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Abstract. We show how to construct length-preserving 1-1 one-way
functions based on popular intractability assumptions (e.g., RSA, DLP).
Such 1-1 functions should not be confused with (infinite) families of (fi-
nite) one-way permutations. What we want and obtain is a single (infi-
nite) 1-1 one-way function.
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This work was conducted in the summer of 1994. An early version of it appeared
as TR95-029 of ECCC. Section 4 has been revised and improved by relying on
subsequent advances regarding primality testing [1]. Specifically, we replace the
randomized primality tester of [3] (which builds upon [13, 17]) by the deter-
ministic primality tester of Agrawal, Kayal, and Saxena [1]. Various footnotes
indicate these (as well as other significant) deviations from the aforementioned
early version.

1 Introduction

Given any one-way permutation (i.e., a length preserving 1-1 one-way function),
one can easily construct an efficient pseudorandom generator. The construction
follows the scheme given by Blum and Micali [4], using the fact that every
one-way function has a hard-core bit [8]. Specifically, assume that f is such
a function and let b be a hard core-bit for it (e.g., starting with a function

f ′, we may define f(x, r)
def
= (f ′(x), r) and b(x, r) as the inner-product mod

2 of the strings x and r when viewed as binary vectors of length |x| = |r|).
Then, on input a seed s, the pseudorandom generator outputs the sequence
b(s), b(f(s)), b(f(f(s))), b(f3(s)), ...

Pseudorandom generators can be constructed also based on arbitrary one-
way functions [12]; yet, the known construction is very complex and inefficient.1

In fact, it is of no practical value. The construction in [9], which uses arbitrary
regular one-way functions is more attractive in these respects, yet it is far less at-
tractive than the simple construction outlined above. A similar situation occurs
with respect to the construction of digital signature schemes (cf., [14] vs [19]).
In general, 1-1 one-way functions currently offer simpler and more practical con-
structions (of more complex primitives) than offered by general one-way func-
tions.

1 The same applies also to subsequent improvements, currently culminating in [11].
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These facts were our initial motivation for trying to construct length-preserving
1-1 one-way functions. Such functions should not be confused with what is com-
monly referred to (especially in the “Crypto Community”) as “one-way permuta-
tions”, which are actually infinite sets of finite functions – see definitions below.
What we want is a single infinite function that is both length-preserving and
1-1 (and needless to say one-way). We show how to construct such 1-1 one-way
functions based on popular intractability assumptions such as the intractability
of DLP and inverting RSA.

Indeed, some (but not all) of the constructions that use length-preserving
1-1 one-way functions can be modified such that families of one-way permuta-
tions can be used instead. Still the question of whether the former (i.e., length-
preserving 1-1 one-way functions) exists is of both theoretical and practical im-
portance.

2 One-Way Functions and Families

We start by recalling the standard definitions.

Definition 2.1 (one-way functions): Let f : {0, 1}∗ → {0, 1}∗ be a length pre-
serving function that is polynomial-time computable.

– (strongly one-way): f is called (strongly) one-way if for any probabilistic

polynomial-time algorithm A, any positive polynomial p and all sufficiently

large n, it holds that

Prob[A(f(x)) ∈ f−1f(x)] <
1

p(n)

where the probability is taken uniformly over x ∈ {0, 1}n, and the internal

coin tosses of algorithm A.

– (weakly one-way): f is called weakly one-way if there exists a positive poly-

nomial p such that for any probabilistic polynomial-time algorithm A and all

sufficiently large n, it holds that

Prob[A(f(x)) /∈ f−1f(x)] >
1

p(n)

where the probability is as above.

