On the Complexity of Estimating the Effective Support Size

Oded Goldreich*

February 4, 2025

Abstract

Loosely speaking, the effective support size of a distribution D is the smallest size of the support
of some distribution that is close to D (in totally variation distance). We study the complexity of
estimating the effective support size of an unknown distribution when given samples of the distribu-
tion as well as an evaluation oracle (which returns the probability that the queried element appears
in the distribution). In this context, we present several algorithms that exhibit a trade-off between
the quality of the approximation and the complexity of obtaining it, and leave open the question of
their optimality.

In particular, for any constant 8 > 1 we present an algorithm that, on input € > 0 and oracle
access to a distribution D, uses O(1/€29°1) samples and queries, and outputs a number 7 such that
D is e-far from any distribution that has support of size n but is S - e-close to a distribution that
has support size f -7, where f = O(logloglogloglog(n/e€)). (Indeed, 1.001 stands for any constant
larger than 1, and loglog log log log stands for any constant iterations of the logarithmic function.)

Subsequent developments. The results presented in this paper were mostly superseded by Narayanan
and Tetek [8], who resolved Problem 1.10 positively. For any constant 5 > 1, they present an algorithm
that, on input € > 0 and oracle access to a distribution D, uses poly(1/e) samples and queries, and
outputs a number n such that that the distance of D from the set of distributions that have support
of size n is between € and - €. Note, however, that [8] relies on the initial observations and model
justifications provided in Sections 1.2 and 1.3. In general, we believe that Section 1 is of interest even
given [8].

Organization. As is apparent from the abstract, our estimation algorithms approximate two param-
eters: the level of effectiveness and the support size. We start by presenting the relevant definitions
(i.e., Definitions 1.1-1.3), making some initial observations (Section 1.2), and justifying our definitional
choices (Section 1.3). Next, in Section 1.4, we state our main results, which exhibit a trade-off between
accuracy and sample complexity (see the various parts of Theorem 1.9), and provide overviews of
their proofs (Section 1.5). The wider context is discussed in Section 1.6, whereas standard conventions
and notations are presented in Section 1.7. The actual algorithms that establish the various parts of
Theorem 1.9 are presented in Section 2, and a digest is provided in Section 3.

1 Overview

The support size of a (discrete) probability distribution is a natural parameter of a distribution: Defined
as the number of elements that appear with positive probability (in the distribution), the support size
measures the “scope” of the distribution; that is, the number of different elements that may occur

*Faculty of Mathematics and Computer Science, Weizmann Institute of Science, Rehovot, ISRAEL. Email:
oded.goldreich@weizmann.ac.il.

when sampling from this distribution. Unfortunately, this parameter is highly sensitive to insignificant
changes in the distribution; for example, any distribution is infinitesimally close to having an arbitrary
large support size.

A much more robust notion, which maintains the intuitive appeal of the support size, is the “effective
support size” of a distribution (cf., [2]). Loosely speaking, the “effective support size” of a distribution D
is the number of elements that remain in the support after discarding from D a set of elements that
has a “small” total probability mass. Alternatively, the “effective support size” of a distribution D is
the minimum support size of distributions that are “close” to D. Hence, D has effective support size
at most n if D is “close” to some distribution that has support size (at most) n. Needless to say, the
actual definition should specify what is considered “close”.

Definition 1.1 (effective support size): We say that the distribution D has e-effective support size at
most n if D is e-close to a distribution that has support size at most n, where D is e-close to D' if their
total variation distance is at most €. The e-effective support size of D, denoted ess (D), is the minimal
n such that D has e-effective support size at most n.

Note that the O-effective support size of a distribution equals its support size, whereas its 1-effective

support size equals 1.1 In general, ess (D) decreases from n def esso(D) to 1 when € increases from 0
to 1, while covering all of [n] (see Figure 1).

The notion of effective support size is much more robust than the notion of the support size; in
particular, if D is infinitesimally close to a distribution that has e-effective support size n, then D has
e-effective support size at most n 4 1 (where the additional unit is needed only in pathological cases).?
In general, if D is o(e)-close to a distribution that has e-effective support size at most n, then D that
has (14 o(1)) - e-effective support size at most n.

1.1 Beyond the Straightforward Definition

The foregoing discussion hints at two aspects of slackness that may be applied to the effective support
size. Actually, one better apply both these slackness aspects (or notions of approximation) if wishing
to actually find the effective support size of unknown distributions. First, rather than fixing the
effectiveness parameter, one may want to allow it to vary within a fixed interval; that is, rather than
seeking the e-effective support size, for some predetermined € > 0, we seek a number that is upper-
bounded by the e-effective support size and lower-bounded by the €’-effective support size (for some
predetermined €’ > €). Second, we may seek an approximation to the desired number rather than the
number itself.

Definition 1.2 (relaxations of the effective support size): The natural number n is an [€1, €2]-effective
support size of D if there exists € € [e1, €] such that n is the e-effective support size of D; that is,

! Actually, for any distribution D, there exists a number & € [0,1) such that the d-effective support size of D equals 1.
2Let D’ be the foregoing distribution that has n-effective support of size n. Then, the typical case is that this value of 1
is not critical (w.r.t having n-effective support size n); that is, for some " < 7, the distribution D’ has n’-effective support
of size n. In this case, any distribution that is (7 — n’)-close to D’ has n-effective support of size n. The pathological
case is that D’ has n-effective support of size n, but for every ' < n the n’-effective support size of D’ is larger than n.
We claim that in this case, for some 1’ < 7, the distribution D’ has n'-effective support of size n + 1 (and it follows that
any distribution that is (n — n’)-close to D’ has n-effective support of size n + 1). To prove this claim, suppose that D’ is

n-close to a distribution D" of support size n, and consider the following two cases.
1 If the support of D’ is contained in the support of D", then the claim is trivial (since then D’ has support size n).
2 Otherwise, let v be in the support of D’ but not in the support of D", and consider modifying D" by moving a
probability mass of D’(v) > 0 from {u : D”(u) > D’(u)} to v. Then, the modified distribution D"’ has support
size n + 1 (i.e., the support of D"’ is contained in the union of the support of D’ and v) and is (n — D’(v))-close

to D’. Hence, the claim follows with n" =n — D’(v).

Support size

=

Figure 1: Showing n = ess (D) and n’ = ess (D), for € < €.

n = ess (D). A value n is an f-factor approximation of the [e1, e3]-effective support size of D if it lies
in the interval [ess., (D), f - ess¢ (D)].

Note that n € N is an [e], ea]-effective support size of D if and only if n € [ess, (D), ess¢, (D)]. (This
is because for any € € [e1, €9], it holds that esse, (D) < ess(D) < ess, (D), whereas for any n € N
that is smaller than essq(D) there exists € € (0,1) such that n = ess.(D).)3

As hinted, we are interested in algorithms that, for some €1, €5 and f, when given oracle access to
an arbitrary distribution D, output an f-factor approximation of the [e, es]-effective support size of
D. Two questions arise:

1. What does it mean to have oracle access to a distribution? One natural oracle associated with
a distribution D is a sampling device, denoted sampp, that on each invocation returns a sample
of D (i.e., an element drawn according to the distribution D). Another natural oracle is an
evaluation oracle, denoted evalp, that answers each query e with D(e) = Prsp[s =e¢]; that is,
evalp(e) = D(e) = Pr[sampp =e].

We shall focus on oracle machines that are given oracle access to both oracles, but will also discuss

the case of machines that only get access to a sampling device. Actually, we shall consider the
latter setting as a special case.

2. What parameters €1 < €2 and f can we handle and at what cost? Wishing to reduce the number
of parameters, we shall often fix an arbitrary small constant S > 1, and consider the setting
€1 = € and €5 = (- €; that is, we keep € as a single effectiveness parameter, which we shall always
keep varying. In contrast, the approximation parameters will sometimes be a function of ¢ and
sometimes also depends on the distribution D (e.g., it may depend on the e-effective support size
of D).

With these preliminaries in place, our main definition is the following.

3Needless to say, for any » € R\ N and ¢ € [0, 1), it holds that r # ess.(D).

Definition 1.3 (approximating the effective support size): We say that a (two oracle) machine M is
an f-factor approximator of the [e1, e2]-effective support size of distributions (in a class C) if, for every
distribution D (in C), with probability at least 2/3, the random value MS*™Pp*Va1D (¢ €9) is an f-factor
approximation of the [e1, €2]-effective support size of D; that is,

Pr [M®"PpeV21D (¢ ¢5) € [esse, (D), f - esse, (D)]] > 2/3.

Algorithms that have no access to an evaluation oracle may be viewed as a special case in which the
oracle machine makes no queries to evalp. Note that, so far, we did not restrict the complexity of the
approximator; however, the complexity of such approximators is the focus of the current work. In what
follows we shall consider the query complexity of the approximator as a function of €1, e and f as well
as of the distribution D itself (e.g., the complexity may depend on the estimated effective support size
of D).

1.2 Initial Observations

We start with two simple but clarifying observations:

Observation 1.4 (the effective support size is obtained by omitting the lightest elements in the dis-
tribution): If D has e-effective support size n, then D is e-close to a distribution that has a support
that consists of the n heaviest elements in D, with ties broken arbitrarily.

Proof: Assuming that n = ess (D), let H denote the set of n heaviest elements in D, where ties are

broken arbitrarily; that is, |H| = n and for every e ¢ H it holds that D(e) < minpey{D(h)}. Then,

D(H) & > nher D(h) > 1 — €, because otherwise we derive a contradiction (to the hypothesis that D

is e-close to some distribution of support size n).* Moving the probability mass of H to H, the claim

follows (e.g., fixing any h € H, we may let D'(h) e D(h) + 3 egn D(e) and D'(e) aof D(e) for every

ecH\{h). W

Observation 1.5 (small approximation factors can be eliminated by moderately increasing the larger
effectiveness threshold): If a random wvariable X is an f-factor approzimation of the [e1, es]-effective
support size of D, then X/f is an [e1,€e2 + (f — 1)/ f]-effective support size of D. (In particular, for
f=14+e>1,wehave (f—1)/f <e.)

Proof: Suppose that n is an f-factor approximation of the [e;, es]-effective support size of D; then,
ess., (D) < n < f-ess, (D). Noting that D is ex-close to a distribution Dy that has support size

ny & ess, (D), we move the probability mass of the na — (n2/f) lightest elements of Dj to its na/f
heaviest elements, obtaining a distribution of support size na/ f, denoted D}. Next, we observe that the

probability mass that we moved is at most § dof (ng — (n2/f))-1/n2 = (f —1)/f, because the lightest
element have average mass that is at most the average mass of all elements. Hence, D is (e2 + 0)-close
to D), and it follows that ess.,5(D) < na/f < n/f. On the other hand, using n < f - ess, (D), we
infer that n/f < ess¢, (D). Hence, n/f is an [e1, e2 + (f — 1)/ f]-effective support size of D. M

4That is, supposed towards the contradiction that D(H) < 1 — €. Then, for every distribution D’ having a support S’
such that |S’| = n, it holds that the total variation distance between D and D’ equals

max{D'(S) = D(S)} > D'(S) - D(S)

= 1-D(S")
> 1= S:rpsﬁu:cn{D(S)}
= 1- D(H)7

which (by the contradiction hypothesis) is greater than 1 — (1 —€). Hence, the total variation distance between D and an
arbitrary distribution of support size n is greater than e, contradicting the hypothesis that ess.(D) = n.

