
Oded (January 27, 2023): The algorithmic method for circuit lower bounds1

Preliminaries. The class ACC consists of Boolean functions computable by families of circuits
of polynomial size and constant depth having unbounded fan-in AND, OR, NOT, and MOD m gates,
where m > 1 is an arbitrary constant. In other words, ACC =

⋃
m∈NAC0[m], where AC0[m] refers

to (polynomial-size, constant-depth) circuits having unbounded fan-in AND, OR, NOT, and MOD m
gates. (Indeed, AC0 = AC0[1], which effectively means that no modular gates are used, whereas
AC0[2] allows XOR gates.)

General background. When discussing circuit (size and/or depth) lower bounds, the point
is obtaining them for explicit functions; in contrast, it is trivial to get such lower bounds for
non-explicit functions or even for functions of high (uniform) time complexity (i.e., just let the
algorithm try all functions and all circuits). The question is what is “explicit” and the answer is
undetermined; actually, one often wants things to be as explicit as possible. Still, the first choice
would be that explicit means computable in polynomial-time. Often (and also in some places in
my introduction to complexity book), one may require even more; e.g., computability in log-space.
In the current context (i.e., aiming at lower bounds for ACC), we shall settle for less (e.g., explicit
means computable in exponential time with oracle to NP); needless to say, this timid goal is only
due to our limitations (i.e., what we know).2

Likewise, almost no “derandomization” (of classes of circuits) is known to hold unconditionally
(i.e., without assuming lower bounds), where here derandomization means deterministic procedures
that approximate the fraction of inputs that cause a given circuit to evaluate to 1.3 Essentially,
the only exceptions are:

1. Derandomizations that follow from known circuit lower bounds (e.g., for AC0).

2. Trivial derandomization (e.g., BPP is in EXP).

In continuation to (1), we mention that various conjectured circuit lower bound imply non-trivial
derandomization, and that partial converses of these are known; specifically, some conjectured de-
randomizations imply circuit lower bounds that are not known unconditionally. The result we shall
see goes in this converse direction, except that it presents a new (alas very weak) derandomization
and infers from it new circuit lower bounds.

Overview. We shall prove that circuits of a certain class, denoted C, cannot compute some
explicit functions (i.e., functions in a uniform complexity class X) by using an algorithm for the
“analysis” of circuits in a related class, denoted Ĉ. By analysis of circuits we mean either deciding
whether a given circuit computes a constant function (see Take 1) or approximating the probability
that the circuit evaluates to 1 (on a random input to the circuit, see Take 2). While the framework

1Notes for a presentation to a group of graduate students at Weizmann Institute of Science.
2Subsequent works obtained stronger notions of explicitness (e.g., being computable in “quasi-NP”). Here we

use a weaker notion of explicitness, since it allowed us to present a simpler proof while still showing many of the
interesting/fundamental ideas.

3In the case of complexity classes such as BPP, this refers to the residual circuits that describe computation
of a randomized algorithm on a fixed input. We mention that non-trivial derandomizations of specific randomized
algorithms are known. The same hold also for derandomization of space complexity classes such as BPL, but one
may argue that these use implicit lower bounds on the power of read-once bounded-space machines.

1

is generic (i.e., it is independent of C), we can benefit from it only if we have a suitable algorithm for
the analysis of circuits in Ĉ. Hence, at the very end, one uses C = ACC, and an adequate algorithm
for Ĉ = ACC. (Likewise, X is determined by the proof of fact (3) below.)

Specifically, assuming towards the contradiction that X ⊆ C, we show that witnesses for mem-
bership in any NTime(2n)-sets have concise representations as circuits in C, which (combined with
the hypothesized circuit-analysis algorithm) allows us to speed-up the corresponding NTIME com-
putation. Since the latter task is impossible (by the NTIME hierarchy theorem), we derive a
contradiction to X ⊆ C.

