
Oded (June 26, 2024): On the Cook-Mertz Tree Evaluation procedure

We provide an overview and a digest of the recent result of Cook and Mertz [1] that asserts that
Tree Evaluation can be computed in space O(log n · log logn). In particular, we point out that the
algebraic manipulation performed in [1] is merely a special case of polynomial extrapolation, and
using this observation we provide a more transparent presentation as well as a low order quantitative
improvement.1

The Tree Evaluation problem (TrEvh,ℓ). The input to this computational problem is a binary
tree of height h in which internal nodes represent arbitrary gates mapping pairs of ℓ-bit strings to
an ℓ-bit string, and each leaf carries an ℓ-bit strings. That is, nodes in the tree are associated with

strings of length at most h such that u0 and u1 are the children of node u ∈ U
def
=

⋃h−1
i=0 {0, 1}i.

For every u ∈ U , the internal node u is associated with a gate fu : {0, 1}ℓ+ℓ → {0, 1}ℓ, and the leaf
u ∈ {0, 1}h is assigned the value vu ∈ {0, 1}ℓ. Hence, the input is the description of all |U | = 2h− 1
gates (i.e., all fu’s) and the values assigned to the 2h leaves; that is, the length of the input is
(2h−1) · (22ℓ ·ℓ)+2h ·ℓ = exp(Θ(h+ℓ)). The desired output is vλ such that for every u ∈ U it holds
that vu = fu(vu0, vu1). (For the history and significance of the Tree Evaluation problem, see [1].)

The straightforward recursive algorithm. Observing that the value at node u is determined
by the values at its two children, we compute vu by first making a recursive call for the value
of vu0 and then making a recursive call for the value of vu1. Hence, before making the second
recursive call, we maintain the value vu0 in the local memory of the current execution (which refers
to node u). Once we obtain vu1, we compute vu and output it. The crucial point is that each level
of recursion uses a local memory that is different from the memory that is used by other levels.
Hence, the space complexity of the algorithm that unravells the recursion is O(h · ℓ).

Towards the improved (recursive) algorithm. The first step is conceptual: It consists of
abandoning the paradigm of “good programming” under which a recursive call uses a different
work space than the execution that calls it. Instead, we shall use the same global space for both
executions, whereas only a much smaller work space will be allocated to each recursive level as its
local space. (Such a model, spelled-out in Definition 3 (below), was used by us in [2, Sec. 5.2.4.2];
the “catalytic space model” used by [1] is a special case.)

The key question is how to implement the foregoing recursion in this (global storage) model.
For starters, suppose that the global memory holds three ℓ-bit strings, denoted x, y and z. Further
suppose that we have a procedure that, for u ∈ U and σ ∈ {0, 1}, when invoked with (uσ, x, y, z) on
the global space returns (uσ, x, y, z ⊕ vuσ) on the global space, where vuσ is as recursively defined
above. Then, when invoked with (u, x, y, z) on the global space, we can return (u, x, y, z ⊕ vu) by
proceeding as follows:

1. Making a recursive call on (u0, y, z, x), we update the global space to (u0, y, z, x′), where

x′
def
= x⊕ vu0.

(Note that we re-arranged the parts of the global space so that the variable holding x is
updated (to a value denoted x′) and the other variables are left intact.)

1Referring to the parameters h and ℓ as defined below, we improve the space complexity from O((ℓ+ h) · log ℓ) to
O(ℓ+ h · log ℓ).

1

User
Sticky Note
This improvement was actually stated in a latter section of the Cook-Meltz paper [1]. In fact, our Thm 1 is [1, Thm 10], whereas our Thm 2 is [1, Thm 15].



2. Making a recursive call on (u1, x′, z, y), we update the global space to (u1, x′, z, y′), where

y′
def
= y ⊕ vu1.

3. Miraculously compute z′
def
= z ⊕ fu(vu0, vu1) based on x′ = x ⊕ vu0 and y′ = y ⊕ vu1, while

preserving the values of x′ and y′.

4. Making a recursive call on (u0, y′, z′, x′), we update the global space to (u0, y′, z′, x).

(Note that x′ ⊕ vu0 equals the original value of x.)

