Super-Perfect Zero-Knowledge Proofs

Oded Goldreich and Liav Teichner

Abstract. We initiate a study of super-perfect zero-knowledge proof
systems. Loosely speaking, these are proof systems for which the interac-
tion can be perfectly simulated in strict probabilistic polynomial-time. In
contrast, the standard definition of perfect zero-knowledge only requires
that the interaction can be perfectly simulated by a strict probabilistic
polynomial-time that is allowed to fail with probability at most one half.
We show that two types of perfect zero-knowledge proof systems can
be transformed into super-perfect ones. The first type includes the per-
fect zero-knowledge interactive proof system for Graph Isomorphism and
other systems of the same form, including perfect zero-knowledge argu-
ments for NP. The second type refers to perfect non-interactive zero-
knowledge proof systems. We also present a super-perfect non-interactive
zero-knowledge proof system for the set of Blum integers.

An early version of this work appeared as TR14-097 of ECCC. The current
revision is quite minimal.

1 Introduction

A standard exposition of the notion of zero-knowledge proofs may start by pre-
senting the following oversimplified definition:

An interactive proof system (P, V') for a set S is called zero-knowledge if
for every probabilistic polynomial-time strategy V* there exists a (strict)
probabilistic polynomial-time algorithm (called a simulator) A* such
that A*(x) is distributed identically to the output of V* after interacting
with P on common input z.

(See, e.g., Definition 9.7 in [12, Sec. 9.2.1] and top page 201 in [10, Sec. 4.3.1].)
However (as stated at the bottom of page 201 in [10, Sec. 4.3.1]), the problem
with this oversimplified definition is that it is not known to be materializable
(for sets outside BPP). Indeed, [12, Def. 9.7] is labeled “oversimplified” and [10,
Sec. 4.3.1] avoids presenting it formally. Instead, the standard definition of perfect
zero-knowledge (cf. [10, Def. 4.3.1]) relaxes the above requirement by allowing
the simulator to output a special failure symbol (i.e., L) with probability at most
one half, and requires a perfect simulation conditioned on not failing. We stress
that in both cases, the simulator is required to run in strict polynomial-time.!

! Note that this definition of perfect zero-knowledge implies that a perfect simulation
can be generated in expected (probabilistic) polynomial-time, but the latter does

120 Oded Goldreich and Liav Teichner

In this work, we take the “bold” step of turning the oversimplified definition
to an actual definition, which we call super-perfect zero-knowledge (ZK). We
obtain a few positive results regarding this notion, indicating that it is not a
vacuous notion; that is, that it can be materializable non-trivially (i.e., for sets
outside BPP). Actually, super-perfect zero-knowledge was implicitly considered
by Malka [18, Sec. 4.1] (see further discussion below).

The following overview assumes familiarity with the basic definitions and
notations, which are reviewed in Section 2.

1.1 Our results

We present several indications that super-perfect ZK exists beyond BPP. Each
of these results comes with some limitations (e.g., losing perfect completeness,
being applicable only to argument systems or only to perfect NIZK, or holding
only for a specific set).

The case of verifier-oblivious simulation failure. Our first result presents a suf-
ficient condition for the existence of super-perfect ZK proof systems. It asserts
that any perfect ZK proof system in which all the relevant simulators output 1
with probability that may depend on the input but not on the verifier (whose inter-
action with the prover is simulated) can be converted into super-perfect ZK proof
system. This transformation preserves the soundness error but not the complete-
ness error; in particular, it does not preserve perfect completeness. Specifically,
in Section 3.1, we prove

Theorem 1 (from perfect ZK to super-perfect ZK): Suppose that (P,V) is an
interactive proof system for S and that there exists a function p : S — [0,0.5]
such that for every probabilistic polynomial-time strategy V* there exists a prob-
abilistic polynomial-time algorithm A* such that for every x € S it holds that
Pr[A*(z) = 1] = p(z) and Pr[A*(z) = v[A*(z) # L] = Pr[(P,V")(x) = 1],
for every v € {0,1}*. Then, S has a super-perfect zero-knowledge proof system.
Furthermore:

— The soundness error is preserved and the increase in the completeness error
is exponentially vanishing;

— black-box simulation is preserved;

— the communication complexities (i.e., number of rounds and length of mes-
sages) are preserved; and

— the new prover strategy can be implemented by a probabilistic polynomial-time
oracle machine that is given oracle access to the original prover strategy.

The same holds for computationally-sound proof systems (a.k.a argument sys-
tems).

not imply the former. Also recall that the issue does not arise for statistical zero-
knowledge, since the failure probability can be made exponentially vanishing (by
repeated trials), and then absorbed in the statistical deviation of the simulation.
Ditto for computational zero-knowledge.

Super-Perfect Zero-Knowledge Proofs 121

Theorem 1 is proved by observing that the transformation proposed by Malka [18,
Sec. 4.1] applies whenever all simulators fail with the same probability (for each
fixed input), and not merely when this probability equals one half. We stress that
it is not even required that this probability (i.e., the function p) be efficiently
computable. (Essentially, the new prover first invokes a simulator (say for V
itself) and proceeds with the original proof system if and only if the output is
not L; otherwise, the interaction is suspended and the verifier rejects.) As noted
by Malka, one notable example of an interactive proof system that satisfies the
foregoing condition (with p = 1/2) is the perfect zero-knowledge proof system
for Graph Isomorphism of Goldreich, Micali, and Wigderson [13]. The condition
holds also for numerous other interactive proofs that have the same form, in-
cluding the perfect zero-knowledge arguments for NP of Naor et al. [19] (see
also [10, Sec. 4.8.3]). Hence, assuming the existence of one-way permutations,
every set in N'P has a super-perfect ZK arqument system.

The case of perfect ZK arguments. In contrast to the previous transformation,
the following one does preserve perfect completeness. It refers to a certain class
of perfect ZK arguments, and yields super-perfect ZK arguments with perfect
completeness, assuming the existence of perfectly binding commitment schemes
(which can be constructed based on any one-way permutation). The class (see
Definition 3.4) includes the aforementioned proof system for Graph Isomorphism
and the perfect zero-knowledge arguments for NP of Naor et al. [19].2 For de-
tails see Section 3.2. (We mention that super-perfect ZK arguments (of perfect
completeness) for NP are implicit in the work of Pass and Rosen [20, 21], were
they are based on the existence of claw-free pairs of permutations and established
using non-black-box simulators.)

The case of perfect NIZKs. Another case in which perfect completeness can be
preserved is the case of non-interactive zero-knowledge (NIZK) proof systems.
Specifically, we refer to perfect NIZK system in which the probability that the
simulator outputs L is efficiently computable. (Recall that in setting of NIZK
there is only one simulator, and it simulates the distribution (w, P(x,w)) where
w is a uniformly distributed “common reference string” (and P(z,w) is the proof
provided by the prover for input « under the reference strong w).)

Theorem 2 (from perfect NIZK to super-perfect NIZK): Suppose that (P, V)
s a non-interactive proof system for S and that there exist a polynomial-time
computable function p : S — [0,0.5] and a probabilistic polynomial-time algo-
rithm A such that for every x € S it holds that Pr[A(z) = 1] = p(z) and
Pr[A(z)=v|A(x) # 1] = Pr,[(w, P(z,w))=7], for every v € {0,1}*. Then, S

has a super-perfect non-interactive zero-knowledge proof system. Furthermore:

— The completeness error is preserved and the increase in the soundness error
is exponentially vanishing;

2 This holds only in the non-standard model of PPTs, discussed in Section 1.2. Ditto
for the result of of Pass and Rosen [20, 21] (mentioned next).

