Oded (June 21, 2022): The simplest yet derandomization of BPP based on HSG

In continuation to my choice Nr. 324, following is my take on the proof presented in Appendix A of the paper of Cheng and Hoza (ECCC, TR20-016). Let $\text{HSG}(s,n)$ denote a hitting set (generated) for circuits of size s that take n input bits.

Theorem 1 (the result): Suppose that $\text{HSG}(s,n)$ can be computed in time $T(s) \in [s, 2^o(n)]$. Then, $\text{BPtime}(t)$ is contained in $\text{Dtime}(T(T(\text{poly}(t))))$.

Actually, the result is meaningful only if $T(T(\text{poly}(t))) < 2^m$.

Proof: By standard error reduction, we may assume that, on input x, the BPtime algorithm, denoted A, has error probability $\epsilon = 1/2T(s(|x|) + O(n'))$ and runs in time t', where $n' = t'(n) = O((n\log(1/\epsilon))$ and $s(n) = \text{poly}(t'(n))$ is the size of the circuit $C_x : \{0,1\}^n \to \{0,1\}$ such that $C_x(r) = A(x,r)$. (Formally we set ϵ slightly smaller to avoid a vicious cycle.)

For a generic n-bit input x to the algorithm A, we consider the following $(s(n) + O(n'))$-sized circuits $C'_{x,w} : \{0,1\}^n \to \{0,1\}$ such that $C'_{x,w}(r) = C_x(r) - C_x(w \oplus r)$, for all $w \in \{0,1\}^n$. Letting $s' = s(n) + O(n')$, we consider the following dichotomy regarding the $C'_{x,w}$’s.

Case of x being a no-instance: For every $\omega \in \{0,1\}^n$ it holds that

$$\Pr_r[C'_{x,\omega}(r) = 1] \geq 1 - \epsilon > 1/2.$$

Since each $C'_{x,\omega}$ has size s', it follows that for every ω, there exists $r \in \text{HSG}(s',n')$ such that $C_{x,\omega}(r) = 1$ (equiv., $C_x(\omega \oplus r) = 0$).

Case of x being a yes-instance: For every $r \in \{0,1\}^n$ it holds that

$$\Pr_{\omega}[C'_{x,r}(\omega) = 1] \leq \epsilon.$$

It follows that for every $R \subseteq \{0,1\}^n$ it holds that

$$\Pr_{r}[\exists r \in R \text{ s.t. } C'_{x,r}(\omega) = 1] \leq |R| \cdot \epsilon.$$

Equivalently, $\Pr_{\omega}[\exists r \in R \text{ s.t. } C_x(\omega \oplus r) = 0] \leq |R| \cdot \epsilon$.

In particular, for $H \leftarrow \text{HSG}(s',n')$, considering $C''_{x} : \{0,1\}^{n'} \to \{0,1\}$ such that $C''_{x}(\omega) = \bigwedge_{r \in H} C_x(\omega \oplus r)$, we have

$$\Pr_{\omega}[C''_{x}(\omega) = 1] \geq 1 - T(s') \cdot \epsilon = 1/2,$$

since $|H| < T(s')$. Observing that C''_{x} has size at most $s'' = T(s') \cdot (s' + 1)$, it follows that there exists $\omega \in \text{HSG}(s'',n')$ such that $C''_{x}(\omega) = 1$ (equiv., for every $r \in H$ it holds that $C_x(\omega \oplus r) = 1$).

\[\text{1}\] Recall that $s(n) = \text{poly}(t(n)\log(1/\epsilon))$, whereas we set ϵ to be somewhat smaller than $1/2T(s(n) + O(n'))$. Using $T(s) < 2^{o(n)}$, it follows that $\epsilon \geq \exp(o(s(n)))$, which avoids a vicious cycle. For simplicity, we may just set $\epsilon = 2^{-n}$, and get $s(n) = \text{poly}(t(n))$. However, if both t and T is polynomials, then we may set $\epsilon = 1/\text{poly}(n)$, for a sufficiently large poly.
In contrast, recall that if x is a no-instance, then for every $\omega \in HSG(s'', n')$ there exists $r \in H$ such that $C_x(\omega \oplus r) = 0$.

This dichotomy yields a deterministic decision procedure, which on input $x \in \{0, 1\}^n$, determines n', s' and s'', computes $H \leftarrow HSG(s', n')$ and $H' \leftarrow HSG(s'', n')$, and accepts if and only if there exists $\omega \in H'$ such that for every $r \in H$ it holds that $A(x, \omega \oplus r) = 1$. This decision procedure runs in time

$$T(s') + T(s'') + T(s') \cdot T(s'') \cdot t'(n) < 2 \cdot T(s') \cdot T(T(s') \cdot (s' + 1)) \cdot t'(n)$$

$$= T(\poly(t(n))) \cdot T(T(\poly(t(n))) \cdot \poly(t(n)))) \cdot \poly(t(n)),$$

since $s' = O(s(n)) = \poly(t'(n))$ and $t'(n) = o(t(n) \cdot n)$. Using $T(m) \geq m$, we get a bound of $T(\poly(t(n))) \cdot T(T(\poly(t(n)))) \cdot \poly(t(n))$, which is upper-bounded by $T(T(\poly(t(n))))$.

Corollary 2 (a special case): Suppose that $HSG(s, n)$ can be computed in $\poly(s)$-time. Then, BPtime(t) is contained in Dtime($\poly(t)$).

Remark 3 (a finer analysis): Recall that we used $|HSG(s, n)| \leq T(s)$. Using a finer bound of the form $|HSG(s, n)| \leq N(s)$, we can use $s'' = N(s') \cdot (s' + 1)$, and assuming that $N(s) > s$, we bound the running-time of the decision procedure by

$$T(s') + T(s'') + N(s') \cdot N(s'') \cdot t'(n) \leq T(N(\poly(t(n)))),$$

while using $s'' \leq N(s')^2 \leq N(\poly(t(n)))$ and $N(N(\poly(t(n)))^3 \leq T(N(\poly(t(n))))$.

2