-knowledge we convert any (efficient) simulator for
P into an (efficient) simulator for P ′. First, the new simulator selects at ran-
dom an index α (of a permutation) just as P ′ does. We stress that although
the P ′-simulator obtains the corresponding trapdoor (just as P ′ does), we will

3 Such a hard-core predicate is obtained by applying the techniques of [GL] (see [G1,
Sec. 2.5.2] or better [G3, Sec. 7.1.3]) to any (doubly-)enhanced collection of trapdoor
permutations.

312

not use this fact in the simulation. Next, we proceed as in the proof of Proposi-
tion 5, modulo adequate adaptations that address the crucial difference between
Construction 4 and Construction 8. Recall that the difference is that in Construc-
tion 4 the reference string is viewed as a sequence of images of the permutation,
whereas in Construction 8 the reference string is viewed as a sequence of ℓ-bit
long random-sequences that may be used to generate such images. Following
is a rigorous description of the current P ′-simulator, when invoked on input
x ∈ {0, 1}n and using the P -simulator, denoted M .

1. Obtain (α, τ)← I(1n).
2. Obtain ((σ1, ..., σt), (i1, ..., it), π)←M(x).
3. For every j = 1, .., t, generate a random pair (pj , sij

) ∈ Dα × {0, 1}ℓ such
that fα(pj) = S′(α, sij

) and b(pj) = σj .
Note that this operation can be efficiently implemented by either relying on
the additional enhancement introduced in Def. 7 or by merely relying on the
fact that the simulator knows the trapdoor τ and can thus invert fα. (The
“forced” use of the additional enhancement of Def. 7 arises in the proof of
indistinguishabilitry provided below.)

4. For every i ∈ [m] \ {ij : j = 1, .., t}, select si uniformly in {0, 1}ℓ.
5. Output (x, (s1, ..., sm), (α, (i1, ..., it), π, (p1, ..., pt))).

Using the hypothesis that b is a hard-core of the collection {fα} and the doubly-
enhanced hardness of this collection, we will show that the output of the P ′-
simulator is computationally indistinguishable from the verifier’s view (when
receiving a proof from P ′). Again, the only difference between the simulation
and the real execution is that in the simulation the blocks of the (actual) refer-
ence strings do not necessarily match the b-values of the corresponding hidden
bits seen by P . Intuitively, this difference is computationally indistinguishable by
the hypothesis that b(f−1

α (S′(α, Uℓ))) is infeasible to predict when given (α, Uℓ),
which is guaranteed by the enhanced hardness assumption (of Def. 6). How-

ever, we need to show that, for H
def
= [m] \ {ij : j = 1, .., t}, it is infeasible to

distinguish a sequence of |H | uniformly selected n-bit strings (representing the
sequence (si)i∈H produced in the simulation) from a corresponding sequence of
si’s that fits a (partially) given sequence of b(f−1

α (S′(α, si))) values (as in the
real interaction). At this point, we encounter a difficulty that seems to require
the doubly-enhanced hypothesis (of Def. 7).

The point is that the indistinguishability of the two sequences is demon-
strated by showing that, given a prefix of the second sequence, it is infeasible to
predict the b(f−1

α (S′(α, ·)))-value of the next element. That is, we wish to show
that, for every i, given a randomly selected α and a uniformly selected sequence
s1, ..., si−1, si along with the values b(f−1

α (S′(α, s1))), ..., b(f
−1
α (S′(α, si−1))), it

is infeasible to predict the value of b(f−1
α (S′(α, si))). Recall that the standard

approach toward this task is to use a reducibility argument in order to derive
a contradiction to the hard-core hypothesis (which refers to a single s = si

for which b(f−1
α (S′(α, s))) is unpredictable), by generating the auxiliary prefix

s1, ..., si−1 along with b(f−1
α (S′(α, s1))), ..., b(f

−1
α (S′(α, si−1))). Thus, given only

313

α (and s = si), we need to be able to generate a random sequence s1, ..., si−1

along with the corresponding b(f−1
α (S′(α, sj)))’s. But this is easy to do given the

doubly-enhanced hypothesis (of Def. 7), and once this is done we just rely on the
infeasiblity of predicting b(f−1

α (S′(α, s))) based on s and α (which is guaranteed
by the enhanced hardness assumption of Def. 6).