Recall that f : {0, 1}∗ →{0, 1}∗ is 1-1 if f(x) 6= f(y) for all x 6= y. In the case
that f(x) 6= f(y) for all but a negligible fraction of the pairs (x, y) we say that
f is almost 1-1. Namely, an almost 1-1 function f satisfies, for every positive
polynomial p and all sufficiently large n, it holds that

Prob[f(x)=f(y)] <
1

p(n)

where the probability is taken uniformly and independently over all x, y ∈
{0, 1}n.
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Definition 2.2 (family of one-way permutations – simplified version): An in-

finite set of finite permutations, F = {fi : Di
1-1
→ Di}i∈I , is called a family of

one-way permutations if the following conditions hold

– (efficient evaluation): There exists a polynomial-time algorithm that on input

an index (of a permutation) i ∈ I and a domain element x ∈ Di returns

fi(x).
– (efficient index selection): There exists a probabilistic algorithm S that on

input n, runs for poly(n) time and returns a uniformly distributed index of

length n (i.e., an i uniformly distributed in I ∩ {0, 1}n).
– (efficient domain sampling): There exists a probabilistic polynomial-time al-

gorithm D that on input an index i ∈ I, returns a uniformly distributed

element of Di.

– (one-wayness): For any probabilistic polynomial-time algorithm A, any pos-

itive polynomial p and all sufficiently large n, it holds that

Prob[A(i, fi(x)) = x] <
1

p(n)

where the probability is taken uniformly over i ∈ I ∩{0, 1}n, x ∈ Di, and the

internal coin tosses of algorithm A.

In the non-simplified version, both the aforementioned probabilistic algorithms
(i.e., S and D) are allowed to produce output with only noticeable probability
(i.e., probability at least 1/poly(n)). Furthermore, given these algorithms have
produced an output, the output is allowed to be wrong (i.e., out of the target set
or non-uniformly distributed) with negligible probability (e.g., with probability
at most 2−n). Our transformations will take advantage of the first relaxation,
but not of the second.2

Analogously to Definition 2.1, families of permutations can be defined to be
weakly one-way, rather than (strongly) one-way.

3 Transforming One-Way Families into Functions

Clearly, any family of one-way permutations can be converted into a single one-

way function; namely, f(r, s)
def
= fi(x), where i = S(n, r) is the index selected

using coin-tosses r and x = D(i, s) ∈ Di is the element selected on input i and
coin-tosses s. (Padding can be applied, if necessary, to make f length preserving.)
However, this procedure does not necessarily yield a 1-1 function; furthermore,
for most natural examples such as RSA, DLP, etc., the resulting function will
be many-to-one.

2 In the earlier version of this work, we also took advantage of the second relaxation.
This was done in order to account for the probability of error that was present in
the probabilistic primality tests that we used. The need to accommodate error is
currently eliminated by using the deterministic primality test of [1].
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An alternative construction, which does yield a 1-1 one-way function, is pos-
sible under some additional conditions, as demonstrated below. In fact, the con-
ditions are defined to make this natural construction work and the thrust of this
paper is in demonstrating that these conditions can be met under reasonable
and popular assumptions (see next section).

3.1 The Conditions

Let F be a family of one-way permutations and that let q(n) denote the number
of coins flipped by the index-selection algorithm S on input n. We consider the
following conditions that F may satisfy.

Definition 3.1 (additional conditions)

– Augmented one-wayness:3 For any probabilistic polynomial-time algorithm A,

any positive polynomial p and all sufficiently large n, it holds that

Prob[A(r, fS(n,r)(x)) = x] <
1

p(n)

where the probability is taken uniformly over r ∈ {0, 1}q(n), x ∈ DS(n,r), and

the internal coin tosses of algorithm A.

(Namely, the permutations are hard to invert even when the inverting algo-
rithm is given the random coins used to generate the index of the permuta-
tion.)

– Canonical domain sampling:4 The domain-sampling algorithm may consist of

uniformly selecting a string of specific (easy to determine) length and testing

whether the string resides in the domain. In other words, we require

• (recognizable domain): There exists a polynomial-time algorithm that on

input an index i ∈ I and a string x decides if x ∈ Di.

• (noticeable domain): There exists a polynomial-time computable function

l : N → N and a positive polynomial p(·) so that Di ⊆ {0, 1}l(n) and

|Di| > 1
p(n) · 2

l(n)

3.2 The Construction

Given a family of one-way permutations that satisfies the additional conditions,
we explicitly construct a 1-1 one-way function as follows.