122 Oded Goldreich and Liav Teichner

— the proof length is preserved; and

— the new prover algorithm can be implemented by a probabilistic polynomial-
time oracle machine that is given oracle access to the original prover algo-
rithm.

This presumes a (non-standard) model of probabilistic polynomial-time machines
that are equipped with a special device that when fed with an integer n, returns an

element uniformly distributed in [n] def {1,...,n}. (See discussion in Section 1.2.)

(Note that in the standard model, where such a device is not provided, a strict
probabilistic polynomial-time can select a uniformly distributed element in [n)
if and only if n is a power of 2.) Unfortunately, we are not aware of any perfect
NIZK systems to which Theorem 2 can be applied.? (We note that Theorem 2
is proved by a transformation akin to the one used in the proof of Theorem 1,
except that the simulation error is moved to the soundness error rather than to
the completeness error; this can be done because the common reference string
can be trusted by both parties.) Using different ideas, we present a super-perfect
NIZK system for a set that is widely believed to be outside of BPP.

Theorem 3 (a super-perfect NIZK for Blum Integers): Let B denote the set of
all natural numbers that are of the form p°q? such that p = q¢ = 3 (mod 4) are
different odd primes and e = d = 1 (mod 2). Then, B has a super-perfect NIZK.

We also use the idea underlying the proof of Theorem 3 for presenting a promise
problem that is complete for the class of promise problems having super-perfect
NIZK of perfect completeness. The yes-instances of this promise problem are
circuits that generate uniform distributions and the no-instances are circuits
that generate distributions that cover at most half of the relevant range. For
details, see Section 5.3.

1.2 Models of PPT

As noted above, the standard model of (strict) PPT refers to machines that can
only toss fair coins, and such machines cannot generate a uniform distribution
over {1,2,3}. In contrast, one may consider non-standard models (of PPT). One
such model allows the machine to sample the uniform distribution over {1, ..., c}
for some fixed (constant) integer ¢ > 2; indeed, this is a generalization of stan-
dard model where ¢ = 2. A more powerful model is one in which a PPT machine
is equipped with a special device that when fed with an integer n, returns an

element uniformly distributed in [n] def {1, ...,n}. Actually, two such models are
possible:

8 We are only aware of the perfect NIZK arguments of Groth et al. [16], but these are
in a more liberal model that allows the common reference string to be distributed
according to any efficiently sampleable distribution.

Super-Perfect Zero-Knowledge Proofs 123

1. A model in which the PPT machine provides n in binary, which allows the
machine to obtain a uniform distribution over [n] also when n is exponential
in the machine’s input length. This is the model used in Theorem 2.

2. A model in which the PPT machine provides n in unary (i.e., as 1™), which
allows the machine to obtain a uniform distribution over [n] only when n is
polynomial in its input length. This is the model used in our reference to [20,
21], where this ability is used to generate a random permutation over [n].

Note that the issue does not arise in case the PPT machine is allowed to fail
with bounded probability (as is the case with the PPT simulators underlying
the definition of perfect ZK). We note that standard expositions of perfect ZK
simulators seem to refer to the non-standard model of PPT, but they can be
easily converted to the standard model by implementing the said device by a
machine that is allowed to fail with bounded probability.*

1.3 Organization

We start (Section 2) by recalling the standard definitions underlying this work.
Our results regarding interactive proofs and arguments are proved in Sections 3.1
and 3.2, respectively. In particular, the proof of Theorem 1 appears in Section 3.1.
Our results regarding non-interactive ZK systems appear in Sections 4 and 5.
In particular, Theorem 2 is proved in Section 4 and Theorem 3 is proved in
Section 5. We conclude with some open problems that arise naturally from this
work (Section 6).

2 Preliminaries

In this section, we recall the standard definitions underlying this work. For more
details, see [10, Chap. 4].

2.1 Interactive systems

For (randomized) interactive strategies A and B, we denote by (4, B)(x) the
output of B after interacting with A on common input z. Since A and B are
randomized, (A4, B)(x) is a random variables. We denote by U, a random variable
uniformly distributed in {0, 1}%.

We say that a strategy is probabilistic polynomial-time (PPT) if the total
time it spends when it interacts with any other strategy on common input x is
poly(|z|), where the total time accounts for all computations performed at all
stages of the interaction (including the final generation of output). We stress
that, throughout this work, PPT mean “strict PPT”; that is, there exists a

4 One can generate the uniform distribution over [n] by selecting at random a uni-
formly distributed r € [2!°52 1] outputting r if r € [n], and announcing failure
otherwise.

124 Oded Goldreich and Liav Teichner

polynomial p such that the running time on any ¢-bit input is always at most
p(f), regardless of the outcome of the coin tosses.’

Definition 2.1 (interactive proof systems, following Goldwasser, Micali and
Rackoff [15]): Let ec,es : N — [0,1) such that e.(¢) and es(€) are computable
in poly(£)-time and €(€) + €s(£) < 1 — 1/poly(¢). Let P and V be interactive
strategies such that V' is PPT. We say that (P, V') is an interactive proof system
for a set S with completeness error €. and soundness error e if the following two
conditions hold:

Completeness: For every x € S, it holds that Pr[(P,V)(x)=1] > 1 — e.(|z|).
Soundness: For every x € S and every strategy P*, it holds that Pr[(P*, V) (z)=
1] < é&(|z)-

If . =0, then the system has perfect completeness.

When we talk of interactive proof systems without specifying their errors, the
reader may think of any choice (e.g., €. = €5 = 1/3 or €.(£) = €5(¢) = exp(—¥)).
Recall that interactive proof systems with “average error” that is bounded away
from one half (i.e., (e.(¢) + €(¢))/2 < 0.5 — 1/poly(¢)) can be converted to
ones with negligible error by parallel or sequential composition. Lastly, recall
that in computationally-sound systems (a.k.a argument systems) the soundness
condition is required to hold only with respect to cheating strategies that can
be implemented by polynomial-size circuits [8].6

Definition 2.2 (perfect and super-perfect zero-knowledge, following Goldwasser,
Micali and Rackoff [15]): Let (P, V) be an interactive proof system for S.

Super-Perfect ZK: The system (P, V') is super-perfect zero-knowledge if for every
probabilistic polynomial-time strateqy V* there exists a (strict) probabilistic
polynomial-time algorithm A* such that for every x € S it holds that A*(x)
is distributed identically to (P,V*)(x).

Perfect ZK: The system (P, V') is perfect zero-knowledge if for every probabilistic
polynomial-time strategy V* there exists a (strict) probabilistic polynomial-
time algorithm A* such that for every x € S it holds that Pr[A*(z) = 1] <
1/2 and

Pr[A*(z) = 7| A*(2) # 1] = Pr[(P,V*)(2) =],

for every v € {0,1}*.

The same definition applies to argument systems. The honest-verifier version of
these definitions make a requirement only with respect to a strateqy Vien that
behaves like V' except that it outputs its entire view of the interaction (i.e., its
internal coin tosses as well as the sequence of all messages received from P).

5 We denote the input length by ¢, rather than by n, in order to avoid confusion with
Section 5 where n denotes a large integer (which is part of the input).

