
Oded: April 23, 2020

Preface

This memo provides an overview of a new “testing by implicit sampling” approach proposed by
Bshouty [1]. This approach refers to testing properties that are (symmetric) sub-classes of k-juntas;
that is, f : {0, 1}` → {0, 1} has the property if there exists a function f ′ : {0, 1}k → {0, 1} that
belongs to a predetermined class of functions (over k-bit strings) such that f(x) = f ′(xJ) for
some k-subset J . The new approach builds upon the “testing by implicit sampling” approach
of Diakonikolas et al. [2], while extending it from the case of uniform distribution to the case of
arbitrary unknown distributions (a.k.a. the distribution-free model). This allows Bshouty [1] to
present (optimal) distribution-free testers for classes of properties that are sub-classes of k-juntas,
which correspond to classes of k-bit long Boolean functions. While Bshouty [1] follows Diakonikolas
et al. [2] in considering learning algorithms for the underlying classes, we point out that the approach
is also applicable to testing algorithms (see [3, Sec. 6.2]).1

Let us spell out the task considered by Bshouty [1]. For a class Π of `-bit long Boolean functions
and a proximity parameter ε, given samples from an unknown distribution D and oracle access to
a function f : {0, 1}` → {0, 1}, we wish to distinguish the case that f ∈ Π from the case that
f is ε-far from Π (i.e., ming∈Π{Prx∼D[f(x) 6= g(x)]} > ε). Recall that Π is a (symmetric) class
consisting of a symmetric subclass of k-juntas Π′; that is, f ∈ Π if and only if there exists a k-
subset J ⊂ [`] and f ′ ∈ Π′ such that f(x) = f ′(xJ), where x{i1,...,ik} = (xi1 , ..., xik). (We say that
the class Π′ is symmetric if for every permutation π : [k] → [k] it holds that f ′ ∈ Π if and only
if f ′π ∈ Π′, where f ′π(x) = f(xπ(1), ..., xπ(k)).) Actually, we also assume that Π′ is closed under

setting function-variables to 0; that is, if f ′ ∈ Π, then, for every i ∈ [k], the function f (i) defined
by f (i)(x1, ..., xk) = f ′(x1, ..., xi−1, 0, xi+1, ..., xk) is in Π′.

Notation: For x ∈ {0, 1}` and S ⊆ [`], we let xS denote the projection of x on coordinates S
(i.e., if S = {i1, ..., im} such that i1 < · · · < im, then xS = (xi1 , ..., xin)). This notation extends to
distributions over {0, 1}`.

1 A Bird’s Eye View

The basic strategy is to consider a random partition of [`] to m = O(k2) parts, denoted (S1, ..., Sm),
while relying on the fact that, whp, each Si contains at most one influential variable (i.e., variable in
the alleged k-junta). Assuming that f ∈ Π, first we determine a set I of at most k indices such that
∪i∈[`]\ISi contains no “significantly influential” variables of f . Suppose that f ′ : {0, 1}k → {0, 1} is

a function that corresponds to the tested function f : {0, 1}` → {0, 1}, and that I ⊂ [`] is indeed
the collection of all sets that contain influential variables. The crucial ingredient is devising a
method that allows to generates samples of the form (x′, f ′(x′)), when given samples of the form
(x, f(x)) (for x ∼ D). We stress that we cannot afford to find the influential variables, and so this
method works without determining these locations. Using this method, we can test whether f ′

1Actually, while Bshouty also mentions this fact in the middle of his paer (see [1, Thm. 30]). His testers for the
k-junta class Π is optimal, since their complexity essentially equals the complexity of testing the underlying class Π′

(of k-bit strings functions).

1

belongs to the underlying class Π′; hence, we test f by implicitly sampling the projection of D on
the (unknown) influential variables.