3 Note that this condition is different from the notion of enhanced one-wayness as
defined in [6, Apdx. C.1]. Specifically, here the inverting algorithm gets the coins
that were used by the index selection algorithm, whereas in [6, Apdx. C.1] the
inverting algorithm gets the coins that are used by the domain sampling algorithm.

4 Interestingly, this condition was rediscovered in [10] as an alternative to the enhanced
one-wayness condition of [6, Apdx. C.1]. Actually, Haitner [10] only requires notice-
able domains (and refers to collections of permutations that satisfy this condition
by the term collections having dense domains).
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Construction 3.1 (simple version): Let F be a family of permutations with an

index-selection algorithm S that uses q(·) coins and having domains Di’s that

are subsets of {0, 1}l(|i|), for some function l(·). We construct the function f as

follows

f(r, s)
def
=

{

(r, fi(s)) if s ∈ Di, where i
def
= S(n, r)

(r, s) otherwise

where r ∈ {0, 1}q(n) and s ∈ {0, 1}l(n).

Proposition 3.1 (analysis of Construction 3.1): The function f is 1-1 and

length preserving. If F is a family of one-way permutations satisfying the ad-

ditional conditions of Definition 3.1, then f is weakly one-way. The latter holds

even if F is only weakly one-way (as long as it satisfies the additional conditions).

Proof: By definition f is length-preserving. Let Gn be the set of pairs (r, s) ∈
{0, 1}q(n) × {0, 1}l(n) such that s ∈ DS(n,r) holds and let Bn be the set of the

other pairs (i.e., Bn = ({0, 1}q(n) ×{0, 1}l(n)) \Gn). The key observation is that
if (r, s) ∈ Gn, then for i = S(n, r) it holds that s ∈ Di. Furthermore, in that
case, fi(s) ∈ Di and f(r, s) = (r, fi(s)) ∈ Gn follows. On the other hand, if
(r, s) ∈ Bn, then f(r, s) = (r, s) ∈ Bn. Thus, f maps Gn (resp., Bn) to itself
and furthermore the mapping induced on Gn (rep., Bn) is 1-1. It follows that f
is 1-1.

The function f is polynomial-time computable by virtue of the first two
efficiency conditions of F and the additional ‘recognizable domain’ condition. By
the additional ‘noticeable domain’ condition we know that Gn forms a noticeable
fraction of Gn ∪Bn and by the ‘augmented one-wayness’ condition we infer that
f is hard to invert on Gn. Thus, we conclude that f is weakly one-way. In fact,
the latter conclusion remain valid even if the family of permutations F is only
weakly one-way. ⊓⊔

Remark: The function f (constructed above) may be only weakly one-way, since
it equals the identity transformation for a part of its domain (and this part may
have a noticeable measure). To get a (strongly) one-way function, one may apply
the transformation in [7] (cf. [5, Sec. 2.6]) to the function f . (In fact, degenerate
versions of the transformation in [7] suffice for this purpose; see Section 5.)

Handling the non-simplified version of Definition 2.2. The above construction is
stated with respect to the simplified definition of a family of one-way permuta-
tions. Recall that in the non-simplified version, the index-selecting algorithm, S,
is only required to have an output with noticeable probability (i.e., the probabil-
ity is at least 1/p(n), where p is some fixed positive polynomial). Furthermore,
S is allowed to err (i.e., have output not in I) with a negligible probability. For
the general case, we redefine the function f as follows.

Construction 3.2 (general version): Let F = {fi :Di
1-1
→ Di}i∈I be a family of

permutations with an index-selecting algorithm, S, that produces output with no-

ticeable probability and errs with negligible probability. We construct the function



18

f as follows

f(r, s)
def
=

{

(r, fi(s)) if i
def
= S(n, r) 6= ⊥ and s ∈ Di

(r, s) otherwise

where the convention is that if on input n and coin tosses r ∈ {0, 1}q(n) the

algorithm S halts with no output, then S(n, r)
def
= ⊥ /∈ {0, 1}∗.

