
Oded (May 2020, revised July 16, 2020): On the main result of [1].

This memo presents what I consider to be the main result and technique of [1], which is a randomized
worst-case to average-case reduction for counting k-cliques in k-partite graphs.1 Here the average-
case problem refers to the uniform distribution over (k-partite n-vertex) graphs and the error rate
(of the potentail average-case solver) is noticeable alas vanishing error rate. Specifically, the allowed

error rate is (log n)−Õ(k2), where n is the number of vertices in the graph.

The model. For fixed k, we consider counting k-cliques in k-partite n-vertex graphs, where each
part has size bn/ke. Assume for simplicity that n is a multiple of k, and let m =

(
k
2

)
· (n/k)2 <

(
n
2

)
denote the number of possible edges in a k-partite n-vertex graph. Let Ck : {0, 1}m → N denote
the function that represents the number of k-cliques in a k-partite n-vertex graph represented by
(the non-redundant part of) its adjacency matrix.

Our aim is to randomly reduce computing Ck in the worst-case to computing Ck on the uniform

distribution. Below, we present a reduction that makes (log n)Õ(k2) queries such that each query is
uniformly distributed in {0, 1}m. The establishes the foregoing claim.

The reduction

For a prime p ∈ (nk, 2 · nk], consider the extension of Ck to a polynomial Pk over F = GF(p), and
observe that Pk is multilinear in

(
k
2

)
sets of variables, where each set corresponds to the bipartite

graph that connects two parts of the k-partite graph. Using the hypothesis that p > nk and the
fact that the value of Ck on any binary sequence does not exceed nk, it follows that the value of
Pk on binary strings equals the value of Ck on those strings. Thus, computing Ck reduces (in the
worst-cvase sense) to computing Pk.

By the standard self-reduction of polynomials, it follows that evaluating Pk in the worst-case is
randomly reducible (using

(
k
2

)
+ 1 < k2 queries) to computing Pk : Fm → F on the average with

error rate of at most 1/3k2. Hence, we focus on reducing the computation of Pk on random inputs
(in Fm) to the computation of Ck on random inputs (in {0, 1}m).

Looking at a generic term of Pk, observe that it has the form
∏
α<β∈[k]X

(α,β)
vα,vβ , where v1, ..., vk ∈

[n/k] and X
(α,β)
vα,vβ corresponds to a vertex-pair (i.e., (vα, vβ)) with endpoints in parts α and β,

respectively. Letting X denote the corresponding sequence of variables, observe that

Pk(X) =
∑

v1,...,vk∈[n/k]

∏
α<β∈[k]

X(α,β)
vα,vβ

(1)

where (v1, ..., vk) corresponds to a potential k-clique in the k-partite graph. Let ` = log2(n
k+3) and

define the function Fk : {0, 1}m·` → N such that

Fk(x)
def
=

∑
v1,...,vk∈[n/k]

∏
α<β∈[k]

∑
i∈[`]

x(α,β,i)vα,vβ
· 2i−1 (2)

1Let me stress that [1] has many other results, which the authors consider even more interesting.

1



where x
(α,β,1)
vα,vβ , ..., x

(α,β,`)
vα,vβ represents the (`-bit long) block that corresponds to the variable X

(α,β)
vα,vβ

in Pk. Then,

Fk(x) =
∑

v1,...,vk∈[n/k]

∑
(i1,2,...,ik−1,k)∈[`](

k
2)

2
∑
α<β∈[k](iα,β−1) ·

∏
α<β∈[k]

x
(α,β,iα,β)
vα,vβ

=
∑

(i1,2,...,ik−1,k)∈[`](
k
2)

2
∑
α<β∈[k](iα,β−1) ·

∑
v1,...,vk∈[n/k]

∏
α<β∈[k]

x
(α,β,iα,β)
vα,vβ ,

(Here we capitalize on the fact that in the first expression the sum is over k-long sequences rather
than k-subsets; this is due to the fact that Ck and Pk refer to k-cliques in k-partite graphs.) Using
the foregoing correspondence (between X and x), it follows that Pk(X) is congruent to Fk(x)
modulo p. This holds not only when each block in x encodes the corresponding field element in X,
but also when it encodes a value that is congruent to this field element modulo p.

The latter observation is important because it allows us to encode a uniformly distributed
element of Fm by an almost uniformly distributed element of {0, 1}m·`. Specifically, we encode
v ∈ F by a uniformly distributed sequence r = (r(j))j∈[`] ∈ {0, 1}` such that

∑
j∈[`] 2

j−1 · r(j) ≡ v

(mod p). Hence, when v is uniformly distributed in F , the resulting r is p · 2−`-close to being
uniformly distributed in {0, 1}`. Recall that p · 2−` < 2nk · n−(k+3) < n−1/

(
n
2

)
.

The key observation is that, for every (i1,2, ..., ik−1,k) ∈ [`](
k
2), it holds that∑

v1,...,vk∈[n/k]

∏
α<β∈[k]

x
(α,β,iα,β)
vα,vβ = Ck(y), (3)

where y
(α,β)
vα,vβ equals x

(α,β,iα,β)
vα,vβ . Hence, Fk(x) is computed by evaluating Ck at `(

k
2) points, and

if x uniformly distributed (in {0, 1}m·`), then each query to Ck is n−1-close to being uniformly
distributed (in {0, 1}m).

Conclusion. The foregoing worst-case to average-case reduction of Ck makes q = `(
k
2) · (

(
k
2

)
+ 1)

queries, and yields a correct answer (with probability at least 2/3) provided that the error rate (of
the average-case solver) is at most 1/3q. Recalling that ` = (k+ 3) · log2 n, this yields an error rate

of (log n)−Õ(k2).

Digest. The key observation is captured by Eq. (3), which implies that Fk(x) can be decomposed

to `(
k
2) terms such that each term corresponds to a sequence (i1,2, ..., ik−1,k) ∈ [`](

k
2) and represent

the contribution of individual bits in each bipartite graph. Specifically, for α < β ∈ [k], only the
contribution of the ithα,β bit of the elements associated with the bipartite graph between the αth

and βth parts is taken. This decomposition is possible since we are dealing with k-partite graphs,
given that we already expressed Fk(x) in term of the contribution of bits (see Eq. (2)); the latter
expression was already used in [2].

Comparison to [3]

The reduction presented above yields the correct answer whenever all queries are answered correctly.
In contrast, the reduction in [3] yields the correct answer even if only a noticeable fraction of the

2



queries are answered correctly. Hence, the current reduction yields a worst-case to average-case
reduction when average-case is understood as having noticeable alas vanishing error rate, whereas
the result in [3] applies to average-case in a much more relaxed sense (i.e., having vanishing but
noticeable success rate). On the other hand, here average-case refers to the uniform distribution
over all k-(equi)partite graphs, whereas [3] refers to uniform distribution over a more structured
set (which is easily recognizable).

References

[1] Enric Boix-Adsera, Matthew Brennan, and Guy Bresler. The Average-Case Complexity of
Counting Cliques in Erdos-Renyi Hypergraphs. In 60th FOCS, 2019.

[2] Oded Goldreich and Guy Rothblum. Worst-case to Average-case reductions for subclasses of
P. ECCC, TR17-130, 2017.

[3] Oded Goldreich and Guy Rothblum. Counting t-Cliques: Worst-Case to Average-Case Reduc-
tions and Direct Interactive Proof Systems. In 59th FOCS, 2018.

3


