
Pseudo-Mixing Time of Random Walks

Itai Benjamini and Oded Goldreich

Abstract. We introduce the notion of pseudo-mixing time of a graph
defined as the number of steps in a random walk that suffices for generat-
ing a vertex that looks random to any polynomial-time observer, where,
in addition to the tested vertex, the observer is also provided with oracle
access to the incidence function of the graph.

Assuming the existence of one-way functions, we show that the pseudo-
mixing time of a graph can be much smaller than its mixing time. Specif-
ically, we present bounded-degree N -vertex Cayley graphs that have
pseudo-mixing time t for any t(N) = ω(log logN). Furthermore, the
vertices of these graphs can be represented by string of length 2 log2N ,
and the incidence function of these graphs can be computed by Boolean
circuits of size poly(logN).

An early version of this work appeared as TR19-078 of ECCC. The presentation
was somewhat elaborated in the current revision,

1 Introduction

A popular way to sample a huge “structured” set that is endowed with a group
structure is to start at a fixed element of the set, which is typically easy to find,
and take a random walk on the corresponding Cayley graph. If the length of the
random walk exceeds the graph’s mixing time, then the end-point of the walk is
almost uniformly distributed in the corresponding set.

A couple of comments are in place. First, the aforementioned sampling pro-
cedure is beneficial only when the original set S is structured in the sense that
its elements can be represented by bit-strings of a certain length, denoted `, but
not all `-bit strings are elements of S. Furthermore, S may occupy only a negli-
gible fraction of {0, 1}` (i.e., |S| < µ(`) · 2`, where µ : N → [0, 1] is a negligible
function (e.g., tends to zero faster than the reciprocal of any polynomial)). In
such cases, it is infeasible to sample S (almost) uniformly by selecting uniformly
few `-bit long strings and taking the first string that falls in S, and so one needs
an alternative.

Second, the set S should be endowed with a feasible group operation, and
the group should be generated be a small number of generators that are easy to
find (along with their inverses). If this is that case, then we can sample S almost
uniformly by taking a sufficiently long random walk on the corresponding Cayley
graph, starting at the vertex that corresponds to the identity element (which we

Pseudo-Mixing Time of Random Walks 349

assume, without loss of generalization, to be represented by 0`).1 Of course, the
length of the random walk should slightly exceed the graph’s mixing time (i.e.,
the minimum t such that the total variation distance between the end-vertex of
a t-step random walk and a uniformly distributed vertex is negligible).

The requirement that the random walk be longer than the mixing time of
the graph is aimed at obtaining a distribution that is statistically close to the
uniform distribution over the set of vertices. However, for actual applications,
which may be modeled as efficient procedures that run in time that is polynomial
in the length of the description of a vertex in the graph, it suffices to require that
it is infeasible to distinguish the distribution of the end-point of the walk from a
uniformly distributed vertex. Indeed, here we adopt the notion of computational
indistinguishability, which underlies much of modern cryptography and the com-
putational notion of pseudorandomness (cf. [3, Apdx. C] and [3, Chap. 8], resp.),
and consider the following notion of “pseudo-mixing time” (which is formulated,
as usual in the theory of computation, using asymptotic terms).

Definition 1 (pseudo-mixing time, a naive definition): For a constant d, let

{G` = (V`, E`)}`∈N be a sequence of d-regular graphs such that 0` ∈ V` ⊆ {0, 1}`.
For a function t : N → N, the graphs {G`}`∈N have pseudo-mixing time at most
t if for every probabilistic polynomial-time algorithm A it holds that

|Pr[A(Wt(G`))=1]− Pr[A(U(G`))=1]| = negl(`),

where Wt(G`) denotes the distribution of the end-point of a t(|V`|)-long random
walk on G` starting at 0`, and U(G`) denotes the uniform distribution over V`.
Indeed, negl denotes a negligible function (i.e., one that vanishes faster than
1/p, for any positive polynomial p).

Clearly, if the total variation distance between Wt(G`) and U(G`) is negligible
(in terms of `), then G` has pseudo-mixing time at most t. The point is that this
sufficient condition is not necessary; as we shall see, G` may have pseudo-mixing
time at most t also in case that the total variation distance between Wt(Gell)
and U(G`) is large (say, larger than 0.99).