6 Specifically, for any polynomial p, all sufficiently long z ¢ S, and any strategy P* that
can be implemented by a circuit of size at most p(|z|), it holds that Pr[(P*,V)(z) =
1] < es(|=])-

Super-Perfect Zero-Knowledge Proofs 125

Note that the failure probability in the case of perfect ZK (i.e., Pr[A*(z) =
1]) can be reduced to exp(—poly(|z|)) by repeated applications of the original
simulator.

While Graph Isomorphism (GI) has a perfect ZK proof system [13], it is not a
priori clear whether GI has an honest-verifier super-perfect ZK proof system, let
alone a full-fledged super-perfect ZK system. The problem is that the simulator
(even just for the honest-verifier case) needs to generate a uniformly distributed
permutation of the vertices of a graph, and it is not clear whether a (strict) PPT
can do such a thing. This depends on whether a PPT is only allowed to toss fair
coins or is also allowed to generate uniform distributions over arbitrary domains
of feasible size — see discussion in Section 1.2.

Recall that the foregoing issue (i.e., the difficulty of perfectly generating uni-
form distributions over arbitrary domains) does not arise in case of perfect ZK,
since a machine that is allowed to fail with bounded probability can easily gener-
ate such distributions. The latter comment refers both to the various simulators
(establishing the ZK feature) and to the prescribed verifier itself.

2.2 Non-interactive systems

In the non-interactive setting both parties, modeled by standard algorithms,
have access to a common reference string, which may be thought of as being
generated by some trusted third party.

Definition 2.3 (non-interactive zero-knowledge, following Blum, Feldman and
Micali [7]): Let €c,es : N — [0,1) be as in Definition 2.1, and P and V be
algorithms such that V' 1is PPT. Let p be a positive polynomial. We say that
(P,V) is an non-interactive proof system for a set .S with completeness error €. and
soundness error € if the following two conditions hold.

Completeness: For every x € S, it holds that

Prw<—U

p(‘m‘)[V(:v,w,P(x,w))zl] >1—e(|z]).

Soundness: For every x € S and every function P*, it holds that

Prw<—U

() [V(z,w, P*(z,w))=1] < es(|x]).

If . =0, then the system has perfect completeness.

Super-Perfect ZK: The system (P, V') is super-perfect zero-knowledge if there ex-
ists a (strict) probabilistic polynomial-time algorithm A such that for every
x € S it holds that A(x) is distributed identically to (w, P(xz,w)), where
w < Up(la))-

Perfect ZK: The system (P, V') is perfect zero-knowledge if there exists a (strict)
probabilistic polynomial-time algorithm A such that for every x € S it holds
that Pr[A(z) = 1] < 1/2 and

Pr[A(z)=v|A(z)# 1] = Pro.uv,,, (v, P(z,w))=1]
for every v € {0,1}*.

126 Oded Goldreich and Liav Teichner

Note that in Definition 2.3 the common reference string is uniformly distributed
in {0,1}#U=D) A popular relaxation, not used here, allows the common reference
string to be taken from any efficiently sampleable distribution.

3 From perfect ZK to super-perfect ZK

In Section 3.1 we prove Theorem 1, which yields super-perfect zero-knowledge
proofs with exponentially vanishing completeness error. In Section 3.2 we obtain
super-perfect zero-knowledge arguments with perfect completeness, while assum-
ing the existence of perfectly binding commitment schemes.

3.1 On super-perfect ZK interactive proofs

In the following transformation we assume, without loss of generality, that p(z) <
2-17| for any € S. The transformation amounts to letting the prover perform
the original protocol with probability 1 — p(z), and abort otherwise. Of course,
the verifier will reject in case the prover aborts, and so perfect completeness is
lost, but this will allow a super-perfect simulation. Note that this transformation
relies on the hypothesis that, on any x € S, all simulators output L with the
same probability. As stated in the introduction, the transformation is due to
Malka [18, Sec. 4.1], although he states it only for the case of p = 1/2. (For sake
of simplicity, we also assume, w.l.o.g., that the original prover never sends the
empty string, denoted \.)

Construction 3.1 (the transformation used for establishing Theorem 1): Let
(P,V), S and p be as in the hypothesis of Theorem 1, and suppose that A’ is a
simulator for any fixred PPT strategy V' (e.g., V' may equal V or Vion) such that
for every x € S it holds that Pr[A'(z) = L] = p(z). Then, on common input x,
the two parties proceed as follows.

1. The prover invokes A’'(x) and sends the empty message X\ if and only if
A'(x) = L. In such a case, the verifier will reject.
2. Otherwise, the parties execute (P, V') on the common input x.

For every PPT strategy V*, consider the simulator A* guaranteed by the hy-
pothesis of Theorem 1. On input x, the corresponding new simulator (for V*)
computes v «— A*(x), outputs v if v # L and V*(x,\) otherwise.

Note that the foregoing protocol preserves the soundness error of V| whereas the
completeness error on input = € S increases by at most p(z) < 271*| (i.e., from
ec(|z|) to p(x) + (1 — p(x)) - ec(|z|)). Indeed, the verifier rejects if the prover got
unlucky (i.e., A’(z) yields 1), and so a cheating prover gains nothing by claiming
that it got L. The new simulators establishes the super-perfect ZK feature, and
Theorem 1 follows. Noting that in the case of honest-verifier ZK the condition
made in Theorem 1 hold vacuously, we immediate get the following corollary.

Super-Perfect Zero-Knowledge Proofs 127

Corollary 3.2 (honest-verifier super-perfect ZK): Every set S that has a honest-
verifier perfect ZK proof system has a honest-verifier super-perfect ZK proof sys-
tem. All additional features asserted in Theorem 1 hold as well.”

More importantly, applying Theorem 1 (or rather Construction 3.1) to the per-
fect zero-knowledge arguments of Naor et al. [19] (see also [10, Sec. 4.8.3]), we
obtain:

Corollary 3.3 (super-perfect ZK for N'P): Assuming the existence of (non-
uniformly strong) one-way permutations, every set in NP has a (black-box)
super-perfect ZK argument system.®

As stated in the introduction, super-perfect ZK arguments (with perfect com-
pleteness) for AP are implicit in [20] (see [21, Prop. 4.2]), where they are only
claimed to be perfect ZK. Their claim, which refers to the non-standard model of
PPT (in which a machine can sample [n] uniformly at cost n), is conditioned on a
seemingly stronger assumption (i.e., the existence of claw-free pairs of permuta-
tions), and is established using non-black-box simulators.? Hence, Corollary 3.3
is incomparable to the corresponding results that can be derived from [20, 21].
On the one hand, it is stronger, since it uses the standard model of PPT, and
provides black-box simulators, while relying on a seemingly weaker assumption.
On the other hand, it is weaker, since it does not provide perfect completeness.
Obtaining perfect completeness is the focus of Section 3.2.

3.2 On super-perfect ZK arguments with perfect completeness

Assuming the existence of perfectly binding commitment schemes, we show that
certain perfect ZK proof (or argument) systems can be transformed into super-
perfect ZK arguments with perfect completeness. The transformation refers to
perfect ZK proofs (or arguments) that have simulators that can always output
a perfectly random prefix of the interaction that misses only the last message
(from the prover). See Condition 3 below (whereas Conditions 1 and 2 are (a
strong form of) the standard requirement from perfect ZK).10

" But, again, perfect completeness is lost.