5. Making a recursive call on (u1, x, z′, y′), we update the global space to (u1, x, z′, y).

6. Return (u, x, y, z′).

Indeed, the problem is with the miraculous step (i.e., Step 3): We wish to compute z⊕fu(vu0, vu1),
but we don’t have vu0 and vu1, but rather versions of these values that are masked by the original
values of x and y, respectively. There is hope for such a miracle only if we have a few versions of
this masking. Suppose, for example, that fu were a linear (over GF(2)) function and that we have
the values of fu(x

′, y′) and fu(x, y); then, using fu(x
′, y′) ⊕ fu(x, y) = fu(x

′ ⊕ x, y′ ⊕ y), we can
obtain fu(x

′ ⊕ x, y′ ⊕ y) = fu(vu0, vu1), if we ignore the problem of having to store both fu(x
′, y′)

and fu(x, y). The last difficulty is not an issue if we deal with the bits of these ℓ-bit values one at
a time; that is, for each i ∈ [ℓ], we first compute the ith of fu(x

′, y′) and of fu(x, y), and obtain the
corresponding bit of fu(vu0, vu1).

Multi-linear extensions and extrapolation Needless to say, we do not want to assume that
the fu’s are linear. The alternative of using multi-linear extensions (of functions describing the
output bits) arises naturally. Indeed, we considering multi-linear extensions of the corresponding
functions, where these extensions are in a (prime) field K that contains at least 2ℓ + 2 elements.
Specifically, for every u ∈ U and i ∈ [ℓ], let fu,i(x, y) equal the ith bit of fu(x, y). Next, we define

f̂u,i : Kℓ × Kℓ → K to be the multi-linear extension of fu,i : {0, 1}ℓ × {0, 1}ℓ → {0, 1}. Now,

suppose that we are given the values of f̂u,i(jx̂ + v0, jŷ + v1) for every j ∈ {1, ..., 2ℓ + 1} ⊂ K,
where j · (z1, ..., zℓ) = (jz1, ..., jzℓ). Using polynomial extrapolation (on the degree 2ℓ univariate
polynomial (in j) obtained by fixing u, i, x̂, ŷ, v0 and v1), we obtain f̂u,i(0x̂ + v0, 0ŷ + v1). Note,
however, that a naive implementation of this extrapolation involves operating on these 2ℓ+1 values
(after storing them in memory). Fortunately, the extrapolation formula is a linear combination of
these 2ℓ+1 values, and so we need not store these values but can rather operate on them on-the-fly
(while only storing the partial linear combination computed so far).

Actually, as observed in [1], using specific extrapolation points allows for a more explicit ex-
trapolation that merely sums-up the values (rather than using a more general linear combination).

Specifically, these extrapolation points are powers of an mth root of unity, where m > ℓ′
def
= 2ℓ

and m < |K| = O(ℓ). Denoting such a root by ω, we observe that for any multi-linear polynomial
p : Kℓ′ → K it holds that∑

j∈[m]

p(ωjz1 + w1, ...., ω
jzℓ′ + wℓ′) = m · p(w1, ...., wℓ′). (1)

2



(Eq. (1) can be proved by considering each monomial separately.)2

The improved (recursive) algorithm. For sake of simplicity, we first assume that we have
oracle access to F : U × [ℓ]×K2ℓ → K defined by

F (u, i, x̂, ŷ)
def
= f̂u,i(x̂, ŷ). (2)

The global memory that we use will hold three ℓ-long sequences over K, denoted x̂, ŷ and ẑ, as well
as a string of length at most ℓ, denoted u. We seek to construct a recursive procedure that, for u ∈ U
and σ, τ ∈ {0, 1}, when invoked with (uσ, τ, x̂, ŷ, ẑ) on the global space returns (uσ, x̂, ŷ, ẑ+(−1)τ ·
vuσ) on the global space, where vuσ ∈ {0, 1}ℓ ⊂ Kℓ is as recursively defined above.3 Now, when
invoked with (u, τ, x̂, ŷ, ẑ) on the global space, we can return (u, x̂, ŷ, ẑ + (−1)τvu) by proceeding
in m iterations.4

In iteration j ∈ [m], for each i ∈ [ℓ], we increment the current value of the ith element
of ẑ by (−1)τ · f̂u,i(ωj x̂+ vu0, ω

j ŷ + vu1)/m, while maintaining (u, x̂, ŷ) intact.

Recall that, by Eq. (1),
∑

j∈[m] f̂u,i(ω
j x̂+ vu0, ω

j ŷ + vu1)/m equals f̂u,i(vu0, vu1).