The method employed by Diakonikolas et al. [2] only handles the uniform distribution (i.e., the
case that D is uniform over {0, 1}`), and so it only yields testers for the standard testing model
(rather than for the distribution-free testing model). Furthermore, their method as well as the
identification of the set I rely heavily on the notion of influence of sets, where the influence of a set
S of locations on the value of a function is defined as Prx′,x′′∈{0,1}`:x′S=x′′S

[f(x′) 6=f(x′′)]. However,

this notion refers to the uniform distribution (over {0, 1}`) and does not seem adequate for the
distribution-free context (e.g., for f(x) = x1 + x2 we may get Prx′,x′′∼D:x′1=x′′1

[f(x′) 6=f(x′′)] = 0).
Indeed, Bshouty [1] uses a different way for identifying the set I and for generating samples

for the underlying function f ′. Loosely speaking, he identifies I as the set of indices i for which
f(eSi) 6= f(0`), where eS is a string that is 1 on the locations in S and is 0 on other locations.
(Be warned that this description is an over-simplification!) This means that for every i ∈ I and
x ∈ {0, 1}`, the value of x at the influential variable in the set Si (a variable whose location is
unknown to us!), equals f(x′) ⊕ f(0`) where x′j = xj if j ∈ Si and x′j = 0 otherwise.2 Note that

the foregoing holds when f ∈ Π; in general, we can test whether x 7→ f(x′) ⊕ f(0`) is close to a
dictatorship (under the uniform distribution) and reject otherwise, whereas if the mapping is close
to a dictatorship we can self-correct it.

To sample the distribution DJ , where J is the influential variables in SI = ∪i∈ISi, we sample D
and determine the value of the influential variable in each set Si, for i ∈ I. Queries to the function
f ′ are answered by querying f such that the query y = y1 · · · yk is mapped to the query ext(y)
such that ext(y)j = yi if j belongs to the ith set in the collection I (and ext(y)j = 0 if j ∈ [`] \SI).
Effectively, we query the function fext : {0, 1}` → {0, 1} defined as fext(x) = f(ext(xJ)), and this
makes sense provided that fext is close to f (under the distribution D). To test the latter hypothesis
condition we sample D and for each sample point x we compare f(x) to fext(x), where here we again
use the ability to determine the value of the influential varaible in each set. Specifically, ext(xJ) is
computed by determining the value of xJ (without knowing J), and using our knowledge of (Si)i∈I .

We warn that the foregoing description presumes that we have correctly identified the collection
I of all sets containing an influential variable. This leaves us with two questions: The first question
is how do we identify the set I. (Note that the influence of a variable may be as low as 2−k, whereas
we seek algorithms of poly(k)-complexity.) The solution (to be presented in Section 2.1) will be
randomized, and will have one-sided error; specifically, we may fail to indentify some sets that
contain influential variables, but will never include in our collection sets that have no influential
variables. Consequently, f(eSi) 6= f(0`) may not hold for some i ∈ I, and (over-simplifying again)

we shall seek instead some w(i) ∈ {0, 1}` such that f(w(i)) 6= f(v(i)), where v
(i)
j = w

(i)
j if j ∈ [`] \Si

and v
(i)
j = 0 otherwise. Second, as before, for every i ∈ I and x ∈ {0, 1}`, we wish to determine

the value in x of the influential variable in the set Si (a variable whose location is unknown to us!).
This is done by observing that if f ∈ Π then this value equals f(x′) ⊕ f(w(i)) ⊕ 1 where x′j = xj

2Indeed, if τ(i) ∈ Si is the index of the (unique) influential variable that resides in the set Si, then

f(x′) = xτ(i) · f(eSi)⊕ (xτ(i) ⊕ 1) · f(0`) = xτ(i) ⊕ f(0`)

since f(eSi)⊕ f(0`) = 1.

2

if j ∈ Si and x′j = w
(i)
j otherwise.3 Again, we need to test whether x 7→ f(x′) ⊕ f(w(i)) ⊕ 1 is a

dictatorship, and use self-correction.

2 The Actual Tester

As warned, the above description is an over-simplication, and the actual way in which the set I is
identified and used is more complex.

We fix a random partition of [n] to m = O(k2) parts, denoted (S1, ..., Sm). If f ∈ Π, then, with
high probability, each Si contains at most one influential variable, denoted τ(i). We assume that
this is the case when providing intuition throughot this section.

2.1 Stage 1: Finding I and corresponding w(i)

Our goal is to find a collection I of at most k sets such that the function hI that is ε/3-close to f

(w.r.t distribution D), where hI is defined as hI(x) = f(x′) such that x′ equals x on SI
def
= ∪i∈ISi

and equals 0` on SI = [`]\SI ; that is, x′j = xj if j ∈ SI and x′j = 0 otherwise (e.g., hI(1
`) = f(eSI)).