Proposition 3.2 (analysis of Construction 3.2): The function f is length pre-

serving and almost 1-1. Furthermore, f is 1-1 if S never errs. If F is a family

of one-way permutations satisfying the additional conditions of Definition 3.1,

then f is weakly one-way. The latter holds even if F is only weakly one-way (and
satisfies the additional conditions).

Proof: In case algorithm S never errs, the proof is similar to the proof of Proposi-

tion 3.1 (i.e., Gn is redefined as the set of all pairs (r, s) such that i
def
= S(n, r) 6= ⊥

and s ∈ Di). Otherwise, we observe that the collision probability of f is bounded
above by the probability that S errs (and outputs a string not in I). Since this
happens with negligible probability, we are done. ⊓⊔

4 Applying the Transformation

Using the transformation specified in the previous section, we show how to con-
struct a 1-1 one-way function based on one of several popular intractability
assumptions. To this end, we use these intractability assumptions in order to
construct families of one-way permutations satisfying the additional conditions
of Definition 3.1. Before presenting these constructions, we wish to stress an
important aspect regarding them; namely, their (quantified) level of “security”
(see next).

Security

The security of a one-way function f is a function, s : N → N, specifying the
amount of “work” required to invert f on inputs of given length. The work of
an algorithm is defined as the product of the running-time (of the inverting

algorithm) and the inverse of its success probability; namely, wA(n)
def
= tA(n) ·

1
pA(n) , where tA(n) is the running time of A on f -images of length n and pA(n)

def
=

Probx∈{0,1}n [A(f(x)) ∈ f−1f(x)] is its success probability.
Typical cryptographic constructions, and in particular our constructions,

transform one object (in our case, a family of one-way permutations) of security
s(·) into another object (in our case, a single 1-1 one-way function) of related
security s′(·). The relation between s and s′ is of key importance. A weak re-
lation, which is usually easier to obtain, is that s′(poly(n)) > s(n)/poly(n).
Although this relation translates any super-polynomial security s into a super-
polynomial security s′, it is of limited practical value. In order to use the resulting
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object of security s′ one may needs to use very big instances. For example, if
s′(n5) = s(n) and the original object is “secure in reality” for instance size 100
(bits), then the resulting object (of security s′) will be “secure in reality” only
for instances of size 1010 (and is thus unlikely to be of practical value). Thus,
stronger relation between the security s of the original object and the security
s′ of the resulting object are of more value. In particular, it is desirable to have
s′(O(n)) > s(n)/poly(n), in which case we say that the transformation preserves

the security.
Getting back to the constructions of the previous section, we note that the

security of the resulting one-way 1-1 function f , on f -images of length q(n) +
l(n), is closely related to the security of the family of one-way permutations
on fi-images of length l(n). (Recall, n denotes the length of the index of the
permutation, l(n) the length of the description of elements in the domain of
the permutation, and q(n) the randomness complexity of the index-selecting
algorithm.) Thus, s′(q(n)+l(n)) > s(l(n))/poly(n), where s denotes the security
of the family F and s′ the security of the function f . Therefore, the smaller the

polynomial q(·) is, the better security one gets. It is particularly desirable to
keep q(n) linear in l(n). All the constructions presented below achieve this goal.
Consequently, the one-way functions constructed below preserve the security of

the intractability assumption on which they are based. We remark that the (weak
to strong one-way) transformation of [7] (mentioned in the Remark in Section 3)
preserves security too.

Preliminaries: Selecting prime numbers

Prime numbers play a key role in all our constructions, and so efficient algo-
rithms for selecting such numbers are of key importance to us. We will use two
algorithms, the first being being the celebrated deterministic polynomial-time
primality tester of Agrawal, Kayal, and Saxena [1],

Theorem 4.1 (primes are in P): There exists a deterministic polynomial-time

primality tester; that is, an algorithm that decides whether a given integer is a

prime number.