Definition 1 is titled “naive” because algorithm A, which represents an ob-
server that examines (or uses) the sampled vertex, does not get (or use) any
auxiliary information about the graph G`. In contrast, the motivating discus-
sion referred to the case that one can take a random walk on the graph. Hence, it
is natural to augment the (efficient) observer by providing it with a device that
lists the neighbors of any vertex of its choice. In other words, we provide the
observer with oracle access to the incidence function of the graph; this oracle an-
swers the query (v, i) with the ith neighbor of vertex v in the graph. Indeed, such
a device constitutes a representation of the graph, and we are most interested in
the case that this representation is succinct; that is, the incidence function can

1 Given an arbitrary group (S, ∗), where S ⊆ {0, 1}`, with i representing the identity
element, consider the group (S⊕i, �) such that x � y = ((x⊕i) ∗ (y⊕i))⊕i, where ⊕
denotes the bit-by-bit exclusive-or of bit strings.

350 Itai Benjamini and Oded Goldreich

be computed by an efficient algorithm (given some short auxiliary information)
or equivalently by a small Boolean circuit. This leads to the following definition.

Definition 2 (succinct representation of graphs and pseudo-mixing time): For
a constant d, let {G` = (V`, E`)}`∈N be a sequence of d-regular graphs such

that 0` ∈ V` ⊆ {0, 1}`. The graph G` is represented by its incidence function
g` : V` × [d]→ V`, where g`(v, i) is the ith neighbor of v in G`.

Succinct representation: The graphs {G`}`∈N have a succinct representation
if there exists a family of poly(`)-size Boolean circuits that compute their
incidence functions.

Pseudo-mixing time: For a function t : N → N, the graphs {G`}`∈N have
pseudo-mixing time at most t if for every probabilistic polynomial-time oracle
machine M it holds that

|Pr[Mg`(Wt(G`))=1]− Pr[Mg`(U(G`))=1]| = negl(`),

where Mg(x) denotes the output of M on input x when making queries to
the oracle g, and the other notations (e.g., Wt(G`) and U(G`)) are as in
Definition 1.

We stress that pseudo-mixing refers to observers that are efficient in terms of the
length of the description of vertices in the graph (i.e., they run for poly(`)-time).
Recall that our focus is on the case that the size of V` is exponential in `. Hence,
a polynomial-time machine cannot possibly explore the entire graph G`. On the
other hand, if G` is rapidly mixing (i.e., its mixing time is O(log |V`|)), then a
polynomial-time machine may obtain many samples of Wt(G`) and U(G`) (or
rather many samples that are distributed almost as U(G`)).

2 At this point, we
can state our main result.

Theorem 3 (main result): Assuming the existence of one-way functions, there
exists a sequence of bounded-degree Cayley graphs {G` = (V`, E`)}`∈N such that
the following properties hold:

1. The graphs {G`}`∈N have a succinct representation.
2. For every t : N→ N such that t(N) = ω(log logN), the graphs {G`}`∈N have

pseudo-mixing time at most t.
3. The vertex set is hard to sample: Any probabilistic polynomial-time algorithm

that is given input 1`, fails to output a vertex of the graph other than 0`,
except with negligible probability.3

2 Here we assume that t does not exceed the mixing time; otherwise, the entire dis-
cussion is moot.

3 We stress that this algorithm (unlike the observer in the pseudo-mixing condition)
is not given oracle access to the succinct representation of the graph. Evidently,
when given such a representation one can find other vertices in the graph. The
corresponding condition in Theorem 6 asserts that such an oracle machine cannot
output vertices in the graph other than 0` and those obtained as answers to incidence
queries.

Pseudo-Mixing Time of Random Walks 351

Furthermore, the graph G` has 2(0.5+o(1))·` vertices, and its mixing time is Θ(`) =
Θ(log |V`|).

We stress that these bounded-degree graphs have size N = exp(Θ(`)), and so
their pseudo-mixing time (i.e., t(N) = ω(log logN) = ω(log `)) is only slightly
larger than logarithmic in their (standard) mixing time (i.e., Θ(`) = Θ(logN)).
Indeed, the pseudo-mixing time of these graphs is only slightly larger than
double-logarithmic in their size (i.e., |V`|). In contrast, the pseudo-mixing time
of bounded-degree graphs cannot be (strictly) double-logarithmic in |V`|, since an
observer can explore the O(log log |V`|)-neighborhood of 0` in poly(`)-time (and
so distinguish vertices in this poly(`)-sized set from all other exp(Θ(`)) vertices
of the graph).

