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Abstract

Interactive proofs of proximity (IPPs) are a relaxation of interactive proofs, analogous to
property testing, in which soundness is required to hold only for inputs that are ϵ-far from
the property being verified, where ϵ > 0 is a proximity parameter. In such proof systems, the
verifier has oracle access to the input, and it engages in two types of activities before making its
decision: querying the input oracle and communicating with the prover. The main objective is
to achieve protocols where both the query and communication complexities are extremely low.

In this work, we focus on computationally sound IPPs (cs-IPPs). We study their power in
two aspects:

• Query complexity: We show that, assuming the existence of collision-resistant hashing func-
tions (CRHFs), any public-coin cs-IPP that has query complexity q can be transformed into
a cs-IPP that makes only O(1/ϵ) queries, while increasing the communication complexity
by roughly q. If we further assume the existence of a good computational PIR (private
information retrieval) scheme, then a similar transformation holds for general (i.e., possibly
private-coin) cs-IPPs.

• Coordination: Aside from the low query complexity, the resulting cs-IPP has only minimal
coordination between the verifier’s two activities. The general definition of IPPs allows
the verifier to fully coordinate its interaction with the prover and its queries to the input
oracle. Goldreich, Rothblum, and Skverer (ITCS 2023) introduced two restricted models
of IPPs that are minimally coordinated : The pre-coordinated model, where no information
flows between the querying and interacting activities, but they may use a common source
of randomness, and the isolated model, where the two activities are fully independent, each
operating with a separate source of randomness.

Our transformation shows that (under the aforementioned computational assumptions) any
cs-IPP can be made to be in the pre-coordinated model, while preserving its efficiency.
Hence, pre-coordinated cs-IPPs are essentially as powerful as general cs-IPPs.

In contrast, we show that cs-IPPs in the isolated model are extremely limited, offering almost
no advantage over property testers. Specifically, extending on a result shown by Goldreich
et al. for unconditionally sound IPPs in the isolated model, we show that if a property has
a cs-IPP in the isolated model that makes q queries and uses c > 0 bits of communication,
then it has a tester with query complexity O(c · q).
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1 Introduction

Interactive proofs of proximity (IPPs) are the property testing analog of interactive proofs. The
focus of this work is on studying the power of computationally sound IPPs. We begin with some
background.

1.1 General background

Property testing. The field of property testing [9, 27] studies a relaxed notion of decision
problems. Rather than deciding exact membership, a property tester is only required to distinguish
(w.h.p.) between objects in the property and objects that are ϵ-far from the property, where ϵ > 0
is a proximity parameter. An object x ∈ {0, 1}n is considered ϵ-far from a property Πn ⊆ {0, 1}n
if it differs from any object in the property on more than ϵ · n locations.

Standard decision problems generally require reading the entire input, since flipping a single
bit can change the decision. In contrast, relaxed decision opens the possibility of algorithms that
(probabilistically) read only a sub-linear portion of the input. Thus, in property testing, the input
is viewed as a huge object to which the tester gets only oracle access, and the goal is to obtain
testers with extremely low query complexity (e.g., query complexity that is poly-logarithmic in the
input size).

Interactive proofs of proximity. Interactive proofs of proximity (IPPs) [7, 26] extend the
relaxation considered in property testing to the realm of proof systems, analogously to the extension
of standard decision algorithms to standard interactive proofs (IPs). Specifically, an interactive
proof of proximity for a property is a protocol between two parties, called a verifier and a prover.
The verifier has oracle access to the input, and it interacts with an (untrusted) prover that tries
to convince it to accept the input. The goal is for the verifier to be convinced to accept inputs
that satisfy the property when interacting with an honest prover (“completeness”), and to not be
fooled into accepting inputs that are far from the property, no matter what strategy is employed
by the prover (“soundness”). The prover is assumed to have explicit access to the input and is
computationally unbounded.

The main complexity measures considered in IPPs are the verifier’s query complexity and the
communication complexity (i.e., the total number of bits exchanged during the interaction with
the prover). Like the query complexity, the communication complexity should be sublinear in the
input length. With linear communication complexity, the prover could simply send the entire input,
and the verifier could verify that (a) the alleged input is indeed in the property (which requires
no queries to the oracle); and (b) the alleged input is ϵ-close to the actual input, by checking for
consistency with O(1/ϵ) random locations in the actual input. Another complexity measure of
interest is the round complexity (the number of back-and-forth communication rounds). The goal
is to obtain proof systems with significantly lower query complexity than a tester for the property
can achieve, while also minimizing the communication and round complexities.

The computational complexity of the verifier is also an important complexity measure, although
it is often a secondary consideration in the property testing literature, where the focus is on query
complexity. In this work, we require that the verifier is implementable in probabilistic polynomial
time. IPPs where also the honest prover is implementable in probabilistic polynomial-time are
called doubly-efficient (see, e.g., [25]).1

1Doubly-efficient IPPs should not be confused with doubly-sublinear IPPs [1], which refer to the query complexity
of the honest prover.
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The isolated and pre-coordinated models. The verifier in an IPP performs two distinct
activities: querying the input oracle and interacting with the prover. The general definition of
IPPs allows the verifier to fully coordinate these two activities; that is, it can choose where to
query the input based on its communication with the prover, and likewise, it can send challenges
to the prover based on values seen in the input.

Goldreich, Rothblum, and Skverer [12] considered highly restricted models of IPPs where the
querying and interacting activities are assigned to separate modules such that no information can
flow between them. The two modules feed their final views to a separate deciding module that
decides whether to accept or reject based on the combined views.

They introduced two versions of this model. In the first model, called the isolated model, the
querying and the interacting modules each get a separate and independent source of randomness,
making them completely independent. The second model, called the pre-coordinatedmodel, provides
both modules with a shared source of randomness, which allows for some amount of coordination.2

Goldreich et al. showed that the isolated model is extremely weak; that is, it can only offer a
very limited advantage over property testers. Specifically, they showed that IPPs in the isolated
model that use q queries and c > 0 bits of communication can be emulated by property testers
with query complexity O(c · q).

In contrast, they showed that the pre-coordinated model is much more powerful. In particular,
they demonstrated that there are pre-coordinated IPPs of extremely low complexity for properties
that are extremely hard to test. Still, they also showed that the pre-coordinated model is consid-
erably limited compared to general IPPs. They showed that public-coin O(1)-round IPPs in the
pre-coordinated model can be efficiently emulated by standard property testers.3

1.2 This work – computationally sound IPPs

In this work, we focus on computationally sound interactive proofs of proximity (cs-IPPs). That is,
we consider IPPs in which the soundness condition is relaxed to hold only against computationally
bounded provers.4 Note that for the definition to be meaningful, cs-IPPs require that also the
honest prover is computationally bounded; otherwise, any property may have a trivial cs-IPP in
which the verifier simply checks whether the prover succeeds in solving a computationally hard
task.5 Hence, we actually consider computationally sound doubly-efficient IPPs.

1.2.1 Positive result in the pre-coordinated model

We exhibit the power of cs-IPPs, both for achieving low query complexity and for achieving
pre-coordination. We show that, assuming the existence of collision-resistant hashing functions
(CRHFs), any public-coin cs-IPP (and hence any public-coin unconditionally sound IPP with an
efficient honest prover) can be efficiently emulated by a cs-IPP that makes only O(1/ϵ) queries,
and is in the pre-coordinated model. The communication complexity of the resulting system is
roughly c+ q, where c and q are the communication and query complexity of the original system,
respectively. Furthermore, the emulation adds only 2 rounds of interaction.

2The isolated and pre-coordinated models were originally studied in [12] as restricted versions of IPPs with proof-
oblivious queries. Proof-oblivious queries restrict only the information flow from the interacting module to the querying
module.

3We usually consider an emulation of one model in a second model to be efficient if the communication and query
complexity in the second model are polynomial in the complexities in the first model.