The jth iteration proceeds as follows.

1. Making a recursive call on (u0, 0, ŷ, ẑ, ωj x̂), we update the global space to (u0, ŷ, ẑ, x̂′),

where x̂′
def
= ωj x̂+ vu0.

2. Making a recursive call on (u1, 0, x̂′, ẑ, ωj ŷ), we update the global space to (u1, x̂′, ẑ, ŷ′),

where ŷ′
def
= ωj ŷ + vu1.

3. For each i ∈ [ℓ], letting ẑi denote the ith element of ẑ ∈ Kℓ, compute ẑi + (−1)τ ·
F (u, i, x̂′, ŷ′)/m by making an oracle call to F , and update the value of ẑi ac-
cordingly. Note that in the ith sub-step only the ith element of the sequence ẑ is
updated (and that division by m compensates for the factor of m in Eq. (1)).

4. Making a recursive call on (u0, 1, ŷ′, ẑ, x̂′), we update the global space to (u0, ŷ′, ẑ, ωj x̂).
(Note that x̂′ − vu0 = ωj x̂.)

5. Making a recursive call on (u1, 1, ωj x̂, ẑ, ŷ′), we update the global space to (u1, ωj x̂, ẑ, ωj ŷ).

2For any I ⊆ [ℓ′], it holds that

∑
j∈[m]

∏
i∈I

(ωjzi + wi) =
∑
j∈[m]

∑
S⊆I

(∏
i∈S

ωjzi

)
·

 ∏
i∈I\S

wi


=

∑
S⊆I

∑
j∈[m]

ωj·|S|

(∏
i∈S

zi

)
·

 ∏
i∈I\S

wi


= m ·

∏
i∈I

wi,

where the last equality uses
∑

j∈[m] ω
js = 0 for s ∈ [ℓ′] ⊆ [m− 1] and

∑
j∈[m] ω

0 = m.
3The variable/parameter τ allows us to either add or subtract the value vuσ. In our recursive calls, we shall need

both options.
4The following description is for the case of u ∈ U . In case u ∈ {0, 1}ℓ, we may just obtain vu from the input

oracle (e.g., augment F such that F (u) = vu).

3



6. Re-arrange the global space to contain (u, x̂, ŷ, ẑ), while noting that each ẑi got
incremented by (−1)τ · f̂u,i(ωj x̂+ vu0, ω

j ŷ + vu1)/m.

Using Eq. (1), we note that (after the m iterations) the value of each ẑi equals the initial
value plus (−1)τ · f̂u,i(vu0, vu1).

The foregoing recursive procedure uses a global space of length ℓ + O(1) + (3 + o(1)) · log2 |K|ℓ =
O(ℓ log |K|) and local space of length log2m = O(log ℓ). (The o(1) · log2 |K|ℓ term accounts for the
space complexity of various manipulations (including maintaining the counter i ∈ [ℓ]), whereas the
local space is used only for recording j ∈ [m].)

Using a composition lemma akin [2, Lem. 5.10], it follows that the Tree Evaluation problem
(with parameters h and ℓ) can be solved in space O((h+ ℓ) · log ℓ), when using oracle access to F ,
which in turn can be evaluated in linear space (i.e., space linear in O(ℓ log |K|)).5 Using a naive
composition, it follows that

Theorem 1 (Cook and Mertz [1]): The space complexity of TrEvh,ℓ is O((h+ ℓ) · log ℓ).

Recalling that the length of the input to TrEvh,ℓ is exponential in h + ℓ, it follows that TrEvh,ℓ is
solved in space O(log n · log logn), where n = exp(Θ(h+ ℓ)).

Digest and beyond

As hinted above, we believe that the model of global storage (as outlined in [2, Def. 5.8] and
reproduced below) is more flexible and intuitive than the model of catalytic strorage used in [1],
which may be viewed as a special case.

As hinted above, the extrapolation formula given in Eq. (1), which relies on an mth root of unity,
is inessential for the proof of Theorem 1. More generally, recalling that the f̂u,i’s are polynomials
of total degree 2ℓ, we can use polynomial extrapolation based on any 2ℓ′ + 1 points, while noting
that any such extrapolation can be represented by a linear combination of the function values (with
coefficients that depend on the given points and the desired point). The only advantage of using
Eq. (1) is that the extrapolation formula is a simple sum (i.e., all coefficients are 1).

