
The GGM Construction does NOT yield

Correlation Intractable Function Ensembles

Oded Goldreich

Abstract. We consider the function ensembles emerging from the con-
struction of Goldreich, Goldwasser and Micali (GGM), when applied to
an arbitrary pseudoramdon generator. We show that, in general, such
functions fail to yield correlation intractable ensembles. Specifically, it
may happen that, given a description of such a function, one can easily
find an input that is mapped to zero under this function.

Keywords: Cryptography, Correlation Intractability.

An early version of this work appeared as TR96-042 of ECCC.

1 Introduction

The general context of this work is the so-called Random Oracle Methodolody, or
rather its critical review, undertaken by Canetti, Goldreich and Halevi [CGH98],
Loosely speaking, this methodology suggests to design cryptographic schemes in
a two-step process. In the first step, an ideal scheme is designed in an ideal model
in which all parties (including the adversary) have access to a random orcale.
In the second step, the ideal scheme is realized by replacing the random oracle
by a fully-specified function (selected at random in some function emsemble (see
Definition 1)), while providing all parties with a description of the function.

Canetti, Goldreich, and Halevi [CGH98] showed that, in general, this method-
ology may lead to the design of insecure schemes. That is, in general, it may be
that the ideal scheme is secure in the ideal model (in which all parties have access
to a random orcale), but replacing the random oracle by any function ensemble
yields an insecure scheme. Their analysis is based on the notion of correlation
intractability, which seems a very minimal requirement from such a replacement.
Loosely speaking, a function f is correlation intractable with respect to a sparse
binary relation R if it is infeasible (given a description of f) to find x such that
(x, f(x)) ∈ R. The point is that the sparseness condition implies that when given
access to a random oracle O it is infeasible to find x such that (x,O(x)) ∈ R,
and so we should require the same from the function f . Before proceeding, let
use clarify two of the aforementioned notions.

1.1 Function ensembles and correlation intractability

A function ensemble is a collection of finite functions, where each function has a
finite description (viewed as its index in the ensemble). The functions map strings

95

of certain length to strings of another length, where these lengths are determined
as a function of the index length. For simplicity, we consider a (natural) special
case in which the input and output lengths are equal.

Definition 1 (function ensembles): Let ℓ : N → N. A function ensemble with

length ℓ is a set of functions F = {fs}s∈{0,1}∗ such that each function fs maps
ℓ(|s))-bit long strings to ℓ(|s))-bit long strings. That is:

F
def
= {fs : {0, 1}ℓ(|s|) → {0, 1}ℓ(|s|)}s∈{0,1}∗ . (1)

An imprortant requirement, which we avoid here, is that the function ensemble
be efficiently computable (i.e., that there exists an efficient algorithm A such that
for every s ∈ {0, 1}∗ and every x ∈ {0, 1}ℓ(|s|) it holds that A(s, x) = fs(x)).

Turning to the notion of correlation intractabity, we again consider a (natu-
ral) specail case (of a more general definition from [CGH98]). Loosely speaking, a
function ensemble F is correlation intractable with respect to a binary relation R
if every feasible adversary, given a uniformly distributed s ∈ {0, 1}k, fails to find
an x ∈ {0, 1}ℓ(|s|) such that (x, fs(x)) ∈ R, except with negligible probability.

Definition 2 (correlation intractabity): Let F be as in Definition 1.

– Let R ⊆ ∪k{0, 1}ℓ(k)×{0, 1}ℓ(k). We say that F is correlation intractable with

respect to R if for every probabilistic polynomial-time algorithm A it holds
that

Prs∈{0,1}k [(A(s), fs(A(s)) ∈ R] = µ(k),

where the probability is taken uiformly over s ∈ {0, 1}k and the internal
coin tosses of A, and µ is some negligible function (i.e., for every positive
polynomial p, and all sufficiently large k, it holds that µ(k) < 1/p(k)).

– Let R be as in Part 1. We say that R is sparse if

max
x∈{0,1}ℓ(k)

{∣

∣

∣{y ∈ {0, 1}ℓ(k) : (x, y) ∈ R}
∣

∣

∣

}

= µ(k) · 2ℓ(k),

where µ is some negligible function.
– We say that F is correlation intractable if it is correlation intractable with

respect to every sparse relation.