8 Again, the derived systems have exponentially vanishing completeness error.

% Specifically, the perfect ZK feature of their argument system is demonstrated using
Barak’s (non-black-box) simulation technique [3,4], whereas such a demonstration
actually yields a super-perfect simulator. This is the case because the simulation
(constructed according to Barak’s technique) amounts to executing the same pro-
tocol as the honest prover, while using the verifier’s program as a NP-witness to a
composed statement that the honest prover proves by using an NP-witness to the
actual input. The need to use the non-standard model of PPT arises because in the
known proof systems (e.g., [19]) the honest prover samples uniformly sets that have
size that is not a power of 2.

Specifically, Condition 2 requires perfect simulation of the interaction with P in case
of non-failure, which is the standard requirement of perfect ZK, whereas Condition 1
requires that failure occurs with probability exactly 1/2 (rather than at most 1/2).

10

128 Oded Goldreich and Liav Teichner

Definition 3.4 (an admissible class of perfect ZK protocols): Let (P, V') be an
argument system for S, and let Py denote the strategy derived from P by having
it abort just before sending the last message. We say that P is admissible if for
every probabilistic polynomial-time strategy V* there exists a (strict) probabilistic
polynomial-time algorithm A* such that for every x € S the following three
conditions hold.

1. Pr{A*(2)=(1,7)] = 1/2;
2. PrlA*() = (1,7) | 4°() = (1,)] = PH{(P V) (x)=a], for cvery 7 € 0,1
5. Pr(A*(x) = (0.7) | 4°(x) = (0,))] = Pr{(Po,V*)(x) = 2], for every 7 €

{0,1}*.
(Indeed, we parse the output of A* as a pair of the form (o,~) € {0,1} x {0,1}*,
where 0 = 0 indicates a failure to simulate interaction with P.)

Note that, in addition to requiring A* to output (P, V*)(z) whenever it fails to
output (P, V*)(z) (i.e., Condition 3), we also required the failure probability to
be ezactly one half (rather than at most 1/2). The latter condition can be as-
sumed, without loss of generality, whenever p is efficiently computable, provided
that we adopt the non-standard model of PPT machines in which a machine
can sample [n] uniformly at cost poly(logn) (as discussed in Section 1.2). Fur-
thermore, under a weaker non-standard PPT convention, in which a machine
can sample [n] uniformly at cost poly(n), both the perfect zero-knowledge proof
system for Graph Isomorphism (of [13]) and the perfect ZK argument for any
set in NP of Naor et al. [19] are admissible by Definition 3.4. (In both cases,
the convention is required in order to allow a PPT machine to uniformly select
a permutation over a set of a size larger than 2.) Actually, the perfect ZK ar-
gument for any set in NP of Naor et al. [19] are admissible by Definition 3.4
even when using the weaker non-standard model of PPT where the machine can
sample (only) the uniform distribution over [c] for ¢ = 6 (equiv., for ¢ = 3).11

In the following transformation, we shall use a perfectly binding commit-
ment scheme, denoted C'. That is, we shall assume that the distributions C(0)
and C(1) are computationally indistinguishable (by polynomial-size circuits) al-
though they have disjoint supports.'? Such commitment schemes can be con-
structed, assuming the existence of one-way permutations (see [10, Sec. 4.4.1]).
We denote the commitment to value v using coins s by Cs(v).

Construction 3.5 (the transformation of admissible protocols): Let (P, V) be
an argument system for S such that P is admissible by Definition 3.4. On com-
mon input x, the two parties proceeds as follows.

" Indeed, the perfect ZK argument system for NP based on 3-Colorability requires
that the prover and simulator sample a random permutation of 3 elements. Fur-
thermore, the simulator fails with probability exactly 1/3, for every input and every
probabilistic polynomial-time strategy V™.

2 Note that in some sources (e.g. [10, Sec. 4.4.1]) the perfect binding property of
commitment schemes only requires that the supports of C'(1) and C(0) intersect on
a set of negligible size, while we require that the supports of C(0) and C(1) are
totally disjoint.

Super-Perfect Zero-Knowledge Proofs 129

1. The parties execute (Py,V) on common input x; that is, they invoke the
original protocol, except that the prover does not send its last message, de-
noted [3.

2. The parties performs a standard coin tossing protocol (see [11, Sec. 7.4.3.1]).
Specifically, the verifier sends a commitment ¢ «— C(v) to a random bit v,
the prover responds (in the clear) with a random bit u, and the verifier de-
commits to the commitment (i.e., provides (v, s) such that ¢ = Cs(v)).

3. If the verifier has de-committed improperly (i.e., ¢ # Cs(v)), then the prover
sends the empty message, denoted \. Otherwise, if uw = v then the prover
sends 0, and otherwise it sends 8 (where we assume, w.l.o.g, that 8 & {0, \}).

4. If w = v then the verifier accepts, otherwise (i.e., u # v) it acts as V(a, 3),
where o denotes the view of V' in the interaction with Py (as conducted in
Step 1).

This transformation preserves the completeness error of (P, V), but the error in
the computational-soundness grows from €5(¢) to (14€5(€)+(£))/2, where p is a
negligible function. Indeed, computational-soundness is established by observing
that the prover can cause the verifier to accept only if either it guessed correctly
the value committed by the verifier (i.e., if v = v) or it could have cheated
anyhow in the corresponding (P, V') interaction. To reduce the computational-
soundness error, one can always use sequential repetitions, whereas using parallel
repetitions does not always work (because of issues with both computational-
sounduness (cf., e.g., [5]) and ZK (cf., e.g., [10, Sec. 4.5.4.1])).

Turning to the super-perfect ZK feature of the resulting protocol (and as-
suming that V* always de-commits properly), we rely on the simulator’s ability
to set u = v whenever it fails in its attempt to produce a full transcript. Hence,
we establish the following claim.

Claim 3.6 (super-perfect simulations): The prover strategy described in Con-
struction 8.5 is super-perfect zero-knowledge.

Proof: For every potential PPT strategy V*, let A* denote the corresponding
simulator as guaranteed by Definition 3.4. The new simulator will act as follows.

1. It invokes A* on input z, obtaining either a full transcript or a partial tran-
script.
Recall that each event happens with probability 1/2, and that a full tran-
script has the form (o, 3), where 8 ¢ {0, A} is the prover’s last message.
For sake of convenience, set § = 0 in the case that A* produced a partial
transcript (denoted o).

2. The simulator obtains a commitment ¢ from V*.
Note that ¢ determines a unique value, denoted v, such that a proper de-
commitment of ¢ yields v. (Here we rely on the perfect binding feature of C;
that is, for every c there exist at most one v such that for some s it holds
that Cs(v) = ¢.)

'3 Tndeed, by Definition 3.4, the output of A**(z) has the form (0, &), with probability
1/2, and (1, @ o B) otherwise.

130 Oded Goldreich and Liav Teichner

3. The simulator obtains the reaction of V* to both possible v € {0,1} (that
the verifier expects as the prover’s response in Step 2); that is, it obtains
dy — V*(a,u) for both u € {0,1}.

4. If in both cases V* acted improperly (i.e., did not provide a valid de-
commitment to c¢), then the simulator selects u at random in {0,1}, and
outputs V*(a, u, A).

(Obviously, («,u,) is what V* sees in the real interaction with the prover.)

5. If in both cases V* de-committed properly to the value v, then the simulator

outputs V*(a,v,0) if 8 =0 and V*(«a,1 — v, 3) otherwise.
(Here we rely on the fact that Pr[3=0] = 1/2, whereas in the real interaction
the prover responds with u = v with probability 1/2. Hence, in the real
interaction the prover will respond with 8 = 0 if and only if v = v (and
otherwise, when u = 1 — v, it response will be the actual message 5 # 0.)