4This notion was first discussed in passing in [26], and served as the focus of [20].
5Recall that we already assume that the verifier is computationally efficient.
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We consider two types of collision-resistance: weak collision-resistance, which requires that
finding collisions is hard for polynomial-size circuits, and strong collision-resistance, which requires
that finding collisions is hard for sub-exponential size circuits (see Definition 2.3).

Theorem 1.1 (public-coin cs-IPPs can be efficiently emulated in the pre-coordinated model).
Let H be a family of CRHFs. Suppose that a property Π has a public-coin cs-IPP with query
complexity q, communication complexity c, and round complexity r. Then Π has a cs-IPP in the
pre-coordinated model with the following complexities:

• Query complexity: O(1/ϵ). Furthermore, the queries are uniformly and independently dis-
tributed.6

• Communication complexity: O
(
c(n) +

(
q(n) + ϵ−1

)
· t(n) + ρ(n)

)
, where:

– t(n) = polylog(n) if H is strong collision-resistant, and t(n) = O(nγ) for any constant
γ > 0 if H is weak collision-resistant.

– ρ is the randomness complexity of the original verifier.

• Round complexity: r(n) + 2.

Furthermore, perfect completeness is preserved, and if H is a public-coin CRHF,7 then the resulting
cs-IPP is public-coin.

The term ρ(n) in the communication complexity actually represents only the additional coins
that the verifier uses to generate its queries, beyond the coins sent during the interaction (which
contribute at most c coins). By standard techniques, this ρ term can always be reduced to O(logn),
at the cost of introducing non-uniformity; see Remark 3.9. Alternatively, we show that the ρ term
can be avoided altogether, at the cost of q(n) additional rounds of communication in the general
case, and at no extra cost when the original verifier uses non-adaptive queries. However, the
resulting system will not be public-coin (see Theorem 3.5).

While Theorem 1.1 is stated for public-coin cs-IPPs, we show a similar transformation for general
cs-IPPs when using a computational PIR (private information retrieval) scheme (see Theorem 3.10).

1.2.2 Negative result for the isolated model

Having shown the power of computational soundness for the pre-coordinated model, we turn to
consider the isolated model. In contrast to the pre-coordinated model, we show that cs-IPPs in the
isolated model can be efficiently emulated by testers, as in the unconditional soundness case. In
particular, this demonstrates the necessity of pre-coordination for the result of Theorem 1.1.

Theorem 1.2 (cs-IPPs in the isolated model can be efficiently emulated by testers). If a property
Π has a cs-IPP in the isolated model with query complexity q and communication complexity c > 0,
then Π has a tester with query complexity O(c · q).

While Theorem 1.2 rules out an emulation in the isolated model with the efficiency of Theo-
rem 1.1, in Section 3.3 we show that our pre-coordinated model emulation can be transformed to
the isolated model at the cost of increasing the product of the query and communication complex-
ities by roughly n/ϵ. More specifically, we can get a general tradeoff between the resulting query
and communication complexities, such that for any q′ > O(1/ϵ), we can obtain query complexity q′

6I.e., the resulting system is actually sample-based (cf. [11, 8]).
7H is a public-coin CRHF if the collision resistance property still holds when the collision finder is given access to

the random coins used by the sampler of H.
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while increasing the communication complexity (over that obtained in Theorem 1.1) by an additive
O
(

n
ϵ·q′

)
· t(n) term, where t(n) is as in the statement of Theorem 1.1. Note that this tradeoff is

nearly optimal given the negative result of Theorem 1.2, since there exist properties that have very
efficient cs-IPPs but require nearly linear query complexity for testing (see details in Section 3.3).

Our prior work. Recall that Theorem 1.2 demonstrates that pre-coordination (rather than
isolation) is necessary for the result of Theorem 1.1. While this is shown through a general emulation
of the isolated model by testers, in our prior work [29] we show this necessity by a direct lower
bound on the isolated model for a specific property.

The property that we consider is PERM, the set of all permutations over [n]. Applying Theo-
rem 1.1 to the IPP for PERM shown in [14, Sec. 4.1], we get that assuming the existence of strong
CRHFs, PERM has a cs-IPP in the pre-coordinated model with poly-logarithmic query and commu-
nication complexities. In contrast, in [29] we show that any cs-IPP for PERM in the isolated model
must have either query complexity or communication complexity greater than nΩ(1). The exact
lower bound we show is q5 · c = Ω(n/ log(n)) where q > 0 is a query complexity and c > 0 is the
communication complexity in any isolated cs-IPP for PERM.

The emulation of isolated cs-IPPs by testers (established by Theorem 1.2) implies a similar
lower bound for PERM that follows from a simpler argument. Specifically, since testing PERM requires
Ω(
√
n) queries (see [28, Apdx. A] following [14, Lem. 4.3]), it follows that any isolated cs-IPP for

PERM with query complexity q > 0 and communication complexity c > 0 must satisfy q ·c = Ω(
√
n).

1.3 Technical Overview

1.3.1 Emulation of cs-IPPs by cs-IPPs in the pre-coordinated model

Our emulation in the pre-coordinated model is based on the well-known technique of Kilian [21].
Recall that Kilian showed how to transform PCPs into computationally sound interactive proofs
that have very low communication complexity, assuming the existence of collision-resistant hashing
functions. Kilian’s protocol uses a special commitment scheme, called a tree commitment scheme
(also known as Merkle-hashing), that allows one to commit to an n-bit string such that individual
bits in the string can be revealed (and verified as correct) with very low communication cost (e.g.,
poly-logarithmic in n). In Kilian’s protocol, the prover commits to the PCP-proof, and the verifier
asks the prover to reveal the locations that the original PCP-verifier would query in the proof
oracle. The commitment scheme ensures that a computationally bounded prover must respond
consistently with a fixed proof string (i.e., it cannot cheat by answering differently based on the set
of queries it has received).

Our emulation of public-coin cs-IPPs uses the tree commitment scheme to have the prover
commit to the input. Recall that we are given a public-coin cs-IPP for some property Π, and
aim to efficiently emulate it in the pre-coordinated model while making only O(1/ϵ) queries. The
emulation will begin by executing the commitment phase of the tree commitment scheme, where
the prover commits to a string that allegedly equals to the input. Next, we emulate the original
interaction with the prover. Note that this can be done without access to the input oracle since
the original interaction is public-coin. The emulation is done with respect to proximity parameter
ϵ/2 (where ϵ is our target proximity parameter). At the end of the emulated interaction, instead
of making the queries that the original verifier would have made to the input oracle, we ask that
the prover provide the answer to these queries by revealing the corresponding locations in the
alleged input via the tree-commitment scheme. We check that the original verifier would have
accepted given the answers the prover provided, along with the interaction transcript generated
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in the emulated interaction. In addition, we query the actual input oracle on O(1/ϵ) randomly
chosen locations, ask the prover to reveal the same locations in the alleged (committed) input, and
check for consistency. Note that the interacting and querying modules of the resulting system need
only share the random consistency-check locations, and otherwise operate independently from one
another.

To see why soundness holds, consider the foregoing emulation given an arbitrary input x ∈
{0, 1}n that is ϵ-far from the property Π, when interacting with an arbitrary computationally
bounded prover. At a high level, once the tree commitment is established, the prover’s answers to
the queries must be consistent with some fixed string x′. If x′ is (ϵ/2)-close to x, then x′ is (ϵ/2)-far
from Π, and so the prover will fail to fool the original verifier with high probability. Otherwise,
x′ is (ϵ/2)-far from x, and then by checking for consistency between x and x′ on O(1/ϵ) random
locations, we will detect a mismatch with high probability.

Note that it is important to first emulate the original interaction and only after ask the prover
to provide the answer to the queries (which is possible due to the public-coin hypothesis). This is
because, by asking the prover to provide the answers to the queries, we reveal to the prover their
locations, whereas the soundness of the original verifier may rely on keeping these locations secret.

To extend the emulation to general cs-IPPs that are not necessarily public-coin, we interleave
the emulation of the original interaction with the query requests, since the verifier’s messages may
depend on responses to its prior queries. To withhold the actual queries from the prover, we use a
computational PIR scheme for providing answers to these queries. We stress that the PIR scheme
is used to retrieve both the queried input bit and its corresponding tree commitment opening.