Note that Part 2 implies that a random oracle is correlation intractable with
respect to R (in the sense that for every probabilistic polynomial-time oracle
machine M it holds that Pr[(MO(1k),O(MO(1k)) ∈ R] = µ(k), where O :
{0, 1}ℓ(k) → {0, 1}ℓ(k) denotes a random function).

Canetti, Goldreich, and Halevi [CGH98] showed that that no function en-
sembles (with length ℓ(k) ≥ k) are correlation intractable. In particular, they
showed that the function ensemble F = {fs} is not correlation intractable with
respect to the “diagonalization” relation D = {(x, fx′(x)) : x ∈ {0, 1}∗}, where
x′ is a prefix (of adequate length) of x (i.e., |x| = ℓ(|x′|) ≥ |x′|).

96

1.2 Our results

In view of the foregoing, we focus on function ensembles with length ℓ : N → N

such that ℓ(k) ≤ k (and recall that for ℓ(k) < k/2 no negative results are known).
Furthermore, we will focus on the special case of “constant” relations; that is,
relations of the form R = {(x, y) : x∈{0, 1}∗∧y∈S∩{0, 1}|x|}, for some (sparse)
set S ⊂ {0, 1}∗. We investigate natural candidates for function ensembles that
may be correlation intractable in such a restricted sense. Note that in this case,
correlation intractability means the infeasiblity of finding an input x such that
fs(x) ∈ S, where s is given to us as input.

The failure of generic pseudorandom functions. One natural candidate for re-
stricted notions of correlation intractability is provided by pseudorandom func-
tion ensembles (as defined in [GGM84]). However, these ensembles may fail (w.r.t
correlation intractability), because they guarantee nothing with respect to ad-
versaries that are given the function’s description (i.e., s). Indeed, in general,
pseudorandom function ensembles may not be correlation intractable w.r.t some
very simple relations (e.g., R0 = {(x, 0|x|) : x ∈ {0, 1}∗}): The reason is that
any pseudorandom function ensemble {fs} can be modified into a pseudorandom
function ensemble {f ′

r,s} such that f ′
r,s(x) = 0|x| if x = r and f ′

r,s(x) = fs(x)
otherwise. Thus, given the description (r, s) of a function, we can easily find an
input x (i.e., x = r) such that (x, f ′

r,s(x)) ∈ R0.

The failure of the GGM construction. Our main interest here is in a specific
(natural) construction of pseudorandom functions (based on pseudorandom gen-
erators). That is, while one may argue that the aforementioned failure of generic
pseudorandom functions is due to a contrived example, we show that a natural
construction of pseudorandom functions fails (i.e., it is not correlation intractable
w.r.t some simple relations such as the aforementioned R0). Specifically, we re-
fer to the construction of pseudorandom functions due to Goldreich, Goldwasser,
and Micali [GGM84]. Recall that in their construction, hereafter referred to as
the GGM construction, a function fs : {0, 1}ℓ(|s|) → {0, 1}|s| is define based on a
(length doubling) pseudorandom generator G such that

fs(x)
def
= Gxℓ

(Gxℓ−1
(· · ·Gx1(s) · · ·)), (2)

where G(z) = G0(z)G1(z), ℓ
def
= ℓ(|s|), and x = x1 · · ·xℓ ∈ {0, 1}ℓ. A length

preserving version of fs is obtained by considering only the ℓ(|s|)-bit long prefix
of fs(x). (Recall that we assume here that ℓ(k) ≤ k.) Our main result is:

Theorem 3 (main result): If there exists pseudorandom generators, then there
exists a pseudorandom generator G such that the function ensemble resulting
from applying Eq. (2) to G is not correlation intractable with respect to the
relation R0 = {(x, 0|x|) : x ∈ {0, 1}∗}.

That is, although the resulting function ensemble is pseudorandom (cf. [GGM84]),
given the description s of a function in the ensemble, one can find in polynomial-
time an input x such that fs(x) = 0|x|. The result can be easily extended to hit-
ting other relations. The rest of the paper is devoted to establishing Theorem 3.

97

2 The overall plan and an abstraction

The first observation is that 0ℓ is likely to have a preimage under fs, and the
central idea is that, for a carefully constructed G, this preimage is easy to find
when given s. Intuitively, G is constructed such that (1) either G0(s) or G1(s)
is likely to have a longer all-zero prefix than s, and (2) it is always the case that
either G0(s) or G1(s) has an all-zero prefix that is at least as long as the one in
s.