In addition, for each i ∈ I, we seek a witness w(i) for the fact that f depends on some varials in
Si; that is, f(wi)) 6= f(v(i)) for some v(i) that differ from w(i) only on Si.

The procedure. We proceed in iterations, starting with I = ∅.

1. We sample D for O(1/ε) times, trying to find u ∼ D such that f(u) 6= hI(u).

(Note that if I = ∅, then hI(u) = f(0n). In general, we seek u such that f(u) 6= f(u′), where

u′SI = uSI and u′
SI

= 0|SI |.)

If no such u is found, then we set h = hI and proceed to Stage 2. In this case, we may assume
that hI is ε/3-close to f (w.r.t D).

2. Otherwise (i.e., f(u) 6= hI(u)), we find an i ∈ [m]\I and w(i) such that hI(w
(i)) 6= hI∪{i}(w

(i)),

which means that Si contains an influential variable and w(i) is the witness for the sensitivity
that we seek. We set I ← I ∪ {i} and proceed to next iteration.

(We find this i by binary search that seeks i and S such that hI∪S∪{i}(u) 6= hI∪S(u), which

means that w(i) equals u in locations outside S and is zero on S.)4

Once the iterations are suspended (due to not finding u), we reject if |I| > k, and continue to the
Stage 2 otherwise. Recall that in the latter case h = hI is ε/3-close to f (w.r.t D).

Note that if f ∈ Π, then I contain only sets that contain variables of the k-junta, and so we
never reject in this stage. In general, if i ∈ I, then hI\{i}(w

(i)) 6= hI(w
(i)), which implies that

f(x′) 6= f(x′′), where x′ and x′′ differ only on Si (e.g., x′′SI = w
(i)
SI

and x′′j = 0 if j 6∈ SI).
3Indeed, if τ(i) ∈ Si is the index of the (unique) influential variable that resides in the set Si, then

f(x′) = xτ(i) · f(w(i))⊕ (xτ(i) ⊕ 1) · f(v(i)) = xτ(i) ⊕ f(w(i) ⊕ 1

since f(w(i) ⊕ f(v(i) = 1.
4By Step 1, we have hS′∪I(u) 6= hS′′∪I(u), for S′ = [`] \ I and S′′ = ∅, and in each iteration we cut S′ \S′′ by half

while maintaining hS′∪I(u) 6= hS′′∪I(u).

3

2.2 Stage 2: Extracting the value of an influential variable

Given a collection I as found in Stage 1 (and a sensitivity witness w(i) for each i ∈ I), let h = hI
and recall that h is close to f w.r.t D. For each i ∈ I, given x ∈ {0, 1}`, we wish to determine the
value of x at the influential variable that resides in Si.

For each i ∈ I, we define νi : {0, 1}|Si| → {0, 1} such that νi(z) = hI(y), where ySi = z and

ySi = w
(i)

Si
. Suppose that f ∈ Π, and recall that τ(i) ∈ Si denotes the location of the influential

variable in Si. Let σ(i) denote the index of τ(i) in Si (i.e., the σ(i)th element of Si is τ(i)). Then,
in this case, νi is either a dictatorship or an anti-dictatorship. In particular, if νi is a dictatorship,
then νi(z) = zσ(i) (and otherwise νi(z) = zσ(i) ⊕ 1).

For each i ∈ I, we test whether νi is a dictatorship or anti-dictatorship, where testing is w.r.t
the uniform distribution over {0, 1}|Si|. Note that we also check whether νi is a dictatorship or anti-
dictatorship. If the tester (run with proximity parameter 0.1) fails, we reject. Otherwise (i.e., if we
did not reject), we can compute νi via self-correction on hI ; that is, to compute νi at z, we select
r ∈ {0, 1}|Si| at random, and return νi(z+r)−νi(r), which (w.h.p.) equals (z+r)σ(i)⊕rσ(i) = zσ(i).

Hence, we always continue to Stage 3 if f ∈ Π, and whenever we continue to Stage 3 we can
compute all νi (for i ∈ I) via self-correction.