While the technique of using the tree commitment scheme to force a computationally bounded
prover to respond consistently with a fixed string is well-known, to the best of our knowledge,
there is a lack of a source that presents this technique formally and in a general manner (with the
exception of the concurrent [17]; see Section 1.4).8 In this work, we provide a general lemma (see
Lemma 3.3) that captures this property of the tree commitment scheme. The lemma asserts that in
any interaction that uses the tree commitment scheme, with overwhelmingly high probability, at the
end of the commitment phase there exists a fixed string, such that any location that is subsequently
opened will either be opened consistently with this string or will be detected as faulty.

1.3.2 Emulation of cs-IPPs in the isolated model by testers

Recall that in the isolated model, the verifier’s querying and interacting activities are totally in-
dependent from one another, each operating with a separate source of randomness. Specifically,
the verifier is decomposed into a querying, interacting, and deciding modules Q, I, and D, respec-
tively, such that its decision when interacting with a prover strategy P on input x is expressed
as: D(Qx(RQ), ⟨P, I(RI)⟩), where RQ and RI are independent random variables representing the
randomness of the querying and the interacting modules, respectively.

In [12] it was shown that statistically sound IPPs in the isolated model can be efficiently emu-
lated by property testers: If a property Π has an IPP in the isolated model that makes q queries
and uses c > 0 bits of communication, then Π has a tester with query complexity O(c · q). We show
the same is true for computationally sound IPPs.

Roughly speaking, the reason that the emulation of [12] does not carry over to the context of
cs-IPPs, is that it emulates the verifier with the optimal prover strategy. In the context of cs-
IPPs, the performance of the optimal strategy (on NO-instances) is not relevant, since the optimal
strategy may not be efficiently implementable.

8One notable source that provides a formal treatment of this technique is [2]. The setting treated in [2] is a more
complex one, but it is less generic.
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Instead of the optimal prover, we will consider the honest prover, which is guaranteed to be
efficient. Note that we cannot directly emulate the interaction with the honest prover on the actual
input, because doing so requires full access to the input. Thus, instead, we emulate 2n interactions,
each with a different possible n-bit input (actually, it will suffice to use only the YES-instances).
Observe that if the actual input is a YES-instance, then there exists an emulation that will lead to
accepting with probability at least 2/3. On the other hand, if the actual input is a NO-instance,
then each of these emulations leads to rejection with probability at least 2/3.

However, we do not want to take a union bound over 2n events. Instead, we observe that each
of these emulations can be expressed as a (different) convex combination of the probabilities that
the verifier accepts given each fixed interaction transcript τ ∈ {0, 1}c. For simplicity, assume that
the interaction transcript fully determines the randomness of the interacting module. Then, for
any prover strategy P , we have:

Pr
[
D
(
Qx(RQ), ⟨P, I(RI)⟩

)
= 1

]
=

∑
τ∈{0,1}c

Pr [⟨P, I(RI)⟩ = τ ] · Pr
[
D
(
Qx(RQ), τ

)
= 1

]
(1)

Thus, we can obtain an (additive constant) approximation of the acceptance probability of all 2n

emulations by obtaining an approximation of the 2c fixed-transcripts probabilities:

pxτ
def
= Pr

[
D
(
Qx(RQ), τ

)
= 1

]
.

As observed in [12],9 an approximation of pxτ can be obtained by repeated invocations of the
querying module Qx, where the same invocations can be used towards approximating all 2c values
pxτ since the invocations are oblivious of the value of τ . Hence, by invoking the querying module
O(c) times, we can obtain for each pxτ a constant additive approximation with error probability
O(2−c), and by a union bound we get an approximation of all 2c values, with high constant prob-
ability. Using these values, we can obtain approximations of the success probability of the honest
prover strategy on all 2n inputs, by computing, for each such strategy, the corresponding coeffi-
cients (i.e., Pr [⟨P, I(RI)⟩ = τ ]) in Eq. (1). Indeed, this will be computationally expensive, but the
computational complexity is irrelevant to us.

1.4 Further related works

As mentioned in Section 1.2, computationally sound IPPs were briefly discussed in the work of
Rothblum, Vadhan, and Wigderson [26], and then became the focus of the work of Kalai and
Rothblum [20]. In the former work [26], the authors noted that in a similar manner to Kilian’s
technique, PCPs of Proximity (PCPPs) [3, 6] can be transformed to computationally sound IPPs.
Note that this refers to committing to the proof oracle of the PCPP, as in Kilian’s original protocol,
whereas we use the commitment scheme to commit to the input oracle (and use it for a distinct
setting and purpose). In addition, the work of [26] establishes a separation between what can be
achieved with unconditionally sound versus computationally sound IPPs. The subsequent work
of [20] strengthened this separation, under a stronger computational assumption. In addition, [20]
showed that assuming the existence of a sub-exponentially secure FHE scheme, any language in P
has a one-round cs-IPP with sublinear complexities (specifically, the query complexity is n1−γ for
some γ > 0).

9The fixed-transcript probabilities pxτ are used in [12] to compute the acceptance probability of the optimal prover
via the max-average game tree of interactive proofs (where the probabilities pxτ are viewed as the leaves of the game
tree).
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More recently, independently and in parallel to us,10 Herman and Rothblum [17] used an ap-
proach similar to ours in the context of distribution testing. Specifically, they use a tree commitment
scheme to have the prover commit to an approximation of the entire input distribution. They use
this to obtain a cs-IPP in which the verifier’s complexities are all roughly

√
n/ϵ2 for any property

of distributions decidable in polynomial time.

1.5 Organization

Section 2 contains preliminaries and definitions, which include definitions of the computational
models discussed in the introduction as well as the cryptographic assumptions that we use. In
Section 3 we present the emulation of cs-IPPs by cs-IPPs in the pre-coordinated model. In addition,
in Subsection 3.3 we show how to transform the emulation to the isolated model (at a significant
cost). In Section 4 we prove that cs-IPPs in the isolated model can be efficiently emulated by
testers.

2 Preliminaries and definitions

2.1 Computational models

Property testing. A property is a collection of sets Π =
⋃

n∈N Πn such that Πn is a set of strings
over {0, 1}n. The relative hamming distance between two strings x, x′ ∈ {0, 1}n is the fraction of
bits on which they differ. We say x is ϵ-far from x′ if the relative hamming distance between x
and x′ is greater than ϵ, and otherwise we say they are ϵ-close. A string x ∈ {0, 1}n is ϵ-far from a
property Π =

⋃
n∈N Πn if it is ϵ-far from any x′ ∈ Πn; otherwise, it is ϵ-close to Π. A tester for a

property Π is a probabilistic algorithm that, on input parameters n ∈ N, ϵ > 0 and oracle access
to x ∈ {0, 1}n, outputs 1 with probability at least 2/3 if x is in Π, and outputs 0 with probability
at least 2/3 if x is ϵ-far from Π. The query complexity of the tester is q : N× [0, 1]→ N if, on input
n, ϵ and oracle access to any x ∈ {0, 1}n, the tester makes at most q(n, ϵ) queries to x.

Interactive proofs of proximity (IPPs). An interactive proof of proximity for a property Π is
a two-party protocol for parties called verifier and prover. The verifier has oracle access to a string
x ∈ {0, 1}n, and also gets explicit inputs n and ϵ > 0. The prover gets x as explicit input, and its
aim is to convince the verifier that x is in Π. We require that the prover can convince the verifier
to accept any x in Π (w.h.p.), but cannot fool the verifier into accepting x that is ϵ-far from Π
(except for with low probability). The prover is defined by its strategy, which is a (computationally
unbounded) function that maps a party’s input and all messages it has received so far, to the next
message it will send.

Definition 2.1 (interactive proofs of proximity (IPPs)). Let V be a randomized interactive oracle
machine that gets explicit inputs n ∈ N and ϵ > 0, as well as oracle access to a string x ∈ {0, 1}n,
and runs in time polynomial in n. The machine V constitutes a verifier for an interactive proof of
proximity for a property Π =

⋃
n∈N Πn, if for every ϵ > 0 the following two conditions hold.