We comment that, as shown in Theorem 7, the existence of one-way functions
is essential for the conclusion of Theorem 3. Essentially, the existence of one-
way function, which implies the existence of pseudorandom generators, allows
to construct Cayley graphs G` with succinct representation in which all vertices
(except for 0`) look random. Of course, once we reach a vertex in G` by following
a walk from the vertex 0`, we learn the label of this vertex, but the labels of
vertices that we did not visit in such walks look random to us. Hence, for t(N) =
ω(log log |V`|), both the random variable Wt(G`) and U(G`) are unlikely to hit
vertices that were visited by such poly(`)-many explorations; that is, Wt(G`)
and U(G`) hit explored vertices with negligible probability, and otherwise they
look random.

A stronger notion of the pseudo-mixing time. Given that our focus is on Cayley
graphs, one may wonder whether our upper bound on the pseudo-mixing time
holds also when the observer is given access to the group operation (as well as to
the corresponding inverse operation).4 A necessary condition for such a stronger
notion of pseudo-mixing time is that, for every (poly(`)-time computable)5 word
w = w[X] over the set of generators and a variable X, if w equals the identity
when X is in the support of Wt(G`), then it is trivial (i.e., it equals the identity
over the entire group). Hence, for starters, we suggest the following problem
(where r(`) plays the role of t(exp(`)) of above).

Open Problem 4 (vanishing over a large ball implies vanishing in the group):
For some r : N → N such that r(`) ∈ [ω(log `), o(`)], is it possible to construct
an exp(`)-sized group having succinct representation that satisfies the following

4 Note that giving oracle access to the incidence function of the graph is equivalent to
giving access to an oracle that performs the group operation only when the second
operand is in a fixed set of generators (of the group).

5 By T (`)-time computable word, we mean a word that is computable by a (uniform)
arithmetic circuit of size T (`), where the leaves in this circuit are fed by the fixed
constants and variables and the internal gates perform the group operations (of the
Cayley graph G`). Note that such a circuit can compute a word of length exponential
in T (`), but only a negligible fraction of words of exp(T (`)) length are computable
by such (poly(T (`))-size) circuits.

352 Itai Benjamini and Oded Goldreich

condition: For every word over the group’s generators and a variable X that
vanishes over a ball of radious r(`) centered at the group’s indentity, it holds
that the word vanishes over the entire group.

As hinted above (see also Footnote 5), we are actually interested in words that
are computable by arithmetic circuits of size poly(`).

2 The main result and its proof

Theorem 3 is proved by combining the following facts:

1. Arbitrarily relabelling the elements of any finite group yields a group that
is isomorphic to the original group (Proposition 5).

2. Assuming the existence of one-way functions, the foregoing relabeling can
be pseudorandom and succinct (in the sense of Property 1 of Theorem 3).

3. There are explicit Cayley graphs with 2(1+o(1))·`/2 vertices such that the
o(`)-neighborhood of each vertex is a tree.6

Indeed, the graphs asserted in Theorem 3 are obtained by starting with a Cayley
graph as in Fact 3, and relabeling its vertices as suggested by Facts 1–2. Hence,
the pivot of our proof is performing such relabeling, and so we first prove Fact 1.

Proposition 5 (relabeling a group): Let (S, ∗) be a group such that S ⊂ {0, 1}`

and 0` is the identity element, and let π be a permutation over {0, 1}` such that
π(0π) = 0π. Then, the set Sπ = {π(e) : e ∈ S} combined with the operation
�π : Sπ × Sπ → Sπ such that �π(α, β) = π(π−1(α) ∗ π−1(β)) forms a group that
is isomorphic to (S, ∗).

Proof: One can readily verify that the group axioms hold.

– For every α, β, γ ∈ Sπ it holds that

�π(�π(α, β), γ) = π(π−1(�π(α, β)) ∗ π−1(γ))

= π(π−1(π(π−1(α) ∗ π−1(β))) ∗ π−1(γ))

= π((π−1(α) ∗ π−1(β)) ∗ π−1(γ))

= π(π−1(α) ∗ (π−1(β) ∗ π−1(γ)))

= �π(α, �π(β, γ))

where the last equality is established analogously to the first three equalities.

– For every α ∈ Sπ it holds that �π(α, 0`) = π(π−1(α)∗0`) = α and �π(0`, α) =
π(0` ∗ π−1(α)) = α. Indeed, 0n is the identity element of the new group.