Notation. (At this point, the reader may think of n as equal k.)1 For t = 0, ..., n−

1, let St
def
= {0t1γ : γ ∈ {0, 1}n−(t+1)} be the set of n-bit long strings having a

(maximal) all-zero prefix of length t. Let Pt be the set of strings αβ ∈ {0, 1}2n

such that α, β ∈ ∪t
i=0Si and either α ∈ St or β ∈ St. That is:

Pt
def
=
{

αβ : α, β∈(∪t
i=0Si) ∧ (α∈St ∨ β∈St)

}

(3)

=
{

αβ : (α, β∈St) ∨
(

α∈St ∧ β∈∪t−1
i=0Si

)

∨
(

α∈∪t−1
i=0Si ∧ β∈St

)}

. (4)

Our aim is to construct a pseudorandom generator G such that for every t ≤ ℓ
and α ∈ St it holds that G(α) ∈ ∪i≥tPi, and for a constant fraction of α ∈

St it holds that G(α) ∈ ∪i≥t+1Pi. Intuitively, given sλ
def
= s we may find an

x = x1 · · ·xℓ such that fs(x) has an all-zero prefix of length Ω(ℓ), by iteratively
inspecting both parts of G(sx1···xi

) for the current sx1···xi
and setting xi+1 such

that sx1···xixi+1

def
= Gxi+1(sx1···xi

) is the part with a longer all-zero prefix.

The desired random mapping. In order to implement and analyze the forego-
ing idea, we first introduce a random process Π : {0, 1}n → {0, 1}2n with the
intention of satisfying the following three properties:

1. Π(Un) ≡ U2n, where Um denotes the uniform distribution on {0, 1}m.
2. For every t ≤ ℓ and α ∈ St, it holds that Π(α) ∈ ∪i≥tPi.
3. For every t ≤ ℓ and α ∈ St, it holds that Pr[Π(α) ∈ ∪i≥t+1Pi] > c, where

c > 0 is a universal constant.

One natural way to define Π is to proceed in iterations, starting with t = 0.
In each iteration, we map seeds in St to outcomes in Pt until Pt gets enough
probability mass, and map the residual probability mass to ∪i≥t+1Pi (first to
Pt+1, next to Pt+2, etc). In order to satisfy the foregoing Conditions 1 and 2, it
must hold that, for every t, the fraction of n-bit seeds residing in ∪t

i=0Si is at
least as big as the fraction of 2n-bit long outcomes in ∪t

i=0Pi. In fact, to satisfy
Condition 3 the former must be sufficiently bigger than the latter. (Actually, we
shall see that Condition 3 follows from the other two conditions.)

We now turn to the analysis of the desired process Π . Let st
def
= Pr[Un ∈

St] = 2−(t+1), and pt
def
= Pr[U2n ∈ Pt]. By Eq. (3)-(4), it holds that pt =

s2
t +2st

∑t−1
i=0 si. The following technical claim will play a key role in our analysis.

1 At a later point, it will become clear why we chose to use n rather than k here.

98

Claim 4 (central technical claim): For every t ≥ 0:

1.
∑t

i=0 pi =
(

∑t

i=0 si

)2

.

2.
∑t

i=0 si = 1
1−2−(t+1) ·

∑t

i=0 pi >
(

1 + 2−(t+1)
)

·
∑t

i=0 pi.

3. ∆t
def
=
∑t

i=0 si −
∑t

i=0 pi > 1
2 · pt+1. Furthermore, ∆t > (1 − 2−t) · pt+1.

Part 3 is not used in the actual analysis, and so its proof is moved to the Ap-
pendix.

Proof: We first establish Part 1:

t
∑

i=0

pi =

t
∑

i=0

s2
i + 2si

i−1
∑

j=0

sj

=
∑

i,j∈{0,...,t}

sisj

=

(

t
∑

i=0

si

)2

.

Combining Part 1 and
∑t

i=0 si =
∑t

i=0 2−(i+1) = 1− 2−(t+1), we get
∑t

i=0 si =
(

1 − 2−(t+1)
)−1

·
∑t

i=0 pi. Part 2 follows (using (1− ǫ)−1 > 1+ ǫ for ǫ > 0).

Using Claim 4, it follows that by the time we get to deal with seeds in St

(t ≥ 1), we have already spend a probability mass of
∑t−1

i=0 si −
∑t−1

i=0 pi > 1
2pt

towards covering Pt. Thus, some seeds in St−1 are mapped to Pt (or to ∪i≥tPi).
The following claim implies that seeds in St−1 are actually mapped to either
Pt−1 or Pt (but never to ∪i>tPi).