Open Problem: Under what intractability assumptions is it possible to con-

struct non-interactive zero-knowledge proofs (NIZKs) with efficient prover strate-

gies for any set in NP? In particular, does the existence of arbitrary collections

of trapdoor permutations suffice? We mention that the assumption used in con-
structing such NIZKs effects the assumption used in (general) constructions of
public-key encryption schemes that are secure under chosen ciphertext attacks
(see, e.g., [G2, Thm. 5.4.31]).

4 The Story

The story begins with the fact that, while the notion of trapdoor permutations
was widely referred to in the 1980’s, the exact structural requirements from it
were not cmmonly agreed upon at the time. Here we refer to secondary issues
regarding the structure of the index set as well as the domains of the various
permutations. Bellare and Yung seem to have been the first who explicitly ad-
dressed this type of issues, but their focus was on the fact that the index set
cannot be assumed to be efficiently recognizable. As for the domains of the per-
mutations, they just assumed that the domain of fα is {0, 1}|α|, which is indeed
the case for minor modifications of all popular trapdoor permutations. In general,
it seems that most researchers had in mind dense and efficiently recognizable do-
mains, but these additional requirements were not needed in the main classical
applications of trapdoor permutations (e.g., constructions of secure public-key
encryption schemes).

When writing [G1], we decided to use the most liberal definition of trapdoor
permutations that agrees with the basic intuitions regarding this notion. This led
to [G1, Def. 2.4.5], which is the definition that is the starting point of Section 3.2.
While this definition suffices for the constructions of passively-secure public-key
encryption schemes, we failed to notice at the time that it does not suffice for
two less traditional but quite important applications: (1) the construction of
Oblivious Transfer, and (2) the construction of NIZKs with efficient provers for
NP .

We missed the first opportunity to detect the problem, when addressing the
second application in [G1, Sec. 4.10.2]. As stated at the end of the Introduction,
we believe that the source of evil is the careless presentation of this topic as
a laconic comment (i.e., [G1, Rem. 4.10.6]) that focuses on a simplified setting
(i.e., the one discussed in Section 3.1).

When writing [G2, Sec. 7.3.2], we discovered that the known of construction
of Oblivious Transfer based on trapdoor permutations [EGL] may be insecure, in
general, and that standard proof of security seems to require the enhancement

314

of Definition 6 (which was introduced in [G2, Apdx. C.1] for that purpose).4

It was evident that this enhancement is also needed for the argument in [G1,
Sec. 4.10.2]. At this point, we missed our second opportunity to detect the prob-
lem; using some hand-waving, we argued in [G2, Apdx. C.4.1] that enhanced
trapdoor permuations (as defined in [G2, Apdx. C.1]) suffice for the construc-
tion of NIZKs with efficient provers for NP. Needless to say, we retract this
claim here.

The flaw was eventually discovered by others: Specifically, Jonathan Katz
called out attention to the flaw in [G2, Apdx. C.4.1], and suggested the notion
of doubly-enhanced trapdoor permutations (as in Definition 7).

Acknowledgments

We are grateful to Jonathan Katz for pointing out the gap in [G2, Apdx. C.4.1].
While being embarrassed about such flaws, we feel deeply indebted to those
discovering them and bringing them to our attention.

We thank Ron Rothblum for pointing out that a previous version of this
write-up failed to deliver the crucial point, which is currently spelled out at the
end of the proof of Proposition 9.