6 Actually, a much weaker condition suffices.

Pseudo-Mixing Time of Random Walks 353

– Denoting by inv(a) the inverse of a ∈ S in the original group, we can verify
that π(inv(π−1(α))) is the inverse of α ∈ Sπ in the new group. Specifically,

�π(α, π(inv(π−1(α)))) = π(π−1(α) ∗ π−1(π(inv(π−1(α)))))

= π(π−1(α) ∗ inv(π−1(α)))

= 0`

and similarly �π(π(inv(π−1(α))), α) = 0`.

Lastly, note that π is an isomoprphism of (S, ∗) to (Sπ, �π), since π(a ∗ b) =
�π(π(a), π(b)).

Restating Theorem 3. For sake of clarity, we restated Theorem 3, while strenghen-
ing a few of its aspects. First, the succinct representation of an exp(Θ(`))-vertex
graph G` is provided by an `-bit string (called a seed) coupled with a uniform
(polynomial-time) algorithm. Second, we will consider a distribution D` over
such graphs rather than a single graph per each value of `; actually, the distri-
bution D` will correspond to a uniformly selected `-bit long seed. Lastly, the
difficulty-of-sampling condition is stated with respect to oracle machines that
have access to the incidence function of the graph, and it discards vertices ob-
tained as answers to incidence queries. As before, we use negl to denote a generic
negligible function; that is, a function that tends to zero faster than the reciprocal
than any polnomial.

Theorem 6 (main result, restated): Assuming the existence of one-way func-
tions, there exists a distribution ensemble of bounded-degree Caley Graphs, de-
noted {D`}`∈N, such that the following properties hold:

1. Succinct representation: For some d ∈ N and every sufficiently large ` ∈ N,
each graph in the support of D` is a d-regular graph with 2(0.5+o(1))·` vertices.
Furthermore, the vertex set is a subset of {0, 1}` and contains 0`. These
graphs are strongly explicit in the sense that each of these graphs is repre-
sented by an `-bit long string, called its seed, and there exists a polynomial-
time algorithm that on input a seed s, a vertex v in the graph represented by
s, and an index i ∈ [d], returns the ith neighbor of v in the graph.

2. Pseudo-mixing time: For every t : N → N such that t(N) = ω(log logN),
any probabilistic polynomial-time oracle machine M that is given oracle ac-
cess to the incidence function of a graph G = (V,E) selected according to
D` cannot distinguish the uniform distribution over G’s vertices from the
distribution of the end-vertex in a t(|V |)-step random walk on G that starts
in 0`. Furthermore, with probability 1− negl(`) over the choice of G in D`,
it holds that

|Pr[MG(Wt(G))=1]− Pr[MG(U(G))=1]| = negl(`),

where U(G) denotes the uniform distribution on G’s vertices, and Wt(G)
denotes the distribution of the end-vertex of a t(|V |)-step random walk on G
that starts at 0`. Moreover, this holds even if the machine is given poly(`)
many samples from U(G).

354 Itai Benjamini and Oded Goldreich

3. Difficulty of sampling: Any probabilistic polynomial-time oracle machine M
that is given oracle access to the incidence function of a graph G selected
according to D` produces, with probability 1 − negl(`), an output that is
either not a vertex or is a vertex obtained as answers to one of its queries
or 0`. Furthermore, with probability 1−negl(`) over the choice of G = (V,E)
in Dn, it holds that

Pr[MG(1`) ∈ V \ (0` ∪AGM)] = negl(`),

where AGM is the set of answers provided to M ’s queries during the execution
of MG(1`).

Moreover, these graphs have mixing time Θ(`).

Theorem 3 follows by fixing an arbitrary typical graph in each distribution D`.
The furthermore clause of Property 2 refers to a setting in which the observer
may obtain samples of U(G) via some alternative process (which may be more
expensive than sampling Wt(G), assuming that t(|G|) = o(`)).7 This is aimed to
model a setting in which the observer may afford to generate samples of U(G)
(or samples of U(GO(`))), although they are more expensive to generate than
samples of Wt(G). Property 3 asserts that we are in a case of interest in the
sense that taking walks on G is the only feasible way to obtain vertices of G
(other than 0`).