Claim 5 (another technical claim):
∑t

i=0 si =
∑t+1

i=0 pi − 2−(2t+4) <
∑t+1

i=0 pi

Proof: Using Part 1 of Claim 4 (and sj = 2−(j+1)), we get:

t+1
∑

i=0

pi =

(

t+1
∑

i=0

si

)2

=
(

1 − 2−(t+2)
)2

= 1 − 2−(t+1) + 2−(2t+4)

= 2−(2t+4) +

t
∑

i=0

si

and the current claim follows.

99

The implementation of Π. Given Claims 4 and 5, we explicitly define the process
Π . On input α ∈ S0, with probability p0/s0 = 1/2, we output a uniformly
selected element of P0, otherwise we output a uniformly selected element of P1.
For t ≥ 1, on input α ∈ St, we first compute ∆t−1 =

∑t−1
i=0 si −

∑t−1
i=0 pi. (Note

that by Claims 4 and 5 it holds that 0 < ∆t−1 < pt, and pt−∆t−1 = st−∆t < st

follows.) With probability (pt−∆t−1)/st, we output a uniformly selected element
of Pt, otherwise we output a uniformly selected element of Pt+1. Indeed, 0 <
(pt − ∆t−1)/st < 1. Thus, Π is well-defined.

Note that Π can be implemented in probabilistic polynomial-time. Combin-
ing Claims 4 and 5, we get:

Proposition 6 (Π satisfies the desired properties):

1. Π(Un) ≡ U2n, where Um denotes the uniform distribution on {0, 1}m.
2. For every t ≤ ℓ and α ∈ St, it holds that Π(α) ∈ Pt ∪ Pt+1.
3. For every t ≤ ℓ and α ∈ St, it holds that Pr[Π(α) ∈ Pt+1] ≥ 1/2.

Part 3 (which follows from Part 3 of Claim 4) is not used in the actual analysis
and is only given for intuition.

Proof: Part 2 is immediate by the construction. It is also clear that Π(Un) is
uniform over each of the Pt’s. Thus, to prove Part 1 it suffices to show that, for
every t, it holds that Pr[Π(Un) ∈ Pt] = pt. In proving this, we use Part 2 (i.e.,
Π(α) ∈ Pt ∪ Pt+1 for every α ∈ St). We first consider the case of t = 0, and get

Pr[Π(Un) ∈ P0] = Pr[Un ∈ S0] · Pr[Π(Un) ∈ P0|Un ∈ S0]

= s0 ·
p0

s0
= p0.

For t ≥ 1 (using ∆−1
def
= 0 in case t = 1), we have

Pr[Π(Un) ∈ Pt] = Pr[Un ∈ St] · Pr[Π(Un) ∈ Pt|Un ∈ St]

+Pr[Un ∈ St−1] · Pr[Π(Un) ∈ Pt|Un ∈ St−1]

= st ·
pt − ∆t−1

st

+ st−1 ·

(

1 −
pt−1 − ∆t−2

st−1

)

= pt − ∆t−1 + st−1 − pt−1 + ∆t−2

= pt,

since ∆t−1 = ∆t−2 + st−1 − pt−1.
Part 3 follows by noting that for every α ∈ St (with t ≥ 1),

Pr[Π(α) ∈ Pt+1] = 1 −
pt − ∆t−1

st

=

∑t

i=0 st −
∑t

i=0 pi

st

>
(1 − 2−t) · st

st

≥
1

2

100

where the strict inequality is due to ∆t > (1 − 2−t) · 2−(t+1) = (1 − 2−t) · st

(which is established in the first paragraph of the Appendix). For α ∈ S0, it
holds that Pr[Π(α) ∈ P1] = 1 − (p0/s0) = 1/2.

The randomly-labeled tree: We consider a depth ℓ binary tree with nodes labeled
by n-bit long strings. The root is labeled with a uniformly selected string, and
if a node is labeled with α then its children are labeled with the corresponding
parts of Π(α). (The root is said to be in level 0 and the 2ℓ leaves are in level ℓ.)

Using induction on i = 0, 1..., ℓ (and relying on Part 1 of Proposition 6),
it follows that the nodes at level i are assigned independently and uniformly
distributed labels. Specifically, suppose that the claim holds for level i, then
using Part 1 of Proposition 6 the claim holds for level i + 1. On the other hand,
by Part 2 of Proposition 6, the labels along each path from the root to a leaf
belong to Sj ’s such that the sequence of j’s increases by at most one unit at
each step.

