On coarse and fine approximate counting of ¢-cliques

Oded Goldreich
Department of Computer Science
Weizmann Institute of Science, Rehovot, ISRAEL.
oded.goldreich@weizmann.ac.il

December 19, 2024

Abstract

For any fixed t, we present two fine-grained reductions of the problem of approximately
counting the number of t-cliques in a graph to the problem of detecting a t-clique in a graph.
One of our reductions is slightly better than the prior reduction of Dell, Lapinskas, and Meeks
(SODA20) and its improvement by Bhattacharya, Bishnu, Ghosh, and Mishra (STACS22).
More importantly, we provide alternative presentations of their reductions, which we believe to
be conceptually simpler.

The pivot of the foregoing works is the notion of coarse approximate counting; for exam-
ple, think of approximating the number of t¢-cliques in n-vertex graphs up-to a O(log n)o(t)
factor. While it is easy to reduce fine (i.e., 1 4 € factor) approximate counting of solutions to
NP-complete search problems to their coarse versions (ditto for natural problems in P such as
perfect matching), these simple reductions fail in the context of fine grained complexity. One
of the contributions of Dell et al. is providing a fine-grained reduction of standard (i.e., fine)
approximate counting of ¢-cliques to coarse-approximate counting them. We survey this reduc-
tion, and also provide an alternative one. The alternative (alas inferior) reduction composes
a reduction of uniform generation of ¢t-cliques to coarse-approximate counting them with the
standard reduction of (fine) approximate counting to uniform generation. The key observation
here is that uniform generation of t-cliques can be reduced to coarsely-approximate counting
t-cliques (rather than to fine-approximate counting t-cliques).

In addition, we survey the coarse approximate counter of t-cliques of Bhattacharya et al.,
and improve its performance by a small twist.

Given that I am not an expert on fine-grained complexity and that this memo is mostly of pedagog-
ical value, I allowed myself a non-conventional structure and contents. In particular, I do not start
with an introduction to the wider context and do not provide a scholarly review of prior works.
My impression is that the most relevant prior works are [4, 2, 5, 3], and that the interested reader
may find an adequate scholarly account there.



The nature of this memo. As hinted in the abstract, this memo combines an exposition of
known results with some technical improvements and alternative conceptual perspectives. The
expositional aspect provides an alternative presentation, which is more conceptually oriented, of
results that appeared in [5, 3]. In particular:

e The reduction of coarse approximate counting of t-cliques to detecting the existence of ¢-
cliques, presented as Algorithm 3.1, is due to [3].

e The direct reduction of fine approximate counting of t-cliques to coarse approximate counting
of t-cliques, captured by Theorem 5.2, is essentially due to [5].

e The reduction (presented in Section 2) of auxiliary problems regarding t-cliques that fit a given
prefiz to problems regarding t-cliques (proper) is due to [5].

Our own original contributions are confined to improving the performance of Algorithm 3.1 (see
Theorem 3.5) and to directly reducing uniform generation of ¢-cliques to coarse approximate count-
ing of t-cliques (see Theorem 4.3). The latter reduction is inferior to the indirect (and more complex)
reduction that is given in [5], which builds on Theorem 5.2. (The story behind this memo is told
in Section 6.)

Applicability to hyper-edges in t-uniform hyper-graphs. Our presentation refers to t-
cliques in graphs, but parts of it are quite generic and apply to any search problem (see, e.g.,
Theorems 4.3 and 5.2). We stress that the input graph is given explicitly to all algorithms and
reductions that we discuss. In contrast, the aforementioned results of [5, 3] refer to a model of
t-uniform hyper-graphs in which the input is represented by an “independence” (resp., “colored
independence”) oracle that answer queries of the type “does set S contain a hyper-edge?” (resp.,
“does the t-partition (S, ...,S;) of S contain a hyper-edges with a single vertex in reach part?”).!
With the exception of the standard reduction from the general case to the t-partite case, our entire
presentation applies to the context of t-uniform hyper-graphs. Hence, Theorems 4.3 and 5.2 are
applicable to general t-uniform hyper-graphs, but Theorem 3.5 is applicable to t-uniform ¢-partite
hyper-graphs only.

!The foregoing model, which was introduced and generalized in [1, 4, 5], is aimed to address the fact that an explicit
representation of the hyper-graph trivializes the problem of counting hyper-edges, whereas representing the n-vertex
hyper-graph by a “hyper-edge oracle” (i.e., e : ([?]) — {0,1} such that e(v1,...,v¢) = 1 if and only if {v1,...,v:} is a
hyper-edge) eliminates all non-trivial algorithms. Furthermore, the foregoing model is tailored for the presentation
of reductions from counting problems to decision problems, alas this model restricts these reductions to querying
sub-instances of the given instance (i.e., induced subgraphs of the input graph). We stress that, with the exception
of the standard reduction from the general case to the t-partite case, the reductions presented in this memo can be
stated within this (restricted) framework.



Contents

1 Overview 1
1.1 Obtaining a Coarse Approximate Counter For ¢-Cliques . . . . . . . ... ... ... 2
1.2 Reducing Fine Approximation to Coarse Approximation . . . . . . .. .. ... ... 3

1.2.1  The first reduction: going through uniform generation . . . . .. .. .. ... 3
1.2.2 The second reduction: the direct route . . . . . . . . ... .. ... .. 3
1.3 Organization . . . . . . . . . 4

2 Preliminaries 5

3 Coarse Approximation For ¢-Cliques 6
3.1 The Starting Point . . . . . . . ... L 6
3.2 The Actual Procedure (For ¢-Cliques) . . . . . . . .. ... ... ... ... ..... 7

4 Approximate Counting Versus Uniform Generation 13
4.1 The Standard Presentation Adapted to ¢-Cliques . . . . . . .. .. ... ... .... 14
4.2 Using Coarse Approximate Counters . . . . . . . . . . . . . .. ... 15

5 The Direct Reduction of Fine Approximate Counting of ¢-Cliques to Coarse
Approximate Counting of ¢t-Cliques 19

6 The Story Behind this Memo 22



1 Overview

This memo is pivoted at the notion of a coarse approximate counting of solutions to NP-search
problems with a focus on fine-grained complexity and problems such as ¢-Clique. By coarse approx-
imation we means approximation up-to large, but non-trivial factors. Specifically, we shall consider
the problem of approximating the number of t-cliques in n-vertex graphs up-to a O(log n)o(t) fac-
tor. This stands in contrast to the standard notion of approximation, where on input a proximity
parameter € > 0, one seeks approximation up-to a factor of 1 +¢. We call the latter approximation
fine.

The celebrated result of Stockmeyer [8] asserts that approximately counting the number of solu-
tions for any NP-search problem is randomly reducible to NP. The proof relies on the observation
that NP is expressive enough to implement a sieving process that uses hashing. This observa-
tion does not seem to hold in the context of the corresponding computational problems regarding
t-cliques.

Likewise, in the standard context of complexity theory it is easy to reduce fine approximate
counting to coarse approximate counting. This is done by taking Cartesian products, while noting
that the number of solutions to a instance that consists of k copies of the original instance equals
the k™ power of the number of solutions to the original instance. Hence, an F-factor approximation
of the number of solutions to the “duplicated” instance yields an F'*/*-factor approximation of the
number of solutions to the original instance. Needless to say, this reduction cannot be applied in
the context of t-Clique and similar fine-grained complexity problems.?

In light of the above, it is not clear how to reduce approximate counting of ¢-cliquers to detecting
their existence. Furthermore, it may be the case that obtaining coarse approximations for the
number of t-cliques is easier than obtaining fine approximations of that number. This seems to be
the case, at least slightly and empirically, since Dell et al. [5] first designed a coarse approximation
algorithm for counting the number of ¢-cliques, and then used it to get a fine approximation (via a
reduction) that is somewhat slower. The issues at hand are thus the following:

1. Obtaining a coarse approximate counter for t-cliques.

2. Reducing fine approximate counting t-cliques to a corresponding coarse approximation.

We address these two issues in the following two subsections.

Applicability to hyper-edges in t-uniform hyper-graphs. We stress that although our pre-
sentation proceeds in terms of t-cliques, it can be adapted to the framework of [1, 4, 5] that refers to
t-uniform hyper-graphs and to oracle calls that answer queries regarding induced substructures of
the input hyper-graph. Note, however, that the adaptation of one of our reductions (i.e., reducing
coarse approximate counting to detection) works for ¢-partite hyper-graphs only. Unfortunately,
the standard reduction from the general case to the t-partite case cannot be implemented in the
foregoing framework.

2The straightforward reduction reduces (finely) approximating the number of ¢-cliques in a t-partite graph to
(coarsely) approximating the number of k - t-cliques in a k - t-partite graph.



1.1 Obtaining a Coarse Approximate Counter For ¢-Cliques

Coarse approximate counters of ¢-cliques in n-vertex graphs were presented in [5] and in [3]. We
provide a more conceptual presentation of the coarse approximate counting procedure that underlies
the proof of [3, Thm. 1.3], and improve upon it by introducing a twist. The main improvement is
in the approximation factor; specifically, reducing it from O(log?~2?n) to O(log~!n). Using the
reduction of (fine) approximate counting to coarse approximate counting (see Section 1.2.2), we
obtain an improvement on the complexity of (fine) approximately counting t-cliques; specifically,

Theorem 1.1 (reducing approximate counting ¢-cliques to detecting them): There exists an almost
linear-time procedure that, on input an n-vertex graph and slackness parameter € > 0, approzimates
the number of t-cliques in the graph up-to a factor of 1+¢, by making O(1/€?)-O(logn)?*+3 queries

to an oracle for deciding the existence of t-cliques in n-vertex graphs.

This improves over the query complexity of [3, Thm. 1.4], which is O(e72 - (logn)3*5).