Proof: Our starting point is a family of explicit d-regular Cayley Graphs {G` =

(V`, E`)}`∈N such that 0` ∈ V` ⊂ {0, 1}` and |V`| = 2(0.5+o(1))·`. Furthermore,
we assume that Wt(G`) has min-entropy ω(log `), where the min-entropy of a
random variable X equals minx{log2(1/Pr[X = x])}. This certainly holds if G`
is an expander graph.

Next, we consider the distribution D` obtained by selecting a permutation
π over {0, 1}` that is pseudorandom subject to π(0`) = 0`. It is instructive to
view π as selected as follows: First, we select a pseudorandom permutation φ
of {0, 1}`, and then we let π(x) = φ(x)⊕φ(0`), where ⊕ denotes the bit-by-
bit exclusive-or of bit strings. Recall that pseudorandom permutations can be
constructed based on any one-way function (cf. [5, 4, 6]). These permutations

of {0, 1}` are represented by `-bit long strings, and are coupled with efficient
algorithms for evaluating the permutation and its inverse.

Applying Proposition 5 to the group (V`, ∗) that underlies the Cayley graph
G`, using the foregoing permutation π, we obtain a group (Sπ, �π) that is isomor-
phic to (V`, ∗), and it follows that π(G`) = (Sπ, Eπ), where Eπ = {{π(u), π(v)} :
{u, v} ∈ E`}, is a Cayley Graph of the group (Sπ, �π). Specifically, letting
g : V` × [d] → V` denote the incidence function of G`, the incidence function of
π(G`), denoted gπ, satisfies gπ(α, i) = �π(α, π(gi)) (which equals π(π−1(α)∗gi)),
where gi is the ith generator of the set underlying the definition of G`. (Here and

7 Recall that the mixing time of G = (V,E) is O(`), whereas the pseudo-mixing time
is t(|V |) = o(`).

Pseudo-Mixing Time of Random Walks 355

below, we include both the generator and its inverse in the set of generators, so
to avoid inverse notations.) This establishes Property 1.

To prove Properties 2 and 3, we analyze an ideal construction in which π :
{0, 1}` → {0, 1}` is a uniformly distributed permutation that satisfies π(0`) = 0`;
equivalently, φ is a totally random permutation. By the pseudorandomness of the
permutations used in the actual construction, if Property 2 (resp., Property 3)
holds for the ideal construction, then it holds also for the actual construction,
since otherwise we obtain a poly(`)-time oracle machine that distinguishes the
truly random permutations from the pseudorandom ones. Hence, we focus on
the analysis of the ideal construction.

Starting with Proposition 3, observe that, by making oracle calls to G′ =
π(G`), a machine that runs in poly(`)-time may encounter poly(`) many vertices
of G′ by taking walks (of various lengths) from the vertex 0`. As far as such a
machine is concerned, the name of each other vertex is uniformly distributed
among the remaining 2` − poly(`) strings of length `. Hence, if such a machine
outputs a string that is neither 0` nor any of the vertices encountered by it,

then this string is a vertex of G′ with probability at most |V`|
2`

= exp(−Ω(`)) =
negl(`).

Turning to Property 2, note that the relevant machine may encounter ver-
tices of G′ = π(G`) by taking walks (of various lengths) either from 0` or from
the sample of U(G′) or from the test vertex (which is distributed either ac-
cording to Wt(G

′) or according to U(G′)). Each newly encountered vertex looks
as being uniformly distributed among the unencountered vertices, and so the
difference between the two cases (regarding the tested vertex) amount to the
difference between pattern of collisions that the machine sees, where all walks
are oblivious of the names of the encountered vertices (since these are random).
Collisions between walks that start at the same vertex do not matter, since these
are determined by the corresponding sequence of steps obliviously of the start
vertex.8 Hence, the only collisions that may contribute to distinguishing the
two cases are collisions between a walk from the tested vertex and a walk from
some other vertex (equiv., a collision between the tested vertex and a walk from
some other vertex).9 The key observation is that both Wt(G

′) and U(G′) have
min-entropy ω(log `); specifically, maxv{Pr[Wt(G

′) = v]} = exp(−ω(log `)) and
maxv{Pr[U(G′)=v]} = exp(−Ω(`)). Hence, such a collision occurs with proba-
bility at most exp(−ω(log `)) = negl(`). It follows that a poly(`)-query machine
cannot distinguish between Wt(G

′) or U(G′); that is, its “distinguishing gap” is
at most poly(`) · negl(`) = negl(`).