6. If V* de-committed properly to the value v only when fed with a single value,
denoted u*, then we distinguish two cases.

Case of § =0: Output V*(c,1 —u*, A).
Case of 8 # 0: Output V*(o,u*, 8) if u* # v and V*(a, u*,0) otherwise.

It may be more intuitive to restructure the cases in Step 6 as follows:

Case of u* = v (i.e., proper de-commitment in response to v only): In this case, we

output V*(«,u*,0) if § # 0 and V*(«, 1 — u*, \) otherwise (i.e., 8 = 0).
Equivalently, output V*(«, u*,0) with probability 1/2 and V*(a,1 — u*, \)
otherwise.
In this case, in the real interaction, the prover selects u = u* with probabil-
ity 1/2 and seeing a proper de-commitment to v, responds with 0. Otherwise
(i.e., u # u*), the prover sees an improper de-commitment and responds with
. Hence, the foregoing output distribution matches the transcript of the real
interaction.

Case of u* # v (i.e., proper de-commitment in response to 1 — v only): In this case,
we output V*(a,u*,8) if § # 0 and V*(e, 1 — u*, \) otherwise.

Similarly, in this case the prover sees a proper de-commitment with proba-
bility 1/2 and responds with 8 # 0 in that case (and otherwise it responds
with A).

Hence, in both cases considered in Step 6, the simulator produces the same
distribution as in the real interaction. The same holds also in the situations
considered in Steps 4 and 5. W

4 From perfect NIZK to super-perfect NIZK

While Construction 3.1 is applicable also in the context of NIZK, where the
condition regarding p holds vacuously (cf. Corollary 3.2), this construction does
not preserve perfect completeness. Our aim here is to preserve perfect complete-
ness, and this can be done by “transferring” the simulation attempt from the

Super-Perfect Zero-Knowledge Proofs 131

prover (who cannot be trusted to perform it at random) to the common refer-
ence string (which is uniformly distributed by definition). Specifically, we will
establish Theorem 2, which presupposed that the failure probability function
p: S — [0,0.5] is efficiently computable. Actually, we assume, without loss of
generality, that p(z) < 271#| for every x € {0,1}* (and not merely for = €).
(Again, we assume, w.l.o.g., that the original prover never outputs the empty
string).

Construction 4.1 (the transformation): Let (P, V), S, A and p be as in the
hypothesis of Theorem 2; and let p denote the length of the common reference
string and p' denote the number of coins used by the simulator A. The new NIZK
for inputs of length ¢ is as follows.

Common random string: An (p(£) + p'(£))-bit string, denoted (w,r), where r is
interpreted as an integer in {0, ..., 2r'(0) — 1}.

Prover (on input z € {0,1}0): If r < p(z) - 2¢'(), then the prover outputs the
empty message \. Otherwise (ie., r > p(x) - 2”,(2)), the prover outputs
P(z,w).

Verifier (on input « € {0,1}* and alleged proof y): If r < p(z) - 2¢'©), then the
verifier accepts. Otherwise (i.e., 7 > p(x)-2° (D)), the verifier decides accord-
ing to V(z,w,y).

The new simulator invokes A(x) obtaining the value v. If v = L, then the sim-
ulator selects uniformly w € {0,1}*© and r € {0,...,p(x) - 2°°© — 1}, and
outputs ((w,r),A). Otherwise (i.e., v = (w,y)), the simulator selects uniformly
re{p(z)-2¢'0 . 2¢O — 1}, and outputs ((w,r),y).

The completeness error of the new system on input x is upper bounded by
(1 —p(x)) - e(|z|) < ec(Jz|), whereas the soundness error is upper bounded by
p(|z]) + (1 = p(x)) - es(|z]) < es(|z]) + 271*! where ¢, and €, denote the error
bounds of (P, V). Note that the distribution of the verifier’s view both in the
actual system and in its simulation equals ((Uy (), Uy (r)), Y), where Y = P(x,w)
if r > p(x) - 2¢'() and Y = X otherwise.

Recall that the construction of the new simulator relies on the ability to
generate uniform distributions on the sets [p(z) - 2¢'®] and [2¢'() — p(z) - 2¢' D],
which is possible in the standard PPT model only if p(z) = 1/2. This was not
the case above, since we started by reducing the simulation error to p(z) < 2~1%I,
which is the reason that Theorem 2 holds only in the non-standard PPT model
(as stated in it). However, if we start with p = 1/2, then Construction 4.1 yields
the following.'

Corollary 4.2 (super-perfect NIZK in the standard PPT model): Let (P, V),
S, A and p be as in Construction 4.1, and suppose that p = 1/2. Further suppose

14 Indeed, in this case the construction can be simplified. We may use a common
reference string of the form (w, o) € {0,1}*F have the prover output P(z,w) if
and only if o = 1, and have the verifier accept if either o = 0 or V(z,w,y), where y
denotes the alleged proof.

132 Oded Goldreich and Liav Teichner

that the sum of completeness and soundness error of (P, V') are noticeably smaller
than 1/2. Then, S has a super-perfect non-interactive zero-knowledge proof sys-
tem, where the simulation is in the standard PPT model, and the completeness
and soundness errors are exponentially vanishing. Furthermore, if (P,V) has
perfect completeness, then so does the resulting system.

Note that applying Construction 4.1 to (P, V') yields a system with completeness
error €./ def €c/2 and soundness error at most e’ def (14 €)/2, where €, and &
denote the error bounds of (P, V). Using the assumption e.(¢) + ¢(¢) < 0.5 —
1/poly(£), we have e.'(¢£)+ ¢’ (¢) < 1—1/poly(¢), which allows for error reduction
that yields the stated (exponentially vanishing) error bounds. Interestingly, in
this case, we apply error-reduction on the resulting NIZK system (rather than

on the simulator A provided for the original NIZK system).

5 A super-perfect NIZK for Blum Integers

We first recall the definition of (generalized) Blum integers.

Definition 5.1 (Blum Integers): A natural number is called a (generalize) Blum
Integer if it is of the form p°q? such that p = ¢ = 3 (mod 4) are different odd
primes and e = d = 1 (mod 2). The set of Blum integers is denoted B.

The following standard notations will be used extensively. For any natural num-
ber n, we let Z,, denote the additive group modulo n, and Z;, denote the corre-
sponding multiplicative group.

We let Q,, C Z; denote the set of quadratic residues modulo n, and recall
the definition of the Jacobi symbol modulo n, viewed as a function JS,, : Z —
{-1,0,1}, and a basic fact regarding it: For a prime p, it holds that JS,(r) =0
if r = 0 (mod p), whereas JS,(r) = 1 if (rmodp) € @, and JS,(r) = —1
otherwise (i.e., (r mod p) € Z} \ Q). For composite n = ning, it holds that
JSp(r) = JSp, () - ISy, (r), yet the Jacobi symbol modulo n can be computed
efficiently also when not given the factorization of n. Note that JS,(r) =1 for
every 1 € Q.

Another important set, first utilized in [2], is S, ef {r € {1,...,|[n/2]} :
JS,(r) = 1} C Zf. For n € B it holds that |S,| = |Z}|/4 (see Claims 5.3
and 5.5). We consider the following three functions:

1. The modular squaring function g, : Z — Q,, defined as g, (r) = r? mod n.
2. The “first half” function hy, : Z,, — Z|y/2) defined as hy(r) = r if r < n/2
and h,(r) = n — r otherwise. Indeed, if n € B, then h,, maps Q, to S,.