Take 1. Recall that proving a circuit lower bound for a Boolean function f means proving that
a certain class of circuits cannot compute f . Hence, for a class of circuits, denoted C, our aim is
proving that there is an explicit function f that is not in C, where being explicit means that f is
in a uniform complexity class X (e.g., ENP). The proof will rely on a design of a modestly efficient
algorithm for the analysis of circuits in a related class, denoted Ĉ. Specifically, we shall use an
algorithm that, on input a circuit in the class Ĉ, determines whether or not the circuit computes
the identity 1 function. Assuming that (n-bit input) circuits in C can be described by strings of
length at most 2n/4, the (lower bound) proof uses the following facts:

1. A hierarchy theorem for non-deterministic time; specifically, the fact that NTime(2n/nω(1))
is strictly contained in NTime(2n).

Assuming towards the contradiction that X ⊆ C, we shall derive a contradiction by starting
with any S ∈ NTime(2n), and showing (at the end) that S ∈ NTime(2n/nω(1)).

2. The fact that the non-deterministic computation for deciding membership of x in S can be

represented by a 3CNF formula Vx of size N ′ def
= Õ(2|x|) that takes N ′ inputs (representing

the non-deterministic choices). Furthermore, on input x and j, the jth clause of Vx (i.e., the
literals fed to it) can be determined in polynomial-time.4

(Indeed, Vx represent the verification that the N ′-bit input constitutes a witness for x ∈ S;
that is, x ∈ S if and only if there exists w ∈ {0, 1}N ′

such that Vx(w)=1.)

3. The fact (proved below for X = ENP) that X contains a function A : {0, 1}∗ × N′ → {0, 1}
such that for every x ∈ S the function Ax : [N ′] → {0, 1} defined as Ax(i)

def
= A(x, i) (for

every i ∈ [N ′]) represents an assignment that satisfies Vx (i.e., Vx(Ax(1),, Ax(N
′)) = 1).

For X = ENP an adequate function Ax can be computed by determining its values sequen-

tially. Specifically, Ax(i) is set to 0 if and only if the i-bit long string w′ def= Ax(1) · · ·Ax(i−1)·0
is a prefix of anN ′-bit long string that satisfies Vx (i.e., ∃w′′ such that V (x,w′w′′) = 1). Hence,
the relevant NP-query is (x,w′10N

′−i).

4. Next, assuming towards the contradiction that X ⊆ C, it follows that the function A can be
computed by a family of circuits, denoted {Cm}m∈N, that is in C. For every x ∈ {0, 1}n, we
let C ′

x(i) = Cn+n′(x, i), where n′ = log2N
′ = log2 Õ(2n) = n′ +O(log n), and i ∈ [N ′].

4Recall that it is easy to emulate the computation of a (non-deterministic) machine that runs in t(n)-time by a
(highly-uniform) circuit of size O(t(n)2). Here, we use a stronger result asserting that such emulation is possible by

(highly-uniform) circuits of size Õ(t(n)). Furthermore, these circuits 3CNF formulas and they can be constructed by
uniform AC0-circuits.

2

Recall that Vx is a 3CNF formula, and so Vx(y) can be written as∧
j∈[N ′]

vx,j(yi1x,j
, yi2x,j

, yi3x,j
),

where vx,j and the ikx,j ’s can be computed in polynomial time when given x and j. Hence, the
question of whether C ′

x describes an assignment that satisfies Vx translates to the question of
whether the circuit ĉx : [N ′] → {0, 1} defined by

ĉx(j)
def
= vx,j

(
C ′
x

(
i1x,j

)
, C ′

x

(
i2x,j

)
, C ′

x

(
i3x,j

))
is identically 1.