As stated upfront, our improvement is mainly due to our improvement of the the coarse ap-
proximate counting procedure of [3, Thm. 1.3]. More importantly, we believe that our presentation
is more transparent.

Our perspective on the problem of (coarsely) approximating the number of ¢-cliques is rooted
in the abstract idea that underlies the reduction of approximate counting NP-witnesses to deciding
their existence. Specifically, in order to verify that the number of ¢-cliques in a graph is at least m,
we apply a “random sieve” of density 1/m to the set of t-cliques and check whether the resulting
graph had a t-clique. The question at hand is how to implement a random sieve, given that hashing
(which is the method of choice in the context of NP) does not seem adequate in the current setting.
Nevertheless, an appealing and straightforward way of implementing a random sieve in the current
context consists of selecting each vertex with probability p = (1/m)"/*, and considering the induced
subgraph.

Unfortunately, this straightforward implementation does not work. While each specific t-clique
passes this random sieve with probability 1/m, these choices are not independent enough, and the
dependency leads to our failure. Focusing (w.l.o.g) on the case of t-partite graphs, we note that
it not necessarily the case that there are Q(m!/*) vertices of the first part such that each of them
appears in Q(m{=D/t) cliques. However, for some i € [logy n], there exists Q(2%) vertices in the first
part such that each of them appears in (27 - m/logn) cliques. This suggests trying all possible
choices of i1, ...,4; € [logyn], and randomly sieving the vertices of part j, with probability 27%.

The foregoing suggestion is implemented and analyzed in one way in [3], and we implement and
analyze it a bit differently. In any case, it is evident that this approach, which tries all sequences
(i1, ..., i¢) € [logn]t while benefiting only from one of them, comes with an overhead of O(logn)! in
its query complexity and O(logn)'~! its approximation factor. We meet these intuitive bounds.
Specifically, we get

Theorem 1.2 (reducing coarse approximate counting t-cliques to detection): There exists an al-
most linear-time procedure that, on input an n-vertex graph, approrimates the number of t-cliques
in the graph up-to a factor of O(logn)!=! by making O(logn)! queries to an oracle for deciding the
existence of t-cliques in n-vertex graphs.

This improves over [3, Thm. 1.3], which achieves an approximation factor of O(logn)?~2 and makes

O(logn)'*2 queries. Our improvement is due to using a slightly more sophisticated probabilistic
analysis (and a corresponding algorithm) than [3].



1.2 Reducing Fine Approximation to Coarse Approximation

We present two different reductions of fine approximate counting of ¢-cliques to coarse approximate
counting of t-cliques. The first reduction goes through the problem of uniform generation of ¢-
cliques; it is simpler but yields a weaker time bound. The second reduction is a direct one and is
due to [5].

Both reductions refer to the “prefixes” of possible t-cliques (in an input n-vertex graph). As-
sociating the vertex set of the input graph with [n] = {0,1}1°82", a prefix of (vi,...,v;) € [n]* has
the form (vy,....,v4_p, @), where « is a string of length smaller than logyn and ¢’ € {0,1,...,t}.
As observed in [5], the set of t-cliques (in the original ¢-partite graph) that fit the latter prefix
corresponds to the set of t’-cliques in the ¢’-partite subgraph induced by the vertices that neighbor
all v;’s (for i € [t —t']) such that the first part of the ¢-partite subgraph contains only vertices that
have prefix «. Hence, problems regarding this auxiliary problems (i.e., problems regarding t-cliques
that fit a given prefix) are reduced to corresponding problems regarding ¢'-cliques, which in turn
are easily reducible to corresponding problems regarding t-cliques.

1.2.1 The first reduction: going through uniform generation

This reduction is the main conceptual contribution of the current memo. Here we take to the ex-
treme the known fact that the standard reduction of uniform generation of solutions (for NP-search
problems) to approzimately counting solutions is insensitive to the precision of the approximation.
This fact is typically observed with respect to fine approximate counters, and it is typically stated
for a slackness parameter that decreases at least linearly with the length of solutions; that is, when
using a (1 4 (1/5¢)-factor approximation, where ¢ denotes the length of solutions (see, e.g., [6,
Sec. 6.2.4.1] or the overview in Section 4.1).

We observe that using a coarse approximate counter still yields a meaningful (alas weak) notion
of uniform generation. Specifically, the uniform generation procedure will output a solution with
probability that is inversely related to the coarseness of the approximation. Even more specifically,
using an F-factor approximation of the number of ¢-bit long solutions, for every m € [¢], we can
obtain a procedure that makes O(m - 2¢/™) oracle calls (to the coarse approximator) and produces
output with probability F~(m+1)  This procedure, generalizes the standard one, which uses m = ¢,
by using m iterations and extending the current prefix by ¢/m bits in each iteration.

In the special case of t-cliques in n-vertex graphs, it holds that ¢ = t-logy n and F' = O(log n)o(t),

and using m = v/£log F we get a uniform generator that makes M def exp(é(\/log n)) = n°W calls
to the coarse approximator and produces output with probability 1/M.

The next observation is that it is easy to amplify the success probability of uniform generation
(i.e., the probability that it produced output) by repetitions. Hence, we get a standard uniform
generator by repeating the foregoing weak one for M times. Using the known reduction of (fine)
approximate counting to uniform generation, we obtained a fine approximate counter that makes

O(M?/e%) = exp(O(v/Iogn)) /2 = n°M /€2 calls to the coarse approximator.

1.2.2 The second reduction: the direct route

This reduction is due to [5], although our presentation of it is somewhat different. The reduction
proceeds in iterations such that, in each iteration, we hold a (partial) list L of prefixes (of potential
t-cliques) of corresponding length. For each prefix in the list (i.e., each ¢/ € L), we have a multiplier



(i.e., myr) such that the linear combination with these multipliers as coefficients of the number of
t-cliques that correspond to the prefixes in L yields a fine approximation of the number of t-cliques
in the original graph. That is, if ¢,, denotes the number of ¢-cliques that fit the prefix y" and m,y,
is the corresponding multiplier, then Zy, cr, My - ¢y /| L] is a fine approximation of the number of
t-cliques in the graph.

In the current iteration, for each one-bit extension y'c of a prefix ¢/ in L, we obtain coarse
approximations for c,,. Denoting these approximations by ¢y, we let a,, = my - ¢y, and
Pyo = Gyg/a, where a = >7 yeryqo1} Gyo- We then generate a random sample of |L| strings

by picking y'c with probability p,, and let my, def my /Dy s be the corresponding multiplier.
(The first iteration starts with |L| copies of the empty prefix, which are all associated with the
multiplier 1.)

The foregoing sample, which is generated in accordance with the “importance sampling” paradigm,
is analyzed by considering a random variable X that is assigned the value myq - cyro = (My /Dyo) -
cy'o With probability p,/,. Then,

E[X] = Z Py'o - (my’a : Cy’a) = Z My - Cyl 5

(y',0)eLx{0,1} (y',0)eLx{0,1}

regardless of the quality of the approximation. However, the variance of X does depend on this
quality; specifically, as shown in the proof of Theorem 5.2, if we use an F'-factor approzimation,
then V[X] < (F — 1) - E[X]?. Tt follows that keeping a list of O(¢3 - F/€%) prefixes, which are
not necessarily distinct, suffices to guaranteed that, in each of the ¢ = ¢ - log, n iterations, with
probability at least 1 — (0.1/¢), the resulting sum (i.e., 3/, Myo - ¢yo) is within a (1 + (e/4))-
factor of the initial one (i.e., > /c; my - ¢y). Recalling that my =1 and ¢y equals the number of
t-cliques in the graph, we obtain a (1 + €)-factor approximation of the latter number.

Hence, we reduced fine approximation of the number of ¢-cliques to an F-factor approximation
of that number by making O(F-¢*/¢?) oracle calls. Theorem 1.1 follows by combining this reduction
with the improved coarse approximator of Theorem 1.2.

1.3 Organization

We start with a brief preliminary section (i.e., Section 2), which justifies the focus on t-partite
graphs and formally discusses the auxiliary search problem that refers to prefixes of solutions to an
original search problem.

In Section 3 we present a coarse approximation procedure for the number ¢-cliques. This
procedure follows the strategy of the proof of [3, Thm. 1.3], but our presentation is quite different
(and, in our opinion, more intuitive). Furthermore, a twist on our initial presentation allows to
prove the stronger Theorem 1.2 (see Theorem 3.5).

In Section 4 we present a weak uniform generation procedure of ¢-cliques that uses a coarse ap-
proximation for the number of ¢-cliques. This weak uniform generation procedure is then amplified
and used to obtain a fine approximation for the number of ¢-cliques (see Corollary 4.5 (1)), which is
inferior to [5, Thm. 1]. In Section 5, we follow the ideas of [5] and directly reduces fine approximate
counting of t-cliques to coarse approximate counting of ¢-cliques. This establishes Theorem 1.1,
which improves over [5, Thm. 1] and [3, Thm. 1.4].



2 Preliminaries

Throughout this memo, we neglect integrally issues, which can be easily resolved by padding.

All algorithms we present are actually reductions: In Section 3 the reductions are from coarse
approximate counting of t-cliques (in graphs) to deciding the existence of t-cliques (in graphs),
whereas in Sections 4 and 5 we present reductions among various notions of approximate counting
and uniform generation of £-bit long solutions. Hence, while our focus is on problems concerning
t-cliques in m-vertex graphs, when the actual reductions are oblivious to these specifics (i.e., in
Sections 4 and 5), we we use a general formulation that only refers to the length of the solutions.