3. Their composition f,, = hy, o gp; that is, f, () = hp(gn(r)).

Abusing notation, we extend these functions to sets in the obvious manner.

Super-Perfect Zero-Knowledge Proofs 133

5.1 Well known facts

The following well-known facts will be used in our construction and its analysis.
The reader may consider skipping this subsection. We start by recalling two
computational facts.

1. The set of prime powers is in P.
(Justification: Try all possible powers e € [[log, n]], and use the primality
tester of [1].)

2. The set {(n,r):7r € S,} isin P.
(Justification: Recall that the Jacobi symbol is efficiently computable.)

We next recall a few elementary facts regarding the foregoing sets and functions.

Claim 5.2 (on the size of @Q,, and f,,(Sy)):

1. Suppose thatn = Hie[k} pst such that the p;’s are different odd primes. Then,

|Qn| =27%-1Z;].
2. For every n € N, it holds that | fn(Sn)| < |Qnl-

Proof: Part 1 holds since r € Z is in @, if and only if for every ¢ € [k] it holds
that 7 mod p;* is in sti, whereas each s € Qp?i has exactly two modular square

root (which sum-up to p{*). Part 2 holds sincelfn(Sn) CrZ)=h,(Qn). N

Claim 5.3 (on JS,(—1) and the form of n): Suppose that n = J[;cp p;* such
that the p;’s are different odd primes, and let I = {i € [k] : p; = 3 mod 4}.
Then, the following three conditions are equivalent: (1) n = 1 (mod 4); (2)
ISn(—1) =1; and (8) Y ;. e is even.

In particular if n is a Blum integer, then JS,(—1) = 1.

Proof: Note that n = [],.;3% = 3%icr® (mod 4), which implies that n =
1 (mod 4) if and only if } 7, ; e; is even. On the other hand, note that JS,,(—1) =
[Licp ISy, (1) =Tl (1) = (—1)2icr ¢ where the second equality holds

since for every odd prime p it holds that JS,(—1) = 1lif and only if p = 1 (mod 4).
H

Claim 5.4 (on f, when n is a Blum integer): For n € B, the function f, is a
permutation over S, .

Proof: Recall that n € B has the form p°q? such that p = ¢ = 3 (mod 4) are
distinct odd primes and e = d = 1 (mod 2). First note that g, is a permutation
over), because > = y? (mod n) implies that = £y (mod p°) whereas
|Qpe N {r,p¢ —r}| =1 for every r € Z; (since JSpe(—1) = —1). Ditto for the
situation mod ¢?. Next note that h, is a bijection from Q, to S,, because
|Qn N {r,n —r} < 1for any r € Z%. The claim (restated as f,(Sn) = Sn)
follows since fr(Qn) = hn(gn(Qn)) = hn(Qn) = Sy and fr(Sn) = fu(hn(Sn)) =
fn(hn(Qr)) = fu(Qr), where the last equality holds since g,(—1) = 1 (and so
for every x € Z} it holds that g, (hn(z)) = gn(z)). W

134 Oded Goldreich and Liav Teichner

Claim 5.5 (on the size of Sp): If JS,(—1) = 1, then |S,| > |Z%|/4, where
equality holds if n is not of the form 2¢s? for some e,s € N.

Proof: Using JS,,(—1) =1 it follows that the elements of Z that have Jacobi
symbol 1 are paired such that JS,(s) = 1 if and only if JS,(n —s) = 1. This
implies that |S,,| = [{s € Z : JS,(s)=1}|/2. The latter set contains half of | Z}|
if there exists r € Z} such that JS,(r) = —1, since in that case z +— rz is a
bijection of {s € Z} : JS,,(s) = 1} to {s € Z}, : IS,,(s) = —1}. Lastly, note that
such r exists if and only if n is not of the form 2¢s2 for some e, s € N, whereas
JSgeg2(r) = JS4(r)* =1 for every r € 7. » (and in this case [Soeg2| = |Zge2]/2).

5.2 The proof system

Recall that there exist (deterministic) polynomial-time algorithms for (1) decid-
ing if a number is a prime (ditto for a prime power), and (2) deciding whether
r € S, when given n and r. The main observation underlying the proof system
is that when n € B the function f,, is a permutation over S,,, whereas for n ¢ B
it holds that |f,(S.)| < |Sn|/2 (provided that n = 1 (mod 4) and n is not a
prime power). (Establishing the claim regarding n & B is the core of the proof
of Proposition 5.7 (below).) Hence, the proof system amounts to distinguishing
the case f,(S,) = Sy from the case |f,(S,)| = |Sn|/2 by asking the prover to
provide a pre-image under f, of a uniformly distributed w € S,, (where the case
w & S, is treated separately).'® The super-perfect simulator can provide such
transcripts by uniformly selecting r € Sy, and outputting (f(r),r), where f,(r)
represents the common reference string (and r be the prover’s message/output).

Construction 5.6 (a non-interactive proof system for B):

Input: A natural number n. Let £ = [logy n].
Common reference string: An £-bit string, denoted w, interpreted as an integer

m Zgz .

Prover: If w € S,, and there exists r € S,, such that f,(r) = w, then the prover

outputs r (otherwise it outputs 0).

(Note that for n € B and w € S,,, there exists a unique r € S,, such that

fa(r) = w.)
Verifier: When receiving an alleged proof r, the verifier proceeds as follows.

1. Discarding obvious no-instances: If n is a prime power orn £ 1 (mod 4),
then the verifier halts outputting 0 (indicating rejection).

2. Handling inputs with a small prime factor: The verifier checks if there
exists a prime p € {3,...,4} that divides n and finds the largest e such
that p© divides n. If n/p® is not a prime power, then the verifier rejects.
Otherwise, letting q@ be this prime power (i.e., n = p°q?), the verifier
accepts if p = q = 3 (mod 4) and e = d = 1 (mod 2), and rejects
otherwise.

15 See Step 3. In addition, Steps 1 and 2 take care of other pathological cases. The
main action takes place in Step 4.

Super-Perfect Zero-Knowledge Proofs 135

3. If w & Sy, then the verifier halts outputting 1 (indicating acceptance).
4. If r € S, and fn(r) = w, then the verifier outputs 1. Otherwise, it
outputs 0.

Note that the foregoing system has soundness error at least 1/2, due to Step 3.
However, as shown next, its soundness error is upper-bounded by a constant
smaller than 1, and so we can apply straightforward error reduction (since the
system has perfect completeness).

Proposition 5.7 (analysis of Construction 5.6): Construction 5.6 constitutes a
super-perfect NIZK for B with perfect completeness and soundness error smaller
than 16/17.

Proof: Suppose that n = p°q? such that p = ¢ = 3 (mod 4) are different
odd primes and e = d = 1 (mod 2). Then, f, is a permutation over S,, (see
Claim 5.4), and perfect completeness holds (since no step of Construction 5.6
may cause rejection). In such a case, the super-perfect simulation proceeds as
follows.

1. Select uniformly r € Zoe.
2. If r € S,, then output (f,(r),r), else output (r,0).

Note that the simulator’s output is distributed identically to the distribution
produced by the prover. In both distributions of pairs, denoted (w,y), it holds
that w is distributed uniformly in Zge, whereas y is a function of w (and n)
determined as follows: If w ¢ S,,, then y = 0, and otherwise y € S, is the unique
pre-image of w under f,. Hence, it remains to establish the soundness of the
system.