1.3 Justifying the General Framework of Section 1.1

Next, we show that only poor approximations can be obtained when not using the general framework
outlined above (i.e., neither using an effectiveness interval nor an evaluation oracle).

Justifying the use of an effectiveness interval. As hinted upfront, we chose to relax the def-
inition of e-effective support size (i.e., Definition 1.1) by allowing two effectiveness thresholds (see
Definition 1.2), because we found the former definition too restrictive. This view is substantiated by
the following result.

Proposition 1.6 (on the hardness of approximating the e-effective support size): For any e € (0,0.5)
and n, f € N, an algorithm that makes o(n) queries to (the sampling and evaluation oracles of) an arbi-
trary distribution that has 2e-effective support size at most n cannot provide an f-factor approximation
of the e-effective support size of the distribution.

Note that the approximation factor (i.e., f) may depend arbitrarily on € and n, but not on other
parameters of the distribution (like its actual e-effective support size). Indeed, n is merely an upper
bound on the 2e-effective support size of the distribution, whereas its actual e-effective support size
may be unrelated to its 2e-effective support size. In fact, the proof capitalizes on two extreme cases: In
one case the e-effective support size is quite close to the 2e-effective support size, whereas in the other
case the e-effective support size is arbitrary larger than its 2e-effective support size. (In both cases, the
2e-effective support size is (1 — 2¢) - n.)

Proof: Fixing € € (0,0.5) and n € N, we pick a sufficiently large N > n, and consider the following
two distributions:

1. For arbitrary sets H and L such that |H| = (1—¢€)-n and |L| = ¢- N2, the distribution D; assigns
probability 1/n to each of element in H, and probability 1/N? to each element in L.

(Indeed, |H|- L +|L] 3z = (1 —€) +¢)

2. For arbitrary sets H' and L’ such that |H'| = (1—¢)-n—1 and |L'| = e- N?> + N, the distribution
Dy assigns probability 1/n to each of element in H', probability 1/N? to each element in L', and
probability (1/n) — (1/N) to a single element s ¢ H' U L'.

(Indeed, |H'|- 2 +|L/| = +1- (-) =(1-e-H+(e+H+(L-%)=1)

n n

Note that an oracle machine that makes o(n) queries cannot distinguish these two distributions (i.e.,
its distinguishing gap is 0(1)).> On the other hand, D; has e-effective support size (1 —¢) -n < n,
whereas Dy has e-effective support size (1 —€)-n+ N > N, since the heaviest (1 —€)-n+ N elements
in Dy have total weight (1—¢€)-n—1)-1+1. (2 - L)+ N- ﬁ = 1 — e. Hence, the approximation

n
factor provided by a o(n)-query machine is Q(N/n), which cannot be bounded in terms on € and n.

Justifying the use of an evaluation oracle. In the rest of this paper, we shall focus on algorithms
that use both a sampling device and an evaluation oracle, because algorithms that use only a sampling

device perform quite poorly. This fact is an immediate corollary of a result of Raskhodnikova, Ron,
Shpilka, and Smith [10].

5To streamline the argument, when considering the case that the machine queries D1, let s be an arbitrary element in
H. Then, the distinguishing gap is mainly due to the case that the machine obtained s as a sample, where we neglect the
different collision probabilities for L and L’ (since it is extremely small).

Corollary 1.7 (on the hardness of approximating the effective support size when using a sampling
device only): For any constant ¢ € (0,0.06], an 0.04n°-factor approzimator of the [0,0.04]-effective
support size of distributions over [n] that makes no evaluation queries must take Q(n1_301/2) samples.
In particular, distinguishing distributions that have support size n'=¢ from distributions that have 0.04-

effective support size at least 0.05 - n requires Q(n1*301/2) samples.

Proof: Restating the first part of [10, Cor. 2.2], we consider n-grained distributions over [n], where
a distribution is n-grained if all probabilities are integer multiples of 1/n. The said result asserts that
(for every ¢ € (0,1/16]) at least Q(n1_301/2) samples are needed in order to distinguish an n-grained
distribution of support size at least n/11 > 0.09n from an n-grained distribution of support size at most
n'=¢. Note that the first distribution has 0.04-effective support size at least 0.09n — 0.04n (since the
lightest elements have each weight 1/n), whereas the second distribution has 0-effective support size at
most n'~¢. Lastly, note that %05"

=2 is greater than the desired approximation factor (i.e., 0.04n¢). W

We stress that Corollary 1.7 does not rule out the possibility of obtaining very crude approximations
of the effective support size within sample complexity that is significantly smaller than linear in the
effective support size (without using an evaluation oracle). On the other hand, note that, in this
setting, no significant approzimation can be obtain when using a number of samples that is significantly
smaller than a square Toot of the effective support size, because (for any ¢ > 0) using n®-5=¢ samples
one cannot distinguish betwen a uniform distribution on n elements and a uniform distribution on
n'—2¢=o(1) elements. So the real questions are of the following type.

Open Problem 1.8 (obtaining crude approximation of the effective support size when using a sam-
pling device only): Fizing any positive €1 < €3 < 0.5, for which values of ¢,¢ € (0,0.5) does there
exist an n-factor approximator of the [e1, ea]-effective support of distributions over [n] that uses n0-5+¢
samples, when making no evaluation queries at all?

1.4 Owur Main Results

In contrast to Corollary 1.7, highly efficient and good approximations of the effective support size (of
distributions) can be obtained when using both types of queries (i.e., a sampling device as well as an
evaluation oracle). In fact, we obtain several different algorithms that exhibit a trade-off between the
complexity of the algorithm and the approximation factor it obtains for the [e, 5-¢]-effective support size
(of distributions), where 8 > 1 is (typically) a constant. Specifically, at the most efficient extreme, we
obtain an algorithm that uses O(1/€) samples and obtains an approximation factor that is logarithmic
in the e-effective support size (and almost linear in 1/€). On the other hand, at the most accurate
extreme, we obtain a [-factor approrimation algorithm than uses log*(n/e€) samples in expectation,
where n is the effective support size.

Theorem 1.9 (highly efficient and good approximators of the effective support size): For any constant
B > 1 and each of the following for options regarding s and f, there exists an algorithm that, on input
e > 0 and oracle access to D, uses s samples and outputs an f-factor approrimation of the [e, (3 - €]-
effective support size of D. Letting n = ess¢(D) denote the e-effective support size of D, the four
options are:

1. s=0(1/¢) and f = O(e 'log(n/e)).
2. s =0(1/€) and f = O(log(n/e)).

3. For any constants t,k € N, it holds that s = 6(t/61+%) and f = O(log¥ (n/e)), where log®
denotes t iterated logarithms.

4. For any constant k € N, it holds that s = O(log* (n/e)/eH%) in expectation and f = B.

In all cases, the algorithm makes evaluation queries only to elements that have appeared in the sample.
The dependence of the number of samples on [is poly(1/(8 — 1)). Recall that outputting an f-factor
approzimation of the [e, 5 - €]-effective support size of D means that, with probability at least 2/3, the
output lies in the interval [essg.(D), f - ess(D)].

By Observation 1.5, using the last item, we can obtain f = 1 with s = O(log"(n/¢)) - poly(1/¢) samples
in expectation, by letting 8 = 1 4 € and using the stated dependence of the sample complexity on .
Indeed, while the complexity bounds in the first three items hold for all executions, the bound in the
last item refers to the expectation. This should not come as a surprise given that the first three bounds
only depend on ¢, whereas the latter bound depends also on the (a priori) unknown n.

At the time of writing this paper, it was not clear whether the trade-off between the sample com-
plexity and the approximation factor exhibited by the foregoing four options is inherent. In particular,
we wondered whether one can obtain s and f that are both functions of € only.

Open Problem 1.10 (approximators of the effective support size with performance guarantees that
are oblivious of the distribution): For a constant § > 1, does there exist an algorithm that, on input
e > 0 and oracle access to D, uses s(€) samples and outputs an f(€)-factor approrimation of the
[€, B - €]-effective support size of D, where s and f are functions of € only? If so, can both functions be
polynomials in 1/€? And, if so, can we have s(e) = poly(1/e) and f =17

As stated upfront, a positive answer to all question posed in Problem 1.10 was subsequently provided
by Narayanan and Tetek [8]. Specifically, they obtained s(¢) = O(1/€3) and f = 1. Furthermore, the
dependence on f3 is polynomial in 1/(8 — 1).°

A very brief review of [8]. The algorithm of Narayanan and Tetek [8] is quite simple, but its
analysis is not simple at all; in our opinion, the analysis of [8] is more complex than the analyses of the
more complex algorithms presented in this paper. However, unlike others in the community, we view
simpler algorithms that are coupled with more complex analyses as a virtue.

The starting point of [8] is the observation that the function F'(x) = 1/D(x) is an unbiased estimator
of the support size of D, but (as one should expect) the variance of this estimator in formidable. Instead,
the algorithm of [8] starts by taking a sample of size s = O(1/€), orders its elements in increasing order
of probabilities, letting z denote the (0.5 4+ 0.58) - € - s*" element, and uses the function F’ such that
F'(z) =1/D(z) if D(x) > D(z) and F’'(x) = 0 otherwise as an unbiased estimator of the desired value
(i.e., an [e, § - €|-effective support size of D).

The key observation is that the total probability weight (under D) of the elements that are lighter

than z is approximately (0.5 + 0.553) - € and so the size of S o {z : D(x) > D(z)} constitutes an
[€, 5 - €]-effective support size of D. Hence, letting X denote a random variable distributed according
to D it holds that Pr[X & S] =~ (0.5 + 0.503) - €, whereas

E[F'(X)] =Y D) F(z)=> 1=]9].
T zeSs
The problem, as usual, is upper-bounding the variance of F'(X) (by O(|S]?)). This works in one
natural case (i.e., when [S| = Q(1/D(z))), but not in another (i.e., |S| = o(1/|D(z)|)). Instead,
a different analysis is applied in the second case. In particular, deviation from the expectation is
analyzed by using specific features of the setting at hand (i.e., it is OK to estimate the size of any S’
such that Pr[X & S| € [e, (1 + B) - €]).

SAt the time of posing Problem 1.10, we noted that a negative answer would join the small collection of natural
computational problems having computational complexity that depends extremely mildly on the object’s size (i.e., complexity
that is lower-bounded by some unbounded function of the size and is upper-bounded by a log-star in that size). Needless
to say, this possibility did not materialize.