Reducing problems regarding t-cliques in general graphs to the t-partite case. The
following reduction is well known. Given a general n-vertex graph, we make ¢ copies of each vertex
v € [n], placing one copy in each of the ¢ parts, and connecting vertices in the natural manner:
Specifically, for each ¢ # j and u # v, if {u,v} is an edge in the original graph, then we connect
the i*® copy of u with the " copy of v; that is, given G = ([n], E), we let V; = {(i,v):v€[n]} and
Eij = {{{(i,v),{j,w)} : {v,w} € E}, and produce the graph with vertex-set U;cyV; and edge-set
Ujzjef i j- In other words, for each i # j, we place a double-cover of the original graph between
the 7" part and the j'" part. The key observation is that the number of t-cliques in the resulting
t-partite graph is t! times the number of ¢-cliques in the original graph.

Counting and uniform generation of solutions. We shall focus on problems that are asso-
ciated with binary relations of the type

rc [ ({0137 x {0,1™) (1)

neN

for some (time-constructible) function ¢: N — N. Letting R(x) & {y: (z,y) € R} denote the set

of solutions to the instance z (w.r.t R) and Sg %ef {z : R(z) # 0}, the (candid) search problem

associated with R is to find y € R(x) when given x € Sg. The corresponding counting problem

is to compute #R : {0,1}* — (NU {0}) defined as #R(z) o |R(z)|, whereas uniform generation

essentially requires outputting a uniformly distributed solution (i.e., on input x € Sg, output a
uniformly distributed element of R(x)).

Solutions that fit a prefix. For any y € R(z) and ¢ that is a prefix of y, we say that ¢/ is a
prefix of solution to # (w.r.t R), and consider the set of solutions (to z) that fit the prefix . The
auxiliary problems regarding solutions that fit a prefix are the corresponding problems that refer to
the relation R’ defined as follows

R {((@,y/),y"): (0, y/y") € R}. (2)

For example, the corresponding search problem is to find y” € R/(x,y’) when given (z,vy') € Sg/;

that is, given an instance x and a prefix y’ of a solution to x (w.r.t R), find an extension of this
prefix to a solution (to z w.r.t R).

In the standard complexity setting (of polynomial-time solvability), in natural cases as well as

when R is an NP-complete search problem, it is easy to reduce the search problem of R’ to the search

problem of R, whereas parsimonious reductions are used for reduction among the corresponding



counting (resp., uniform generation) problems. As observed in [5], such a reduction also exists
for the problems regarding t-cliques. Specifically, consider the auxiliary search problem in which
prefixes of ¢-cliques in an n-vertex graph have the form (vy,....,v;_yp, ), where vy, ...,v4_y € [n]
and o € U£1;)§2 n)_l{(), 1}. Then, the set of t-cliques in the t-partite graph G = ([n], E) that fit the
latter prefix corresponds to the set of #'-cliques in the #’-partite subgraph of G that is induced by
the vertices that neighbor all v;’s (for ¢ € [t —¢]) such that the first part contains only vertices with
prefix o. That is, if (V1,...,V;) is the t-partition of G = ([n], E) and S denote the set of vertices
that neighbor vy,...,v;_y (i.e., u € S iff {u,v;} € E for every i € [t — t']), then we consider the
subgraph induced by

SN {veVi_pyi:3Bst.v=ap}U U Vit 4
1€[2,t']

The vertices of this graph are t'-partitioned into (V{,...,V};) such that V/ = SN {ve V,_py:
3B s.t. v =apf} and V/ = SNV,_p, for every i € [2,].

3 Coarse Approximation For t-Cliques

In this section we present a reduction of approximate counting the number of t-cliques in a graph
to deciding whether a graph has t-cliques. In the context of NP-search problems such reductions
are randomized, and we aim for the same here. Our perspective on such reductions is presented
in Section 3.1 and it leads us to an algorithm (i.e., Algorithm 3.1) that is similar to the one of
Bhattacharya et al. [3]. Our analysis of this algorithm, which leads us to its improvement (i.e.,
Algorithm 3.4), is presented in Section 3.2.

3.1 The Starting Point

As stated in Section 1.1, our starting point is the abstract idea that underlies the reduction of
approximate counting NP-witnesses to deciding their existence. Specifically, in order to verify that
the number of ¢-cliques in a graph is at least m, we apply a “random sieve” of density 1/m to the
set of t-cliques and check whether the resulting graph had a t-clique. The question at hand is how
to implement a random sieve, given that hashing (which is the method of choice in the context of
NP) does not seem adequate in the current setting. Nevertheless, an appealing and straightforward
way of implementing a random sieve in the current context consists of selecting each vertex with
probability p = (1/m)'/*, and considering the induced subgraph.

Unfortunately, this does not work. While each specific t-clique passes this random sieve with
probability 1/m, these choices are not independent enough, and the dependency leads to our failure.
To see this fact, consider the case of t = 2 and an n-vertex bipartite graph with m = o(n?) edges
such that 2m/n vertices (on one side) are each connected to n/2 vertices (on the other side). Then,
when selecting each vertex with probability /1/m, we are likely to end-up selecting no vertex of
degree n/2, because (2m/n) - (1/m)Y/? = 2m'/?/n = o(1).

Nevertheless, a small twist on the foregoing suggestion does work. Consider, for simplicity, the
case of t = 2 and bipartite graphs. Then, for every i € [log, m], we select at random each vertex
on one side of the graph with probability 27%, while selecting each vertex on the other side with



probability 2¢/m, where all these choices are independent of one another. As before, we consider
the induced subgraph, and the question is whether it contains any edge.

On the one hand, observe that if the number of edges in the bipartite graph is o(m/logn), then,
for each value of i the expected number of edges in the induced subgraph is o(1/logn). Hence, with
probability 1 — o(1), in all ¢ def log, m attempts (i.e., all i € [£]) the resulting subgraph contains
no edges, which means that m is not accepted as a valid approximation (to the number of edges in
the graph).

On the other hand, if the n-vertex bipartite graph contains m’ = w(mlogn) edges, then there
exists an i € [£] such that the first side of the bipartite graph contains at least n’ = 10 - 2° vertices
of degree at least T% = w(m/2%). Hence, when using this i, we are likely to select a vertex of degree
w(m/2") along with at least one of its neighbors.

Indeed, the foregoing approximation (i.e., a factor of O(logn)) is very coarse, but this is all
that we promised in the overview. A minor issue is that we were handling bipartite graphs rather
than general graphs, but this is easy to fix (see Section 2). More importantly, the foregoing idea
generalize to any ¢ > 2.

3.2 The Actual Procedure (For ¢-Cliques)

The generalization from ¢t = 2 to any ¢ > 2 is straightforward. After guessing the number of ¢-
cliques up to a factor of 2, we guess densities (up to a factor of 2) in each of the ¢ parts. Actually,
we don’t guess these parameters, but rather try all the possibilities. Furthermore, the number of
t-cliques is not guessed upfront but rather set in retrospect to equal the reciprocal of the product
of the relevant densities.

Algorithm 3.1 (reducing approximate counting to decision, take 1): On input a t-partite graph

G = ([n], E), letting ¢ o |logy ], for every (i1, ...,it) € {0,1,...,£ — 1}, we perform the following
trial.

1. For each j € [t], each vertex in part j is placed in the set S; with probability 27%

2. If the subgraph of G induced by Ujcy)S; contains a t-clique, then we declare I
candidate.

jel] 2 as a

We output the largest declared candidate, and if no candidate has been declared then we output 0.

Indeed, we view Algorithm 3.1 as making oracle calls to a decision procedure for deciding the
existence of a t-clique in n-vertex graphs. Specifically, Algorithm 3.1 makes O(logn)! such calls,
and all call refer to induced subgraphs of the input graph. Algorithm 3.1 is labeled “take 1” because
it is quite wasteful, and we intend to improve over it. But let us analyze it first.

Claim 3.2 (upper-bounding the output of Algorithm 3.1): Suppose that the number of t-cliques in
G = ([n], E) is m. Then, with probability at least 5/6, Algorithm 3.1 outputs an integer that does
not exceed (6 - loghn) - m.

Proof: Algorithm 3.1 outputs the value m’ > 0 only if for some integers i1, ....,i; € {0,1,...,£—1}
such that [[;c;y2% = m’ the corresponding trial (in which (i1, ....,4;) is used) declared m’ as a
candidate. Observing that (when using (i1, ....,7;)) the expected number of ¢-cliques in the induced



subgraph equals m - Hje[t] 27% = m/m/, it follows that this event (i.e., this trial declaring a
candidate) occurs with probability at most m/m’/, which is smaller than 1/6¢* if m’ > (6 - £!) - m.
Noting that the total number of trials is £ and applying the union bound, the claim follows. [l

Claim 3.3 (lower-bounding the output of Algorithm 3.1): Suppose that the number of t-cliques in
G = ([n], E) is m. Then, with probability at least 5/6, Algorithm 3.1 outputs an integer that is at
least [m/O(logn)=1].

Proof: Assuming that m > 1 and using a constant ¢ > 3, we start by proving the claim for
t = 2. In this case, there exists i; € {0,1...,¢ — 1} such that the first part of the graph G contains

at least np 4f o . 201 vertices that are each of degree at least 57— = 575 (because otherwise
the total number of edges is smaller than Zf:é c- 2. C.g}ﬁ).?’ Letting iy dof |logy(m/2c20) | — iy
(equiv., 21172 ~ m/2c?(), we consider the trial that corresponds to (i1,42). We observe that, with
probability at least 1 — exp(—c), some vertex of degree at least % = ¢- 2" is selected, and with

probability at least 1 — exp(—c), one of its neighbors is selected. Hence, with probability at least
(1 — exp(—c))? > 5/6, the value 2% - 22 > m /4c%( is declared a candidate.