(completeness): There exists a prover P , called the honest prover, such that for any n ∈ N, on
input n, ϵ and oracle access to any x ∈ {0, 1}n, after interacting with P that gets x as explicit
input, V rejects with probability at most 1/3.

10See preliminary version of Section 3 in this work [28].
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(soundness): For any prover P (referred to as a cheating prover), for any n ∈ N, on input n,
ϵ and oracle access to any x ∈ {0, 1}n that is ϵ-far from Πn, after interacting with P , the
verifier V accepts with probability at most 1/3.

The system has perfect completeness if the verifier accepts each x ∈ Π with probability 1. The
functions q, c, r : N × [0, 1] → N are the system’s query complexity, communication complexity, and
round complexity, respectively, if on input n, ϵ, on oracle access to any x ∈ {0, 1}n and when
interacting with any prover, the verifier makes at most q(n, ϵ) queries to x, the parties exchange at
most c(n, ϵ) bits, and the interaction consists of at most r(n, ϵ) communication rounds (with two
messages per round). The system is public-coin if each message sent by the verifier consists only
of the outcomes of its coin tosses. The system uses non-adaptive queries if the verifier’s queries to
the input are determined based on the verifier’s randomness and the message it has received from
the prover, but do not depend (directly) on the answers to prior queries. If the honest prover is
implementable in probabilistic polynomial time, then the system is doubly-efficient.

More generally, IPPs with general soundness (resp., completeness) error e : N → [0, 1] are defined
by replacing the term 1/3 in the soundness (resp., completeness) condition with e(n).

Computationally sound IPPs. The soundness condition in Definition 2.1 (which holds against
computationally unbounded provers) is sometimes referred to as statistical soundness. In compu-
tationally sound IPPs (cs-IPPs), the soundness condition is relaxed to hold only against computa-
tionally efficient provers. This leads to restricting also the computational power of the prover in
the completeness condition. Actually, we even require the honest prover’s strategy to be imple-
mentable in probabilistic polynomial-time, although all of our results hold also if it is allowed to
be implemented by a non-uniform polynomial-size family of circuits.

Definition 2.2 (computationally sound interactive proofs of proximity (cs-IPPs)). Let V be a
randomized interactive oracle machine that gets explicit inputs n ∈ N and ϵ > 0, as well as oracle
access to a string x ∈ {0, 1}n, and runs in time polynomial in n. The machine V constitutes a
verifier for an interactive proof of proximity for a property Π =

⋃
n∈N Πn, if for every ϵ > 0 the

following two conditions hold.

(completeness): There exists a prover P , called the honest prover, that can be implemented by
a randomized, polynomial-time machine, such that for any n ∈ N, on input n, ϵ and oracle
access to any x ∈ Πn, after interacting with P that gets x as explicit input, V rejects with
probability at most 1/3.

(computational soundness): For any prover P (referred to as a cheating prover) that can be
implemented by a (non-uniform) polynomial-size family of circuits, for all sufficiently large
n’s, on input n, ϵ and oracle access to any x ∈ {0, 1}n that is ϵ-far from Πn, after interacting
with P , the verifier V accepts with probability at most 1/3.

In the above definitions of IPPs and cs-IPPs, the verifier is required to run in time polynomial
in n. We note that our positive results (i.e., Theorem 3.4, 3.5 and 3.10) hold also if we had defined
the verifier such that it is implementable by a probabilistic (non-uniform) polynomial-size family
of circuits,11 but not if we put no computational bounds on it. On the other hand, our negative
result (i.e., Theorem 1.2) holds also if no computational bounds are put on the verifier.

11In Theorem 3.4, if the verifier is allowed to be non-uniform, then also the resulting honest prover would be
non-uniform.

11



The isolated and pre-coordinated models. To define the isolated and pre-coordinated mod-
els, we follow the framework of [12], where the verifier is decomposed into three modules: the
querying module Q, the interacting module I, and the deciding module D. The querying module is
the only part that queries the input, and the interacting module is the only part that interacts with
the prover. The final decision is made by the deciding module, which is fed with the outputs of the
two other modules.

Both the isolated and pre-coordinated models are restricted forms of IPPs in which there is
no information flow between the querying and the interacting modules. In the isolated model, the
querying and the interacting modules each get a separate and independent source of randomness,
whereas in the pre-coordinated model, the modules get a shared source of randomness.

Recall that in standard interactive proofs, one denotes the output of the verifier V when in-
teracting with a prover P by ⟨P, V ⟩(x), where x is the common input. In extensions that allow
private inputs, one uses the notation ⟨P (y), V (z)⟩(x), where z and y are private inputs given to V
and P , respectively. In the isolated model, we write the random variable representing the decision
of the verifier as D(Qx(RQ), ⟨P (x), I(RI)⟩), where RQ and RI are independent random variables
representing the randomness of each module. In the pre-coordinated model, we write the ran-
dom variable representing the decision as D(Qx(R), ⟨P (x), I(R)⟩), where R is a random variable
representing the shared randomness of both modules.

2.2 Cryptographic assumptions

A function µ : N→ R is called negligible if for every positive polynomial p, for all sufficiently large
n’s, it holds that µ(n) < 1

p(n) .

Definition 2.3 (strong and weak collision-resistant hashing functions (CRHFs)). Let H =
⋃

k∈NHk

such that Hk ⊆ {h : {0, 1}2k → {0, 1}k}. H is said to be a family of collision-resistant hashing
functions (CRHFs) if there exists a mapping from strings s ∈ {0, 1}∗ to functions hs ∈ H, such that:

1. (Efficient indexing): There exists a probabilistic polynomial-time algorithm I, called an index-
ing algorithm, that for every k ∈ N, given 1k, samples a string s such that hs ∈ Hk.

2. (Efficient evaluation): There exists a polynomial-time algorithm, called an evaluation algo-
rithm, that, given s and x, returns hs(x).

3. (Hard-to-form collisions): One of the following types of collision-resistance holds:

• There exists a constant δ > 0 such that for every (non-uniform) family of circuits {Ck}k∈N

of size at most 2O(kδ), it holds that:

Pr
s←I(1k)

(x1,x2)←Ck(s)

[hs(x1) = hs(x2) ∧ x1 ̸= x2] ≤ 2−ω(k
δ)

In this case, H is said to be strong collision-resistant with parameter δ.

• For every (non-uniform) polynomial-size family of circuits {Ck}k∈N, there exists a negli-
gible function µ : N→ R such that for every k:

Pr
s←I(1k)

(x1,x2)←Ck(s)

[hs(x1) = hs(x2) ∧ x1 ̸= x2] ≤ µ(k)

In this case, H is said to be weak collision-resistant.
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H is said to be public-coin [18] if the indexing algorithm I outputs the outcome of its coin tosses.

For simplicity, we will avoid referring to the indexing algorithm I explicitly, and write h← Hk

as a shorthand for h ← I(1k). Abusing notation, we will sometimes treat the string h (generated
by I) as the actual hash function it corresponds to (e.g., writing h(x) to denote evaluation of the
hash function).

We note that for the purposes of this work, a more relaxed definition of strong CRHFs suffices.
In the relaxed definition, the indexing and evaluation algorithms are allowed to run in time 2O(kδ)

where δ is the parameter of the strong collision resistance, so long as the description length of the
hash function outputted by the indexing algorithm remains polynomial (see Appendix B for more
detail).

Computational private information retrieval (PIR). A computational private information
retrieval (PIR) scheme is a protocol between two parties, called a sender and a receiver. The
sender holds a string x ∈ {0, 1}n and the receiver holds an index i ∈ [n]. Loosely speaking, the
protocol enables the receiver to retrieve xi without the sender learning anything about i. The main
complexity measure of the PIR scheme is its communication complexity, which should be sublinear
in n.