1.5 Techniques

The algorithms that establish the four items of Theorem 1.9 are all based on clustering the elements
of the distribution’s support according to their approximate probability mass (or weight). Specifically,

the " cluster, denoted W;, contains all elements that have probability approximately B(=05). that

is, W; def {e: 87" <D(e) < ﬁ_(i_l)}, where 8 > 1 is an arbitrary constant. The key observations are:

1. D(W;) provides a good estimate of |W;|, since W; € [3°~1 - D(W;), B° - D(W;)).
2. For £ = O(log(esse(D)/¢)), the 3 - e-effective support size of D is upper-bounded by >, [Wi|.

This can be seen by considering the set L o {e : D(e) < €'}, where € = (8 —1)-€¢/n and n =
ess (D). Evidently, Ui>1ogﬁ Wi € L, and so the current observation follows from D(L) < fe,
which essentially follows from Observation 1.4. Specifically, letting H denote the set consisting
of the n heaviest elements of D, note that D(H) > 1 —¢, whereas D(L) = D(LNH)+D(L\ H) <
n-e +e=fe.

Hence, if each element of W; has weight S~(=95) then essge(D) is determined by the values
|Wil,...,[Wy| (equiv., the values D(W7),...,D(Wy)), because essge(D) = |H| such that H is the
smallest set that has weight at least 1—3-e. Using the first observation, we obtain an [37-%¢, 3%-%¢]-
effective support size also in general (i.e., when waiving the equal weights condition).

3. The foregoing ¢ can be replaced by ¢ such that Zi>ZD(VVi) ~ (lle. Specifically, we can take

O(1/€) samples from D and set £ as the smallest integer such that at most 8! - ¢ fraction of the
samples reside in (J,_; W;.

Note that » . 7D(W;) < B'-2¢, whereas >i>¢ D(W;) > Be. Hence, (<2

Hence, approximating D(W;) for each ¢ € [¢] (in the sense of obtaining a [-factor approximation of
D(W;) if D(W;) = Q(e/f) and an indication that D(W;) = o(e/f) otherwise) suffices for a FOM-factor
approximation of the [B‘O(l)e, oM . ¢]-effective support size (of D).” Using parameter-substitution,
we get

Theorem 1.11 (yet another approximator of the effective support size): For any constant 5 > 1,
there exists an algorithm that on input € > 0 and oracle access to D, with probability at least 2/3, uses
5(6_1 log(n/e€)) samples and outputs a B-factor approximation of the [e, 5 - €]-effective support size of
D, where n = ess(D).

Indeed, Theorem 1.11 is inferior to the last item of Theorem 1.9, but its proof is much simpler. Again,
applying Observation 1.5 and relying on the fact that the sample complexity depends polynomially on
1/(B—1), we obtain an algorithm that uses poly(e~!-log(n/e)) samples and outputs an [e, 3- ¢]-effective
support size of D.

Proving the first item of Theorem 1.9. While the approximator underlying Theorem 1.11 does
not establish any of the items of Theorem 1.9, a variant of it does establish the first item, which asserts
the most efficient algorithm that we present. Specifically, this algorithm only uses O(1/¢) samples, but
its approximation factor is logarithmic in the actual value.

The key observation is that any i € [¢] that satisfies both 3., D(W;) = O(€) and D(W;) = Q(e/¢)
provides the desired approximation (i.e., an O(¢/e)-factor approximation of the [Q2(¢), O(e)]-effective
support size of D), and that such an 7 can be identified (w.h.p.) by taking O(1/¢) samples of D. Specif-

ically, using O(1/e€) samples, we first find ¢ such that sz, D(W;) > 7% and Zj>é~’+1 D(W;) <

"Note that these £ approximations can be obtained by using a single sample of size O((£/¢) - log).

B7/4e < B%e. Hence, Zje[?/[] D(W;) = Q(e), and, when i € [¢,7] is selected with probability propor-
tional to D(W;), the value of D(W;) is 2(e/¢) with high constant probability (e.g., at least 0.9). Next,

note that we can select ¢ according to the latter distribution by sampling from D till the sampled
element e hits (. W;, and setting i = [logg(1/D(e))] + 1. Recalling that Zj>@+1 D(W;) < B,

note that -
essp (D) < SO Wi < SOy < 30 B < 5 (1)
jele] Jjeld] Jjeld]
On the other hand, as shown in Claim 2.1.2 (Part 2))® it holds that ess.(D) = Q(1) - > jen Wil =

Q(|W;]). Recalling that D(W;) = Q(e/¢) (with probability at least 2/3 over the choice of ¢, ¢ and 1), it
follows that

jele 0]

ess.(D) = Q(|Wil) = QB - ¢/0). (2)

Hence, with probability at least 2/3, the value 871/(8—1)) constitutes an O(¢/¢)-factor approximation
of the [e, 3 - e]-effective support size of D. This establishes the first item of Theorem 1.9.

Towards proving the other items of Theorem 1.9. Note that the foregoing procedure amounts
to determining ¢ and E’ selecting ¢ € [E’ Z] by sampling D till hitting an element e in U] €@ W,
and using O(1/D(e)) = O(B") as the approximation value, while relying on essg.(D) = O(5'). W
stress that the foregoing procedure did not try to estimate D(W;); it rather relied on the fact that
> jer Wil = O(B%) and that (with high constant probability) D(W;) = Q(e/f), which in turn implies
> e Wil = Wil = Q(B" - €/f). The approximation factor is the ratio between these two bounds, and
we seek to reduce this ratio so to obtain tighter approximators.

The first tighter approximator (i.e., the second item of Theorem 1.9) is based on the observation
that if D(W;) = o(e) then the lower-bound D(W;) = Q(e/¥) is off only by a factor of O(¢) rather than
O(l/e€), whereas otherwise we can afford to approximate D(W;) to within a constant factor (e.g., a
p-factor). The same reasoning can be applied to each of the W; for j € [i — O(log(1/e€)), i — 1], whereas
>_jeli—oGog(1/e) Wil = ole - %) = o(C - [Wi[), provided that D(W;) = Q(e/{). Hence, using O(1/e)
samples, we can approximate each D(Wj) for j € [i —O(log(1/¢)), 4] in the sense of obtaining a S-factor
approximation for D(W;) > € and an indication that D(W;) < € otherwise. Denoting the corresponding
approximations by gj’s (i.e., SJ ~ D(W;)), we essentially output de[z O(log(1/¢),i] ESVJ - 37, which is at
least B~ - min(|W;|, e B°). Recalling that essgz (D) < > e Wil < 2 jei—ogos(1 /), Wil +o(£- [Wil)
and ess(D) = Q(|W;]), it follows that the output is sandwiched between 57! - essg2(D) and O(¢) -
ess (D). This suffices for establishing the second item of Theorem 1.9. (Observe that our worst-case
approximation factor (i.e., O(¢)) is due to light Wj’s (i.e., D(W;) < €) with j € [i — O(log(1/e)),];
speciﬁcally, it may be that Zje[i_o(log(l/e)’i]:D(W],)Q §; - 7 = Qe - B"), whereas we used |W;| = Q(e -
8'/0).)

Proving the remaining items of Theorem 1.9. The remaining two approximators are based on a
finer analysis of the interval [¢/, £], in which ¢ is selected. We start by observing that the approximation is
actually off by a factor that is related to the length of the interval, A = (—0+ 1, rather than ¢; indeed, in
the foregoing, we used ¢ merely for simplicity. Now, if A < 1/¢, then we can afford approximating all the
relevant D(W;)’s that satisfy D(W;) = Q(e/A) up to a factor of 3, since O(\/e) = O(1/e?). Otherwise
(i.e., A > 1/e), letting N = O(log \) = O(log(\/e€)) and recalling that Z D(W;) = Q(e), we
consider the following two cases:

€0 7 +2—1]

8This is easy to see when i < £, but some difficulties arise in the case of i = £ (see proof of the main case of Part 2 of
Claim 2.1.2).

o If Zje[[’,[’—l—)\’] D(W;) = Q(e), then we can proceed with X' rather than with A (i.e., we recurse
while resetting A « \').

(In the current case, the fact that a relatively small portion of the interval I = [27' U4\ — 1]
holds much weight is used to gain a lot when proceeding to the recursive step (since A is replaced
by O(log \)).)?

e Otherwise Zie[@w\/,@w\—l} D(W;) = Q(e) holds, and we select i € [+ X, + X — 1] with
probability proportional to D(W;). In this case, for the selected ¢ it holds that > i<ioN |W;| =
O(eB'/)), since 5~ = O(e/A). This implies that essg (D) = > iy y|Wj| = O(eft/N), since
Ej>[’ D(W;) < (%€ and ¢ <i—X. On the other hand, with high constant probability, it holds
that |W;| = Q(ef'/\), which implies ess(D) = Q(ef*/\). Hence, in this case, O(e8'/\) is a

constant factor approximation (of the [e, 32 - €]-effective support size of D).

Using recursion and a tighter analysis, we derive the fourth item of Theorem 1.9 (for the case of
k = 1).19 The third item (of Theorem 1.9) is established by truncating the recursion at depth ¢ — 1,
and employing the algorithm of the second item (while recalling that here ¢ is replaced by O(log(t_l)).

1.6 Wider Context

Our original motivation for the current study arose in the context of “vertex-distribution-free” (VDF)
models for testing properties of graphs [5]. Loosely speaking, in these models the tester is provided
with a sampling device to an arbitrary distribution, D, over the vertex set (as well as with query access
to the graph itself). Our focus in [5] was on strong testers; that is, tester whose complexity depends
only on the proximity parameter. Nevertheless, in [5, Sec. 5.2], we suggested to consider also testers of
complexity that depends on (label-invariant) parameters of the vertex-distribution such as its effective
support size. This immediately raises the problem of approximating these parameters. Indeed, an
initial study of this problem was provided by us in [6, Sec. 2.2], and it was used in the construction of
a Bipartite tester (in (a variant of) the bounded-degree VDF model), which is the actual focus of [6].
(The approximators presented in [6, Sec. 2.2] are inferior to those stated in Theorem 1.9; the best
approximator, captured by [6, Thm. 2.2], is closely related to the one in Theorem 1.11.)

Access to an evaluation oracle may not be very natural in the context of the “vertex-distribution-
free” testing model (yet, it was postulated, motivated, and relied upon in [6]). In contrast, an evaluation
oracle is quite natural in the context of studying computational problems regarding distributions (see,
e.g., [1, 3, 9]).1! In particular, prior works [1, 3, 9] considered a variety of computational problems such
as approximating the distance to a known distribution, approximating the entropy of a distribution,
and approximating the size of the support of distributions (when given a lower bound on the probability
of the lightest element in the support, and allowed an additive approximation error that is inversely
proportional to that bound).!? We comment that the different models of [1, 3] and [9] coincide in our
setting, where the domain of the distributions is not a priori known.'3

9In the next case, we use the fact that the rest of the interval is hit with high probability when selecting i € I with
probability proportional to D(W;). In that case, we can show that > ., ,, [W;| = O(ef*/)), which means that O(ef%/)\)
is a good approximator.

0The case of general k € N requires a finer analysis.

"Prior works (see, e.g., [7]) have also considered the problem of learning the evaluation function of a distribution (rather
than learning to generate the distribution).

12The latter problem sounds related to approximating the effective support size, but is actually different from it (see
next paragraph).