Turning to the soundness condition, suppose that n ¢ B. We may assume
that n is not a prime power and that n = 1 (mod 4) (or else Step 1 would
have rejected). We may also assume that n has no prime factor smaller than
¢ (or else Step 2 would have rejected).!® Now, with probability n/2¢ > 1/2,
the random string w is in Z,,. Conditioned on this event, we consider the prime
factorization of n = Hie[k] p;* (where the p;’s are different odd primes), and
show that w ¢ Z is unlikely, whereas if w € Z then the verifier rejects with
probability at least 1/8.

First, recall that |Zy,| = [];cy ((pi — 1) -p%~1). Hence

|Zn\ZZ|:1_Hpi—1

|Zn] e Pl

k

1

<1-— — —
=1 (1 é)

16 This is the case since if n = p°n’ & B for e > 1 and an odd prime p € [€] that does
not divide n/, then either n’ is not a prime power or the prime factorization of n is
found in Step 2 leading the verifier to reject.

136 Oded Goldreich and Liav Teichner

where the inequality is due to p; > ¢ for every i € [k]. Hence, Pr,jw € Z} |w €
Zp) <1—(1—0YH% < k/l = 0(1), since k < log,n = o(f). Considering the case
that w € Z7, and using the fact that |S,| > |Z|/4 (see Claims 5.3 and 5.5), we
infer that w € S;, with probability

Sul _m |Zal ISal
2¢ 26 1 Z, | Zn)
1 1
Z.(1=0(1)- =

> S (l=o() 1

which is larger than 2/17. Hence, the verifier executes Step 4 with probability
greater than 2/17.

Recalling that |f,(S,)| < 27% - |Z#| (see Claim 5.2) while |S,,| = |Z%|/4, we
infer that if & > 3, then Step 4 rejects with probability at least half. We are
left with the case of k = 2, which means that n = p°q? ¢ B such that p and ¢
are different odd primes (and e,d > 1). Hence, w.l.o.g., either p = 1 (mod 4) or
e =0 (mod 2), and p® =1 (mod 4) follows in both cases. We shall show that in
this case | fn(Sn)| < |Sn|/2, by showing that for each r € S,, there exists ' € S,
such that v # r and f,(r") = fu(r).

For any r € Sp, let 71 = r mod p® and r, = r mod ¢%. Consider the unique
s € Z such that s = —r; (mod p®) and s = r, (mod ¢?). Then, s # r and s #
n—r, whereas s> = r? (mod n), which implies f,,(s) = f.(r). On the other hand,
ISn(n —) = ISp(s) = ISpe(—r1) - ISya(r2) = JISpe(r1) - IS4a(re) = ISu(r) = 1,
where the first equality uses JS,,(—1) = 1 (which holds by n = 1 (mod 4) and
Claim 5.3), the third equality uses JS,-(—1) = 1 (which holds by p® = 1 (mod 4)
and Claim 5.3), and the last equality uses r € S,,. Hence, either s or n—sisin S,
(since JS,,(n — s) = JS,(s) = 1), and it follows that |{r, s,n—s}NS,| > 2. Having
shown for each r € S,, there exists r' € S,, such that 7’ # r and f,,(r") = fn(r),
we conclude that |f,,(Sn)| < |Sn|/2.

Let us recap. If n ¢ B, then the verifier reject with probability at least

P Spl- P S S, 2. 1_1
rylw e Sy] - Pryjw & f(Sp)|lw € Sp] > 7 5= 17

and the proposition follows. [l

5.3 A complete promise problem

Following Sahai and Vadhan [22], who identified promise problems that are
complete for the class of promise problems that has statistical zero-knowledge
proof systems, analogous results were obtained for statistical NIZK proof sys-
tems (see [14]) and perfect NIZK proof systems (see [18]). Following Malka [18,
Sec. 2], we identify a very natural promise problem that is complete for super-
perfect NIZK proof systems with perfect completeness. The promise problem is
defined next.

Definition 5.8 (the promise problem (Uyes, Uno)):

Super-Perfect Zero-Knowledge Proofs 137

— The set Uyes consists of all circuits C : {0,1}° — {0,1}™ such that C(Uy) is
distributed identically to Up,.

— The set Uy, consists of all circuits C : {0,1}¢ — {0,1}™ such that the support
of C(Uy) has size at most 2™~ 1.

We assume that the circuits are given in a format in which it is easy to determine
the number of bits in their inputs and in their outputs. We comment that the
promise problem considered by Malka [18, Def. 2.2] is related but different (i.e.,
it required that for a yes-instance C it holds that C(U¢)pm—1) = Um—1 and
Pr[C(Ug)m = 1] > 2/3, whereas for a no-instance Pr[C(Uy),, = 1] < 1/3).

The definition of super-perfect NIZK proof systems extend naturally to promise
problem (cf. [23]). Loosely speaking, a promise problem (Ilyes, ITyo) is a pair of
non-intersecting sets, and the soundness condition refers only to inputs in T,
(rather than to inputs in {0, 1}*\ IIyes). (The completeness and zero-knowledge
conditions refer to all inputs in ITycs.)

Theorem 5.9 ((Uyes, Uno) is complete for SPNZZK): Let SPNIZK, denote
the class of promise problems having a super-perfect NIZK proof system of perfect
completeness. Then, (Uyes, Uno) is in SPNITZK, and every problem in SPNIZK,
is Karp-reducible to (Uyes, Uno).

Proof: The idea underlying the proof of Theorem 3 (presented in Section 5.2)
can be used to present a super-perfect NIZK proof system of perfect completeness
for (Uyes, Uno). Specifically, on input a circuit C : {0,1}* — {0,1}™ and common
reference string w € {0, 1}, the prover outputs a uniformly distributed string
r € C71(w), and the verifier accepts if and only if C(r) = w. Perfect complete-
ness and soundness error of 1/2 are immediate by the definition of (Uyes, Uno),
whereas super-perfect ZK is demonstrated by a simulator that uniformly selects
r € {0,1}¢ and outputs (C(r),7), where C(r) represents the simulated common
reference string and r represents the simulated proof output by the prover on
input C' (and common reference string C(r)).

Assuming that (IIyes, IIo) € SPNIZK;, we show a Karp-reduction of
(Iyes, ITno) t0 (Uyes,Uno). Let (P, V) be the non-interactive proof systems of
(Iyes, ITno), and A be the corresponding simulation. Let £ = ¢(|x|) denote the
number of coin tosses used by A on input z, and m denote the length of the
common reference string. (For sake of simplicity, we assume, without loss of
generality, that V is deterministic and that the soundness error of (P, V) is at
most 0.5 — 27™, where the probability is taken over all possible choices of the

common reference string.) Now, on input x, the reduction produces the following
circuit C,, : {0,1}¢ — {0,1}™.

1. On input » € {0,1}*, the circuit C, invokes A on input x and coins r,
and obtains the outcome (w,y), where w represents the simulated common
reference string and y represents the simulated proof output by P on input
x (and common reference string w).

2. The circuit C, outputs w if V(z,w,y) = 1 and 0™ otherwise.

138 Oded Goldreich and Liav Teichner

Observe that if & € IIyes then Cy(Up) = U, whereas if & € IT,,, then the support
of C,(Uy;) contains at most (0.5 —27™)-2™ 4+ 1 = 2™~ strings, where the extra
unit is due to the possible case that V(x,0™, P(x,0™)) # 1. The claim follows.