Definition 2.4 (computational private information retrieval (PIR)). A computational private in-
formation retrieval (PIR) scheme is a two-party 1-round protocol between parties called a sender and
receiver. The sender gets as input a string x ∈ {0, 1}n and the receiver gets as input an index
i ∈ [n] as well as n, and both run in time polynomial in n. The scheme is defined by three algo-
rithms (Q,A,R) and proceeds as follows: The receiver sends to the sender a query q = Q(n, i, r),
where r is the receiver’s randomness, and it gets in return an answer a = A(x, q). The receiver
then runs R(n, i, r, a) to reconstruct the ith bit of x. The scheme should satisfy:

• Correctness: For all n, for every x ∈ {0, 1}n and every i ∈ [n] it holds that:

Pr
r
[q ← Q(n, i, r), a← A(x, q), R(n, i, r, a) = xi] = 1

• Security: For any (non-uniform) polynomial-size family of circuits {Dn}n∈N, there exists a
negligible function µ : N→ R such that for all n ∈ N and for every i, j ∈ [n] it holds that:∣∣Pr

r
[Dn(Q(n, i, r)) = 1]− Pr

r
[Dn(Q(n, j, r)) = 1]

∣∣ ≤ µ(n)

The communication complexity of the scheme is c : N→ N if the parties exchange at most c(n) bits
given any inputs x ∈ {0, 1}n and i ∈ [n].

A more general definition allows for the retrieval of a block of bits in the input string, rather
than a single bit. Given block size ℓ ∈ [n], the string x is partitioned into n/ℓ consecutive blocks,
and the receiver’s index i specifies which block i ∈ [n/ℓ] to retrieve. The reconstruction should
output the entire requested block.12

Two probability ensembles, X
def
= {Xn}n∈N and Y

def
= {Yn}n∈N are said to be computationally

indistinguishable if for every (non-uniform) polynomial size family of circuits {Dn}n∈N, there exists
a negligible functions µ : N→ R such that |Pr[Dn(Xn) = 1]− Pr[Dn(Yn) = 1]| ≤ µ(n).

12It is always possible to retrieve a block by retrieving each of its bits individually, but retrieving blocks as a whole
allows for saving in communication.
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3 The power of computationally sound IPPs

In this section we show that under standard computational assumptions, any cs-IPP can be effi-
ciently emulated by a cs-IPP that makes only O(1/ϵ) queries and is in the pre-coordinated model.
We begin, in Section 3.1, by presenting the tree commitment scheme which underlies our emulation.
Then, in Section 3.2.1, we present the emulation of public-coin cs-IPPs based on CRHFs, and in
Section 3.2.2 we extend this emulation to general cs-IPPs using a computational PIR scheme.

3.1 The tree commitment scheme

In this section, we present the tree commitment scheme and provide formal proofs of its properties.
The key technical contribution of this section is Lemma 3.3, which formalizes the use of the tree
commitment scheme in a general interactive setting for forcing the committing party to reveal all
bits consistently with a fixed string. As discussed in Section 1.3.1, this technique is well known,
but to the best of our knowledge, lacked a source providing a general and formal analysis.

The tree commitment scheme provides a mechanism for committing to an n-bit string such that
individual bits in the string can be revealed (and verified as correct) with very low communication
cost. The scheme relies on collision-resistant hashing functions (see Definition 2.3), where the type
of the collision-resistance affects the communication cost.

Definition 3.1 (tree commitment scheme (also known as Merkle tree [24])). Let H =
⋃

k∈NHk be
a family of collision-resistant hashing functions. The tree commitment scheme is a protocol between
two parties, called a sender and a receiver, that is composed of the following phases:

• Committing to a string s ∈ {0, 1}n:
Let k ∈ N be a parameter defined according to the type of H: If H is strong collision-resistant
with parameter δ, then k = (log n)1/δ. If H is weak collision-resistant, then k = nα for an
arbitrary α > 0.

– The receiver selects a hash function h← Hk and sends it to the sender.

– The sender partitions s into m = n
k consecutive blocks, each of length k. It constructs

a binary tree of depth log2m, placing the m blocks of s in the corresponding leaves of
the tree. In each internal node, the sender places the value obtained by applying h on
the values of the node’s children. The sender sends the value of the root of the resulting
tree, which is called the tree commitment.

• Opening block i ∈ [m]:

The sender reveals the value of block i, and sends the values of all siblings along the path from
the root to the ith leaf. This sequence of values is called the opening of block i.

• Validating an opening of block i ∈ [m]:

Given the revealed block value v ∈ {0, 1}k and the opening π, the receiver computes the values
of all nodes along the path from the root to the ith leaf in the following manner. The value of
the ith leaf is taken to be v. The value of each consecutive node is computed by applying h on
the value computed for the previous node concatenated with the value of its sibling (obtained
from π), ordered according to their position in the tree. The receiver verifies that the value it
computed for the root matches the one received during the commit phase.
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An opening π is a valid opening for (h, tc, i, v) if the validation procedure accepts π as an opening
for block i, where v is the revealed value of the block, and h and tc are the hash function and tree
commitment sent in the commit phase, respectively.

Note that the parameters k and m defined in the commitment scheme are functions of n, the
length of the committed string. When n is clear from the context, we omit the explicit dependence
of k and m on n. Additionally, we will say that an opening is valid, without specifying with respect
to which parameters (h, tc, i, v), when those parameters are implied from the context.

Lemma 3.2 (tree commitments are computationally binding). Let H and k be as in Definition 3.1.
For any (non-uniform) polynomial-size family of circuits {Cn}n∈N, there exists a negligible function
µ : N→ R such that for every n:

Pr
h←Hk(n)

(tc,i,v1,v2,π1,π2)←Cn(h)

[v1 ̸= v2 and ∀j ∈ {1, 2} πj is a valid opening for (h, tc, i, vj)] ≤ µ(n)

We note that a similar claim is implicit in the proof of [2, Claim 3.5.2].

Proof: Assume towards contradiction that there exists a polynomial-size family of circuits {Cn}n∈N

and a polynomial p, such that for infinitely many n’s the probability in the statement of the lemma
is greater than 1

p(n) . We derive a contradiction by constructing a family of circuits {C ′k}k∈N that

breaks the collision resistance condition of H. The circuit C ′k(n) first emulates Cn to obtain its

output (tc, i, v1, v2, π1, π2). Next, for both j ∈ {1, 2}, using vj and πj it computes the values of
all the nodes along the path from the root to the ith leaf in a similar manner to the validation
procedure from Definition 3.1. Let (u11, ..., u

t
1) and (u12, ..., u

t
2) denote the computed values, where

t = log2m denotes the height of the tree, and for each level l ∈ [t] (starting from the leaves), ulj is
the value computed for the node at level l when using (vj , πj). The circuit then searches for the
first level l for which ul1 ̸= ul2 and ul+1

1 = ul+1
2 . If it finds such an l, it outputs (x1, x2) such that

each xi is the concatenation of uli with its sibling according to their order in the tree. Otherwise,
it halts with an arbitrary output.

Suppose that v1 ̸= v2 yet for both j ∈ {1, 2} it holds that πj is a valid openings for (h, tc, i, vj).
Then, u11 = v1 ̸= v2 = u12 and ut1 = tc = ut2, so there must be some level l for which ul1 ̸= ul2 and
ul+1
1 = ul+1

2 . In this case, the circuit will output (x1, x2) such that xj is the concatenation of ulj
with its sibling. Notice that (x1, x2) form a collision under H; that is, x1 ̸= x2 (because ul1 ̸= ul2)
and h(x1) = h(x2) (because h(x1) = ul+1

1 = ul+1
2 = h(x2)).

Since {Cn}n∈N is of polynomial size, also the size of {C ′k(n)}n∈N is polynomial in n. Let q denote

this polynomial, i.e., |C ′k(n)| ≤ q(n) for all n. If H is strong collision-resistant with parameter δ > 0

and k = (logn)1/δ, we have that q(n) = 2O(kδ) and similarly 1
p(n) = 2−O(kδ). So we obtain a family

of circuits {C ′k}k∈N of size smaller than 2O(kδ) that for some constant c > 0 for infinitely many k’s

succeeds in finding collisions under H with probability greater than 2−c·k
δ
, reaching a contradiction.