Turning to the case of ¢ > 2, we define the clique-degree of a vertex (in the first part) as the
number of t-cliques in which this vertex participates, and observe that there exists i; € {0, 1...,/—1}

such that the first part of G contains at least n; def .. 911 vertices that are each of clique-degree at

def
least mp = 5% =

ST % Intuitively, with high probability, a vertex of clique-degree at least m;y
is selected (i.e., placed in S7), and we consider the subgraph that is induced by its neighbors, and
apply the same reasoning to this induced subgraph, which is (¢ — 1)-partite.

Seeking a rigorous argument, we view the £ trials of Algorithm 3.1 as being arranged in a f-ary
tree of depth ¢ such that each internal node of level j € {0,1,...,t — 1} corresponds to a choice of
(i1,...,ij) € {0,1,....,£ — 1}7. At such a node of level j (where j = 0 corresponds to the root), we
consider a recursive procedure that branches over all possible values of i;1; € {0,1,...,£ — 1}, and,

for each such value, proceeds as follows (when given a t-partite graph):
e it selects each vertex in the j + 15 part with probability 27%+1;

e it constructs a subgraph of its own input graph by including in the j + 15* part only the
selected vertices (and including all vertices of the other parts);

e it invokes the procedure (recursively) on the resulting the subgraph;

e it returns with the value 2%+! - v if the recursive call returned the value v (see Footnote 4).

The procedure itself returns the highest value among the values returned by its £ branches. At the
leaves (i.e., j = t), the procedure returns the value 1 if its own input graph contains a t-clique,
and returns 0 otherwise.* Note that invoking the foregoing recurvise procedure, on input G (with
j =0), is equivalent to invoking Algorithm 3.1 on input G.

Given this perspective, we consider the branch of the root that corresponds to the foregoing
value of i; (i.e., i1 such that there exists n; = c- 241 vertices of clique-degree m; = T“}H) Then,

3Specifically, we partition the vertices (of the first part) into buckets such that the 71 bucket, denoted Bj, contains
all vertices of degree in [27,2771). Then, the number of edges is smaller than Z?;é |B;j| - 297, which implies that
|Bj| > ;a3 for some j (equiv., |B;| > ¢2° for some i = log,(m/2cl) — j).
Indeed, to streamline the analysis, we replaced the case of no declaration by the answer 0.



with probability at least 1 — exp(—c), some vertex of clique-degree at least m; is selected. Fixing
this vertex and denoting it by v, we consider the (¢ — 1)-partite subgraph induced by v’s neighbors,
and examine the answer of the recursive procedure when applied to this subgraph (which has at
least m; cliques of size t — 1). Hence, the validity of (an adequate version of) the claim for ¢ — 1
implies its validity for ¢. Specifically, we refer to the following induction claim.

Induction claim: Suppose that the number of t-cliques in the t-partite n-vertex graph G
ism > 1. Then, for every ¢ > 3, on input G (and j = t), with probability at least 1 —t-
exp(—c), the recursive procedure answers with a value that exceeds m/((2¢)t - logh ' n).

Induction step: Let i1 be as above (i.e., at least c- 2% vertices in the first part of G’ have
clique-degree at least 5—7+—). Recall that, with probability at least 1 — exp(—c), when
extending the branch labeled i1, a vertex of clique-degree at least m; = m/(2¢- 2" - ¢),
denoted v, is selected. In this case, we consider an execution of recursive procedure on
the (¢t — 1)-partite subgraph of G that is induced by the neighbors of v, and note that
this subgraph has at least m; cliques of size t — 1. (Note that the recursive procedure
is actually invoked on a t-partite graph that includes all the vertices that were selected
in the first part, but the value of its answer may only decrease when considering the
t-partite graph that includes only v in the first part.)® By the induction hypothesis (i.e.,
for t—1), with probability at least 1 —(t—1)-exp(—c), this execution returns a value that
exceeds m1 /((2¢)*!-logh 2 n); hence, with probability least 1—(t—1)-exp(—c)—exp(—c),
the value returned by the current execution on G exceeds

my i m/(2c- 2 - {)

(2e)1 -logh™2n (2¢)t=1 -logh 2 n
m

(2¢)t - logh ' n

21 .

which establishes the induction claim for ¢.

Having established already the base case of the induction (i.e., ¢ = 2), and using ¢ = In(6t) (in
order to guarantee that ¢ - exp(—c) < 1/6), our original claim follows. W

Digest and beyond. Our algorithm is based on bucketing the vertices according to their “de-
grees” (be it the actual degrees (in case of ¢t = 2) or the clique-degrees (for ¢ > 3)). This bucketing
is performed for each part of the t-partite graph, when the buckets in step j refers to a fixing of
j — 1 vertices (one per each of the previous parts), and applies only to vertices in the 4 part that
neighbor all fixed vertices (see the proof of Claim 3.3). A corresponding random sieve is shown to
work for the heaviest sequence of ¢ buckets (one per each part); that is, with probability at least
5/6, at least one of the t-cliques that have vertices in this sequence of buckets passes the sieve.
The main source of waste (w.r.t the approximation factor) is the fact that (in each part) we only
use the “heaviest” bucket rather than using all buckets. This translates to losing a logarithmic factor
in each of the t—1 iterations of the analysis (i.e., see the proof of Claim 3.3).% Furthermore, Claim 3.2

®Indeed, considering t-cliques in this ¢-partite graph is equivalent to considering (t—1)-cliques in the (¢t —1)-partite
subgraph induced by the neighbors of v.

Tn addition, we lose a factor of 2 by using “coarse bucketing” (i.e., using 2 rather than 1 4 € as a base). In light
of the fact that the main source of waste (i.e., the use of heavy buckets only) dominates the effect of the “coarse
bucketing” (i.e., using 2 as a base), we left the latter aspect intact.



is based on Markov Inequality, which is applied to trials that succeed with small probability (which
in turn requires to make this probability very small). In contrast, one may obtain a better estimate
by repeating each trial several times and using a Chernoff bound. Applying the last idea, we get
the following algorithm.

Algorithm 3.4 (reducing approximate counting to decision, take 2): On input a t-partite graph
G = ([n], E), letting ¢ = |logon| and r o O(tloglogn), for every (i1, ...,i;) € {0,1,....,0 — 1}t
we repeat the trial made in Algorithm 3.1 for v times, and combine the results using a structured
decision rule. Specifically, for each 7= (i1,..,it) € {0,1,....0 — 1}t and k = (k1, ..., k) € [r]t, the
(i, k)-trial proceeds as follows:

1. For each j € [t], each vertex in the ' part of G is placed in the set S](-ij’kj) with probability 27 .

Hence, all the (i, k)-trials that agree on (ij,k;) use the same sample of the vertices of part j,
whereas trials that differ on (ij,k;) use independent samples of the vertices of part j.

2. If the subgraph of G induced by Ujc[y Sj(ij’kj) contains a t-clique, then we say that (i, k) supports
the value 1. Otherwise, we say that it supports the value 0.

Using a backward recursion, we define the values supported by various pairs of sequences as follows:

Forj=t-1,..,1,0, we say that the pair ((i1,...,%;), (k1, ..., k;)) supports the value v if
there exists ij41 € {0,1,...,£ — 1} such that for at least r/2 of the choices of kj11 € [r]
it holds that ((i1,...,15,5+1), (K1, ..., kj, kjr1)) supports the value v/2%+1,

We output the largest value that is supported by the empty pair (i.e., the pair of empty seqeuences
corresponding to j = 0).

Algorithm 3.4 makes slightly more calls to the decision procedure (for existence of ¢-cliques) than
Algorithm 3.1; that is, Algorithm 3.4 makes 5(log n)! (rather than O(logn)!) such calls. Multiply-
ing the output of Algorithm 3.4 by O(logn)!~!, we obtain a “normalized version” that satisfies the
following statement.

Theorem 3.5 (the coarse approximation, a normalized form): Suppose that the number of t-cliques
in G = ([n], E) is m. Then, with probability 1 — o(1), the normalized Algorithm 3.4 outputs an
integer in the interval [m,O(logn)!=1 - m].

Proof: We focus on analyzing the non-normalized version of Algorithm 3.4, proving that, with
probability 1 — o(1), it outputs an integer in the interval [O(logn)~*=1 . m, 3" - m]. Our analysis
of Algorithm 3.4 follows the basic strategy of the analysis of Algorithm 3.1, while focusing on the
actual adaptations. We start with an overview of the analysis, which relies heavily on the definition
of supporting a value that determines the output of Algorithm 3.4.

When upper-bounding the output of Algorithm 3.4 (akin Claim 3.2), we note that, for each
i1 €{0,1,...,£—1}, the number of t-cliques in G equals 2 times the expected number of t-cliques in
the subgraph of G induced by the set of vertices that passed the random sieve of density 27" that is
applied to the first part of G (while including in the subgraph all vertices of the other parts). Thus,
when applying r random sieves of density 271, with probability at least 1—exp(—Q(r)) = 1—o(1/¢%),
the average number of ¢-cliques in the r corresponding induced subgraphs is within a 14 0.1 factor

10



of the expected number. Hence, in the typical case, in at most % -1 < 1/2 of these r subgraphs,
the number of t-cliques exceeds the expectation by a factor of 3. Letting m denote the number of ¢-
cliques in G, it follows that more than r/2 of these induced subgraphs have at most 3-m/2% cliques
(of size t). On the other hand, if on input G the algorithm outputs the value m’ based on at least
r/2 subgraphs that support the value m’/2%, then there exists a subgraph G such that G has at
most 3 -m/2% cliques whereas G supports the value m’/2%. (or rather the algorithm’s output on
G4 supports m//2%). Proceeding with G, and considering the choice of i and the corresponding
subgraph G, and so on up to i, we infer that m’ = Hje[t] 2%i holds only if 3! -m/ Hje[t} 24 > 1. It
follows that m’ < 3! - m, because the probability of failure in each of the ¢¢ events is o(1/¢!). For
details, see Claim 3.5.1.