6 Open Problems

All the following problems refer to ZK proof systems (rather than to ZK argu-
ment systems). For a wider perspective, we start with a well-known open problem
regarding perfect ZK (see, e.g., [23, Chap. 8]).

Open Problem 6.1 (perfect ZK versus statistical ZK): Let SZK be the class
of sets having statistical (a.k.a almost-perfect) zero-knowledge interactive proof
system. Prove or disprove, under reasonable assumptions, the conjecture by which
not all sets in SZIK have perfect zero-knowledge interactive proof systems. Ditto
for having a perfect zero-knowledge proof system with perfect completeness.

Recall that any set in SZIC has a statistical zero-knowledge proof system with
perfect completeness (via the transformation to public-coin systems and the use
of Lautemann’s technique [17]; see [23, Chap. 5] and [9], resp.). This is not
known to be the case for perfect zero-knowledge. In particular, it is even not
known whether all sets in BPP have perfect zero-knowledge proof systems with
perfect completeness. (Indeed, all sets in coRP do have perfect zero-knowledge
proof systems with perfect completeness, in which the prover remains silent.)
Turning to the subject-matter of this work (i.e., super-perfect ZK), we ask:

Open Problem 6.2 (super-perfect ZK versus perfect ZK): Let PZK be the
class of sets having perfect zero-knowledge interactive proof system. Prove or
disprove, under reasonable assumptions, the conjecture by which not all sets in
PZIC have super-perfect zero-knowledge interactive proof systems. Ditto for zero-
knowledge proof systems with perfect completeness, where the question may refer
both to the standard and non-standard models of PPT machines.

Recall that the difference between the standard and non-standard models of
PPT machines arises only with respect to super-perfect ZK. Indeed, one may
ask the following

Open Problem 6.3 (super-perfect ZK: models of PPT): Let S be a set having a
super-perfect zero-knowledge interactive proof systems with perfect completeness
under one of the two non-standard models of PPT machines. Does S necessarily
has a super-perfect zero-knowledge interactive proof systems with perfect com-
pleteness under the standard model of PPT machines. Ditto for zero-knowledge
proof system with non-perfect completeness.

It is tempting to think that the question regarding non-perfect completeness can
be resolved by applying Theorem 1, but this presumes that all (super-perfect ZK)

Super-Perfect Zero-Knowledge Proofs 139

simulators use their distribution generating device in the same manner (i.e., with
the same n’s and for the same number of times).!” The same questions arise with
respect to NIZK.

Open Problem 6.4 (super-perfect NIZK versus perfect and statistical NIZK):
Address the non-interactive zero-knowledge analogues of Problems 6.1 and 6.2.
Ditto for the perfect completeness version of Problem 6.3.

Acknowledgments

We are grateful to Alon Rosen and Amit Sahai for useful discussions. This re-
search was partially supported by the Minerva Foundation with funds from the
Federal German Ministry for Education and Research.

References

10.

M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in P. Annals of Mathemat-
ics, Vol. 160 (2), pages 781-793, 2004.

W. Alexi, B. Chor, O. Goldreich and C.P. Schnorr. RSA/Rabin Functions:
Certain Parts are As Hard As the Whole. SIAM Journal on Computing,
Vol. 17, April 1988, pages 194-209.

B. Barak. How to Go Beyond the Black-Box Simulation Barrier. In 42nd
IEEE Symposium on Foundations of Computer Science, pages 106—-115, 2001.
B. Barak. Non-Black-Box Techniques in Crypptography. PhD Thesis, Weiz-
mann Institute of Science, 2004.

M. Bellare, R. Impagliazzo and M. Naor. Does Parallel Repetition Lower
the Error in Computationally Sound Protocols? In 88th IEEE Symposium on
Foundations of Computer Science, pages 374-383, 1997.

M. Blum, A. De Santis, S. Micali, and G. Persiano. Non-Interactive Zero-
Knowledge Proof Systems. SIAM Journal on Computing, Vol. 20, No. 6, pages
1084-1118, 1991. (Considered the journal version of [7].)

M. Blum, P. Feldman and S. Micali. Non-Interactive Zero-Knowledge and its
Applications. In 20th ACM Symposium on the Theory of Computing, pages
103-112, 1988. See [6].

G. Brassard, D. Chaum and C. Crépeau. Minimum Disclosure Proofs of
Knowledge. Journal of Computer and System Science, Vol. 37, No. 2, pages
156—189, 1988. Preliminary version by Brassard and Crépeau in 27th FOCS,
1986.

M. Fiirer, O. Goldreich, Y. Mansour, M. Sipser, and S. Zachos. On Complete-
ness and Soundness in Interactive Proof Systems. Advances in Computing
Research: a research annual, Vol. 5 (Randomness and Computation, S. Micali,
ed.), pages 429-442, 1989.

O. Goldreich. Foundation of Cryptography: Basic Tools. Cambridge University
Press, 2001.

17 This presumption holds trivially when referring either to the honest-verifier version
or to the NIZK version.

140

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Oded Goldreich and Liav Teichner

O. Goldreich. Foundation of Cryptography: Basic Applications. Cambridge
University Press, 2004.

O. Goldreich. Computational Complexity: A Conceptual Perspective. Cam-
bridge University Press, 2008.

O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing but
their Validity or All Languages in NP Have Zero-Knowledge Proof Systems.
Journal of the ACM, Vol. 38, No. 3, pages 691-729, 1991. Preliminary version
in 27th FOCS, 1986.

O. Goldreich, A. Sahai, and S.P. Vadhan. Can Statistical Zero Knowledge
Be Made Non-interactive? or On the Relationship of SZK and NISZK. In
Crypto99, pages 467-484, 1999.

S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of Inter-
active Proof Systems. SIAM Journal on Computing, Vol. 18, pages 186208,
1989. Preliminary version in 17th STOC, 1985. Earlier versions date to 1982.
J. Groth, R. Ostrovsky, and A. Sahai. Perfect Non-interactive Zero Knowl-
edge for NP. In 25th Furocrypt, Springer Lecture Notes in Computer Science
(Vol. 4004), pages 339-358, 2006.

C. Lautemann. BPP and the Polynomial Hierarchy. Information Processing
Letters, Vol. 17, pages 215-217, 1983.

L. Malka. How to Achieve Perfect Simulation and A Complete Problem for
Non-interactive Perfect Zero-Knowledge. In 5th TCC, Springer Lecture Notes
in Computer Science (Vol. 4948), pages 89-106, 2008.

M. Naor, R. Ostrovsky, R. Venkatesan and M. Yung. Zero-Knowledge Argu-
ments for NP can be Based on General Assumptions. Journal of Cryptology,
Vol. 11, pages 87-108, 1998. Preliminary version in Crypto92.

R. Pass and A. Rosen. New and improved constructions of non-malleable
cryptographic protocols. SIAM Journal on Computing, Vol. 38 (2), pages
702-752, 2008.

R. Pass and A. Rosen. Concurrent Non-Malleable Commitments. STAM Jour-
nal on Computing, Vol. 37 (6), pages 1891-1925, 2008.

A. Sahai and S. Vadhan. A Complete Promise Problem for Statistical Zero-
Knowledge. Journal of the ACM, Vol. 50 (2), pages 196—249, 2003. Preliminary
version in 38th FOCS, 1997.

S. Vadhan. A Study of Statistical Zero-Knowledge Proofs. PhD Thesis, De-
partment of Mathematics, MIT, 1999.

See http://people.seas.harvard.edu/~salil/research/phdthesis.pdf