3Tn general, in [1, 3] the algorithm is allowed arbitrary evaluation queries, whereas [9] provide it only with the probability
mass of each sampled element. But in setting in which the domain of the distribution is arbitrary, evaluation queries to
un-sampled elements are practically useless.

10

Approximating the effective support size is somewhat related to (tolerantly) testing the support
size of distributions, a task that has been studied extensively (see [4, Sec. 11.4] and the references
therein). Specifically, tolerantly testing that D has support size n under proximity parameter e and
tolerance parameter € calls for accepting distributions that have €¢-effective support size at most n
(i.e., ess¢ (D) < n) and rejecting distributions that have e-effective support size greater than n (i.e.,
essc(D) > n).!* Recall that an ¢-tolerant e-tester is given n and is allowed arbitrary behaviour in case
n € [ess¢(D), essy (D)), whereas a f-factor approximator of the [¢/, €]-effective support size is required
to find n € [ess¢(D), f - ess(D)]. Hence, it is unclear how to convert an f-factor approximator (with
f > 1) into a tester. As for the opposite direction, we face the generic problem of converting a decision
procedure into a search procedure, and note that we cannot afford a logarithmic (in ess((D)) factor
overhead (since, in the current work, we care about lower complexities).

1.7 Conventions and Notations

Throughout this work we refer to discrete probability distributions, which may be thought of as ranging
either over binary strings or over natural numbers. For such a distribution D : U — [0, 1], we denote

by D(e) the probability (or weight or mass) that D assigns e; that is, D(e) = Prsop[s=e|. For a set

S, we define D(.5) &t >eesD(e). Welet S =U\ S and often do not specify U at all.

One may assume, without loss of generality, that an approximator of the effective support size
makes evaluation queries only on elements that appear in the sample. Our algorithms do satisfy this
assumption, and hence we only state their sample complexity, which upper-bounds their evaluation-
query complexity.

We say that D is e-close to D’ if the total variation distance between them is at most €, where the
total variation distance between D and D’ equals

1
5 S IP(e) - D()] = max(D(s) - D'(S)}. 3)
Otherwise, we say that D is e-far from D’.

2 Algorithms

In this section we establish the four items of Theorem 1.9 by proving four corresponding theorems.
Our starting point is an algorithm that is based on clustering the elements of the distribution’s support
according to their approximate probability mass (or weight). The key observation is that the number
of relevant clusters (i.e., clusters having noticeable weight) is logarithmically related to the effective
support size. Furthermore, the effective support size can be related to the size of a random relevant
cluster (i.e., a relevant cluster selected with probability that is proportional to its total mass). The
resulting approximation factor is linearly related to the number of relevant clusters (which is logarithmic
in the effective support size) and is inversely related to the effectiveness threshold.

Theorem 2.1 (the basic algorithm): For any constant § > 1, there exists an algorithm that on input
€ > 0 and oracle access to D, uses O(1/€) samples and outputs an O(e~ ! log(n/¢))-factor approzimation
of the [e, B €|-effective support size of D, where n = ess (D). The dependence of the number of samples
on B is poly(1/(8 — 1)). Ditto for the approximation factor.

(This establishes Item 1 of Theorem 1.9.)

141n particular, testing that D has support size n under proximity parameter e calls for accepting distributions that
have support size at most n and rejecting distributions that have e-effective support size greater than n.

11

Proof: Fixing f > 1 and D, for every i E N, we consider the set of elements having probability

approximately S~(=0-5): that is, we let W = {e B~" < D(e) < B~~1}. We first observe that almost
all of the probability mass of D is assigned to the first O(log(n/e€)) sets (i.e., W;’s), where n = ess¢(D)
is the e-effective support size of D.

Claim 2.1.1 (ess (D) and the D(W;)’s): Suppose that D has e-effective support size at most n, and
let £ € N be minimal such that Y, ,D(W;) < B -e. Then, £ <logg(n/((8—1)¢)).

Throughout the rest of this proof (as well as the in the proofs of the subsequent theorems), we shall
assume that ¢ > 1, while noting that the case of ¢ = 1 is easily handled (by finding all elements of
Wi and outputting [W1]). In fact, for similar reasons, we may assume that £ > logg(1/¢) + O(1). (In
contrast, if £ < logg(1/€)+O(1), then each element of | J;c(, Wi has weight at least 5~ ~¢ = Q(¢), whereas
we can afford finding all element of weight Q(e).)!?

Proof: Let S be a set of size at 1"fﬂost n such that there exists a distribution that is e-close to D and
has support S. Then, letting L = {e:D(e) < (B—1)-€/n}, we have

D(L) = DLNS)+D(L\S)
< |S]-max{D(e)} + D(S)
L (B=1) e

n

IN

+ €

which equals 3 - €. The claim follows, because, for every ¢ > k def logg(n/((B —1) - €)), it holds that
W; C L (since e € W; implies D(e) < 70D < g% = (B -1)-¢/n). O
Important thresholds (¢ and ¢'). For € = - ¢, let £’ € N be maximal such that > -, D(W;) > 8- €.

Recalling that ¢ € N (is minimal that) satisfies .., D(W;) < €', we get

AN D) =Y DW= Y DWi) = (B-1)- €. (4)

i€l 0] > il
Suppose that we select i € [¢/, /] with probability proportional to D(W;); this can be done by “rejection
sampling” (and has complexity O(1/e€)). The key observation is that, with probability at least 2/3, it
holds that the selected i satisfies D(W;) > A > B 1) , because for B % {j [, 0] : D(W;) <A/30} it
holds that Pr; paw,) [2 € B’i € [ﬁ',f]] equals Z (W;)/A < |B|/3¢ < 1/3. Hence, with probability
at least 2/3, it holds that

jEB

—(i—-1) (B-1)-¢ i—1 i
(Wil = D(W3)/ > BT = (B 1) e BY3L (5)
On the other hand, >, |[W;| < qu Bl < 6”1/(—1). Now, combining the foregoing bounds on
; . . i+17(f
B /(B — 1), while letting f = g 1)/55 /:ge = (5 - /e, we get
D_IWil < g=g < F- 3 Wil (6)
J<i j<i

With high probability, a sample of size O(e~'log(1/¢)), contains all elements of weight Q(¢). Hence, if ess.(D) =
O(1/¢), then £ < logg(1/e) + O(1), and we can determine the exact e-effective support size of D by querying evalp on
each element in this sample.

12

Hence, v % 871 /(8 — 1) provides an f-factor approximation of >j<i [Wj|. Next (in Claim 2.1.2) we
relate >, [Wj]| to the e, B2 - €]-effective support size of D, by showing that essgz (D) < >i<i Wil
and ess.(D) > (B—1)- 872 > j<i IWj| (with essge(D) > 3°,<; [Wj| when i < {). It follows that v
constitutes an (3%/(8 — 1)) - f-factor approximation of the [e, 32 - €]-effective support size of D.

Claim 2.1.2 (effective support size vs >, |Wj|): Let £ and £’ be as define above. Then, for every
i € [0, 0] it holds that:

1. essﬁze(D) < Ejgi |W;].
2. ess(D) > % Y i<i |Wjl. Furthermore, if i <{, then ess(D) > essg(D) > >, [Wjl.

Proof: To see the first part, consider a distribution D’ in which the probability mass of Uj>i W; is
moved to (J;; Wj. Using >, D(W;) < > s p i D(W)) < 3%¢, where the second inequality is due to
the maximality of ¢, it follows D’ is 3%e-close to D. Hence, there exists a distribution that is 3%e-close
to D and has support of size },; [Wj| (i.e., essg2 (D) < 37, [Wjl).

Turning to the second part, we start with the furthermore case (i.e., ¢ < ¢). In this case,
ZPZD(i) = > jse—1 D(W;) > Be, where the second inequality is due to the minimality of £. Us-
ing Observatlon 1.4, Z]>Z D(W;) > fe implies that any distribution that is Se-close to D must have
support size at least »_ ., [W;| (i.e., essg(D) > > ., [Wj).

Moving to the main claim of the second part and focusing on the case of ¢ = ¢ (since a stronger
def def

claim was already established for ¢ < ¢), we let H = J -y Wj and L = U]>e W;. Recalling that
D(LUW,) > B-¢€, we let L' be a maximal set of (the hghtest)16 elements of Wy such that D(LUL') <'e,
and observe that ess.(D) > |H U (W, \ L')| (by the maximiality of L), and that D(L) + D(W,;) >
B (D(L) 4+ D(L")). Hence, D(W;) > B -D(L'), which implies D(W, \ L') > (1 — 1) - D(W,). Noting
that the elements in W, \ L’ may be at most a factor of 8 heavier than those in L', it follows that
(We\L'| > 871 (1= 57") - [Wi|. Thus,

_ 571
B

and the main claim of the second part follows. This completes the proof of the entire claim. [J

1
essc(D) = [HU (W, \ L')| > |H| + - [Wl,

Using approximated thresholds. The foregoing presentation is idealized, since in reality we do not know
¢ and £. Yet, we can find “good enough” approximations for them. Specifically, taking a sample S
of poly(1/(8 — 1)) - e~} elements of D, we set £ to be minimal such that |[{e €S : e € Us Wit <

B €-|S|, while noting that with high probability ¢ < 017 Likewise, we set ¢ to be maximal such
that [{ee€ S : e€ UJZ@ Wit > B9 . €. |S|, while noting that with high probability ¢ > ¢. On
the other hand, with high probability, Zj>27 (W;) < B%* . eand Y. N D(W;) > 774 .8 Hence,
AY Zze[e’ 7 D(W;) > B7/*e — §5/%¢, which is lower-bounded by (8°° — 1) - Be > (8 — 1) - ¢/2. Hence,
selecting i € [E’ ¢] with probability proportional to D(W;), with probability at least 2/3 it holds that

D(W;) > ?’Ae g G 1) <. In this case | W] > =D gi=1 follows. Let us spell out the resulting algorithm.

Algorithm 2.1.3 (the actual algorithm): For fized 8 > 1, on input € > 0 and oracle access to D, the
algorithm proceeds as follows.

By maximality (of size), the set L' must contain the lightest elements of W, that satisfy the condition D(LUL’) < ¢
Note that L' may be empty (e.g., if D(L) > ¢€); in this case, ess.(D) > |H U W] follows.

'"Recalling that Y50 DW;) <B-e, whp, {e€S:e€l;o, Wit < B! €. |5, and in such a case £ < £.

8Letting ¢ be maximal such that > D(W;) < B4 ¢, whp., [{e€S:eclU.., W;} > B -€-|S|, and in such a

case £ > t. An analogous argument holds for 0.

>t

13

1. Using a sample of size O(1/¢), determine € and ' as outlined above.

2. Select i € [Z’,Z] with probability proportional to D(W;). Recall that this can be done by rejection
sampling and has complexity O(1/€).

Output 51 /(8 —1).