2.3 Stage 3: Emulating a tester of Π′

Recall that when reaching this stage, we may assume that h = hI is ε/3-close to f (w.r.t D).
Also recall that hI(x) depends only on xSI , where SI = ∪i∈ISi, and that by Stage 2 we may
assume that νi(z) = zσ(i) (for every i ∈ I and almost all z). In light of the forgoing, we define

g : {0, 1}` → {0, 1} such that g(x) = h(x′) where x′Si = (xσ(i), ..., xσ(i)) (i.e., x′j = (xSi)σ(i) = xτ(i)

if j ∈ Si)5 and x′j = 0 otherwise. (Indeed, if f ∈ Π, then g(x) = h(x), since h(y) depends only on
(yτ(i))i∈I . Using hypothesis that Π′ (and so Π) is closed under setting function-variables to 0, it
follows that g ∈ Π.)

We observe that if g is ε/3-close (w.r.t D) to both h and Π, then f must be ε-close to Π (since
f is ε/3-close to h). Hence, we test both these conditions. Specifically, using our ability to sample
D, query f , and determine the value of the influential variables in SI , we proceed as follows:

1. Test whether g = h, where testing is w.r.t the distribution D and proximity parameter ε/3.

This is done by taking O(1/ε) samples of D, and comparing the values of g and h on these

sample points. Recall that h(u) = hI(u) = f(u′), where u′SI = uSI and u′
SI

= 0|SI |. The value

of g on u is determined as follows.

(a) For every i ∈ I, if νi is a dictatorship, then set vi to equal the self-corrected value of
νi(uSi), where νi is as defined in Stage 2. Otherwise (i.e., when νi is an anti-dictatorship),
we set vi to equal the self-corrected value of νi(uSi)⊕ 1.

(b) Return the value h(u′), where u′j = vi if j ∈ Si and u′j = 0 otherwise.

Indeed, g = h always passes this test, whereas g that is ε/3-far from h (w.r.t D) is rejected
w.h.p.

5In general, τ(i) denotes the location in [`] of the σ(i)th element of Si.

4

2. Test whether g is in Π, where testing is w.r.t the distribution D and proximity parameter
ε/3. This is done by testing whether g′ is in Π, where g′(z) = g(x) such that xj = zi if j is
in the ith set in the collection I, and xj = 0 otherwise. Here we use a distribution-free tester,
and analyze it w.r.t the distribution DI . Toward this end we need to samples DI as well as
answer queries to g′, where both tasks can be performed as in the prior step.

Recall that if f ∈ Π, then g ∈ Π, and this test will accept (w.h.p.), whereas if g is ε/3-far
from Π the test will reject (w.h.p.).

We conclude that if we reached Stage 3 and f ∈ Π (resp., f is ε-far from Π), then we accept (resp.,
reject) w.h.p.

3 Digest: The new approach of [1] vs the original one [2]

The new approach of Bshouty [1] differs from the original approach of Diakonikolas et al. [2] in two
main aspects:

1. In [2], sets that contain influential variables are identified according to their influence, which
is defined with respect to the uniform distribution. This definition seems inadequate when
dealing with arbitrary distributions. Instead Bshouty [1] identifies such a set by searching for
two assignments that differ only on this set and yield different function values. The actual
process is iterative and places additional constraints on these assignments (as detailed in
Section 2.1).

2. In [2], given an assignment to the function, the value of the unique influential variable that
resides in a given set S is determined by approximating the influence of two subsets of S (i.e.,
the subsets of locations assigned the value 0 and 1, respectively). In contrast, Bshouty [1]
determines this value by defining an auxiliary function that depends only on the unknown
influential variable, and evaluating this function (via self-correction w.r.t the uniform distri-
bution (!); see Section 2.2).

Acknowledgements

I am grateful to Nader Bshouty for numerous clarifications regarding his work [1].

References

[1] N. Bshouty. Almost Optimal Testers for Concise Representations. ECCC, TR19-156.

[2] I. Diakonikolas, H.K. Lee, K. Matulef, K. Onak, R. Rubinfeld, R.A. Servedio, and A. Wan.
Testing for Concise Representations. In 48th IEEE Symposium on Foundations of Com-
puter Science, pages 549–557, 2007.

[3] O. Goldreich. Introduction to Property Testing. Cambridge University Press, 2017.

5