The second algorithm is Bach’s probabilistic polynomial-time algorithm that
on input 1n uniformly generates an n-bit long composite number along with
its factorization [2]. A straightforward implementation of Bach’s algorithm re-
quires a super-linear number of coin tosses (i.e., a number of coin tosses that is
super-linear in the length of the composite being generated). Here we claim an
approximate version that uses a linear number of coin tosses. We say that a dis-
tribution X on n-bit long strings is almost uniformly distributed over S ⊆ {0, 1}n

if the variation distance between X and the uniform distribution over S is neg-
ligible (as a function of n).

Theorem 4.2 (randomness efficient generation of integers with known prime
factorization): There exists a probabilistic polynomial-time algorithm that, on
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input 1n, uses O(n) coin tosses to select a random number N almost uniformly

in the interval [2n−1, 2n − 1], and outputs the prime factorization of N .

Proof: While it is possible to present a direct implementation of an approximate
version of Bach’s algorithm that uses only a linear number of coin tosses, the
details are quite tedious. Hence, we prefer to invoke a general result of Nisan
and Zuckerman [15] that asserts that any probabilistic polynomial-time algorithm

that uses linear space has an approximated version that uses a linear number of

coin tosses, where approximation means that the output distribution of the new
algorithm (on any fixed input) is statistically close to the output distribution of
the original algorithm (i.e., the variation distance is negligible). It is easy to see
that Bach’s algorithm utilizes linear space, and the theorem follows. ⊓⊔

4.1 A construction based on RSA

The standard presentation of RSA [18] yields a family of permutations, which
is believed to be one-way, but is certainly not one-way in the augmented sense
of Definition 3.1. Here we refer to a family in which the indices are pairs (N, e),
where N is the product of two primes of equal length and e is relatively prime
to φ(N). The index is generated by randomly selecting these two primes, mul-
tiplying them and next selecting a proper e. Thus, giving these random choices
away compromises the security of RSA, since given the prime factors it is easy
to invert the function.

We consider, instead, the following family of weak one-way permutations.
The indices in this family are pairs of integers (N, P ) such that P is a prime and
|P | = |N |. For each such pair we define a permutation over Z

∗
N , the multiplicative

group modulo N ; specifically, fN,P (x)
def
= xP mod N . Note that we do not insist

that N is a product of two primes of the same length. Yet, a noticeable fraction of
the possible N ’s will have this form. Thus, if the standard RSA family is strongly
one-way (for random exponent) then it is also (strongly) one-way for a prime
exponent, and consequently the foregoing (non-standard) family of functions will
be weakly one-way (due to the noticeable fraction of composites of the standard
form). Since P is relatively-prime to φ(N), the functions in this family are in
fact permutations over Z

∗
N . (Note that the index-selecting algorithm does not

know φ(N), and so relative-primality of P and φ(N) is imposed by requiring
that P is prime.)

We now show that the foregoing family satisfies the non-simplified require-
ments (from a family of one-way permutations) as well as the additional condi-
tions in Definition 3.1. Among the efficiency conditions of Definition 2.2 only the
one referring to the index selection is problematic, yet it does hold when only re-
quiring that output is produced merely with noticeable probability; specifically,
we select two n-bit integers at random and check whether the second is prime,
producing an output only if the answer is affirmative. Furthermore, Z

∗
N is easily

recognizable and has noticeable density with respect to {0, 1}|N |. This family
is one-way in the augmented sense (under the “RSA assumption”), since the
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modulus is generated via an identity transformation from the coins of the index-
selecting algorithm (and thus these coins add no knowledge to the inverter). It
follows that we can apply Proposition 3.2 and derive a length-preserving 1-1
one-way function.

Definition 4.1 (standard RSA Assumption): We say that inverting RSA is in-

tractable with security s(·) if any algorithm for the inverting task uses work greater

than s(·). The inverting task consists of finding x such that y = xe mod N , when

given N , e and y, where N is uniformly selected among all composites that are

the product of two (n/2)-bit long primes, e is uniformly selected among the el-

ements of the multiplicative group modulo φ(N), and y is uniformly selected

among the elements of the multiplicative group modulo N .