Now, on the one hand, with probability s0 + s1 = 3/4, the (level 0) root has

a label in S0 ∪ S1. On the other hand, with probability 1− (1− sℓ)
2ℓ

= 1− (1−

2−(ℓ+1))2
ℓ

> 0.39, there exists a (level ℓ) leaf with label in Sℓ. We conclude that,
with probability at least 0.39−0.25 = 0.14, the root has label in S0∪S1 and there
exist a leaf with a label in Sℓ. Furthermore, due to the mild-increasing property
of the label sequence along each path, the ith intermediate node on the path
from the root to this leaf must have a label in Si∪Si+1.

2 On the other hand, the
expected number of level i nodes with label in Si∪Si+1 is 2i ·(2−(i+1)+2−(i+2)) =
3/4. Thus, except with exponentially vanishing probability, level i contains less
than n nodes with label in Si ∪ Si+1. To summarize, with probability at least
0.13, the following good event holds:

1. The root has label in S0 ∪ S1.
2. There exist a leaf with a label in Sℓ. Furthermore, the ith intermediate node

on the path from the root to this leaf has a label in Si ∪ Si+1.
3. For every i ≤ ℓ, level i has at most n nodes that have a label in Si ∪ Si+1.

The following search procedure is “geared towards” the foregoing good event.

The (ideal) search procedure: Starting at the root, proceed in a DFS-like manner
according to the following rule: If the currently reached node is at level i and has
a level not in Si ∪ Si+1, then backtrack immediately, else develop it according
to the standard DFS-rule. If we ever reach a leaf having a label in Sℓ, then the
search is considered successful.

Assuming that the good event holds, the search is successful. Furthermore,
in this case the search has visited at most 2n nodes at each level (i.e., the

2 Recall that a node with label in Sj has children with labels in ∪
j+1

k=0
Sk. Since the

root has label in S0 ∪ S1, each node at level i has a label in ∪
i+1

k=0
Sk. Furthermore,

since the specific leaf on the said path has a label in Sℓ, the i
th intermediate node

on the said path cannot have a label in ∪
i−1

k=0
Sk.

101

children of parents that were DFS-developed), and so the complexity is bounded
by O(ℓ ·n). In fact, the complexity analysis depends only on the third condition
(in the definition of a good event), and thus holds except for with exponentially
vanishing probability.

3 The actual construction

Recall that we have given a probabilistic polynomial-time implementation of
Π . We now consider a deterministic polynomial-time algorithm Π ′ satisfying
Π ′(α, Um) ≡ Π(α), where m = poly(|α|). Next, using suitable pseudorandom
generators G′ and G′′ (i.e., G′ : {0, 1}n → {0, 1}m and G′′ : {0, 1}n → {0, 1}4n),
we replace Π ′ : {0, 1}n+m → {0, 1}2n by Π ′′ : {0, 1}n+2n → {0, 1}2·(n+2n) such
that

Π ′′(α, r′r′′) = ((α1, r1), (α2, r2)) (5)

where (α1, α2) = Π ′(α, G′(r′)) and (r1, r2) = G′′(r′′) (6)

That is, |r1| = |r2| = |r′r′′| and |r′| = |r′′| = |α|.

Theorem 7 (Theorem 3, specialized): Let ℓ : N → N such that ℓ(k) ≤ k and let

G
def
= Π ′′. Then:

1. G is a pseudorandom generator.
2. Let f ′

s : {0, 1}ℓ(|s|) → {0, 1}|s| be defined by applying Eq. (2) to G, and let
fs : {0, 1}ℓ(|s|) → {0, 1}ℓ(|s|) be defined by letting fs(x) equal the ℓ(|s|)-bit long
prefix of f ′

s(x). Then, the function ensemble {fs}s∈{0,1}∗ is not correlation

intractable with respect to the relation R0 = {(x, 0|x|) : x ∈ {0, 1}∗}. That is,
there exists a probabilistic polynomial-time algorithm that given a uniformly
distributed s ∈ {0, 1}n, finds with probability at least 1/10 a string x ∈
{0, 1}ℓ(|s|) such that fs(x) = 0ℓ(|s|).

Theorem 3 follows.