Appendix: On the RSA and Rabin Collections

In this appendix we show that suitable versions of the RSA and Rabin collections
satisfy the two aforementioned enhancements (presented in Definitions 6 and 7,
respectively). Establishing this claim is quite straightforward for the RSA collec-
tion, whereas for the Rabin collection some modifications (of the straightforward
version) seem necessary. In order to establish this claim we will consider a variant
of the Rabin collection in which the corresponding domains are dense and easy
to recognize, and will show that having such domains suffices for establishing
the claim.

A.1 The RSA collection satisfies both enhancements

We start our treatment by considering the RSA collection (as presented in [G1,
Sec. 2.4.3.1] and further discussed in [G1, Sec. 2.4.3.2]). Note that in order to
discuss the enhanced hardness condition (of Def. 6) it is necessary to specify the
domain sampler, which is not entirely trivial (since sampling Z∗

N (or even ZN)
by using a sequence of unbiased coins is not that trivial).

4 Indeed, Oblivious Transfer can be based on any enhanced trapdoor permuta-
tions [G2, Sec. 7.3.2]. We mention that an alternative construction of Oblivious
Transfer was obtained based on an alternative restriction of the notion of trapdoor
permutations: Specifically, it was proved that trapdoor permutations with dense
domains suffice [H].

315

A natural sampler for Z∗
N (or ZN) generates random elements in the domain

by using a regular mapping from a set of sufficiently long strings to Z∗
N (or to

ZN). Specifically, the sampler uses ℓ
def
= 2⌊log2 N⌋ random bits, views them as

an integer in i ∈ {0, 1, ..., 2ℓ − 1}, and outputs i mod N . This yields an almost
uniform sample in ZN , and an almost uniform sample in Z∗

N can be obtained by
discarding the few elements in ZN \ Z∗

N .

The fact that the foregoing implementation of the RSA collection satisfies
Definition 6 (as well as Definition 7) follows from the fact that it has an efficient
reversed-sample (which eliminates the potential gap between having a domain
element and having a random sequence of coins that makes the domain-sample
output this element). Specifically, given an element e ∈ ZN , the reversed-sampler
outputs an almost uniformly distributed element of {i ∈ {0, 1, ..., 2ℓ − 1} : i ≡
e (mod N)} by selecting uniformly j ∈ {0, 1, ..., ⌊2ℓ/N⌋ − 1} and outputting
i← j ·N + e.

A.2 Versions of the Rabin collection that satisfy both enhancements

In contrast to the case of the RSA, the Rabin Collection (as defined in [G1,
Sec. 2.4.3.3]), does not satisfy Definition 6 (because the coins of the sampling
algorithm give away a modular square root of the domain element). Still, the
Rabin Collection can be easily modify to yield an doubly-enhanced collection of
trapdoor permutations, provided that factoring is hard (in the same sense as
assumed in [G1, Sec. 2.4.3]).

The modification is based on modifying the domain of these permutations
(following [ACGS]). Specifically, rather than considering the permutation in-
duced (by the modular squaring function) on the set QN of the quadratic residues
modulo N , we consider the permutations induced on the set MN , where MN con-
tains all integers in {1, ..., N/2} that have Jacobi symbol modulo N that equals 1.
Note that, as in case of QN , each quadratic residue has a unique square root
in MN (because exactly two square roots have Jacobi symbol that equals 1 and
their sum equals N ; indeed, as in case of QN , we use the fact that −1 has Ja-
cobi symbol 1). However, unlike QN , membership in MN can be determined
in polynomial-time (when given N without its factorization). Lastly, note that
squaring modulo N is a 1-1 mapping of MN to QN . In order to obtain a permu-
tation over MN , we modify the function a little such that if the result of modular
squaring is bigger than N/2, then we use its additive inverse (i.e., rather than
outputting y > N/2, we output N − y).