When lower-bounding the output of Algorithm 3.4 (akin Claim 3.3), we consider the index
i1 €{0,1,...,£ — 1} that corresponds to the heaviest bucket (w.r.t clique-degrees); that is, a bucket
that is “responsible” for at least a 1/2¢ fraction of the number of ¢-cliques in G (i.e., at least
211 of the vertices have clique-degree at least 27 . n/2¢). In this case, with probability at least
1—(1-271)2" > 0.6, the number of t-cliques in the subgraph of G induced by the set of vertices that
passed the random sieve of density 2~ that is applied to the first part of G is at least 27 - m /20,
where m denotes the number of ¢t-cliques in G. Thus, when applying r random sieves of density
27 (to the first part of G, while including all vertices of the other parts), with probability at
least 1 — exp(—(r)) = o(1/£"), at least r/2 of these subgraphs contain at least s cliques (of
size t). We then consider the application of the same process to each of the r/2 corresponding
subgraphs, which leads us to choices of i2’s (which may be different in the r/2 different subgraphs),
then consider r/2 possible subgraphs (of each subgraph), and so on to i3, ...,i;. Observing that i,
can be chosen such that the final subgraph has 2% cliques, it follows that Hje[t] 2 > m/(20)71,

whereas the value output by the algorithm is [] jelt 2% . For details, see Claim 3.5.2.
The actual analysis. Proceeding along the lines of the foregoing outlines, we establish the upper and

lower bounds on the value of the output of Algorithm 3.4: The proofs of Claims 3.5.2 and 3.5.1
provide more clear and detailed implementation of the strategies outline above.

Claim 3.5.1 (upper-bounding the output of Algorithm 3.4): Suppose that the number of t-cliques
in G = ([n], E) is m. Then, with probability 1 — o(1), Algorithm 3.4 outputs a non-negative integer

that does not exceed 3t - m.

Proof: The claim is proved by backward induction on the index j € {0,1,...,t}. For j € {0,1,...,t},

the induction claim refers to a fixing of the sequence of the sets (Syl’kl))ihkl, cees (S](-ij’kj))ij,kj,
and to a random choice of the sequence of the sets (Sj(:ifl’kﬁl))z‘jﬂ,kﬁp . (Sgit’kt))it’kt. Loosely

speaking, The claim asserts that, w.v.h.p., the number of ¢-cliques in the corresponding induced
subgraph provides a coarse approximation to the number of ¢-cliques in the input graph, where the
approximation factor is exponential in ¢ — j.

Specifically, for h € [t], letting S), = (S}(f’k))i€{071’...74_1}’k6[r}, the induction claim is that, for
fixed S, ....,.S;, in an execution of Algorithm 3.4, with probability 1 — o(1/¢%) over the choice of
Sj41, s St, if some pair of j-long sequences, denoted ((i1,...,i;), (k1,....,k;)), supports the value

m';, then the corresponding induced subgraph (i.e., the subgraph induced by Siil’kl), o Sj(ij’kj)

all vertices of the other parts) contains at least 3~ (7). m; cliques (of size t). Equivalently, m; is

and

upper-bounded by 377 times the number of t-cliques in this subgraph.

11



The base case (i.e., j = t) is trivial, since pairs of /-long sequences support only binary values
(which are always correct), whereas the case of j = 0 implies the main claim. In the induction step,
we assume that the claim holds for j + 1 € [t], and prove that it holds for j.
The induction step mimics the proof of Claim 3.2 (with a crucial twist): Fixing any ((i1, ..., 4;), (k1, ..., k;)) €
{0,1,...,4 — 1} x [r}9, we observe that this pair supports the value m; > 0 only if, for some
ij+1 € {0,1,...,¢ — 1}, the value m;-/2if+1 is supported by at least r/2 of the r pairs of the form
((41, .oy ij,%541), (K1, ..., kj,.)). Letting (V1,...,V;) denote the t-partition of the vertices of G, the
key observation is that, for every k € [r], the expected number of t-cliques in the subgraph of G
induced by

def thkh ('L +17k)
U S J-ij-l U U Vi

helj] he{j+2,....t}

equals m; /2i1+1, where m; denotes the number of t-cliques in the subgraph of G induced by

Unep ”“kh UUhegjt1,..0y Vo and the ezpectation is over the choice of S; ”“’k)

Whlle the proof of Claim 3.2 applies the Markov Inequality at this pomt, here we use the fact
that the foregoing experiment (i.e., the random choice of S(Z”l’ )) is repeated r times (i.e., for
each k € [r]), and the fact that we only need r/2 of these experlments to yield values that do
not exceed the expectation by much. Specifically, we first observe that, with probability at least
1 — exp(—Q(r)) = o(1/£*), the average (over k € [r]) number of t-cliques in the subgraphs of G
induced by Ry’s is smaller than 1.1 -m;/ 2ij+1, Tt follows that, in this (highly typical) case, there

are less than T / 2 indices k € [r] such that the number of ¢-cliques in the subgraph of G' induced by

Ry, exceeds 1 m an -, which means that for more that 7/2 indices k € [r] the number of t-cliques
is at most 222 TIJ < ]T’}rjl Hence, there exists a kj1 € [r] such that the value 2:? 11 is supported

by ((i1, ..y %5, 5541), (k1, ... k], kj+1)) and the number of ¢-cliques in the subgraph of G induced by

Ry . is smaller than Sn Using the induction hypothesis (for j + 1), it follows that

Jj+1 215 +1
/.

T gt=G+) 2
R 2ij+1

m

which in turn implies that m; < 3t=J. m;.

Recalling that the foregoing holds, for each ((i1, ..., %;,4j41), (k1, ..., k;)), with probability o(1/0%),
and using a union bound on all possible pairs in {0, 1, ...,/—1}+1 x[r]7, this establishes the induction
step, and the entire claim follows. [J

Claim 3.5.2 (lower-bounding the output of Algorithm 3.4): Suppose that the number of t-cliques
in G = ([n], E) is m. Then, with probability 1 — o(1), Algorithm 3.4 oulputs an integer that is at
least [m/(20)%71].

Proof: Asin the case of Claim 3.3, the proof is by induction on ¢, while noting that the claim is trivial
for t = 1 as well as for the case of m = 0. Hence, we assume that ¢ > 2 and m > 1. Towards the
induction step, recall that (as detailed in the proof of Claim 3.3) there exists i; € {0, 1,...,£—1} such

that the first part of G has at least n; 3.1 vertices of clique-degree at least m; o T = 32t

Hence, with probability at least 1 — (1 — 2_"1)2” > 0.6, for each k; € [r], the set Sfil’kl) contains
some vertex of clique-degree at least mq, denoted v(¥1). In this case we say that k; is i1-good.

With probability at least 1 — exp(—£(r)), at least r/2 of the indices k; € [r] are i;-good. For

12



each of these good k; € [r], we consider the subgraph of G induced by the neighbors of v®1) and
note that this (¢ — 1)-partite subgraph contains at least m; cliques (of size t — 1). When properly
defining the induction claim (see below), it follows that, with high probability, each of the residual
r/2 executions supports a value that is at least m1/(21logy n)!~2, which establishes the induction
claim. Details follow.

Our induction claim is that if the number of t-cliques in the t-partite n-vertex graph G is m > 1,
then, on input G, with probability at least 1 — 1t - exp(—Q(r)), Algorithm 3.4 outputs a value that
is at least m/(2¢)"~1. The induction step is proved by viewing Algorithm 3.4 as branching on all
(i1,k1) € {0,1,...,£—1} x [r] and invoking itself recursively with a corresponding induced subgraph
(i.e., the (t — 1)-partite subgraph of G that is induced by the neighbors of v(*1)). We actually care
only about the branches associated with (i1, k1) such that the first part of G has at least 3 - 2%
vertices of clique-degree at least mi = 57 and &y is 41-good.

Note that if the number of i1-good k’s is at least /2 and each of the corresponding recursive

invocation (of the algorithm on the corresponding (¢ — 1)-partite induced subgraphs) outputs a

value of at least m) e m1/(2¢)*=2, then the algorithm itself outputs a value that is at least

21t . mf = m/(2¢)!"1. By the induction hypothesis (for ¢ — 1), with probability at least 1 —
ri=1 . exp(—Q(r)), each of these invocations return a value of at least m}. Recalling that, with
probability at least 1 — exp(—€(r)), the first event holds (i.e., the number of i;-good k’s is at
least r/2), this establishes the induction claim (for t), since failure occurs with probability at most
(14 (r/2)) - (r*=1 - exp(=£(r))). The main claim follows by observing that r* = o(exp(2(r))). O

Conclusion. Combining Claims 3.5.1 and 3.5.2 (and recalling the normalization), and the theorem
follows. I}

Digest. The fact that Algorithm 3.4 uses 7! trials per each sequence (i1, ...,i;) € {0,1,....,4 — 1}!
allows to improve the upper bound on its output (see Claim 3.5.1 vs Claim 3.2), while having
little effect on the lower bound (see Claim 3.5.2 vs Claim 3.3).” This improvement is enabled by
imposing a structure on the set of r! trials; this structure is imposed by the decision rule used in
Step 2 of Algorithm 3.4. Specifically, the notion of supporting a value requires a majority vote at
each vertex of a r-ary tree of depth t, where the trials (which are indexed by ¢-long sequences over
[r]) are associated with leaves of this tree.

4 Approximate Counting Versus Uniform Generation

This section is the main conceptual contribution of the current memo. Here we take to the extreme
the known observation that, in the context of NP-search problems, the standard reduction of
uniform generation of solutions to approzimately counting solutions is insensitive to the precision
of the approximation. This observation is typically made with respect to fine approximate counters,
and our contribution is in extending it to coarse approximate counters, in which case we obtain a
weak notion of uniform generation that is meaningful for solutions of small length (such as t-cliques).