8 Specifically, suppose that two walks that start at vertex v collide, and that
these walks correspond to the sequences of steps i1, ..., im and j1, ..., jn. Hence,
v�gi1� · · · �gim = v�gj1� · · · �gjn , which implies gi1� · · · �gim = gj1� · · · �gjn .

9 Specifically, suppose that a walk from the test vertex v collides with a walk
from vertex w, and that these walks correspond to the sequences of steps
i1, ..., im and j1, ..., jn. Then, v�gi1� · · · �gim = w�gj1� · · · �gjn , which implies v =
w�gj1� · · · �gjn�g−1

im
� · · · �g−1

i1
.

356 Itai Benjamini and Oded Goldreich

The foregoing analysis refers to what happens in expectation over the choice
of G′ ∼ D`, whereas the two furthermore claims refer to what happens on typical
graphs drawn from D`. In the case of Property 3 applying Markov inequality will

do, since we actually upper-bounded (by |V`|
2`

+negl(`)) the probability that the

machine outputs a vertex in π(V`)\{0`} that was not encountered in its queries.
The case of Property 2 requires a slightly more refined argument (since the gap
Pr[MG(Wt(G))=1]− Pr[MG(U(G))=1], for each G, may be either positive or
negative).10 Using the fact that we can (use the sample of U(G) to) approximate
both Pr[MG(Wt(G)) = 1] and Pr[MG(U(G)) = 1], we can translate a gap on a
non-negligible measure of D` to a gap in the expectation, which means that the
main claim of Property 3 implies its furthermore claim.11

Digest: Why is Theorem 6 true? Essentially, a priori (and with the exception of
0`), the vertices of the (distribution of) graphs that we construct look like random
`-bit strings. By taking walks from the vertex 0` (or from the tested or sampled
vertices), the observer may discover poly(`) vertices of the graph, but (in both
cases) these vertices look random and are unlikely to include the tested vertex.
The latter assertion relies on the fact that maxv{Pr[Wt(G) = v]} is negligible,
which requires t(|V`|) = ω(log `). (Recall that Wt(G) can be constructed in time
exp(O(t(|V`|))).)

3 Additional comments

We first note that our choice to use graphs with 2(0.5+o(1))·` vertices is quite
immaterial. It is merely a natural intermediate point that balanced between
having too many vertices and too little vertices.

The pseudorandomness of multiple walks. Using the fact that Property 2 of The-
orem 6 refers to a model in which the observer (equiv., potential distinguisher)
obtains samples of the uniform distribution over the vertices of the graph, it
follows that such observers cannot distinguish multiple samples of the t-step
random walk from multiples samples of the graph’s vertices. This can be proved
using a hybrid argument (see, e.g., [3, Sec. 8.2.3.3]), and is a special case of a

10 Hence, even if the absolute value of the gap, on each specific G, is large, it may be
the case that the average gap is negligible due to cancellations.

11 An alternative procedure that uses a single sample of U(G) is presented in [1,
Prop. 1.1]. Using M , it yields a procedure P , which takes an independent sample of
U(G), denoted Z, and satisfies

Pr[PG(Wt(G), Z)=1]− Pr[PG(U(G), Z)=1]

=
(

Pr[MG(Wt(G))=1]− Pr[MG(U(G))=1]
)2

In the original presentation (of [1, Prop. 1.1]) the procedure also takes an independent
sample of the other distribution (i.e.,Wt(G)), but in the current setting such a sample
can be generated using oracle access to G.

Pseudo-Mixing Time of Random Walks 357

general result that asserts that indistinguishability of one sample (drawn from
one of two distributions) implies indistinguishability of multiple samples (which
are all drawn from one of two distributions). This generic result presupposes that
the (single sample) distinguisher can obtain additional samples of the tested dis-
tribution. Clearly, the distinguisher can generate t-step random walks, provided
that t(N) = poly(logN), and uniformly sampled vertices are available to it by
the definition of the model.12

On the necessity of one-way functions. A natural question is whether using one-
way function in necessary towards establishing Theorem 6. We show that the
answer is affirmative, essentially because the existence of efficiently sampleable
distribution ensembles that are far apart but are computationally indistinguish-
able implies the existence of one-way functions [2]. Next, we present a more
direct argument (tailored to the current application).