Using the fact that MN is dense (w.r.t {0, 1}⌊log2
N⌋+1) and easy to recog-

nize, we may proceed in one of two ways, which are actually generic. Thus,
let us assume that we are given an arbitrary collection of trapdoor permuta-
tions, denoted {fα : Dα → Dα}α∈I , such that Dα ⊆ {0, 1}|α| is dense (i.e.,

316

|Dα| > 2|α|/poly(|α|))5 and easy to recognize (i.e., there exists an efficient algo-
rithm that given (α, x) decides whether or not x ∈ Dα).

1. The most natural way to proceed is showing that the collection {fα} itself
is doubly-enhanced. This is shown by presenting a rather straightforward
domain-sampler that satisfies the enhanced hardness condition (of Def. 6),
and noting that this sampler has an efficient reversed sampler (which implies
that Def. 7 is satisfied).
The domain-sampler that we have in mind repeatedly selects random (i.e.,
uniformly distributed) |α|-bit long strings and output the first such string
that resides in Dα (and a special failure symbols if |α| · 2|α|/|Dα| attempts
have failed). This sampler has an efficient reversed-sampler that, given x ∈
Dα, generates a random sequence of |α|-bit long strings and replaces the first
string that resides in Dα by the string x.

2. An alternative way of obtaining a doubly-enhanced collection is to first de-
fine a (rather artificial) collection of weak trapdoor permutations, {f ′

α :
{0, 1}|α| → {0, 1}|α|}α∈I , such that f ′

α(x) = fα(x) if x ∈ Dα and f ′
α(x) = x

otherwise. Using the amplification of a weak one-way property to a standard
one-way property (as in [G1, Sec. 2.3&2.6]), we are done.

Indeed, in the first alternative we amplified the trivial domain-sampler that suc-
ceeds with noticeable probability, whereas in the second alternative we amplified
the one-way property of the trivial extension of fα to the domain {0, 1}|α|. Either
way we obtain a doubly-enhanced collection of trapdoor permutations, provided
that {fα} is an ordinary collection of trapdoor permutations.

We mention that the foregoing modifications of the Rabin collection follows
the outline of the second modification that is presented in [G2, Apdx. C.1].
In contrast, as pointed out by Jonathan Katz, the first implementation (of an
enhanced trapdoor permutation based on factoring) that is presented in [G2,
Apdx. C.1] is not doubly-enhanced.

References

[ACGS] W. Alexi, B. Chor, O. Goldreich and C.P. Schnorr. RSA/Rabin Functions:
Certain Parts are As Hard As the Whole. SIAM Jour. on Comput., Vol. 17,
April 1988, pages 194–209.

[BY] M. Bellare and M. Yung. Certifying Permutations: Noninteractive Zero-
Knowledge Based on Any Trapdoor Permutation. Journal of Cryptology, Vol.
9, pages 149-166, 1996.

[EGL] S. Even, O. Goldreich, and A. Lempel. A Randomized Protocol for Signing
Contracts. CACM, Vol. 28, No. 6, 1985, pages 637–647.

[G1] O. Goldreich. Foundation of Cryptography: Basic Tools. Cambridge University
Press, 2001.

5 Actually, a more general case, which is used for the Rabin collection, is one in which
Dα ⊆ {0, 1}ℓ(|α|) satisfies |Dα| > 2ℓ(|α|)/poly(|α|), where ℓ : N → N is a fixed
function.

317

[G2] O. Goldreich. Foundation of Cryptography: Basic Applications. Cambridge
University Press, 2004.

[G3] O. Goldreich. Computational Complexity: A Conceptual Perspective. Cam-
bridge University Press, 2008.

[GL] O. Goldreich and L.A. Levin. Hard-core Predicates for any One-Way Function.
In 21st STOC, pages 25–32, 1989.

[H] I. Haitner. Implementing Oblivious Transfer Using a Collection of Dense
Trapdoor Permutations. Master thesis, Weizmann Institute of Science, Jan-
uary 2004. An extended abstarct appeared in the 1st TCC, Springer, LNCS
Vol. 2951, pages 394–409, 2004.