5. Lastly, assuming that we can decide in time 2|x|/|x|ω(1) whether the circuit ĉx : [N ′] → {0, 1}
is identically 1, we conclude that S is in NTime(2n/nω(1)), by presenting a non-deterministic
machine that, on input x ∈ {0, 1}n, first guesses Cn+n′ , by making 2(n+n′)/4 < 2n/nω(1) non-
deterministic steps5, then constructs ĉx, and finally invokes the foregoing decision procedure
on ĉx. Note that the circuit ĉx is obtained by composing three copies of C ′

x = Cn+n′(x, ·)
with circuits that compute the mapping j 7→ vx,j and j 7→ ikx,j (for k = 1, 2, 3). Furthermore,
given x, the circuits that compute these mappings can be constructed in polynomial-time.
Actually, these circuits are of the AC0-type (see Footnote 4).

Indeed, for the foregoing to yield S ∈ NTime(2n/nω(1)), we need an algorithm as postulated in
the last item. Specifically, defining Ĉ as the class of circuits obtained by a constant number of
composition operators applied to circuits in C and AC0, and recalling that n′ = n + O(log n), we
need an 2n/nω(1)-time algorithm that given an n′-bit circuit in Ĉ determines whether the circuit
computes the identity 1 function.

Note that the algorithm we seek is faced with an NP-type problem (i.e., determining whether
a given circuit evaluates to 1 on all inputs), but this task refers to a restricted class of circuits
(i.e., Ĉ) and the algorithm is merely required to be better than exhaustive search in an extremely
modest manner (when the circuit is of polynomial size). An even more modest task is to distinguish
between the case that circuit evaluates to 1 on all inputs and the case that circuit evaluates to 1
on at most half of the inputs. The latter task is of a derandomization flavor (since it can be easily
performed by a randomized algorithm). This leads to –

Take 2. Again, our aim is proving that some function f ∈ X is not in C, and the proof will rely
on a design of a modestly efficient algorithm for the analysis of circuits in a related class, denoted
Ĉ. Specifically, here we use an algorithm that, on input a circuit in Ĉ, distinguishes the case that
circuit evaluates to 1 on all inputs and the case that circuit evaluates to 1 on at most half of the
inputs. Assuming that (n-bit input) circuits in C can be described by strings of length at most
2n/4, the (lower bound) proof uses the following facts:

1. A hierarchy theorem for non-deterministic time as in Take 1; specifically, the fact that
NTime(2n/nω(1)) is strictly contained in NTime(2n).

Again, assuming towards the contradiction that X ⊆ C, we shall derive a contradiction by
starting with any S ∈ NTime(2n), and showing that S ∈ NTime(2n/nω(1)).

5Here we rely on the hypothesis that the m-bit input circuits in C can be described by 2m/4 bits (and on n′ =
n+O(logn) < 2n).

3

2. The main deviation from Take 1 takes place here. Rather than using the standard non-
deterministic machine for S ∈ NTime(2n), we use a PCP system for this set. Specifically, on

input x, this PCP uses proofs of length N ′ def
= Õ(2|x|), and its verifier has randomness com-

plexity n′ = log2N
′ = |x| + O(log |x|) and (non-adaptive) query complexity q

def
= poly(|x|).

Furthermore, on input x, the verifier’s (non-adaptive) queries and its final decision can be im-
plemented by a (polynomail-time constructable) AC0-type circuit, denoted Vx. The standard
completeness and soundness conditions (of PCPs) assert:

� If x ∈ S, then there exists π ∈ {0, 1}N ′
such that Prr∈{0,1}n′ [V w

x (r)=1] = 1.

� If x ̸∈ S, then for every π ∈ {0, 1}N ′
it holds that Prr∈{0,1}n′ [V w

x (r)=1] ≤ 1/2.

Needless to say, establishing the existence of the foregoing PCP system is highly non-trivial.
I view that result as part of the third generation of PCP constructions. (Note that here the
proof length is almost linear in the length of the standard (NP-type) witness, whereas the
standard PCP construction (of the first generation) yields proof of length that is a (large)
polynomial in the witness length.)