Proof: In order to prove Part 1 we first observe that Π ′(Un, Um) ≡ U2n. Letting
Un, U ′

n, U ′′
n denote independent random variables each uniformly distributed in

{0, 1}n, we recall that Π ′′(Un, U ′
nU ′′

n) = ((Z1, R1), (Zn, Rn)), where (Z1, Z2)
def
=

Π ′(Un, G′(U ′
n)) and (R1, R2)

def
= G′′(U ′′

n). Thus, Π ′′(Un, U ′
nU ′′

n) is computation-

ally indistinguishable from ((Z ′
1, R

′
1), (Z

′
n, R′

n)), where (Z ′
1, Z

′
2)

def
= Π ′(Un, Um)

and (R′
1, R

′
2) is uniformly distributed over {0, 1}2n × {0, 1}2n. It follows that

G(U3n) ≡ Π ′′(Un, U ′
nU ′′

n) is computationally indistinguishable from ((U ′
n, U ′

2n), (U ′′
n , U ′′

2n)).
Since G is computable in polynomial-time, and |G(U3n)| = 6n, Part 1 follows.

In order to prove Part 2, we consider an algorithm that on input s ∈ {0, 1}3n

invokes the ideal search procedure described at the end of Section 2, while pro-
viding it with labels of an imaginary depth ℓ = ℓ(n) binary tree as follows.
The label of the root is the n-bit long prefix of s, and the 2n-bit long suffix is

102

called the secret of the root. If an internal node has label α ∈ {0, 1}n and secret
s′s′′ ∈ {0, 1}2n, then its children will have labels corresponding to the two n-
bit long parts of Π ′(α, G′(s′)) and secrets corresponding to the two 2n-bit long
parts of G′′(s′′). We stress that the search procedure is only given the labels of
nodes (at its request), but it is not given the nodes’ secrets. Note that the way
in which we label the nodes corresponds to the way the function ensemble {fs}
is defined (using G = Π ′′).

Recall that the search procedure succeeds with probability at least 0.13 on
the randomly-label tree, called the ideal setting, where the children of a node
labeled by α are assigned labels that corresponding to the two n-bit long parts
of Π ′(α, Um). Our aim is to show that approximately the same must occur in the
foregoing real setting, where the tree is labeled according to Π ′′ (or, equivalently,
according to Π ′(·, G′(·)) and G′′(·)). To prove this claim, consider a hybrid set-

ting in which all nodes are associated uniformly distributed secrets (rather than
secrets derived by applying G′′ to the second part of their parent’s secret), and
the children of a node labeled by α are assigned labels that corresponding to the
two n-bit long parts of Π ′(α, G′(s′)), where s′ is the first part of the parent’s
secret (and the second part is never used). We observe that:

1. The success probability of the search in the ideal setting is approximately
the same as its success in the hybrid setting.
Otherwise, we derive a contradiction to the hypothesis that G′ is a pseudo-
random generator. Specifically, we will show how to distinguish n · ℓ samples
of the distribution G′(Un) from n · ℓ samples of the distribution Um. Given a
sequence of samples, we run the search procedure while feeding it with labels
generated on-the-fly as follows.

– The root is assigned a uniformly distributed label, and labels that were
assigned to nodes are used whenever the node is visited.

– When reaching a node (e.g., the root) for the first time, we assign labels
to its children by using the next unused sample. Specifically, if the new
node has label α ∈ {0, 1}n and the next sample in the input sequence
is s′ ∈ {0, 1}m then we assign its children (as labels) the corresponding
parts of Π ′(α, s′) ∈ {0, 1}2n.

Note that when the input sequence is taken from Um, the foregoing process
describes the ideal setting, whereas when the input sequence is taken from
G′(Un) we get the hybrid setting.

2. The success probability of the search in the real setting is approximately the
same as its success in the hybrid setting.
Otherwise, we derive a contradiction to the hypothesis that G′′ is a pseudo-
random generator by considering ℓ additional hybrid settings. For i = 1, ..., ℓ,
the ith hybrid (or i-hybrid) consists of running the foregoing search while
feeding it with labels generated on-the-fly as follows. The label of a node
al level j < i is generated as in the hybrid setting; that is, these nodes
are assigned uniformly distributed secrets (and the children of such a node
labeled by α are assigned labels that corresponding to the two n-bit long
parts of Π ′(α, G′(s′)), where s′ is the first part of the parent’s secret). On

