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Abstract

In this note we show that all sets that are neither finite nor too dense are non-trivial to test
in the sense that, for every ϵ > 0, distinguishing between strings in the set and strings that are
ϵ-far from the set requires Ω(1/ϵ) queries. Specifically, we show that if, for infinitely many n’s,
the set contains at least one n-bit long string and at most 2n−Ω(n) many n-bit strings, then it
is non-trivial to test.

A preliminary version of this work was posted as TR22-013 of ECCC.

The main result. This note refers to the query complexity of property testing (see the text-
book [2]). Specifically, a tester for a set of strings S is explicitly given two parameters, a length
parameter n ∈ N and a proximity parameter ϵ > 0, as well as query access to an n-bit string x.
The tester is required to distinguish the case that x is in S from the case that x is ϵ-far from S,
where x is ϵ-far from S if its Hamming distance from each |x|-bit long string in S is greater than
ϵ · |x|. (By distinguishing between strings in A and strings in B we mean accepting each string in
A with probability at least 2/3 and rejecting each string in B with probability at least 2/3.)

Definition 1 (non-trivial to test): A set of strings S is non-trivial to test if, for every ϵ > 0 and
infinitely many n ∈ N, the query complexity of testing S, with parameters n and ϵ, is Ω(1/ϵ).

Theorem 2 (sufficient condition for non-triviliaty): Suppose that, for infinitely many n’s, the set
S contains at least one n-bit long string and at most 2n−Ω(n) many n-bit strings. Then, S is
non-trivial to test.

Note that the sufficient condition is necessary in general. In particular, a set S that, for every n,
contains 2n−o(n) many n-bit long strings may be trivial to test in the sense that, for every ϵ > 0
and all sufficiently large n, every n-bit long string is ϵ-close to S.

Proof: We use a reduction from the special case in which every n-bit long string in S has Hamming
weight at most n − Ω(n). Letting w be an n-bit long string of maximum Hamming weight, we
consider a random variable X obtained from w by flipping each 0-entry in w to 1 with probability
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O(ϵ). We observe that X is ϵ-far from S and that distinguishing w from X requires Ω(1/ϵ) queries.
Transforming each instance of the general case to an instance of the special case (by XORing with
a random string) we establish the theorem. Details follow.

Let c < 1 be a constant such that for infinitely many n’s the set S(n) = S ∩ {0, 1}n is non-
empty and contains at most 2cn strings. For a sufficiently small η = η(c) > 0, we shall first show
that for such n’s there exists r ∈ S(n) such that the relative Hamming weight of each string in
r⊕S(n) = {r⊕s : s ∈ S(n)} is at most 1− η.

The foregoing claim is proved by the probabilistic method. Letting wt(x) = |{i ∈ [|x|] : xi =
1}|/|x| denote the relative Hamming weight of x, we have

Prr∈{0,1}n
[
∃s ∈ S(n) wt(r⊕s) > 1− η

]
≤ |S(n)| · Prr∈{0,1}n [wt(r) > 1− η]

≤ 2c·n ·
∑
i<ηn

(
n

i

)
· 2−n

= 2(c+H2(η)−1)·n < 1,

where H2 denotes the binary entropy function. Hence, there exists an n-bit string r such that

τ
def
= maxs∈S(n){wt(r⊕s)} ≤ 1− η, and let w ∈ r⊕S(n) be such that wt(w) = τ .
For every ϵ ∈ (0, η/2), let X be a random variable, distributed over n-bit strings, such that if

wi = 1 then Xi = 1 and otherwise Pr[Xi = 1] = 2ϵ/η independently of all other Xj ’s. Note that
E[wt(X)] = wt(w)+ 2ϵ

η · (1−wt(w)) ≥ wt(w)+2ϵ (equiv., E[
∑

i:wi=0Xi] = 2ϵ ·n). Hence, assuming

n = ω(1/ϵ), with high probability, X is ϵ-far from r⊕S(n), since Pr[wt(X)>wt(w) + ϵ] = 1− o(1)
(equiv., Pr[

∑
i:wi=0Xi>ϵn] = 1−o(1)), whereas maxs∈S(n){wt(r⊕s)} = wt(w). On the other hand,

distinguishing w ∈ r⊕S(n) from X requires Ω(η/ϵ) = Ω(1/ϵ) queries, since Pr[Xi ̸=wi] ≤ 2ϵ/η for
every i ∈ [n].

It follows that ϵ-testing r⊕S(n) (i.e., distinguishing strings in r⊕S(n) from strings that are ϵ-far
from r⊕S(n)) requires Ω(1/ϵ) queries. The theorem follows, since ϵ-testing r⊕S(n) reduces to ϵ-
testing S(n) (i.e., given an ϵ-tester for S(n), we obtain an ϵ-tester for r⊕S(n) by XORing the input
string with r (and observing that the distance of x from r⊕S(n) equals the distance of x⊕r from
S(n))).

Digest. A key observation used in the proof is that shifting a (not too dense) set by XORing its
elements with a random string yields a set of strings such that each string has relative Hamming
weight that is closed to 0.5. Observing that the pairwise distances between strings is preserved and
replacing η by 0.5− ϵ, we obtain the following result (where n and k = k(n) are viewed as varying).

Proposition 3 (obtaining almost balanced error correcting codes): Let C : {0, 1}k → {0, 1}n be
an error correcting code of relative distance δ, and ϵ be such that k

n +H2(0.5− ϵ) is upper-bounded
by a constant that is smaller than 1. Then, with very high probability over the choice of r ∈ {0, 1}n,
it holds that Cr : {0, 1}k → {0, 1}n such that Cr(x) = C(x)⊕r is an error correcting code of relative
distance δ in which all codewords have relative Hamming weight 0.5± ϵ.

Proof: Analogously to the proof of Theorem 2, we have

Prr∈{0,1}n
[
∃x ∈ {0, 1}k wt(r⊕C(x)) ̸∈ [0.5± ϵ]

]
≤ 2 · 2k ·

∑
i<(0.5−ϵ)·n

(
n

i

)
· 2−n

= 21+(
k
n
+H2(0.5−ϵ)−1)·n
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and the claim follows by the hypothesis that k
n +H2(0.5− ϵ) is upper-bounded by a constant that

is smaller than 1.

Postscript. Subsequent to our work, Fischer [1] proved a stronger result of a similar nature.
Specifically, both papers yield an Ω(1/ϵ) query lower and both assume that the property of n-bit
strings is non-empty, but we assume that the property has at most 2n−Ω(n) strings, whereas Fischer
assumes the existence of a string that is Ω(1)-far from the property. Note that our hypothesis imply

Fischer’s (i.e., if each n-bit string is α-close to S(n), then |S(n)|
2n ≥ 2−H2(α)·n). On the other hand,

Fischer’s result can be proved by following our proof strategy.1
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1Specifically, if s ∈ {0, 1}n is α-far from S(n), then 0n is α-far from S(0)⊕s. Switching between 0s and 1s, we
obtain a non-empty set such that all strings in it have maximal weight 1− α, and proceed as in the last part of the
proof of Theorem 2.
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