In Section 4.1 we briefly review the standard reductions between approximate counting solutions
(to NP-search problems) and uniform generation of such solutions, while adapting both reductions

" Actually, we get a minor improvement also on the lower bound: The hidden constant in Claim 3.3 is O(logt),
whereas the explicit constant in Claim 3.5.2 is 2.

13



to the current context of problems concerning t-cliques in (t-partite) graphs.® In Section 4.2 we
show that the known reduction of uniform generation to approximate counting is meaningful also
when the approximation is coarse. Actually, we generalize the known reduction in order to obtain
a meaningful result for the context of ¢t-cliques.

4.1 The Standard Presentation Adapted to t-Cliques

Following [7], we show that approximate counting of ¢-cliques in t-partite n-vertex graphs and
uniform generation of t¢-cliques in such graphs are reducible to one another (in a fine-grained
complexity sense). Both reductions proceed by considering the (depth ¢ - logy n) binary tree of all
possible t-cliques such that the internal nodes corresponds to prefixes of possible t-cliques (see [6,
Sec. 6.2.4.1]). In particular, the root corresponds to an empty prefix, whereas each leaf corresponds
to the full description of a possible t-clique (i.e., a sequence of t vertices). Each reduction uses its
oracle in order to determine its next move along a path that leads from the root to some vertex.
The reduction proceeds in iterations such that in the i*" iteration it extends the current (i — 1)-bit
long prefix by one bit.

In the case of uniform generation, the current prefix is extended at random with probability
that is proportional to the approximate number of ¢-cliques that fit each of the possible one-
bit extensions. That is, the current prefix = is extended by the bit o with probability that is
proportional to the approximate number of ¢-cliques that are described by strings with prefix vo.
(See more details in Section 4.2.)

In the case of approximate counting, we use a sample of uniformly generated ¢-cliques that fit the
current prefix in order to approximate the fraction of t-cliques that agree with each possible one-bit
extension, and proceed with the seemingly more frequent extension. (At the end, the approximate
count will be set to equal the reciprocal of the product of these frequencies.)

An issue at hand is reducing the tasks that refer to fized prefizes of potential t-cliques to tasks
regarding t'-cliques for some t' € [t]. This issue was addressed by [5], see Sections 1.2 and 2. Thus,
in direct analogy to [6, Thm. 6.31], we get the following

Theorem 4.1 (approximate counting ¢-cliques versus uniform generation of ¢-cliques):

1. From approximate counting to uniform generation: Almost uniform generation of t-cliques in
a t-partite n-vertex graph is reducible in almost linear-time to approximating the number of
t-cliques in such graphs up to a factor of 1 £ (1/5tlogyn), where almost uniform generation
allows for a negligible deviation (i.e., the deviation is smaller than 1/poly(n)).

2. From uniform generation to approximate counting: Approzimate counting of t-cliques in a t-
partite n-vertex graph is reducible in almost linear-time to uniformly generating t-cliques in
such graphs. The deviation of the approximation, which is negligible, is O(tlogn) times larger
than the deviation of the uniform generation.

In both cases, the reduction makes poly(tlogn) oracle calls.

Note that the result also holds for general graphs (i.e., graphs that are not necessarily t-partite).
As is evident from the statement of Part 1 of Theorem 4.1, the quality of the resulting uniform
generation is insensitive to the quality of the fine approximate counter, provided that the latter is

8Recall that the case of general graphs can be easily reduced to the case of t-partite graphs.

14



beyond some threshold. The quality of the approximate counter translates to the running time of
the uniform generation (and the effect is quite minor beyond the said threshold). This central issue
will be clarified in Section 4.2.

Theorem 4.1 versus [6, Thm. 6.31]. Using the terminology of Section 2, we mention that,
in both cases, a problem regarding a relation R (such that |y| = ¢(|x|) for every (z,y) € R) is
reduced to a problem regarding the corresponding auxiliary relation R’, and in this case tlogy n is
replaced by ¢(|z]). In the case of t-cliques, a reduction of R’ to R is used in order to remove R’
from the theorem’s statement. In the general case, captured by [6, Thm. 6.31], one uses a strongly
parsimonious reduction of R to R.

4.2 Using Coarse Approximate Counters

In this section we show that the known reduction of uniform generation to approximate counting
is meaningful also when the approximation is coarse. The following text reproduces part of [6,
Sec. 6.2.4.1], while making the relevant adaptions. We first generalize the definition of uniform
generation (as in [6, Def. 6.30]), allowing for an arbitrary lower bound on the success probability
(rather that setting it to 1/2).

Definition 4.2 (uniform generation, quantified success probability): Let R C {0,1}* x {0,1}* be
a search problem, R(x) f {y:(z,y) € R} and Sg = {x:|R(x)| >1}. Forn,e : N — [0,1], we say
that a randomized process (1 — n)-solves the (1 — €)-approximate uniform generation problem of R if,

on input x € Sg, the process, denoted I, outputs either an element of R(x) or a special symbol,
denoted L, such that PrIl(z) € R(x)] > 1 —n(|z|) and

2

yER(x)

b
| R()]

Pr [n(x):y‘n(x)eR(x)} - ‘ < e(|z]).

That is, n upper-bounds the failure probability of 11 (i.e., the probability that it outputs L), whereas
€ upper-bounds the deviation of II(z) from the uniform distribution on R(x), when conditioning on
II(z) € R(x) (equiv., on II(z) # L).

e [f e is negligible (i.e., vanishes faster than the reciprocal of any positive polynomial), then we
say that the process (1 — n)-solves the uniform generation problem of R.

e In addition, if n is also negligible, then we say that the process solves the uniform generation
problem of R.

The following result generalizes the essence of the first direction of [6, Thm. 6.31]. This generaliza-
tion, which explicitly supports coarse approximations, introduces an additional parameter (i.e., m)
that governs the trade-off between the query complexity of the procedure (i.e., ¢) and its success
probability (i.e., F~(™+1) We shall capitalize on this trade-off in Corollary 4.4.

Theorem 4.3 (from coarse approximate counting to weak uniform generation): Let R be as in
Definition 4.2, ' {({z,9),y") : (x,y'y") € R} and R'(z,v) e {v" : (x,y'y") € R}. Suppose

15



that for a time-constructible and at least logarithmic® function ¢ : N — N it holds that |y| < ¢(|z])
for every (z,y) € R. For F : N — R such that F(n) > 1 for every n, suppose that A approximates
the number of solutions wrt R in the sense that for every x and y', with probability at least 2/3, it
holds that

R (z,y)] < A(z,y) < F(|z]) - |R(z,9)]. (3)

Then, for any time-constructible m : N — N, given oracle access to A, one can F~m+1) _solve the
uniform generation problem of R by making ¢ = O(m - 28/’”) oracle calls to A and running in time
q(|[) - (Jx] + €(|])) on input .

(The statement of the first direction of [6, Thm. 6.31] essentially postulated that F = gﬁ—ﬂ <
14 (1/2¢) and m = /; indeed, in that case F~(m+1) > 1/2,)10

Proof: Throughout the proof, we assume for simplicity (and in fact without loss of generality) that
R(x) # 0 and R(z) C {0,1}*I=D for every z. Generalizing the overview provided in Section 4.1,
we view a generic y € R(z) as partitioned to m(|z|) blocks, each of length ¢ = ¢(|z|)/m(|x|). On
input x, we shall generate a uniformly distributed y € R(x) by iteratively generating its blocks,
one after the other.

Let us first describe the reduction assuming that we have oracle access to #R’ (rather than
to A that only approximates #R’'). We proceed in iterations, entering the ith iteration with an
(i — 1) - £-bit long string ' such that R'(x,4/) is not empty. For each z € {0,1}¥, with probability
|R(z,v'2)|/| R (z,v')| we set the i*" block to equal z. Hence, after m(|z|) iterations, we obtain
a uniformly distributed element of R(x). Recalling that we only have oracle access to a (coarse)
approximation of #R’, a careful implementation of the foregoing strategy is in place.

Firstly, by adequate error reduction, we may assume that Eq. (3) fails with probability o(u/q),
where p is a negligible function. In the rest of the analysis we ignore the probability that the
estimate of #R/(x,y’) provided by the randomized oracle A (on query (z,y’)) violates Eq. (3). (We
note that these rare events are the only source of the possible deviation of the output distribution
from the uniform distribution on R(z).)!! Next, let us assume for a moment that A is deterministic
and that for every z and ' € ({0,1}¥)* it holds that

Y. Alzy'z) < Alzy). (4)

z€{0,1}¢

We also assume that the approximation is actually perfect at the “trivial level” (where it corresponds
to whether or not (z,%) is in R); that is, for every y € {0, 1}*1D it holds that

A(z,y) =11if (z,y) € R and A(x,y) = 0 otherwise. (5)

Relying on these assumptions, we modify the i iteration of the foregoing procedure such that,
when entering with the (i — 1) - £-bit long prefix 4/, we set the i*" block to z € {0,1}¥ with

9This condition is made for sake of simplicity. If £(n) = o(logn), then we need to add a logn factor to the function

10Furthermore, Theorem 4.3 provides more explicit complexity bounds. On the other hand, in some technical
aspects, the first direction of [6, Thm. 6.31] is more general; however, the actual proof starts by reducing the more
general formulation to the foregoing formulation.

Note that the (negligible) effect of these rare events may not be easy to correct. For starters, we do not necessarily
get an indication when these rare events occur. Furthermore, these rare events may occur with different probability
in the different invocations of algorithm A (i.e., on different queries).