103

the other hand, the label of a node al level j ≥ i is generated as in the real
setting; that is, these nodes are assigned secrets that are derived from the
second part of their parent’s secret (and are assigned labels exactly as in
case j < i). That is, if a node at level j − 1 has secret s′s′′, then its chil-
dren are always labeled according to Π ′(α, G′(s′)), whereas the secrets that
they are assigned are either uniformly distributed or derived from G′′(s′′)
depending on whether j < i or j ≥ i. Note that the ℓ-hybrid corresponds
to the hybrid setting, whereas the 1-hybrid corresponds to the real setting.
Thus, it suffices to show that for every i ∈ {1, ..., ℓ − 1}, the i-hybrid and
(i+1)-hybrid are computationally indistinguishable. This is shown by using
a potential distinguisher to violate the pseudorandomness of G′′.
Given a distinguisher of the i-hybrid and (i + 1)-hybrid, we will show how
to distinguish n · ℓ samples of the distribution G′′(Un) from n · ℓ samples of
the distribution U4n. Specifically, given a sequence of samples, we run the
search procedure while feeding it with secrets and labels generated on-the-
fly as follows. When required to provide a label to a newly visited node we
always provide the label according to Π ′(α, G′(s′)), where s′ is the first part
of the parent’s secret (and α is the parent’s label). The important issue is
the generation of secrets:
– Nodes at level j ≤ i are assigned uniformly distributed secrets.
– Nodes at level j ≥ i + 2 are assigned secrets according to G′′(s′′) where

s′′ is the second part of their parent’s secret.
– Nodes at level i + 1 are assigned secrets (on the fly) that equal the

corresponding part of the next unused sample in the input sequence; that
is, when a node at level i is first visited, its two children are assigned
secrets according to the two parts of the next unused sample.

Note that when the input sequence is taken from U4n, the foregoing process
describes the (i + 1)-hybrid, whereas when the input sequence is taken from
G′′(Un) we get the i-hybrid (although the secrets at level i + 1 do not fit
the second part of the secrets at level i but rather a re-randomization of the
latter).

Combining the two foregoing observations, we conclude that in the real setting
the search procedure is successful with probability at least 0.1. Using the corre-
spondence of the real setting to an attack on the function ensemble {fs}, Part 2
(and so the entire theorem) follows.

Acknowledgments

The question was originally posed by Silvio Micali (in the early 1990’s if I recall
correctly), and re-posed by Boaz Barak in Summer 2001. I am grateful to both
of them.

References

[CGH98] R. Canetti, O. Goldreich and S. Halevi. The Random Oracle Methodology,
Revisited. In 30th STOC, pages 209–218, 1998.

104

[GGM84] O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random
Functions. JACM, Vol. 33, No. 4, pages 792–807, 1986.

Appendix: Proof of Part 3 of Claim 4

Using Part 2, we have

t
∑

i=0

si −

t
∑

i=0

pi > 2−(t+1) ·

t
∑

i=0

pi

= 2−(t+1) ·

(

t
∑

i=0

si

)2

= 2−(t+1) ·
(

1 − 2−(t+1)
)2

> 2−(t+1) ·
(

1 − 2−t
)

.

On the other hand,

pt+1 = s2
t+1 + 2st+1

t
∑

i=0

si

= st+1 ·

(

st+1 + 2

t
∑

i=0

si

)

= 2−(t+2) ·
(

2−(t+2) + 2 ·
(

1 − 2−(t+1)
))

= 2−(t+1) ·
(

1 − 2−(t+1) + 2−(t+3)
)

= 2−(t+1) ·

(

1 −
3

8
· 2−t

)

.

Combining ∆t =
∑t

i=0 si −
∑t

i=0 pi > 2−(t+1) · (1 − 2−t) with pt+1 = 2−(t+1) ·
(

1 − 3
8 · 2−t

)

, we get

∆t >
1 − 2−t

1 − 3
8 · 2−t

· pt+1

=

(

1 −
5
8 · 2−t

1 − 3
8 · 2−t

)

· pt+1

>

(

1 −
5
8 · 2−t

1 − 3
8

)

· pt+1

=
(

1 − 2−t
)

· pt+1 .

Thus, ∆t > 1
2pt+1, provided t ≥ 1. For t = 0, we note that ∆0 = s0 − p0 =

1
2 − 1

4 = 1
4 whereas p1 = 5

16 and so ∆0 = 4
5 · p1. Part 3 follows.