Note that the operations of Algorithm 2.1.3 amount to taking samples of D (by invoking sampp),
evaluating their probability mass (by calling evalp), and doing some simple manipulations.
Re-iterating the argument that was used in the case that £ and ¢ were known, we sandwich the
algorithm’s output (i.e., 87! /(8—1)) between essgz. (D) and a multiple of essc(D): On the one hand,
as before, using Part 1 of Claim 2.1.2 (along with the Lh.s of Eq. (6)), it follows that essg (D) <
> i< W5l < BiT1/(B —1). On the other hand, using Part 2 of Claim 2.1.2 along with > i< W5l =

|[Wi| > (’857[})'6 - 371 (which is a factor of 2 smaller than before), it follows that ess.(D) > % .
—1)2¢ G—
i< Wyl > =< B3, Thus,

/Bi+1 .
essg2 (D) < 51 < f-ess (D),
where]7: @ f 11;21/5 (g; 13)/6£ <7 ;'_ﬂ 14)3 - £ /€, which means that Algorithm 2.1.3 is a f—factor approximator

of the [e, 3% - e]-effective support size of D. Recalling that ¢ < logg(n/(3 —1)-€) = O((B —1)""-
log(n/e)), where n = ess (D) is the e-effective support size of D, the theorem follows (by a change of
parameters).!* W

Improving over Theorem 2.1. The approximation factor provided by Theorem 2.1 is essentially
the multiple of two factors: The first factor is the reciprocal of the effectiveness parameter €, and the
second factor is essentially the logarithm of the effective support size; actually, the second factor is
O(¢) = O(log(n/e)), where n is the e-effective support size of the distribution. Both factors are an
artifact of using ©(e/log(n/e€)) - B! as a lower bound on the size of |W;|, whereas |W;| could be as
large as f°.

An immediate improvement follows from the observation that we can afford to identify the case
that |[W;| = Q(e - B), since in this case D(W;) = Q(e), and output a much better estimate in this
case. Specifically, when D(W;) = Q(e), we can afford to approximate D(W;) up to a [-factor, and
this yields an approximation of |W;| up to a #%-factor. On the other hand, we can easily detect the
case that D(W;) = o(e) (or even distinguish D(W;) < €/100 from D(W;) > €/99), and in this case
(i.e., D(W;) = o(e)) using O(e/log(n/e)) - B~ as an estimate of |W;| is only a factor of O(log(n/e))
off. The foregoing considerations ignore the contribution of j<i |W;| to the effective support size, but
employing the same considerations to W; for each j € [i —logg(1/€),i—1], we reduce the approximation
factor from ©(e~1log(n/e)) to O©(log(n/e)), while slightly increasing the sample complexity (so to allow
for obtaining ©(log(1/¢€)) approximate values rather than a constant number of such values). Note that
we can afford to ignore the contribution of 2j<i—logﬁ(1/e) |W;|, since it is at most € - 87/(8 — 1).
Theorem 2.2 (the basic algorithm, revised): For any constant f > 1, there exists an algorithm
that on input € > 0 and oracle access to D, uses O(1/€) samples and outputs an O(log(n/e))-factor
approzimator of the [e, B - €]-effective support size of D, where n = ess(D). The dependence of the
number of samples on [is poly(1/(5 —1)). Ditto for the approzimation factor.

19Specifically, given the parameters 5 and e, we reset 3 B2, and obtain an O(e ! log n)-factor approximator of the

[e, B- e]-effective support of D. Note that /2 —1 = (8—1)/(8Y?+1) = Q(8— 1), which implies that poly(1/(8*/*—1)) =
poly(1/(8 —1)).

14

(This establishes Item 2 of Theorem 1.9.)

Proof: The algorithm starts by determining ¢ and ¢ and selecting i € [!7’ ,Z] as in Algorithm 2.1.3.
Next, rather than outputting 8°*!/(3 — 1), the algorithm uses O(e~!loglog(1/e)) samples in order
to estimate D(W;) for each j € [i',i], where i’ = max(1,i — logg(1/¢)), and (essentially) outputs the
corresponding estimate of >, D(W;) - 8/. (The upper bound of O(log(1/e€)) on the length of the
interval [i’,] is used when employing a union bound on the probability that some of these estimates
are wrong.)

Algorithm 2.2.1 (refining Algorithm 2.1.3): After setting ZZ’ and i as in Algorithm 2.1.3, the algo-
rithm proceeds as follows (where i' = max(1,7 —logg(1/¢))):

e For each j € [i',i], the algorithm first obtains an estimate g] of D(W;) such that (with probability
at least 1 —0.1/logg(1/€))) it holds that 6; € [D(W), 8- D(W;)] if D(W;) > ¢/B? and §; < ¢/
otherwise.?Y Recall that these estimates can be obtained using a sample of size O(e~ ! loglog(1/¢)).

e Neut, for each j € [i/,1i], @fg] < €/B, then the algorithm resets gj +— €.
e Finally, for each j € [i',4], the algorithm sets w; < g] - B9, and outputs % + Zje[z",z‘} wj.

We shall show that, with high probability, the foregoing output lies in the interval [essgz (D), O(f) -
ess (D)], where £ = O(log(ess¢(D)/¢€)). As in the proof of Theorem 2.1, the analysis of Algorithm 2.2.1

focus on the case that the selected i satisfies D(W;) > %. But here we consider two sub-cases.

1. If D(W;) > ¢/B2%, then, with high probability, it holds that D(W;) < &; < 8- D(W;), and
|W;| < w; < 2% |W; follows.

2. Otherwise (i.e., D(W;) < ¢/$%), with high probability, the algorithm reset 5; « €. In this case,
relying on the foregoing hypotheses, we have D(W;) < 6; = ¢ < 6£- (8 — 1)~' - D(W;), and

(Wil < @i < 35 - B+ |Wi follows.

Hence, in both cases

. 6l-p3?
Wil < @ < W
| z|—wl—/8_1 (Wil (7)
holds (where we use 6/ > 3—1).2! We stress that here the estimate for |W;| is sandwiched more tightly

than in the proof of Theorem 2.1; that is, the ratio between the upper and lower bounds is gi_i -

(rather than is gijl Ll/e).

A similar (but slightly different) analysis applies to each j € [i/,i — 1]. Specifically, with high
probability, it holds (for each j € [¢/,i — 1]) that if D(W;) > ¢/3% then |W;| < w; < 82 - |W}|, whereas
if D(W;) < €/ then gj = € (equiv., wj; = €- A7) and |W;| < D(W,)- 7 < efi 2 < gj-ﬁj = wj follows.
Hence, ‘

W)l < @ < max(5? - [Wjl,e- 5). (8)

Using the forgoing bounds we shall sandwich the output value we show (i.e., (3—1)"'- 5% +2 e W)
between » ., [W;[and O(¢) - >, [Wj[. On the one hand, we observe that, with high probability, the

29This estimate, Sj, is merely /B times the fraction of the number of occurrences of elements in W; in the foregoing
sample. Note that if D(W;) > ¢/82, then (w.h.p.) the empirical measure resides in [37%° - D(W;), 8°° - D(W;)], and
J J J
otherwise the empirical count is smaller than 6/51'5.

2n this case, 82 < 6;%12, Note that 6/ > S — 1 holds if either £ = w(1) or 8 < 7, and each of these can be assumed
without loss of generality.

15

output is lower-bounded by > ._; [Wj], since

Z|W|< Tt > @, (9)

1<t JeEl’ i)
where we use Y, [Wj| < 35,87 < BT B/(B —1) as Well as \W\ < wj for every j € [i/,1i].
On the other hand, using D(W;) > (B_().Z)'E, which implies |W;| > 222 . i=1 we shall upper-bound

the output value by O(¢) - >_.; [Wj|. Intuitively, the lower bound |W| = Q(e/¢) - B* implies that
>oj<i€ B = O(f) - [W;], which takes care of the j’s with D(W;) < ¢//3%, whereas the other W;’s are
approximated quite well. In fact, foreseeing subsequent applications, we prove a more general statement

(which refers to auxiliary parameters 1 and €', where we use n = 6_67;)'6 and € = ¢).

Claim 2.2.2 (3, [Wj| vs 32 ;cp g wj): Suppose that [Ws| > max(n- 8L, (n/e)-w;/B%) > 1 and that
w; < max(B? - |Wj|,€ - 7) for every j € [i',i —1]. Then, for i = max(1,i—logg(1/€)), it holds that

g’ ~ B (B+1)-€ 2
o1t Z}wj%—ﬁ(”w—w)‘ﬁ 2 Wl

JEL i J<i

In our application n = % and € = ¢ so i’ = max(1,7 —logg(1/¢)) and (((gﬂl));/) B2 =0().

(Note that the lower bound on |W;| holds by |W;| > (5 1 .1 and the r.h.s of Eq. (7), whereas the
lower bound on w; holds by Eq. (8).)

Proof' For each j € [i,i — 1], combining w; < max(8% - |W;|,€ - 57) and |W;| > n- B! (equiv.,

B < W), we get

/. ijiJrl

_ €
w; < B2 W5l + - [Wil. (10)

We now use 3 < max(3,€ - 3) < g+ '876/ - |W;l|, where the first inequality is due to the definition of
i’ and the second inequality is due to |W;| > n- 8. Hence,

52 8 Bod o 2 . €T

je’i—1] JEii—1]
-6,
- et S X A e 3w
jeli’i—1] jEe’i—1]
B 28 ¢ 2
< + Wil + 8% - W;
JEN!i—1]
< 2 +<1+ >62 > Wl
-1 (8-
JE[]
Recalling that @; < 2 7276/ - |[Wil, we get
5’ _
Foit 2 WS
JE] JEi i—1]
526/ p < 2e) 2
< Wil + —+ 1+ B w;
B ((2+(ﬁ—1))-6’) 2
= ——+(1+ - B Wil.
51 G-)7 2 Wi

The claim follow. OJ

Conclusion. Recall that we have sandwiched the output of Algorithm 2.2.1 (ie., (6 —1)~'- 8% +
> jelir W) between . [Wjl and O(C) - 32, [Wj]| (see Eq. (9) and Claim 2.2.2, resp.). Proceeding
as in the proof of Theorem 2.1, we infer that Algorithm 2.2.1 constitutes an O(¢)-factor approximator
of the [e, 5 - €]-effective support size of D. W

Reducing the factor that depends on the effective support size. Recall that the approx-
imation factor in Theorem 2.1 is the product of a factor of O(1/e) and a factor of O({), where
¢ = O(log(ess¢(D)/e)). In Theorem 2.2 we focused on eliminating the first factor, whereas here
we shall focus on reducing the second factor (from O(¢)) to O(log¢). Needless to say, we shall actually
combine both strategies, but for sake of presenting the new idea we ignore the improvement already
obtained in Theorem 2.2 and the idea that underlined it. Instead, we go back to Algorithm 2.1.3 (i.e.,
the algorithm underlying Theorem 2.1).