Similarly, if H is weak collision-resistant and k = nα for α > 0, we get a contradiction to the weak
collision-resistant condition, since any polynomial in n is upper bounded by a polynomial in k. ■

Next, we show that the tree commitment scheme forces a (computationally bounded) cheating
sender to respond non-adaptively. We consider general interactions composed of two stages, where
in the first stage the sender commits to a string, and in the second stage there is a randomized
interactive process in which the receiver chooses blocks for the sender to open. We show that the
sender is forced to respond consistently with a fixed string. More precisely, we show that with
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overwhelming probability over the hash function h sampled in the commitment stage, at the end of
the commitment stage there exists a string sh ∈ {0, 1}n such that with overwhelming probability
over the choice of blocks to be opened, each block that is opened validly must be opened to a value
that matches sh.

Lemma 3.3 (interactive openings of tree commitments). Let H =
⋃

k∈NHk be a family of CRHFs,
and let k and m be the corresponding parameters used in the tree commitment scheme as specified in
Definition 3.1. Consider an interaction between a deterministic (“cheating”) sender and a random-
ized receiver, where both parties’ strategies are implementable by a (non-uniform) polynomial-size
family of circuits, such that for each n ∈ N, on common input 1n, the interaction proceeds in two
stages:

• In the first stage, the parties execute the commitment phase of the tree commitment scheme
for an n-bit long string, where only the receiver is assumed to execute its part honestly.

• In the second stage, there are iterative rounds in which the receiver requests to open blocks of
its choice, based on all messages it has received so far and possibly also on fresh randomness,
independent of the hash function sampled in the first stage.

For a fixed input 1n, let h be the hash function sampled in the first stage, and let r be the receiver’s
additional fresh randomness. Let Bval

h,r denote the set of blocks i ∈ [m] that the sender opens with

a valid opening, and let Vh,r(i) denote the value revealed by the sender for block i ∈ Bval
h,r.

13 Then,
there exists a negligible function µ : N → R such that for all n, there exists a string sh ∈ {0, 1}n
satisfying:

Pr
h,r

[
∃i ∈ Bval

h,r s.t. Vh,r(i) ̸= sh(i)
]
≤ µ(n)

where sh(i) denote the ith block in the partition of sh into m consecutive blocks of length k.14

Proof: We will show that the following string sh ∈ {0, 1}n satisfies the claim. For each i ∈ [m],
we define sh(i) as follows:

sh(i)
def
= argmax

v∈{0,1}k

(
Pr
r

[
Vh,r(i) = v

∣∣Bval
h,r ∋ i

])
.15

Notice that we can express sh(i) as argmaxv∈{0,1}k
(
Prr

[
Bval

h,r ∋ i, Vh,r(i) = v
])

, since Prr
[
Bval

h,r ∋
i, Vh,r(i) = v

]
= Prr

[
Vh,r(i) = v |Bval

h,r ∋ i
]
· Prr

[
Bval

h,r ∋ i
]
. Furthermore, we can write:

sh(i) = argmin
v∈{0,1}k

(
Pr
r

[
Bval

h,r ∋ i, Vh,r(i) ̸= v
])

(2)

since Prr[B
val
h,r ∋ i, Vh,r(i) = v] = Prr[B

val
h,r ∋ i]− Prr[B

val
h,r ∋ i, Vh,r(i) ̸= v].

Assume, towards contradiction, that there exists a polynomial p such that for infinitely many
n’s it holds that

Pr
h,r

[
∃i ∈ Bval

h,r s.t. Vh,r(i) ̸= sh(i)
]
≥ 1

p(n)
(3)

13Note that h, r,Bval
h,r, and Vh,r all depend on n, although this dependency is left implicit in the notation.

14More intuitively, Lemma 3.3 implies that with overwhelmingly high probability over h, the probability over r
that ∃i ∈ Bval

h,r s.t. Vh,r(i) ̸= sh(i) is negligible.
15If the value v maximizing the expression Prr[Vh,r(i) ̸= v | Bval

h,r ∋ i] is not unique, we arbitrarily take sh(i) to be
the lexicographic first value that maximizes the expression.
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We will show a family of circuits {Cn}n∈N that contradicts the binding property of the tree com-
mitment scheme. Given input h ← Hk(n), the circuit Cn simulates the interaction between the
sender and receiver on input 1n in the following manner. First, Cn simulates the first stage of the
interaction using h as the sampled hash function. Then, Cn independently samples r1 and r2 from
the distribution of r, and simulates the rest of the interaction twice, once with randomness r1 and
once with r2. It then searches for a block that was opened validly in both simulations, such that the
revealed values for this block differ between the two simulations. Note that this family of circuits
{Cn}n∈N is of polynomial size, due to the assumption that the strategies of the sender and receiver
can be implemented by a polynomial-size family of circuits.

Consider any n satisfying Eq. (3). Using a reverse of the union bound, there exists a block
i ∈ [m] such that

Pr
h,r

[
Bval

h,r ∋ i, Vh,r(i) ̸= sh(i)
]
≥ 1

m · p(n)
>

1

n · p(n)
(4)

We will show that with non-negligible probability, this block i is opened validly in both simulations,
such that the values revealed for block i are different between the simulations. Thus, by checking
all blocks, the circuit will succeed in finding a block with valid openings to two different values with
non-negligible probability, reaching a contradiction.

Pr
h,r1,r2

[
Bval

h,r1 ∋ i, Bval
h,r2 ∋ i, Vh,r1(i) ̸= Vh,r2(i)

]

=
∑
h′

Pr
h

[
h = h′

]
·

∑
r′2:B

val
h′,r′2

∋i

(
Pr
r2

[
r2 = r′2

]
· Pr
r1

[
Bval

h′,r1 ∋ i, Vh′,r1(i) ̸= Vh′,r′2
(i)

])

≥
∑
h′

Pr
h

[
h = h′

]
·

∑
r′2:B

val
h′,r′2

∋i

(
Pr
r2

[
r2 = r′2

]
· Pr
r1

[
Bval

h′,r1 ∋ i, Vh′,r1(i) ̸= sh′(i)
])

=
∑
h′

(
Pr
h

[
h = h′

]
· Pr
r2

[
Bval

h′,r2 ∋ i
]
· Pr
r1

[
Bval

h′,r1 ∋ i, Vh′,r1(i) ̸= sh′(i)
])

(5)

where the first equality follows from the mutual independence of h, r1, and r2, and the inequality
is due to Eq. (2). Let γ = 1

2 ·
1

n·p(n) , and define the set of ‘Good’ hash functions:

G =
{
h′ : Pr

r

[
Bval

h′,r ∋ i, Vh′,r(i) ̸= sh′(i)
]
≥ γ

}
Then for every h′ ∈ G, both the terms Prr2 [B

val
h′,r2

∋ i] and Prr1 [B
val
h′,r1

∋ i, Vh′,r1(i) ̸= sh′(i)] in
Eq. (5) are at least γ. From Eq. (4) and Markov’s inequality, it holds that Prh[h ∈ G] ≥ γ. Thus,
Eq. (5) is lower bound by∑

h′∈G

(
Pr
h

[
h = h′

]
· γ · γ

)
= Pr

h
[h ∈ G] · γ2 ≥ γ3

This non-negligible probability leads to the desired contradiction. ■

3.2 Emulation in the pre-coordinated model

In this section we present an emulation of cs-IPPs by cs-IPPs in the pre-coordinated model. We
begin, in Section 3.2.1, by presenting an emulation of public-coin cs-IPPs, and in Section 3.2.2 we
extend the emulation to general cs-IPPs.
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3.2.1 Emulation of public-coin cs-IPPs

In this section we show that, assuming the existence of CRHFs, any public-coin cs-IPP can be
efficiently emulated by a cs-IPP in the pre-coordinated model that makes only O(1/ϵ) queries.