To justify our claim that the security (of the RSA Assumption) is preserved,
we note that pairs (N, P ) as required can be selected using O(|(N, P )|) random
bits.5 Thus, we get

Corollary 4.1 (a length-preserving 1-1 one-way function based on RSA): Sup-

pose that inverting RSA is intractable with security s(n). Then, there exists a

length-preserving 1-1 one-way function with security s′(O(n))
def
= s(n)/poly(n).

4.2 A construction based on a restricted DLP

Here we rely on the assumption that the Discrete Logarithm Problem (DLP) in
the multiplicative group modulo P is hard also for the special case of primes of
the form P = 2Q+1, where Q is a prime. We also use the assumption that such
primes form a noticeable fraction of the integers of the same length. Based on
these assumptions, the following family of permutations is one-way. The indices
in the family are pairs (P, g), where P is a prime of the above form and g is
a primitive element modulo P . The index is selected by first selecting a prime
of the above form and next using the known factorization of φ(P ) = 2Q to
test candidates for primitivity (see details below). For each index, (P, g), we
define a permutation over Z

∗
P , the multiplicative group modulo P ; specifically,

fP,g(x)
def
= gx mod P . Noting that Z

∗
P is both ‘noticeable’ and easy to recognize,

we can apply Proposition 3.2, provided that the index-selection process satisfies
the augmented one-way condition.

To address the last concern as well as justify our claim that the resulting
1-1 one-way function preserves the security of the family, we need to specify
the way in which the pairs (P, g) are selected. On input n we uniformly select
an (n − 1)-bit integer, Q, and test Q and P = 2Q + 1 for primality. In case

5 Currently, the random bits are merely used to select (N, P ) uniformly among all
pairs of n-bit long integers. Indeed, checking primality is done by using the deter-
ministic algorithm guaranteed in Theorem 4.1 (whereas in the earlier versions Bach’s
randomness-efficient algorithm [3] was used for that purpose, which only resulted in
an almost 1-1 function).
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we are successful, we uniformly select g ∈ Z
∗
P and test if it is primitive (mod

P ) by computing gP−1 mod P , gQ mod P and g2 mod P . (If the first expression
evaluates to 1 whereas the other two do not, then g is a primitive element modulo
P .)6 Thus, we use |(P, g)| random bits to generate pairs (P, g), and these coins are
identical to the pairs themselves. Combining this with the foregoing assumption
regarding the density of primes of the desired form and the fact that in this case
approximately half the elements of Z

∗
P are primitive, we get

Corollary 4.2 (a length-preserving 1-1 one-way function based on restricted
DLP): Suppose that the restricted DLP is intractable with security s(n) (as in
Definition 4.2), and that the set of n-bit primes, P , for which φ(P )/2 is prime,

constitute a 1/poly(n) fraction of the n-bit long integers. Then, there exists a

length-preserving 1-1 one-way function with security s′(O(n))
def
= s(n)/poly(n).

Definition 4.2 (restricted DLP Assumption): We say that the restricted DLP

is intractable with security s(·) if any algorithm for the following inverting task

uses work greater than s(·). The inverting task consists of finding x such that

y = gx mod P , when given P , g and y, where P is uniformly selected among

all n-bit primes for which φ(P )/2 is prime, g is uniformly selected among the

primitive elements modulo P , and y is uniformly selected among the elements of

the multiplicative group modulo P .

4.3 A construction based on the general DLP

Here we rely on a alternative assumption concerning the DLP. Specifically, we
assume that the Discrete Logarithm Problem (DLP) in the multiplicative group
modulo a prime P is hard also when given the factorization of φ(P ). (Note that
for primes of the special form P = 2Q + 1 the factorization of φ(P ) = 2 · Q is
always known.) Furthermore, we shall assume that this DLP problem remains
hard when given any O(|P |) bits of information regarding P ; that is, we assume
that there are no trapdoors (of linear length) for the DLP in the multiplicative
group modulo a prime. Making this assumption, we can waive the assumption
made in the previous subsection concerning the density of primes of special form
P = 2Q + 1, where Q is a prime.

