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1 The basic idea

This is a feasibility result regarding ds-IPPs for distributions, where ‘ds’ stands for doubly-sublinear.
We shall show a property of distributions for which the prover’s sample complexity is close to the
complexity of testing, whereas the sample complexity of the verifier is much lower. Actaully, we
shall show two such related properties.

For d ≪ n, we consider the set of degree d polynomials over a field of size n, denoted F . For

each such polynomial p, we let Xp be a distribution that is uniform over Sp
def
= {(e, p(e)) : e ∈ F},

and let D be the set of all such distributions. We also consider D′ that consist of all distributions
with a support that is a subset of Sp for some degree d polynomial p.

We first note that testing D (resp., D′) requires more than d samples. This is the case because
when using at most d samples one cannot distinguish the following two random d-long sequences.

1. A sequence of the form ((i1, f(i1)), ..., (id, f(id))), where f is a random function from F to F
and i1, ..., id are uniformly and independently selected in F .

2. A sequence of the form ((i1, p(i1)), ..., (id, p(id))), where p is a random degree d polynomial
over F and i1, ..., id are uniformly and independently selected in F .

The point is that any d values of a random degree d polynomial are uniformly and independent
distributed in F , just as the case with a random function.

On the other hand, assuming that d = ω(
√
n), an ds-IPP for D proceeds as follows. The honest

prover uses O(d/ϵ2) samples of Xp in order to reconstruct the polynomial p, which it sends to
the verifier. The verifier takes a sample of size O(

√
n/ϵ2) and invokes the uniformity tester on

the input distribution, while using a 1-1 correspondance between [n] and Sp. Needless to say, the
verifier rejects if it sees any sample that is not in Sp. Note that the hypothesis d = ω(

√
n) implies

that the sample complexity of the verifier is lower than the sample complexity of a tester.
An ds-IPP for D′ can also be obtained. In this case the sample (of size O(d/ϵ2)) may not

determine a unique degree d polynomial, but the honest prover may just select an arbitrary degree d
polynomial p that is consistent with this sample, and send p to the verifier. The verifier accepts
if and only if a random sample of size O(1/ϵ2) that it takes yields values that are all in Sp. Note
that in this case, regardless of the relation between d and n, the sample complexity of the verifier
is lower than the sample complexity of a tester.

1



Summary. Both D and D′ require more than d samples for testing, but they both have IPPs in
which the honest prover uses O(d/ϵ2) samples. The verifier’s sample complexity is O(

√
n/ϵ2) in

case of D, and O(1/ϵ2) in case of D′. Recall that each distribution in D is uniform over a set of
size n, whereas each distribution in D′ has support size at most n.

2 Ramifications

Beyond being artifical, the foregoing examples have two deficiencies, which we fix next.

1. The complexity of testing D (resp., D′) equals the one of learning distributions in D (resp.,
D′), whereas the interesting cases in property testing are those in which testing is significanly
more efficient than learning.

2. For constant ϵ > 0, the communication complexity of our IPP equals the sample complexity
of testing; hence, in this case, the running-time of the verifier is not lower than its the
running-time of the tester.

Needless to say, the resulting properties are even more artifical. Still this does not harm their
demostrtative feature.

2.1 Making testing significantly easier than learning

For the class D, this can be done by augmenting the class of distributions so that the complexity
of learning it becomes higher than the complexity of testing, which is maintained. For example, we
may replace Sp by Sp,g = {(e, p(e), g(e)) : e ∈ F} such that g : F → {0, 1} is an arbitrary Boolean
function. Recall that the complexity of learning an arbitrary Boolean function over F = [n] is
Ω(n), but testing the class of all Boolean functions is trivial.

The verifier in the ds-IPP proceeds as the basic one, except that it also checks that samples
that are equal on the first element (i.e., e) are also equal on the third element (i.e., g(e)). Given
that the verifier takes O(

√
n/ϵ2) samples anyhow, this allows checking that the distribution of the

third element fits some function g : [n] → {0, 1}.
For the class D′ (and actually al;o for D), we can augment the distribution on pairs by an

arbitrary distribution on an additioanl bit (equiv., the foregoing function g can be replaced by an
arbitrary random process G : [n] → {0, 1}). In this case, we do not augment the basic verifier.