3. The fact that X contains a function Π : {0, 1}∗ × N′ → {0, 1} such that for every x ∈ S

the function Πx : [N ′] → {0, 1} defined as Πx(i)
def
= Π(x, i) (for every i ∈ [N ′]) represents a

PCP-oracle that makes Vx always accept (i.e., Prr∈{0,1}n′ [V Πx
x (r)=1] = 1).6

4. Next, assuming towards the contradiction that X ⊆ C, it follows that the function Π can be
computed by a family of circuits, denoted {Cm}m∈N, that is in C. For every x ∈ {0, 1}n, we
let C ′

x(i) = Cn+n′(x, i), for every i ∈ [N ′].

Recall that if x ∈ S, then Prr∈{0,1}n′ [V
C′

x
x (r)=1] = 1, and otherwise (i.e., x ̸∈ S) it holds that

Prr∈{0,1}n′ [V C′
x (r)=1] ≤ 1/2 for every C. A key observation is that for a fixed value of r, the

circuit Vx invokes C ′
x on poly(|x|) values (which are determined by x and r). Hence, the final

decision of Vx on input r (when given oracle access to C ′
x) can be represented by the circuit

ĉx(r) = Dx(r, C
′
x(Q1(x, r)), ..., C

′
x(Qq(x, r)), where Qi denotes computation of the ith query

and Dx denotes the computation of the final decision.

5. Lastly, assuming that we can distinguish in time 2|x|/|x|ω(1) between the case that Prr[ĉx(r)=
1] = 1 and the case that Prr[ĉx(r) = 1] ≤ 1/2, we conclude that S is in NTime(2n/nω(1)),
by presenting a non-deterministic machine that on input x ∈ {0, 1}n first guesses Cn+n′ , by
making 2(n+n′)/4 non-deterministic steps, then constructs ĉx, and finally invokes the foregoing
decision procedure on ĉx. Note that the circuit ĉx is obtained by composing q copies of
C ′
x = Cn+n′(x, ·) with circuits that compute the Qi’s and Dx. Furthermore, these (AC0-type)

circuits can be constructed in polynomial-time.

Indeed, for the foregoing to yield S ∈ NTime(2n/nω(1)), we need an algorithm as postulated in the
last item. Specifically, defining Ĉ as the class of circuits obtained by composition of circuits in C

6For X = ENP an adequate function Πx can be computed by determining its values sequentially. Specifically,

Πx(i) is set to 0 if and only if the i-bit long string π′ def
= Πx(1) · · ·Πx(i− 1) · 0 is a prefix of an N ′-bit long string that

makes Vx accept with probability 1 (i.e., ∃π′′ such that Prr∈{0,1}n′ [V π′π′′
x (r)=1] = 1). Again, the relevant NP-query

is (x, π′10N
′−i).

4

and AC0 as in the last item, we need an 2n/nω(1)-time algorithm that given an n′-bit circuit in Ĉ
distinguishes circuits that evaluate to 1 with probability 1 from circuits that evaluate to 1 with
probability at most 1/2.

The missing link. Indeed, in both takes, we avoided the chore of designing suitable algorithms.
We stress that this is known for the case that Ĉ = ACC, which means that non-trivial derandom-
ization is known for ACC.

Digest. The method, as described above, relies on guessing a circuit (in the class C); hence,
the resulting decision procedure for S is non-deterministic, whereas its running time is dominated
by the running time of the circuit-analysis procedure for Ĉ (which is larger that the size of the
guessed circuit). Contradiction to X ⊆ C requires a circuit-analysis procedure for Ĉ ⊇ C that
is mildly more efficient than the non-deterministic time complexity of S. (In Take 1, this was a
procedure for deciding whether a given circuit is identical to 1, and in Take 2 it was a procedure
for approximating the probability that the circuit evaluates to 1.) It follows that if circuits in
a class that slightly extends C can be analyzed within complexity that is mildly better than the
straightforward algorithm, then C cannot solve all problems in X .

Acknowledgements. These notes are based on Roei Tell’s exposition Non-trivial derandomiza-
tion implies weak lower bounds: An (almost) elementary proof.7

7Available from https://sites.google.com/site/roeitell/Expositions.

5