Theorem 7 (one-way functions are necessary for Theorem 6): The existence of
a distribution ensemble of graphs that satisfies Conditions 1 and 2 of Theorem 6
implies the existence of one-way functions

Proof: Using the hypothesis, we present a “false entropy generator” (as defined
in [5]), and use the fact that such a generator implies a pseudorandom generator
(see [5]), which in turn implies a one-way function. Details follow.

Fixing a function t : N→ N such t(N) = o(logN), let t′(`) = t(2(0.5+o(1))·`) =

o(`). For m = O(1) and every `, we consider a function F : {0, 1}`×([d]t
′(`))m →

{0, 1}m·n that takes as input a seed s for a graph in the support of D` along
with the descriptions of m random t′(`)-step walks, where each description is
an t′(`)-long sequence over [d], and outputs a sequence of m corresponding end-
vertices; that is, F (s, w1, ..., wm) = (v1, v2, ..., vm) if vi is the end-vertex of the
ith random walk, described by wi ∈ [d]t

′(`), on the graph represented by s.

By Property 1 of Theorem 6, the function F is computable in polynomial-
time. On the other hand, by Property 2 (and the foregoing comment about the
pseudorandomness of multiple walks), it follows that the output of the function
is indistinguishable (in polynomial-time) from m uniformly and independently
distributed vertices of the graph. The point is that the length of the input to F is

`′
def
= `+m·O(t′(`)) = `+O(1)·o(`) < 2`, whereas the output is computationally

indistinguishable from a m-long sequence over {0, 1}` that has min-entropy at

least k
def
= m · `/2 > 2`′ (i.e., each possible outcome occurs with probability at

most 2−k). Hence, F : {0, 1}`
′
→ {0, 1}m·` is a “false entropy generator” (as

defined in [5]).

At this point, applying [5] yields the claimed result. For sake of self-containment
we detail the rest of the proof, while capitalizing on the fact that the output of

12 Alternatively, if the graph is an expander, then we can generate almost uniformly
samples of the graph’s vertices by taking an O(`)-step random walk (and using
queries to the incidence function of the graph).

358 Itai Benjamini and Oded Goldreich

F has high min-entropy (rather than only high entropy). Specifically, we ob-
tain a pseudorandom generator by using either a randomness extractor of seed
length o(`) or a strong randomness extractor of seed length poly(`) (see, e.g., [3,
Def. D.8]).13 Either way, we extract 0.75 · k bits (from an input of min-entropy
k), while incurring an error of exp(−Ω(k)) = exp(−Ω(`)). Applying the ex-
tractor on the output of F , we obtain a pseudorandom generator. For example,

consider G(s′, s′′) = (s′′, hs′′(F (s′)), where hs′′ : {0, 1}O(|s′′|) → {0, 1}1.5·|s
′′|

is a
pairwise-independent hash function (see, e.g., [3, Apdx. D.2]), which constitutes
a strong extractor.14

Acknowledgments

We are grateful to Tsachik Gelander, Nir Avni, and Chen Meiri for sharing with
us their knowledge and conjectures regarding Problem 4.

References

1. Z. Brakerski and O. Goldreich. From Absolute Distinguishability to Positive Dis-
tinguishability. In Studies in Complexity and Cryptography, pages 141–155, Lecture
Notes in Computer Science, Vol 6650, Springer, 2011.

2. O. Goldreich. A Note on Computational Indistinguishability. Information Process-
ing Letters, Vol. 34 (6), pages 277–281, 1990.

3. O. Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge
University Press, 2008.

4. O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random Functions.
Journal of the ACM, Vol. 33, No. 4, pages 792–807, 1986.

5. J. Hastad, R. Impagliazzo, L.A. Levin and M. Luby. Construction of Pseudorandom
Generator from any One-Way Function. A Pseudorandom Generator from any One-
way Function. SIAM Journal on Computing, Volume 28, Number 4, pages 1364–
1396, 1999.

6. M. Luby and C. Rackoff. How to Construct Pseudorandom Permutations from
Pseudorandom Functions. SIAM Journal on Computing, Vol. 17, 1988, pages 373–
386.

13 The required extraction parameters are very weak, and explicit constructions of
extractors of both types were known for decades.

14 Note that the output of G is computationally indistinguishable from a distribution

that is exp(−Ω(`))-close to being uniform on {0, 1}|G(s′,s′′)|, whereas |G(s′, s′′)| =
0.75 · |F (s′)|+ |s′′| ≥ 1.5 · |s′|+ |s′′|.