2.2 Significantly reducing the communication complexity of our IPP

Here a more significant modification is required. Rather than using a single univariate polynomial
of degree d = ω(

√
n) over a field of size n, we shall use t = n/|F| univariate polynomials of degree

d = O(log n) over F such that |F| ≫ d (e.g., |F| ≥ 10d). Specifically, for p = (p1, ..., pt), where
each pi is a degree d polynomial over F , we consider the set

Sp
def
= {(i, e, pi(e)) : i ∈ [t] & e ∈ F}

and let D (resp., D′) be the set of all distributions that are uniform over some Sp (resp., have a
support that is a subset of some Sp). Note that |Sp| = t · |F| = n, and that we can pick F such
that |F| = O(log n).

2



We first observe that that D (resp., D′) cannot be tested using o(t · d) samples. This holds
because using m = o(t · d) samples does not allow to distinguish the following two distributions
over m-long sequences.

1. A sequence of the form ((i1, e1, f(e1, i1)), ..., (im, em, f(im, em))), where f is a random function
from [t]×F to F and (i1, e1), ..., (im, em) are uniformly and independently selected in [t]×F .

2. A sequence of the form ((i1, e1, pi1(e1)), ..., (im, em, pim(em))), where the pi’s are random de-
gree d polynomial over F and (i1, e1), ..., (im, em) are uniformly and independently selected
in [t]×F .

The point is that m samples of the form (i, e, v) are highly unlikely to include more than d triples
with the same first element (i.e., same i), and otherwise the samples that correspond to each i ∈ [t]
are uniformly and independently distributed in F × F .

On the other hand, assuming t = ω(
√
n), an ds-IPP for D proceeds as follows. The honest

prover uses O(t · d/ϵ2) samples of Xp in order to reconstruct p = (p1, ..., pt), but (in this case it)
does not send p to the verifier. The verifier uses O(

√
n/ϵ2) samples in order to check whether the

first two elements of the input distribution X are uniformly distributed in [t]×F . In addition, for
each sample (i, e, v), the verifier sends i to the prover, which replies with a degree d polynomial p̃i,
and the verifier checks that p̃i (is a degree d polynomial that) satisfies p̃i(e) = v.

An ds-IPP for D′ can also be obtained. In this case a sample (of size O(t · d/ϵ2)) may not
determine a unique sequence of t polynomials (of degree d), but the honest prover may just select
an arbitrary sequence p = (p1, ..., pt) that is consistent with this sample. The verifier takes O(1/ϵ2)
samples, send the corresponding first elements to the prover, which again replies with the corre-
sponding degree d polynomials, and the verifier accepts if and only if the polynomials sent by the
prover fit the corresponding other elements. That is, for each sample (i, e, v), the verifier sends i to
the prover, which replies with pi (and the verifier checks that pi(e) = v (and that pi is a polynomial
of degree d)).

Summary. Both D and D′ require Ω(t · d) samples for testing and Ω(n) samples for learning,
but they both have IPPs in which the honest prover uses O(t · d/ϵ2) samples. The verifier’s sample
complexity is O(

√
n/ϵ2) in case of D, and O(1/ϵ2) in case of D′. The communication complexity is

O(d) times larger than the sample complexity of the verifier. Recall that each distribution in D is
uniform over a set of size t · |F| = n, and that we may use |F| = O(d) = O(log n).

Combining both augmentations. Using the suggestion made in the last paragraph of Sec-
tion 2.1, we can augment the forgoing D (resp., D′) by replacing Sp with Sp,G such that

Sp,G
def
= {(i, e, pi(e), G(i, e)) : i ∈ [t] & e ∈ F}

where G : [n]×F → {0, 1} is an arbitrary random process.
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