Recall that the proof of Theorem 2.1 focused on the case that D(W;) = Q(e/(f — ¢ + 1)), where
i € [0, 1], and relied on the fact that essg2 (D) < ng[’ [W;| = O(8Y) and ess(D) > > j<i DW;) >

|W;i| = Q(B" - D(W;)). Indeed, the original proof used A Yy _P+1<tand? < i, and yielded an

approximation ratio that is upper-bounded by the ratio of the upper bound for essﬁze(D) over the
lower bound for ess(D); that is, the proof uses

esspz2(D) < 0(5?’) - O(BY)

ess.(D) ~ Q(FT-DWY) ~ QB ¢/ an

Note that if ¢/ < i — logg(A/€), then the middle fraction in Eq. (11) is upper-bounded by a constant,
since D(W;) = Q(e/A). Otherwise (ie., i < & + logg(A/e€)), assuming that this case is quite likely
when ¢ is chosen in proportion to D(W;), we get Zje[@,%rlogﬁ()\/e)] D(W;) = Q(e) and so D(W;) =
Q(e/logg(A/€)) is likely, which implies that the middle fraction in Eq. (11) can be upper-bounded by
O(e~! -log(A/€)) = O(1/€) + O(e L log A) rather than by O(e~* - \). Iterating this reasoning for O(1)
times, where in each iteration the current X is replaced by logﬁ()\/ €), we can get an upper bound of
6(1/6) +0(e 11og@M) \). Combining this strategy with the strategy used in the proof of Theorem 2.2,
while dealing differently with the case that the current A is smaller than 1/¢, we can get an upper bound
of O(log(©®M) \). This suggests the following result, where the O (e~ +1/%) (rather than O(1/€)) bound
is due to dealing with small values of A (and the case of £ > 1 requires an additional twist).

Theorem 2.3 (the iterative algorithm): For any constants 8 > 1 and t,k € N, there exists an algo-
rithm that on input € > 0 and oracle access to D, uses 5(t/61+%) samples and outputs an O(log") (n/¢))-
factor approzimator of the [e, 5 - €]-effective support size of D, where n = ess¢(D) and log®) denotes
t iterated logarithms (i.e., log™ m = logm and logl*Y m = log(log(j) m)). The dependence of the
number of samples on (3 is poly(1/(8 — 1)). Ditto for the approximation factor.

(This establishes Item 3 of Theorem 1.9. The dependency of the sample complexity on the constant ¢
is spelled out in foreseeing Theorem 2.4.)

Proof: The case of t = 1 was established in Theorem 2.2, which actually states a stronger complexity
bound. Hence, we start by considering the case of t = 2 (and k = 1), where all notations are as in the
proofs of Theorems 2.1 and 2.2. We consider three cases, where the main cases are the last two.

The first case is of small A\ & 7 — 77 +1 (i.e., A < 1/e). In this case we cannot take the strategy of
the main two cases, but we can afford dealing with it directly, while using the fact that £/e = O(1/¢€2).
The main two cases differ according to the probability mass assigned to the intervals [Z’ , v+ 2logg Al

17

and [0/ +2 logg A+1, {]. 1f the first interval is assigned mass Q(e), then we use it analogously to the use

of [Z’ ,Z] in the proof of Theorem 2.2, while gaining from the fact that ¢ is replaced by O(log¢). This
corresponds to the following Case 3, which yields an O(log/)-factor approximation (rather than an
O(f)-factor approximation) of the [e, 3 - €]-effective support size of D. In contrast, Case 2 corresponds

to the case that the interval I = [¢' + 2logg A + 1 €] is as&gned mass {2(e). In this case, we select

i € I with probability proportional to D(W;), and output (5 which (w.h.p.) is O(|W;]), whereas

esse = Q(|W;]). The punchline is that

1)w

ﬂz 2logg A+1
essg2 (D) < Z [W;| < Z B < W < (e/A)-

Jj<i—2logg A Jj<i—2logg A

l@i—i—l
(B-1)

where the first inequality uses i > ¢ 4-2logz A and the last inequality uses 2logg A > logg(A/e), which

in turn relies on Case 1 not occurring (i.e., A > 1/¢).22 Hence, the output is sandwiched between

essp2. (D) and O(essc(D)). Details follow.

Case 1: f A % 7 7 + 1 < 1/e, then we can proceed as in the proof of Theorem 2.2, except that
we use a sample of size O(\/e) = O(1/€?) in order to obtain more accurate estimates of the
D(W;)’s (i.e., we obtain constant-factor approximation whenever D(W;) = Q(e/\) rather than
only when D(W;) = Q(e)). Specifically, with such a sample, setting i = max(1,i — logg()/¢)),
we can obtain, for each j € [¢/,i], an estimate SJ of D(W}) such that (with probability at least

1 —1/10logg(A/€))) it holds that §; € [D(W;), 8- D(W;)] it D(W;) > =% - ¢/A and §; < ¢ &

B2 €/A otherwise We then proceed as in Algorithm 2.2.1, while resetting g] <€/B to g] +— €,
and output 5 T+ ;. (Recall that w; = (5 B

The crucial fact is that, with such better estimates, for each j € [/, 4], it holds that

JE[i’ 1]

W)l < @; < max(8% - |W;|,0(8”~") - [Wi)
(rather than |W;| < w; < max(8%-|W;|,O(B7"-£)-|W;|) as in the proof of Theorem 2.2). Hence,
using Claim 2.2.2 (with € as set here (i.e., € = 72 -¢/\) and n = (8 — 1) - ¢/6), which implies

that ¢//n = O(1))?3, we obtain an O(1)-factor approximation of the [e, 3% - ¢]-effective support

size of D.

The following two (main) cases deal with the situation in which A > 1/¢, where we want to avoid
using O(\/e) samples. In these cases, 2logg A < .

(Recall that A = ¢ — ¢ + 1 and that A = Z el 7] D(W;) > (B—1)-€/2.)

Case 2: If A > 1/e and Z] €77 +210g; A D(W;) < 0.9A, then, by repeatedly selecting i with probability
proportional to D(W;), we obtain i € [/ + 2logg A + 1,/] after O(1/¢) trials. (Here we use

Zje[@'+2log5 A1 D(W;) > 0.1A, and in the analysis (which follows) we shall also use A > 1/e.)
Furthermore, with probability at least 0.9, it holds that D(W;) > A/100A > (8 — 1) - ¢/200\. In
this case, we output ﬁ as the estimated size of the effective support size, and show that this

yields an O(1)-factor approximation of the [e, 32 - ¢]-effective support size of D.

The crux of the analysis is showing that the output (i.e., € - 87/((8 — 1) - \)) is sandwiched
between essge.(D) and O(ess.(D)). On the one hand, essgz. (D) < e-5°/((8—1) -), because

22The gain (in Case 2) is due to the fact that i > ¢ + 2logg A, which implies i — logg(A/e) > £
23Note that the original argument implies that D(W;) > (8 — 1) - A/6(£ — £ 4 1) (rather than D(W;) > (8 —1) - A/6¢).
(In Algorithm 2.3.1 we shall use a slightly different setting of €’.)

18

i—2logg A > (" and so Zj>i—2logﬂ)\D(Wj) <Xjse DWj) < B2 - €, whereas ngi—Zlogﬁ)\ |W;| <
ngi—?logﬁ)\ﬁj < (e/X)-B"/(B—1) (using 2logg A > logg(A/€)). On the other hand, ess (D) =
Q(|Wi]), whereas [Wi| > 51 D(W;) > ke - 51 Hence, “CLACZI2 — 0(1),

essc(D)

Case 3: If A > 1/e and Zje[@,[’-&—?log@ N D(W;) > 0.9A, then we can proceed as in the proof of Theo-

rem 2.2 except that we use £/ +2logg A = v +O(log ¢) instead of ¢, and 0.9A instead of A. In this
case, we obtain an O(log¢)-factor approximation (rather than an O(¢)-factor approximation) of
the [e, 3 - €]-effective support size of D. (Note that O(log¢) = O(loglog(ess((D)/¢)).)

Hence, in each case we take O(1/€2) samples and obtain an O(log log(ess,(D)/¢))-factor approximation
of the [e, 3 - €]-effective support size of D. This establishes the claim for ¢t = 2 and k = 1. (We shall
extend this result to general k € N at the end of this proof.) ~

Let us recap. The key distinction is between Case 2 and Case 3. In Case 2 we select ¢ > ¢/ +2logg A
and are guaranteed that Zj>i_2log5 \D(W;) < B2 €and ngi_mogﬁ A\ W5 < (e/A) - B7/(B — 1), which
(when combined) implies that essgz. (D) < e-3'/((8—1)-)), whereas essc(D) = Q(e-5°/A). In Case 3
we invoked the approximator of Algorithm 2.2.1 on an interval of length O(log A) rather than length A.
When generalizing this strategy to the case of t > 2, Case 3 will generate a recursive call to the current
procedure (which invokes Algorithm 2.2.1, if at all, only at recursion depth ¢ — 1). Details follow.

More accurate approximations (i.e., ¢ > 2). For t > 2, we proceed almost exactly in the same manner,
with the following three exceptions: First, as stated above, in Case 3 we recursively invoke the current
procedure with ¢ < ¢ — 1 and A < (1 —(0.1/t)) - A (rather than invoking Algorithm 2.2.1).2¢ Second,
the threshold for distinguishing Case 2 from Case 3 is set to equal (1 —0.1/t) - A rather than 0.9- A (so
to increase the probability mass in the last invocation).?’ Last, we slightly modify the threshold distin-
guishing Case 1 from Cases 2-3 and the setting of #’. (The latter modification as well as the tightening
of the analysis are performed in preparation for the proof of the next theorem (i.e., Theorem 2.4).) For
sake of clarity, we detail the recursive procedure next.

Algorithm 2.3.1 (recursive procedure with fixed parameters ¢ and 17): The varying parameters are
the remaining recursion-depth t' (initially set to t), the remaining probability mass-bound A’ (initially
set to A), and the remaining interval length X (initially set to £ — ¢ 4+ 1).26 Ift' = 1, then we proceed
as in Algorithm 2.2.1, and otherwise we proceed as follows, according to three cases, when setting

¢ = 300t/(8 —1)2.
Case 1: If A < c/e, then we proceed as in the proof of Theorem 2.2, except that we use a sample of
. =~ -~ . . rs def —1)3.€
size O(Me) = O(t/€?), seti’ = max(1,i—logg(6(B+1)N\/(B—1)%)), and reset §; to ' = 3(5(,821))\
if 6; < €'/B. Hence, we output

o _
571 + Z[:] it (12)

where 1 € [@,@ + X — 1] and the w;’s are determined as in Algorithm 2.2.1 (i.e., w; = g] - B9,
except that when determining §; we use € = ©(e/\) (rather than € = ¢).

24 Actually, when reaching the third case with ¢ = 2, the recursive call (which uses t = 1) will actually invoke Algo-
rithm 2.2.1.

25This setting guarantees that, at each iteration, the residual probability mass is reduced by a factor of 1 — 0.1/t rather
than by a constant factor (of 0.9). The point is that (1 — 0.1/¢)* > 0.9, whereas 0.9" = exp(—t).

26Hence, Zje[[’,[%k—l] D(W;) > A’ holds initially (as well as in the recursive invocations).