Theorem 3.4 (restatement of Theorem 1.1). Let H =
⋃

k∈NHk be a family of CRHFs. Suppose
that a property Π has a public-coin cs-IPP with query complexity q, communication complexity c,
and round complexity r. Then Π has a cs-IPP in the pre-coordinated model with the following
complexities:

• Query complexity: O(1/ϵ). Furthermore, the queries are uniformly and independently dis-
tributed.

• Communication complexity: O
(
c
(
n, ϵ

2

)
+
(
q
(
n, ϵ

2

)
+ ϵ−1

)
· t(n) + ρ

(
n, ϵ

2

))
, where:

– t(n) = polylog(n) if H is strong collision-resistant, and t(n) = O(nγ) for any constant
γ > 0 if H is weak collision-resistant.

– ρ is the randomness complexity of the original verifier.

• Round complexity: r
(
n, ϵ

2

)
+ 2.

Furthermore, perfect completeness is preserved, and if H is a public-coin CRHFs, then the resulting
cs-IPP is public-coin.

Theorem 3.4 includes the randomness complexity ρ of the original verifier in the communication
complexity. As noted in the introduction, this term actually represents only the additional coins
that the verifier uses to generate its queries, beyond the coins sent during the interaction (which
contribute at most c coins). By standard techniques, this ρ term can always be reduced to O(log n)
at the cost of making both the resulting verifier and the resulting honest prover non-uniform; see
Remark 3.9. Alternatively, the ρ term can be avoided at the cost of additional rounds, as shown
in the following theorem, which is identical to Theorem 3.4 except that: (i) the communication
complexity does not include the randomness ρ, (ii) the round complexity increase by q when the
original protocol uses adaptive queries, and (iii) the public-coin property is not preserved.

Theorem 3.5. Let H and t(n) be as in Theorem 3.4. Suppose that a property Π has a public-coin
cs-IPP with query complexity q, communication complexity c, and round complexity r. Then Π has
a cs-IPP in the pre-coordinated model with the following complexities:

• Query complexity: As in Theorem 3.4.

• Communication complexity: O
(
c
(
n, ϵ

2

)
+
(
q
(
n, ϵ

2

)
+ ϵ−1

)
· t(n)

)
.

• Round complexity: O
(
r
(
n, ϵ

2

)
+ q

(
n, ϵ

2

))
in general, and r

(
n, ϵ

2

)
+ 2 if the original cs-IPP

uses non-adaptive queries.

Furthermore, perfect completeness is preserved.

The emulations in Theorem 3.4 and 3.5 preserve the completeness error. Furthermore, they can
be modified to preserve the soundness error s up to a negligible term, at the cost of increasing the
query complexity, as well as the term ϵ−1 in the communication complexity, by a factor of log(1/s)
(see Remark 3.8).

We begin by proving the latter Theorem 3.5, and then show how to modify it to get Theorem 3.4.

Proof of Theorem 3.5: Fix a tree commitment scheme using H as the CRHF. Let k be the
corresponding block size according to Definition 3.1, and let m = n/k be the corresponding number
of blocks. Our pre-coordinated cs-IPP proceeds as follows.
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Construction 3.6. On input n, ϵ and oracle access to x ∈ {0, 1}n, the emulation proceeds as
follows:

• The shared randomness: A sequence of O(1/ϵ) uniformly and independently distributed loca-
tions in [n].

• The querying module obtains the value of x at the random locations specified in the shared
randomness.

• The interacting module proceeds in 4 stages.

1. In the first round of the interaction, the interacting module and the prover execute the
commitment phase of the tree commitment scheme for an n-bit long string, where the
honest prover commits to the input string x. Specifically, the interacting module sends
a random hash function h← Hk(n) to the prover, who then sends the corresponding tree
commitment.

2. The interacting module emulates a random execution of the original verifier’s interaction
with the prover, using proximity parameter ϵ/2. (Since the original interaction is public-
coin, this can be done with no access to the input oracle.)

Terminology: Throughout the rest of the proof, querying the prover with location j ∈ [n] means
sending j to the prover and expecting it to open the block containing location j (i.e., to send
the revealed value for the block together with its corresponding opening). The prover’s answer
to the query is the value within the revealed block corresponding to j.

3. For every query j made by the original verifier, the interacting module queries the prover
with location j. In the general case this is done sequentially in q rounds. However, if the
original IPP uses non-adaptive queries, then this is done in parallel in a single round.

4. In addition, the interacting module queries the prover with all locations specified by the
shared randomness.

• The deciding module verifies that the following checks pass:

– Original Check: The original verifier would have accepted given the interaction transcript
generated in Stage 2 and the prover’s answers to the queries made in Stage 3, as well as
the random string of the emulated execution.

– Consistency Check: The prover’s answers to the queries made in Stage 4 match the values
of x obtained by the querying module.

– Openings Validity Check: All the openings sent in Stages 3 and 4 are valid.

Having described the emulation, we now turn to its analysis. First, note that since we emulate the
original verifier with proximity parameter ϵ/2, all of its complexities are taken with respect to this
parameter. Let q̃ = q(n, ϵ

2), c̃ = c(n, ϵ
2), and r̃ = r(n, ϵ

2).
We first consider the communication complexity. From the efficient-indexing property of H,

sending the hash function at Stage 1 requires poly(k) bits. Emulating the original interaction
requires c̃ bits. The length of each opening is less than k · log(n) (since an opening consists of a
k-bit value for each level of the tree, and the tree is of height log(m) < log(n)). Therefore, opening
the q̃ original queries and the O(ϵ−1) shared random locations requires (q̃ +O(ϵ−1)) ·O(k · log(n))
bits. The total communication complexity is thus

poly(k) + c̃+
(
q̃ +O(ϵ−1)

)
·O(k · logn) (6)
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Recall that if H is strong collision-resistant then k = polylog(n), and if H is weak collision-resistant
then k = nα for arbitrary α > 0. Hence, we can express the total communication complexity as
c̃+

(
q̃ + ϵ−1

)
· t(n), where t(n) = polylog(n) if H is strong collision-resistant, and t(n) = O(nγ) for

any constant γ > 0 if H is weak collision-resistant.
As for the round complexity, in the general case we have 1 round in Stage 1, r̃ rounds in Stage

2, and q̃ rounds in Stages 3 and 4 combined. Therefore, the total number of rounds is r̃+ q̃+ 1. If
the original IPP uses non-adaptive queries, then Stages 3 and 4 combined are executed in a single
round, and thus the total number of rounds is r̃ + 2.

The completeness of the system follows from the completeness of the original verifier. We thus
turn to the computational soundness condition.

Claim 3.7 (computational soundness claim). Let P be a cheating prover that can be implemented
by a polynomial-size family of circuits, and let {xn}n be an infinite sequence of strings such that xn
is ϵ-far from Πn. Then, there exists a negligible function µ : N → R such that for all n, on oracle
access to xn and after interacting with P , the verifier in Construction 3.6 accepts with probability
at most 1/3 + µ(n).

Proof: Starting with the high-level idea of the proof, consider an input x that is ϵ-far from Π. The
idea is that once the tree commitment is established, the prover’s answers to the queries must be
consistent with some fixed string x′. If x′ is (ϵ/2)-close to x, then x′ is (ϵ/2)-far from Π, and so the
prover will fail to fool the original verifier with high probability. Otherwise, x′ is (ϵ/2)-far from x,
and then by randomly sampling O(ϵ−1) matching locations in x′ and x, we will detect a mismatch
with high probability.