16



probability A(z,y'z)/A(z,y’) and halt (with output L) with the residual probability (i.e., 1 —
S, A(x,y'2)/A(z,y')). Indeed, Eq. (4) guarantees that the latter instruction is sound, since the 2*
main probabilities sum-up to at most 1. Hence, in each iteration we make 2! oracle calls, where
these calls are required in order to compute the A(x,y'z)’s (for all z € {0,1}).

If we completed the last (i.e., m(|z|)!") iteration, then we output the £(|z|)-bit long string that
was generated. Thus, as long as Eq. (4) holds (but regardless of other aspects of the quality of
the approximation), every y = 21+ 2y,(js)) € R(z), where the z;’s are in {0, 1}, is output with
probability

Az, 21) ' Az, z122) o Az, 2122+ Zm(|2])—12m(|a])) (6)
A(:C,)\) A(x,zl) A(.%', zle-~-zm(‘x|),1))

which equals 1/A(x,\), where the equality relies on Eq. (5). Thus, the procedure outputs each
element of R(x) with equal probability, and never outputs a non-_L value that is outside R(x). It
follows that the quality of approximation only effects the probability that the procedure outputs
a non-_L value, which in turn equals |R(z)|/A(z, A). The key point is that, as long as Eq. (4) and
Eq. (5) hold, the specific approximate values obtained by the procedure are immaterial — with the
exception of A(x,\), all these values “cancel out”.

We now turn to enforcing Eq. (4) and Eq. (5). In most settings, one can enforce Eq. (5) by
performing the straightforward check (of whether or not (x,y) € R) rather than invoking A(x,y).
However, since we made no hypothesis regarding the complexity of recognizing R, we take the
alternative of modifying A such that A(x,y) € {0,1} whenever |y| = ¢(|x|); specifically, we reset
A(z,y) = 11if A(x,y) > 1 (and observe that A(z,y) € (0,1) is impossible).}? As for Eq. (4), we
enforce it artificially by using A'(z,y) = F(\ D=t A(z, y'), for every y' € ({0, 1}¥)7, instead
of A(z,y). Recalling Eq. (3), we have for every 3 € ({0,1}*)" and z € ({0,1}*,

F(|2])™ 0= |R (2, /)|
F(|])™ D=0 F(ja)) - [R (2, y'2)]

Az,y) =
Alz,y'z) <
and the claim (that Eq. (4) holds) follows (because R'(z,y') = U, ¢ 13¢ R (2,9'2)). Note that the
foregoing modification only effects the probability of outputting a non-1 value; this good event
now occurs with probability |R'(z, )|/A/(x, \), which is lower-bounded by F(||)~(m(=)+1),

Finally, we refer to our assumption that A is deterministic. This assumption was only used in
order to identify the value of A(z,y’) obtained and used in the ((|y|/¢') — 1)5* iteration with the
value of A(z,y’) obtained and used in the (|y/|/m)t" iteration. The same effect can be achieved by
just re-using the former value (in the (|y’|/m)™ iteration) rather than re-invoking A in order to
obtain it. The theorem follows. |

Digest. The proof of Theorem 4.3 clarifies that the quality of the approximate counter (i.e., the
factor F') affects only the probability that the uniform generation produces an output (which is
lower-bounded by F _(m‘H)). In contrast, whenever an output is produced, it is uniformly dis-
tributed among the valid solutions, regardless of the quality of the approximate counter. Specifi-
cally, the approximation factor F' determines the slackness that is used in each of the m iterations;
this slackness, which leads to failure, allows each iteration to extend the current prefix of a random

12Note that Eq. (3) implies that A(z,y’) = 0 whenever R’'(z,y’) = (), whereas A(z,y’) > 1 whenever R'(z,y’) # 0.
Hence, for |y| = ¢(|z|), we may reset A(x,y) = 1 whenever A(z,y) > 1, while noting that this modification cannot
cause violation of Eq. (3).

17



solution in a perfectly random manner. While the standard presentations focus on fine approximate
counters (i.e., ' =14 (1/5¢)) and m = ¢, our focus is on coarse approximate counters (e.g., F' > 2)
and m = o(f). The choice of m is determined so to minimize 2/ . F™ because this quantity
dominates the complexity of the standard uniform generation procedure that we obtain by repeat-
ing the weak uniform generation procedure obtained in Theorem 4.3. (See Corollary 4.4 and recall
that the weak uniform generation procedure obtained in Theorem 4.3 uses m - 2/ queries and is
an F~(m+1)_solver.)

Corollaries. Combining Theorem 4.3 with a straightforward amplification of the success proba-
bility of uniform generation, while using a suitable setting of m, we get the following

Corollary 4.4 (from coarse approximation to uniform generation): Let R, R',F and A be as in
Theorem 4.3. Then, given oracle access to A, one can solve the uniform generation problem of R
by making q = exp(O(\/€-log F)) oracle calls to A and running in time q(|x|) - (Jz| + €(|x])) on
mput .

Note that for F' = poly(¢), we get ¢ = exp(é(\/Z)). Specifically, in case of ¢-cliques in n-vertex
graphs, we have £(n) =t -logyn and F(n) = O(logn)®®, which yields ¢(n) = exp(O(v/logn)) =
n°1). This is inferior to the result of [5, Thm. 2], but the proof is conceptually simpler.

Proof: Setting m = /¢/log F', we merely invoke the weak uniform generator provided by The-
orem 4.3 for a sufficient number of times and output the first non-_L value provided. Specifically,
on input z, we invoke this F~(m+D_solver for ©(log|z|)? - F(|=|)™(*D+1 times. Hence, we fail to
produce output with probability at most exp(—Q(log|z|)?) < 1/poly(|z|). The number of queries
made by the resulting reduction, on input x, is

(O(f)?) - F(jaly™ D41 -5 () - 20D /m(ieD))
— poly(¢(|z]) - F (m)\/e o)/ 108 F([a) , g/} log F(Jz])
= exp(O(\/(|z|) - log F(|z]))).

The claim follows. W

Combining Corollary 4.4 with Theorem 3.5 (and Part 2 of Theorem 4.1), we get

Corollary 4.5 (approximate counting and uniform generation of t-cliques):

1. Given oracle access to a decision procedure for t-cliques in n-vertex graphs, one can solve the
corresponding uniform generation problem in almost linear-time by making g(n) = exp(O(+/logn))
queries.

2. Given oracle access to a decision procedure for t-cliques, one can approximate the number
of t-cliques in an n-vertexr graph up-to a factor of 1 £ € within complezities that are only
O((log q(n))/€%) times larger than those in Item 1.

Again, this is inferior to the results of [5], but the proof is conceptually simpler.

18



5 The Direct Reduction of Fine Approximate Counting of ¢t-Cliques
to Coarse Approximate Counting of t-Cliques

In this section we follow Dell et al. [5], who showed how to use coarse approximate counters towards
obtaining fine approximate counters. The key observation is that we can obtain a fine approximation
of N = ZjeJ N; by using coarse approrimations of each N; along with fine approximations of few
individual N;’s. Specifically, the number of fine approximations that we use is proportional to the
approximation factor of the coarse approximator. We detail this idea next.

Suppose that, for some F' and every j € J, we get an approximation Nj such that Nj €

[Nj, F - Nj]. Then, letting N = ZjeJ Nj, we set p; def ]\ij/]v and select j with probability p;.
The key observation is that the value N;/p; (which corresponds to a random selection of j) is an
unbiased estimator of N and its variance is bounded in terms of F. This follows from the generic
(“importance sampling”) claim, which is stated next. Hence, if we obtain a fine approximation of

few random Nj’s, then we get a fine approximation of N.

Claim 5.1 (importance sampling, a generic claim): For positive v;’s and v = Zje 7 Vj, let X be
a random variable that equals v;/p; with probability p; > 0 (such that Zjerj = 1), and suppose

that p; > 4=. Then, E[X] = v and V[X] < (F — 1) - v%

For the foregoing application, we shall indeed use (v; = N; and) p; = ]Vj /N , while relying on

the guarantees N; > N; and N < F'- N. In this case p; > FN—jV Now, using a 1 4+ 0.5¢ factor
approximation of an individual N; yields a estimator of NV that has expectation (1 4 0.5¢) - N and
variance approximately F' - N2. Hence, taking the average of O(F/e?) samples of X yields a value

that is within 1 &+ € factor of N.
Proof: Note that E[X] =3, ;p; - (vj/p;) = v, whereas

EIX?) = D pj- (v/py)°

jed

which equals F - v2. Hence, V[X] = E[X?] —E[X]?< F-v? —v2. N

The following result will be proved by using an iterative process as outlined in Section 1.2.2.
Specifically, each of the samples (and corresponding values) generated at the current iteration
depends on all samples and values generated in the previous iteration. We shall use Claim 5.1 to
relate the average value associated with the samples produced in current iteration to the average
value associated with the samples produced in previous iteration.

19



Theorem 5.2 (from coarse approximate counting to fine approximate counting): Let R, ¢, R, F
and A be as in Theorem 4.3; loosely speaking, £ denotes the length of solutions w.r.t R, and A
approzimates the number of solutions w.r.t R up to a factor of T (see Eq. (3)). Then, given oracle
access to A, one can approximate the number of solutions wrt R up-to a factor of 1 e by making
q=0(e2-F- 0% oracle calls to A and running in time q(|z|) - (|z| + €(|z|)) on input z.

Proof: Following the outline provided in Section 1.2.2, we proceed in £ iterations. For each i € [/],
we enter the i*! iteration with a list of k = O(F¢3/e?) (not necessarily distinct) (i — 1)-bit long
strings coupled with corresponding “multipliers” (used in the final result), and leave it with random
samples of one-bit extensions of these strings (coupled with corresponding multipliers).