19

(Recall that our estimates of the D(W;)’s are better than in the proof of Theorem 2.2, since we
use a larger sample. Specifically, for each j € [¢/,4], with high probability, §; € [D(W;), 8- D(Wj)]
if D(W;) > € /8% and §; < €'/ B otherwise, where ¢ = O(e/)) rather than ¢ = ¢.)?"

We note that approximately distinguishing between the following two cases requires approximating
the value of Zje[?+2 log s A+1,74A1] D(W;) in the sense of distinguishing a value above 0.11A’/t
from a value below 0.09A"/t. This can be done using O(t/A") = O(t/e) samples. Using the same
sample in all t — 1 recursion levels, it suffices to use a single sample of size O(t)/e for all these
approxrimations.

Case 2: If A > c/e and Z].e[@j,ﬁlogﬁ N D(W;) < (1 - %) - A, then, by repeatedly selecting i with
probability proportional to D(W;), we obtain i € [’ +2logg A + 1,&' + X\ — 1] after O(t/e) trials.
In this case, we output

(B—1)-€

300t
as the estimated size of the effective support size.

- (13)

Case 3: If A > c/e and Zje[@[’—s—ﬂogﬁ N D(W;) > (1 — %) - A, then we invoke this very procedure
while setting the remaining recursion-depth to t' — 1, the remaining probability mass-bound to
(1 =(0.1/t)) - A, and the remaining interval length to 3logg A; that is, t' < t' — 1, A" «
(1—-(0.1/t)) - A", and X < 3logg \.

(Note that 2logg A + 1 < 3logg A < A.)?®

Hence, Cases 1 and 2 produce output by themselves, whereas Case 3 initiates a recursive call.

The total complexity of the invocation of Algorithm 2.3.1 (with ¢’ = ¢) is O(t/€2), which fits our aim
for £ = 1. Before modifying the algorithm for general k € N, let us analyze its performance.

Claim 2.3.2 (analysis of Cases 1 and 2 of Algorithm 2.3.1): Suppose that Algorithm 2.5.1 is invoked
with fized parameters t and ¢, and uses the initial values ¢ and A. Suppose that either Case 1 or
Case 2 holds when the algorithm reached recursion depth t —t' such that t' > 1. Then, the algorithm
outputs an ;- B*-factor approzimation of the [e, B%€|-effective support size of D, where i is as selected
in the corresponding step (resp., case) and ;o =1 if i < € and v, = $%/(B — 1) otherwise.

Indeed, for the sake of the current proof (of Theorem 2.3), a constant upper bound on the approximation
factor is more than enough, since Case 3 incurs a larger factor anyhow. However, we shall be using
Claim 2.3.2 in the proof of Theorem 2.4, where the tighter bound will be useful.

Proof: In both cases, we refer to the current values of ¢, A\, and A’ > 0.8 - A > 04(8—1)-€ In
each case, the index i is selected (in proportion to D(W;)) in a designated interval, denoted I, and we
assume that D(W;) is at least 0.1- .., D(W;)/|I|; indeed, this assumption holds with probability at
least 0.9.

When Case 1 holds we adapt the analysis provided in the proof of Theorem 2.2, while using more

accurate estimates for the D(W;)’s. Recall that € = % and that (in Case 1) we obtain, for each

j € [i,i], an estimate &; of D(W;) such that (with probability at least 1 —1/10 logg(1/€')) it holds that
gj € [D(W;), 8- D(W;)] if D(W;) > € /5% and 5~J < € /B otherwise, where in the latter case ’5] is reset

2"Recall that in case 6, < €' /3, we reset 8; to €.
28Both inequalities use A > c¢/e > 300/(8 — 1)?, while assuming (w.l.o.g.) that § < 2.

20

to €. Hence, |W;| < w; < max(B8%-|W;l|,€ - p7) for every j € [i/,i], whereas the fact that w; > |[W}]
(for all j € [¢/,4]) implies that

/

essg2.(Z w; + Z w; < ﬁ—i_ Z wj.

JE[1]]E[’L 1] JE,i]
On the other hand, assuming that D(W;) > 10)\, which holds with probability at least 0.9, we get

D(W;) > %, which is lower-bounded by n 3 (6361)\ (ﬁ +1)-(8—1)"%- ¢ (rather than by

(B —1)-€/6¢ as in the proof of Theorem 2.2)29. Recalling that 7" = max(1,i — logz(1/€')), we invoke
Claim 2.2.2 (with ¢ and 7 as set above) and obtain

ﬂz +ij 55_1+<1+((g)ﬂ2 >yl

JE] J<i
< BV Wl

j<i

where the last inequality uses % < (B—1) - > <;|Wjl|, which may be assumed without loss of

generality.? Recalling that ess.(D) > %_1E 2 _<i IWjl (by Part 2 of Claim 2.1.2), it follows that the

./

output in this case (i.e., % + > jejir Wy) 1s sandwiched between essg: (D) and B vig - essc(D).
Hence, Case 1 yields a ~; ¢ - *-factor approximation of the [e, 32 - €]-effective support size of D.

When Case 2 holds we use Zj €[T+210gy M1+ D(W;) > 0.09A’/t in order to infer that an adequate
i (e, i€ [0/ +2logg A+ 1,0 + }]) is indeed selected (w.h.p.) after O(t/e) trials. Furthermore, with
probability at least 0.9, it holds that D(W;) > 222UE > (3 — 1)¢/300tA, since A’ > 0.4(8 — 1)e.
Using the minimality of ¢, which implies ngz,ﬂ D(W;) < B%-¢ and i > ¢ + 2logg A (equiv.,

i—2logg A > Z/), we upper-bound essg2..(D) by ngi—ZlogB s—1 |Wj|. Hence, using i > v+ 2logg A >
v+ log(300tA /(8 — 1)%€), where the last inequality is due to A > ¢/e (and ¢ = 300t/(5 — 1)?), we get

essp2. (D) < Z e

Jj<i—2logg A—1
ﬂi—logﬁ(300t)\/(ﬁ—1)2e)
B—1
300t
which implies that the output (in this case) is at least essgz..(D). On the other hand, D(W;) >
(B — 1)€/300t\ implies that |[W;| > (8 —1) - € - 871/300t\, and applying Part 2 of Claim 2.1.2, we get
1 (5—1)'5'5%1
Yie 300t '

ess(D) >

29The point is that here X rather than ¢ appears in the denominator, where the focus is on A < £. (In the proof of
Theorem 2.2, € =¢.)

30Evidently, % < (B—1) 32, |W;| follows from >, [W;| = w(1l), which can be justified by an alternative
approximation procedure that holds in case m >j<ilWil = O(1). Recalling that 3>, , D(W;) < B% - ¢, we show
how to find an [8%¢, B°¢|-effective support size of D using O(1/¢) samples. Specifically, letting W = U].<Z. W; and
H={ecW:D(e) > (B*— 7 - ¢/m}, observe that D(H) > D(W) — (8% — %) -¢ > 1 — 8% ¢. The suggested procedure
finds all elements in H using O(1/¢) samples, and outputs the largest m’ such the total weight of the heaviest m’ elements
in H is at most 1— 3%-¢. Denoting the set of the heaviest m’ elements by H’, and recalling that D(H') > D(H) > 1— 3¢,
it follows that 1 — D(H') € [8% - ¢, 8% - ¢]. Hence, essi_p(u) (D) = m/, which implies that m’ is an [B%¢, B3¢]-effective
support size of D. Using a change of parameters, we obtained the desired approximator.

21

Hence, the output (i.e., (8 — 1) - € 37/300t\) is at most ;¢ - 3 - essc(D). Combining both bounds, we
infer that (in this case) the output is an 7; ¢ - B-factor approximation of the [e, 3% - €]-effective support
size of D. U

The remaining cases. We are left with two cases: The case of # = 1 (handled in the preamble of
Algorithm 2.3.1) and Case 3 (in which ¢ > 1). In the latter case (i.e., for ¢ > 1), we recurse,
and otherwise (i.e., for ¢ = 1) we invoke Algorithm 2.2.1 (with the current A’ and \). The key
observation is that, at this time (i.e., when ¢ = 1), it holds that A = O(log® " (O(log(n/e)))) and
A’ > (1—(0.11/t))"1 - A > 0.89A. Hence, this invocation produces an O(\)-factor approximation of
the [e, § - €]-effective support size of D. This establishes the theorem for k = 1.

More efficient algorithms (i.e., & > 1). Turning to general k¥ € N, we modify Algorithm 2.3.1 by
merely replacing the thresholds that govern the choice of cases. Specifically, for distinguishing Case 1
from Cases 2-3, we use a threshold of k2 - ¢ - (1/€)'/* rather than c/e, whereas distinguishing be-
tween Case 2 and Case 3 is done based on the value of Eje[[’,?+(k+1)~logﬁ)\]D(Wj) (rather than

Zje[@ 742l0gy Al D(W;)). Analogously, at the end of Case 3, the remaining interval length is set to

(k+2)-logg A (rather than to 3-logg A), and A > k2-c-(1/€)Y/* is used to argue that (k+2) logg A < A3
Hence, the complexity of Case 1 is O(\/e) = 5(t/61+%) (rather than O(t/€?)), whereas in the analysis
of Case 2 we use (k+ 1) -logg A > logg(cA/e) (rather than 2 -logg A > logg(cA/e)).*> The theorem
follows. W

Proving the last item of Theorem 1.9. Intuitively, the following result is obtained by invoking
Theorem 2.3, while setting ¢ = log*(ess((D)/¢). Needless to say, this is problematic because we do
not know ¢, but this difficulty can be overcome. The crucial observation is that Cases 1 and 2 in
Algorithm 2.3.1 provide a ;¢ - B*-factor approximation of the [e, 32 - €]-effective support size of D,
whereas the case of ¢ = 1 can be avoided. Recalling that v;, = 1 if i < ¢ and v, = 8%/(8 — 1)
otherwise, we also have to deal with the latter case in order to obtain an approximation factor of SOM).

Theorem 2.4 (the iterative algorithm, revised): For any constants 5 > 1 and k € N, there exists an

algorithm that on input € > 0 and oracle access to D, uses va(log*(n/e)/eH%) samples in expectation
and outputs an [-factor approximator of the [e, B - €|-effective support size of D, where n = ess(D)

and log" m is the minimal t € N satisfying loggt) m < 2. The dependence of the number of samples on

B is poly(1/(B8 —1)).

(This establishes Item 4 of Theorem 1.9.)
Unlike in the previous three theorems, the sample complexity stated in Theorem 2.4 depends on
the effective support size and is bounded in expectation only.?® These two features seem related, since

31 etting L 1 (B —1)A/(k + 2), we show that logs((k+2)(8 —1)"'L) < L/(8 — 1). On the one hand,

- In(k+2) +In(f—1)"' +1InL)
B—1

On the other hand, we lower-bound L by 3 - max(In L, In(8 — 1)~ ", In(k + 2)), while using L > 775 - k* - ¢+ (1/¢)"/* and
¢ >300/(8 —1)? (and assuming, w.l.o.g., that 8 < 2).

32Indeed, here we use A > (c/€)*/*, which implies (k+1)- logg A = logg A+ logg AE > logs(cA/e). The fact that Cases 2
and 3 actually presumes \ > k2 - (c/e)l/k is used only when verifying that (k + 2)logg A < A.