Capitalizing on the last paragraph, we can reduce the length of global storage used by the
recursive procedure from O(ℓ log ℓ) to O(ℓ). This can be done by viewing the fu,i’s as (Boolean)
functions over [k]k × [k]k, where kk = 2ℓ (i.e., k = Θ(ℓ/ log ℓ)), and using low degree extensions of
these fu,i’s. Specifically, these extensions are 2k-variate polynomials of individual degree k−1 over
K ⊃ [k], where K is a finite field of size poly(k) that is greater than m = 2k2 (and [k] ⊂ K).6 That
is, f̂u,i : Kk × Kk → K has total degree 2k · (k − 1) < m, whereas its input length (i.e., log2 |K2k|)

5Recall that computing F calls for computing the corresponding f̂u,i, which is a multi-linear extension of fu,i.

Hence, computing f̂u,i requires obtaining all values of fu,i (compare Footnote 6).
6Indeed, for simplicity, we assume that K is of prime cardinality. In general, for S ⊂ K, the low degree extension

of f : St → {0, 1} is given by f̂ : Kt → K such that

f̂(x1, ..., xt) =
∑

a1,...,at∈S

∏
i∈[t]

χai(xi)

 · f(a1, ..., at),

where χa(x)
def
=
∏

b∈S\{a}(x− b)/(a− b) is a degree |S| − 1 univariate polynomial.

4



equals log2(poly(k)
2k) = O(ℓ). Consequently, the revised recursive procedure uses a global space

of length O(ℓ) and local space of length log2m = O(log ℓ). Hence, we obtain

Theorem 2 (an improvement over [1]): The space complexity of TrEvh,ℓ is O(ℓ+ h · log ℓ).

Hence, for h = O(ℓ/ log ℓ), the problem can be solved in logarithmic space (because, in this case,
the input length is n = exp(Θ(ℓ)), whereas O(ℓ+ h · log ℓ) = O(ℓ) = O(log n)).

The global storage model (mainly reproduced from [2, Sec. 5.2.4.2])

(This model was introduced in [2, Sec. 5.2.4] in order to facilitate a modular presentation of Rein-
gold’s UCONN algorithm [3].)

The aim of this model is to support a composition result that is beneficial in the context of recur-
sive calls. The basic idea is deviating from the paradigm that allocates separate input/output and
query devices to each level in the recursion, and combining all these devices in a single (“global”)
device, which will be used by all levels of the recursion. That is, rather than following the “struc-
tured programming” methodology of using locally designated space for passing information to the
subroutine, we use the “bad programming” methodology of passing information through global
variables. (As usual, this notion is formulated by referring to the model of multi-tape Turing
machine, but it can be formulated in any other reasonable model of computation.)

Definition 3 (following [2, Def. 5.8]): A global-tape oracle machine is defined as an oracle machine
(cf. [2, Def. 1.11]), except that the input, output and oracle tapes are replaced by a single global-tape.
In addition, the machine has a constant number of work tapes, called the local-tapes. The machine
obtains its input from the global-tape, writes each query on this very tape, obtains the corresponding
answer from this tape, and writes its final output on this tape. (We stress that, as a result of
invoking the oracle f , the contents of the global-tape changes from q to f(q).)7 In addition, the
machine can use the global-tape also for its internal computations. The space complexity of such
a machine is stated when referring separately to its use of the global-tape and to its use of the
local-tapes.

Note that in our presentation of Theorem 1 we used oracle calls to a function F . This was done
for the sake of simplicity, and these oracle calls (unlike the recursive calls) can be modeled by the
usual mechanism (of oracle tapes).

References

[1] James Cook and Ian Mertz. Tree Evaluation is in Space O(log n · log log n). ECCC, TR23-174,
2013.

[2] Oded Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge University
Press, 2008.

7This means that the prior contents of the global-tape (i.e., the query q) is lost (i.e., it is replaced by the answer
f(q)). Thus, if we wish to keep such prior contents then we need to copy it to a local-tape. We also stress that,
according to the standard oracle invocation conventions, the head location after the oracle responds is at the left-most
cell of the global-tape.

5



[3] Omer Reingold. Undirected ST-Connectivity in Log-Space. In 37th ACM Symposium on the
Theory of Computing, pages 376–385, 2005.

6