The foregoing strings are prefixes of valid solutions for the given input x, and the multipliers
are supposed to represent the ratio between the total number of solutions to x and the number of
solutions that fit the various prefixes. Specifically, the sequence of pairs given to the i*" iteration
is denoted ((y(—1Y, mO=1LDY _ (y0=1k) m(=1k))) and we shall show that for every i € [¢ + 1], it

holds that 1

5 Z m(=19) . Nyii-1.5) = Ny (7)
JE[K]

where A denotes the empty string and N,y denotes the number of solutions that fit the prefix y'. In
particular, (%7 = X\ and m(%9) =1 for every j € [k]; hence, Eq. (7) holds trivially for i = 1. Each
iteration generates a new list of pairs, which is given to the next iteration, whereas the last (i.e.,
Eth) iteration produces a sequence that is used to produce the output. Specifically, since all y(e’j g
are valid solutions, the final output is > ;. m&9) /.

Needless to say, the crucial issue is the way in which the next list of pairs is generated. In each
iteration, we generate each of the pairs in the same manner, independently of the generation of the
other pairs. Specifically, on input z, for each i € [¢], in the i*} iteration we are given the sequence
of pairs ((y(i_l’l), m(i_l’l)), e (y(i_l’k), m(i_l’k))), and generate each of the new pairs as follows:

1. For each j € [k] and each o € {0,1}, we use the approximate counter A to obtain an
estimate, denoted Ny-1.5)6 of the number of solutions that fit the prefix y~19)¢; that is,

Ny(iflvﬂv)o‘ — A(‘T7 y(Z_L])O-)

The same values ﬁy(i_l,j)g may be used to generate all k pairs of the current iteration. In
fact, it is simpler to analyze the process this way.

Actually, since we need all £- 2k approximations to be correct, we reduce the error probability
of A by invoking it O(log(¢ - k)) times and take the median value.

2. For each j € [k] and each ¢ € {0,1}, we let a;, + m(~1) ‘Ny@fl,j)g and pj, < ajo/a,

where a =3 s aj o0

(Recall that, typically, N, -1, resides in [Ny(i,l,j)J,F . Ny@,l,j)a]; in this case, ajo + a;1

resides in [m(ifl’j) . Ny(i—l,j),F -m=13) . Ny(i—l,j)].)
3. Weselect (j,0) € [k]x{0, 1} with probability p; », and generate the pair (y(~19) g, m(=19) /p; ).

To evaluate the features of this generation process, we let X denote the corresponding value of the

generated pair (i.e., its contribution to Eq. (7)); that is, X0 = % “ Ny(i-1,5), with probability

20



Pj,o- We first observe that

Pio = g
20t 4o
) m(i—1.9) -Ny(i—hi)a’
= ij, m(—14") . Ny(iflyj/)a'/
. mi—1.9) "Ny,
= S mE N PN

where the inequality uses Ny(i_l,j)g > Ny(i_l,j)g and Ny(i,l’jga, < F- Ny@-,l,j/)a,. Using vjr o =
m(i=13") . Ny(i_lyj/)o, and v = Zj,,o, vy o1, We have pj, > 1;%—; Applying Claim 5.1, it follows
that E[X®] = v and V[X®] < (F — 1) - E[X®]2. Letting XJ@ denote the contribution of the j*
pair (generated in i iteration) to Eq. (7), using Nyi-15) = Ny-1.59 + Nya-11 (which implies
vjrot v = m(—13") ~Ny(i_1,j/)), and applying Chebyshev’s Inequality, we get

1 () 1 i—1,5
Pr| - Z X7 ¢ | (L=£(e/0)) - Z Z 1) N )

J€lk] J€K]

1 i i i
= Pr E-ZXJO—E[X()] > (e/0) - E[X ]
JE[K]

- V[X®)]

= (e-E[X@]/0)2 -k
< F-1

— (e/0)? -k

which is upper-bounded by 071 by our choice of k. Letting (y(i’l),m(i*l)), ey (y(i’k),m(i’k)) denote
the sequence of pairs generated in the i*" iteration, the foregoing means that, with probability at
least 1 — 071 (over the generation process)'?, it holds that

1 - € 1 o
T Z m(B9) 'Ny(i,j) — <1 + z) T Z m(i—1.9) 'Ny(i717j> (8)
JE[K] JEK]

Hence, for each i € [¢], with probability 1 — 91 it holds that

% .%;} e Ny = (12 %)’ A (9)

which establishes Eq. (7) in concrete terms. Hence, with probability at least 0.9, the output (i.e.,
> jelk] m&9) /k) is an 1 + € factor approximation of the number of t-cliques in the input graph.
Observing that, in each of the £ iterations, we make 2k oracle calls (to the error-reduced version of
A), the theorem follows. [l

13That is, (y(i’l), 77”L<i’1))7 e (y(i’k>,m(i‘k)) are actually random variables, and XJ(-i) =m®9) . Ny -

21



Digest. In a sense, the proof of Theorem 5.2 applies the reductions of fine approzimate counting
to uniform generation and of uniform generation to coarse approximate counting at the level of
each iteration. In contrast, in Section 4, these two reductions were applied at the level of the
problem itself (see Theorem 4.3 as well as Section 4.1). Note the analogy between Claim 5.1 and
the argument used within the proof of Theorem 4.3.

6 The Story Behind this Memo

I started thinking about these computational problems while being unaware of the prior work. The
starting point of my thoughts was the reduction of approximate-counting solutions for NP-search
problems to decision problems in NP and the tight relationship between approximate-counting and
uniform generation of solutions for NP-search problems. These well-known results of [8] and [7], re-
spectively, are among my favorites (see [6, Sec. 6.2]). My goal was to obtain fine-grained complezity
analogues of these results for the corresponding problems regarding t-cliques. Below I reproduce
my original train of thoughts.

As mentioned in the main text, in the context of NP, the standard reduction of approximate
counting to decision is based on hashing and on the fact that fitting a specific image under a hash
function can be encoded into the NP-complete problem. The first observation is that replacing the
hashing by a (careful) random selection of vertices yields a coarse approximation of the number of
t-cliques (when using an oracle for deciding the existence of ¢-cliques).

Recalling that the standard reduction of uniform generation to approximate counting is insen-
sitive to the quality of the approximation (provided it is fine and above some level), T observed
that any coarse approximate counter of t-cliques yields a weak procedure for uniform generation
of t-cliques, which can then be amplified, and in turn yield a fine approximate counter of t¢-cliques.
Here, as well as in the opposite direction, problems regarding t-cliques that fit a given prefix are
reduced to problems regarding ¢-cliques (proper). Fortunately, the latter auxiliary problems can be
reduced to the orignal ones.

Originally, I was hoping to improve the coarse approximate counter of ¢-cliques into a fine one.
As noted in the main text, the acute source of coarseness is that the analysis of Algorithm 3.1 only
capitalizes on the best choice of a sequence of indices (i1, ..., 4;) (which corresponds to the “heaviest
bucket”). I failed in my attempts to benefit from all the sequences of indices.

At this point, I became aware of previous works on the subject (specifically, the sequence [1,
4, 2, 5, 3]); in particular, I found out that Dell et al. [5] discovered a direct and superior method
of reducing fine approximate counting of t-cliques to coarse approximate counting of ¢-cliques, and
that the coarse approximate counter that I “discovered” was discovered before by Bhattacharya
et al. [3]. So I decided to turn my working draft into a survey.

I believe that the fact that my starting points and conceptual frameworks are somewhat different
than those of the authors of [5, 3] is responsible for the differences in the presentation style as well
as for some quantitative improvements.

Acknowledgments

I am grateful to Amir Abboud for helpful discussions and comments.

22



References

1]

Paul Beame, Sariel Har-Peled, Sivaramakrishnan Natarajan Ramamoorthy, Cyrus Rashtchian,
and Makrand Sinha. Edge Estimation with Independent Set Oracles. In 9th ITCS, pages 38:1—
38:21, 2018.

Anup Bhattacharya, Arijit Bishnu, Arijit Ghosh, and Gopinath Mishra. Hyperedge Estimation
using Polylogarithmic Subset Queries. CoRR abs/1908.04196, 2019.

Anup Bhattacharya, Arijit Bishnu, Arijit Ghosh, and Gopinath Mishra. Faster Counting and
Sampling Algorithms Using Colorful Decision Oracle. In 39th STACS, pages 10:1-10:16, 2022.

Holger Dell and John Lapinskas. Fine-Grained Reductions from Approximate Counting to
Decision. In 50th STOC, pages 281-288, 2018. ACM Trans. Comput. Theory, Vol. 13 (2),
pages 8:1-8:24, 2021.

Holger Dell, John Lapinskas, and Kitty Meeks. Approximately Counting and Sampling Small
Witnesses Using a Colourful Decision Oracle. In 31st SODA, pages 2201-2211, 2020. SIAM
J. Comput., Vol. 51 (4), pages 849-899, 2022.

Oded Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge University
Press, 2008.

Mark Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random Generation of Combinatorial
Structures from a Uniform Distribution. T'CS, Vol. 43, pages 169-188, 1986.

Larry J. Stockmeyer. The Complexity of Approximate Counting. In 15th STOC, pages 118—
126, 1983.

23



	Overview
	Obtaining a Coarse Approximate Counter For t-Cliques
	Reducing Fine Approximation to Coarse Approximation
	The first reduction: going through uniform generation
	The second reduction: the direct route

	Organization

	Preliminaries
	Coarse Approximation For t-Cliques
	The Starting Point
	The Actual Procedure (For t-Cliques)

	Approximate Counting Versus Uniform Generation
	The Standard Presentation Adapted to t-Cliques
	Using Coarse Approximate Counters

	The Direct Reduction of Fine Approximate Counting of t-Cliques to Coarse Approximate Counting of t-Cliques
	The Story Behind this Memo