33For any ¢t € N, one can generically convert an approximator that uses s = s(e, D) samples, where s is unknown a
priori, into an approximator that uses O(t - s) samples with probability at least 1 — 279 To do so, we invoke the
algorithm ¢ times in parallel, suspends all executions as soon as 90% of the them terminate, and output the median value
obtained in these 0.9t executions. The point is that, with probability at least 0.95, a random execution uses at most 20 - s
samples. Hence, with probability at least 1 — 27%®) more than 90% of the executions will terminate while using 20 - s
samples and most of them will output a correct value (i.e., an [e, 3 - €]-effective support size).

logs((k +2)(8—1)"'L)

22

an algorithm that uses a number of samples that depends on ess.(D) must obtain some crude and
necessarily randomized estimate of the effective support size of the distribution D in order to determine
the number of sample that it asks for.

On the other hand, recall that by Observation 1.5, when using =1+ ¢ =1+ O(¢), Theorem 2.4
implies a 1-factor approzimator of the [e, B-e+¢€']-effective support size of D, and by change of parameters
we infer that the output is an [e, 8 - €]-effective support size of D.

Proof: As said above, we essentially invoke Theorem 2.3, while setting ¢ = log*(n/e). However, in
this case, t is not a constant, and we do not know it. Still, we can overcome these difficulties in one of
two ways, where the more elegant way (presented first) was suggested to us by Clement Canonne. The
crucial observation, used in both ways, is that Cases 1 and 2 in Algorithm 2.3.1 provide a ’yi’g-ﬂ‘l—factor
approzimation of the [e, 8% - €]-effective support size of D, whereas the case of t' = 1 can be avoided.>*
Hence, recursing till either Cases 1 or Case 2 occurs, we essentially obtain the desired approximation
factor (where the remaining slackness of v; ; is addressed after describing the aforementioned ways of
avoiding the case of t' = 1)

The first way of overcoming the aforementioned difficulty is to first obtain a very crude approx-
imation of the effective support size and the set ¢ somewhat larger than suggested in the forego-
ing. Specifically, invoking the basic algorithm (of Theorem 2.1), we obtain, using O(1/¢) samples, an
O(e~'log(n/e))-factor approximation of the [e, 3 - €]-effective support size of D, where n = ess (D).
Denoting this value by 1, we set t = 4k - logj(n/¢€)) = O(log"(n/¢)), and invoke Algorithm 2.3.1, while
observing that this setting of ¢ prevents the algorithm from ever reaching the case of ' = 1 (since
iterating A <= (k +2)logg A for £ — 2 times, starting with A = O(logg(n/e)), yields a value smaller than
k2 - (c/e)'/*, which means that Case 1 holds).?

The alternative way is to adapt Algorithm 2.3.1 so that it does not use ¢ at all. Specifically, first,
we replace the varying parameter ¢/, which represent the remaining recursion-depth, by a varying
parameter that represents the current recursion-depth, and remove the stopping rule that refers to the
case that ' = 1. Second, we change the threshold that distinguishes the two main cases (i.e., Cases 2

and 3) from (1 — %) - A to (1 - ﬁ) - A’ where t” represents the current recursion depth and

g(m) = O(m) satisfies S o1 (1/g(m)) < 0.1 (e.g., g(m) = 20m - logi(m + 1) will do).?0 Lastly, the
constant ¢ = 300t/(8 — 1)? is replaced by a variable vy that depends on the current recursion depth
t", where vy = 30g(t")/(8 — 1)> when g(m) = 20m - log3(m + 1) is used. Hence, the execution of the
resulting algorithm either stops at Case 2 or at Case 1, because if it never stop at Case 2 then at some
recursion depth ¢ it will reach A < 600 < vy /e (assuming, w.l.o.g, 5 < 2). In the analysis, we use the

fact that [[,n, <1 — ﬁ) > 1= s ﬁ > 0.9.

Addressing the slackness. The foregoing description provides a ;¢ - B4-factor approximation of the
e, 3% - e]-effective support size of D, where i € [¢/, 0" + A — 1] is the index sclected in the terminating
Case 1 (or Case 2) and v,y = 1 if i < £ and ;0 = 3?/(8 — 1) otherwise. (The approximation factor is
due to Claim 2.3.2.) So the real issue is the case that i = ¢, which may occur only if we terminated
without ever invoking Case 3.37 In that case A =¢ — £ + 1 and A’ = A > (8 — 1)¢/2. (Furthermore,
t = £ may only occur in Case 1, because in Case 2 the index 7 is selected in [Z’ /et 2logg A].) More
importantly, we may assume that > .-, D(W;) > Be, since otherwise i < £ must hold. Now, if i = ¢ and
D(W;) appears to be smaller than A’/2, then we can afford to re-select i in the relevant interval and

34The approximation factor is due to Claim 2.3.2.
35In fact, for sufficiently large k, this (t — 2)-step iterative process yields a value smaller than k2.
36 1 1 i1
Note that Zle W < Zle W < ZiZl 2" . 57.42 < 2.
37The fact that we get factors of 3% and 4 rather than a factor of 3 is resolved by change of parameters (while observing
that '/ —1 = Q(B — 1), which implies that poly(1/(8'/* — 1)) = poly(1/(8 —1))). In contrast, 32/(— 1) > 4 for every
g >1.

23

proceed with i < £ < ¢ (once such i is selected). Otherwise (i.e., i = £ and D(W;) > A’/3), we estimate
D(W;) and conduct the analysis while partitioning W; into (W’ W/') such that D(W}) + >, D(W;)
appears to be fe. Using our estimate for |W/| instead of w;, we obtained the desired approximation,

where in the analysis we replace W; by W/ and treat W/ as if it was part of Wj1;. The theorem follows.
|

3 Digest

The pivot of (all variants of) our strategy is the clustering of elements in the support of the distribution
D according to their approximate (probability) weights; specifically, for a fixed S > 1, we consider the
clusters

Wy {e: 579 <D(e) < pU). (14)
Our first observation, captured by Claim 2.1.1, is that for some £ < logg(ess(D)/((8 —1)-¢)) it holds
that >, ,D(W;) < B -e and for the minimal such ¢ (which satisfies 3 ,-, D(W;) > - €) we get
essc(D) > essg (D) > Z |[W;]. (15)
jele-1]

Analogously, for any ¢ that satisfies > >0 DW;) > B2 - €, it holds that

essp (D)< Y (Wl (16)
Jew-1)

Unfortunately, even if we pick a maximal ¢’ (as we shall do below), the gap between the two sums (i.e.,
the r.h.s of Eq. (15) and Eq. (16)) may be huge. This leads us to the next idea: Picking a minimal ¢
and a maximal ¢’ (such that we have >, D(W;) < B-€and > ., D(W;) > (2% - €), we wish to select
an i € [¢', (] and relate)., |[W;| to both ess(D) and essg:(D). Of course, we wish this relation to
be as tight as possible.

One case in which this is possible is when i € [¢' 4-logg(A/€) + 1,£ — 1] satisfies D(W;) = Q(e/N),
where A = ¢ — ¢/ + 1. In this case (used in Case 2 of Algorithm 2.3.1), we have

ess (D) > esspc(D) > Y [Wy| > |Wi| = Q(e/A) - § (17)
jefe—1]

and

esspD)S Y W< S W< 3 B =0/ 8 (1)

Jjele—1] Jjeli—logg(A/e)] j€li—logg(A/e)]

Recall that when i is selected in 1 [6’ ¢] with probability proportional to D(W;), with high (constant)
probability, D(W;) = Q(e/A) holds, since > ;.; D(W;) = Qe) (and A = £ — ' + 1).3® So the source
of trouble is that we need to avoid i € [/, + logg(\/€)] (whereas avoiding i = £ is actually not
necessary).3?

38 Recall that, for s = ., D(W;) and B = {j € I : D(W;) < ¢ - s/A}, it holds that p = Pri_pw,[i€ B:iel] < q,
since otherwise
|Bl-q-s

S DWW+ Y DW;) < |B|- ——f—Per(W)[zeI\B] 3

JEB jEI\B

+(1-p)-s<qg-s+(1—p)-s<s.

39Tt was used here only for sake of simplicity. In case i = £, Eq. (17) is replaced by ess(D) > e Wil = Q(e/A) B
which is the main claim in Part 2 of Claim 2.1.2.

24

Dealing with the case that i € I’ def [¢',¢" 4-loggz(M/€)] is based on the observation that if this case
occurs with high probability then > .., D(W;) = Q(¢), and so we can use the interval I’ instead of the
interval [¢/,¢' + X\ — 1] = [¢/,¢] = I. This is done in Case 3 of Algorithm 2.3.1. The alternative, used in
Case 1 (of Algorithm 2.3.1), is to approximate all |W;|’s (for j € I) up to an additive error of o(e/|I|).

The foregoing ideas suffice for establishing Items 3 and 4 of Theorem 1.9, where Item 3 follows by
performing a constant number of interval-reduction steps and Item 4 calls for iterating these steps till
the interval’s length becomes O(1/¢). Failing to find an alternative strategy led us to Problem 1.10.

Acknowledgments

I am grateful to Clement Canonne for numerous comments and suggestions regarding a prior version
of this write-up.

This project was partially supported by the Israel Science Foundation (grant No. 1146/18), and
has received funding from the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement No. 819702).

References

[1] T. Batu, S. Dasgupta, R. Kumar, and R. Rubinfeld. The complexity of approximating the
entropy. SICOMP, Vol. 35 (1), pages 132-150, 2005.

[2] E. Blais, C.L. Canonne, and T. Gur. Distribution Testing Lower Bounds via Reductions from
Communication Complexity. In 82nd Computational Complexity Conference, pages 28:1—
28:40, 2017.

[3] C.L. Canonne and R. Rubinfeld. Testing Probability Distributions Underlying Aggregated
Data. In 41st ICALP, pages 283-295, 2014.

[4] O. Goldreich. Introduction to Property Testing. Cambridge University Press, 2017.

[5] O. Goldreich. Testing Graphs in Vertex-Distribution-Free Models. ECCC, TR18-171, 2018.
(See Revision Nr 1, March 2019.)

[6] O. Goldreich. Testing Bipartitness in an Augmented VDF Bounded-Degree Graph Model.
arXiv, 1905.03070 [cs.DS], 2019.

[7] M.J. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, R.E. Schapire, and L. Sellie. On the learn-
ability of discrete distributions. In 26th STOC, pages 273282, 1994.

[8] S. Narayanan and J. Tetek. Estimating the Effective Support Size in Constant Query Com-
plexity In 6th SOSA, pages 242-252, 2023.

[9] K. Onak and X. Sun. Probability-Revealing Samples. In 21st AISTATS, pages 2018-2026,
2018.

[10] S. Raskhodnikova, D. Ron, A. Shpilka, and A. Smith. Strong Lower Bounds for Approximating
Distribution Support Size and the Distinct Elements Problem. SICOMP, Vol. 39 (3), pages
813-842, 2009.

25