Based on the foregoing intractability assumption, the following family of
permutations is one-way. The indices in the family are pairs (P, g), where P is
a prime and g is a primitive element modulo P . The index is chosen by first
generating a random prime P with known factorization of φ(P ) (see details
below), and next using this factorization to test candidates for primitivity. For

each index, (P, g), we define a permutation over Z
∗
P as before (i.e., fP,g(x)

def
=

gx mod P ). Again, we shall apply Proposition 3.2 to the current family.
We have postponed the discussion of how to randomly generate primes P

with known factorization of φ(P ). Here is where we use Theorem 4.2, which

6 Again, checking primality is done by using the deterministic algorithm guaranteed
in Theorem 4.1. Indeed, this allows to obtain a 1-1 function (rather than an almost
1-1 function, as in earlier versions).
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asserts the existence of an adequate algorithm and furthermore one that uses
a linear number of coin tosses. This yields an index-selection algorithm that
selects pairs (P, g) using O(|(P, g)|) random bits, which is instrumental to our
claim that the resulting 1-1 one-way function preserves the security of the family.
The fact that the coins used by this index-selection algorithm provide additional
information on P is “covered” by the assumption formulated in Definition 4.3.
Thus, we get:

Corollary 4.3 (a length-preserving 1-1 one-way function based on general DLP):
Suppose that DLP is intractable with security s(n), even when the factorization

of the order of the group is given (as in Definition 4.3). Then, there exists a

length-preserving 1-1 one-way function with security s′(O(n))
def
= s(n)/poly(n).

Definition 4.3 (DLP Assumption): We say that the DLP is intractable with

security s(·) if, for every randomized mapping Π such that |Π(z)| = O(|z|),
any algorithm for the following inverting task uses work greater than s(·). The

inverting task consists of finding x such that y = gx mod P , when given Π(P )
and a pair (g, y), where P is uniformly selected among all n-bit primes, g is

uniformly selected among the primitive elements modulo P , and y is uniformly

selected among the elements of the multiplicative group modulo P .

The randomized mapping Π captures possible trapdoor information that may as-
sist in inverting fP,g, and the assumption asserts that the inverting task remains
hard also in the presence of such information.7 In particular, the randomized
mapping Π may yield the coins used by the factored-number generating algo-
rithm of Theorem 4.2. Thus, inverting fP,g is hard also in the augmented sense
of Definition 3.1.

5 Conclusions and Open Problems

We have presented a method for constructing (strongly) one-way permutations.
The method consists of three steps.

Step (1): Using well-known intractability assumptions to construct families of
one-way permutations satisfying the additional properties specified in Defi-
nition 3.1.

Step (2): Using such a family to construct a weak one-way function.
Step (3): Transforming the resulting function into a strongly one-way function.

We consider the identification of the conditions in Definition 3.1 and the con-
struction of families of one-way permutations satisfying these conditions to be
the most important contributions of the current paper. Thus, most of the paper

7 Indeed, the fact that Π is applied only to P and that |Π(P )| = O(|P |) makes the
assumption potentially weaker. On the other hand, the fact that Π(P ) may contain
P allows us to omit P from the list of inputs to the inverting task.
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is dedicated to the implementation of Step (1), whereas Step (2) is obtained by
Construction 3.2, and Step (3) is obtained by referring to [7].

Regarding Step (3), we remark that applying the general (“weak to strong”)
transformation of [7] seems an over-kill, since in our case the weakly one-way
function f has a special structure (e.g., it is hard to invert almost on all points
on which it is not the identity transformation). However, in our attempts to
avoid using [7], we were not able to avoid using random walks on expander
graphs (for the repeated attempts to generate a valid index and/or a sample in
the corresponding domain). Since expander graphs are the only non-elementary
component of [7], we see no point in presenting these alternatives here. Certainly,
it will be better to avoid the use of expander graphs and perform Step (3) in a
more efficient manner.

Another obvious open problem is to construct length-preserving 1-1 one-way
functions based on the conjectured intractability of factoring.8 To achieve this
goal using our method one will need to construct a family of one-way permuta-
tions satisfying the additional properties specified in Definition 3.1. (The stan-
dard construction of a family of one-way permutations based on factoring [16]
does not satisfy the augmented one-wayness condition.)
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