Fixing n, consider the interaction between P and the verifier of Construction 3.6 on input xn.
Let h be the hash function sampled in the first round, and let r denote the randomness of the
interacting module, excluding h (i.e., r consists of the randomness of the original verifier and the
shared randomness). Let Bval

h,r denote the set of blocks i ∈ [m] that P opens in Stages 3 and 4, for

which it provides a valid opening. For i ∈ Bval
h,r, let Vh,r(i) denote the value that P reveals for block

i. Note that h, r,Bval
h,r, and Vh,r all depend on n, although this dependency is left implicit in the

notation.
For each n, let x′h ∈ {0, 1}n be the string guaranteed by Lemma 3.3,16 such that there exist a

negligible function µ : N→ R satisfying, for all n:

Pr
h,r

[
∃i ∈ Bval

h,r s.t. Vh,r(i) ̸= x′h(i)
]
≤ µ(n)

We next analyze the probability of passing the Original Check and the Consistency Check of the
deciding module. We will first consider an idealized prover P ′ that is always consistent with x′h.
That is, in the first two stages P ′ sends the same messages as P , and in Stages 3 and 4, for any
block i ∈ [m] that P ′ opens, it reveals the value x′h(i), where h is the hash function sent in the first
round. Note that we do not require P ′ to provide valid openings for the revealed values.

For each of the checks of the deciding module, we say that a prover passes the check on input
x if, on oracle access to x and when interacting with this prover, the check passes. We next show
that for all sufficiently large n’s, the probability that P ′ passes both the Original Check and the
Consistency Check on input xn is less than 1/3. For each n, fix h to an arbitrary hash function h′.
Now, consider any n for which x′h′ is (ϵ/2)-far from xn. The prover P ′ will pass the Consistency
Check on input xn only if all the random locations in the shared randomness are locations where

16By considering the parties that given common input 1n, simulate the current interaction on input xn.
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x′h′ and xn agree, therefore

Pr
[
P ′ passes the Consistency Check on input xn |h = h′

]
≤

(
1− ϵ

2

)O(1/ϵ)
≤ 1

3
(7)

It is left to deal with n’s for which x′h′ is (ϵ/2)-close to xn. Since xn is ϵ-far from Πn, if x
′
h′ is

(ϵ/2)-close to xn, then x′h′ is (ϵ/2)-far from Πn. Therefore, from the computational soundness of
the original verifier, for all sufficiently large n’s such that x′h′ is (ϵ/2)-close to xn, it holds that

Pr
[
P ′ passes the Original Check on input xn |h = h′

]
≤ 1

3
(8)

Having analyzed the idealized prover P ′, we return to the actual prover P . Consider the event
that the prover P passes all checks of the deciding module on input xn. There are two cases:

• The prover P is inconsistent with x′h; that is, there exists i ∈ Bval
h,r such that Vh,r(i) ̸= x′h(i).

By the definition of x′h, the probability of this event is negligible.

• The prover P is consistent with x′h; that is, for every block i ∈ [m] that P opens, either the
opening it provides is invalid, or Vh,r(i) = x′h(i). Since we are considering the event where P
passes all checks, including the Openings Validity Check, it must be the case that for every
block i ∈ [m] that P opens, Vh,r(i) = x′h(i). Consequently, in this case, P and P ′ provide
identical answers to all queries in addition to providing the same messages in Stages 1 and
2. Therefore, since P passes the Original Check and the Consistency Check, so does P ′.
However, we have shown that for all sufficiently large n’s the probability of P ′ passing both
these checks is at most 1/3.

Hence, the probability that P passes all checks on input xn is at most negligibly higher than
1/3. □

Completing the proof of Theorem 3.5. Claim 3.7 shows that the verifier in Construction 3.6
has computational-soundness error 1/3 + µ, where µ is a negligible function that depends on the
cheating prover. Note that the constant 1/3 is arbitrary, and if the original soundness error was
any other constant e > 0, then we would get soundness error e + µ. Hence, to obtain soundness
error at most 1/3, we can first perform O(1) parallel repetitions of the original system. Note
that error reduction by parallel repetitions is possible since the original system is public-coin
(see [5, 4, 16]). The repetitions will increase the query and communication complexities (but not
the round complexity) by a constant factor. ■

Remark 3.8 (the effect of the emulation on the soundness error). We can modify the foregoing
emulation so as to preserve the soundness error of the original verifier up to a negligible term:
Suppose that the original verifier has computational-soundness error s, and we increase the number
of shared random locations to O(ϵ−1 · log(s−1)). Then in Eq. (7) and (8), the term 1

3 will be replaced
by s, and the resulting computational-soundness error will reduce to s + µ, where µ is a negligible
function that depends on the cheating prover. The resulting query complexity, as well as the term
ϵ−1 in the communication complexity, will increase to O(ϵ−1 · log(s−1)), to account for the increase
in the number of locations that we query the input oracle and the prover. Note that the round
complexity does not increase.

Note that Remark 3.8 is especially important due to the fact that there is no parallel repetition
theorem for general computationally sound systems. We next show how to modify Construction 3.6
to reduce the number of rounds as per Theorem 3.4.
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Proof of Theorem 3.4: The proof is identical to that of Theorem 3.5, where the only difference
is that we modify Stage 3 of the interacting module as follows: Instead of requesting the original
verifier’s queries explicitly, the interacting module sends to the prover the entire random string
of the original verifier (which is being used in the current emulated execution), and expects it
to open all blocks corresponding to the locations that the original verifier would have queried in
this execution. The rest of the construction and analysis remain exactly the same, except that the
locations that are being queried (as well as the corresponding blocks being opened) are now implicit
in the interaction transcript generated in Stage 2 and the random string sent in Stage 3, as well
as the answers to prior queries according to the sequence of values that the prover provides. Note
that (the new) Stage 3 and Stage 4 can be executed in a single round. ■

Remark 3.9 (reducing the randomness complexity). In the above emulation (i.e., in the proof of
Theorem 3.4), the new verifier sends to the prover the entire random string of the original verifier.
First, note that the coins the original verifier sends during the interaction with the prover are
already sent during Stage 2 of the emulation. Thus, in Stage 3 it is left only to send the outcome of
additional coin tosses that the original verifier makes in order to generate its queries. By standard
techniques (see Appendix A), the number of these additional coin tosses can always be reduced
to O(log n), at the cost of making the original verifier non-uniform (that is, implementable by a
non-uniform polynomial-size family of circuits). When the original verifier is non-uniform, both
the resulting verifier and the resulting honest prover (which emulates the queries of the original
verifier) will be non-uniform. Hence, the randomness term ρ in the statement of Theorem 3.4 can
be reduced to O(log n), at the cost of making both the resulting verifier and the resulting honest
prover non-uniform.

3.2.2 Emulation of general cs-IPPs

We extend the pre-coordinated emulation from the previous section, which handled public-coin cs-
IPPs, to general (i.e., possibly private-coin) cs-IPPs. This extension relies on a computational PIR
scheme (see Definition 2.4), where the communication complexity of the resulting cs-IPP depends
on the communication complexity of the underlying PIR construction. This is established by the
following theorem, which is identical to Theorem 3.5 except that: (1) the term t(n) is replaced with
the communication required to retrieve a block of size t(n) from a string of length O(n · logn), and
(2) in the case of non-adaptive queries, the resulting round complexity is O(r) rather than r+2.17

Theorem 3.10 (general cs-IPPs can be efficiently emulated in the pre-coordinated model). Let H
be a family of CRHFs, and let t(n) = polylog(n) if H is strong collision-resistant, and t(n) = O(nγ)
for any constant γ > 0 if H is weak collision-resistant. Let R be a computational PIR scheme and
let cR(n) denote the communication complexity of R for retrieving blocks of size t(n) from a string
of length O(n · logn). Suppose that a property Π has a (possibly private-coin) cs-IPP with query
complexity q, communication complexity c, and round complexity r. Then Π has a cs-IPP in the
pre-coordinated model with the following complexities:

• Query complexity: O(1/ϵ). Furthermore, the queries are uniformly and independently dis-
tributed.

• Communication complexity: O
(
c(n, ϵ

2) +
(
q(n, ϵ

2) + ϵ−1
)
· cR(n)

)
.

17Let us explain what goes behind the O(r) expression. First, the queries made after each interaction round are
replaced by parallel executions of the PIR scheme, and therefore r rounds are replaced by 2r. A minor technicality is
that the soundness error may grow by an additive negligible term, and so we perform error reduction via sequential
repetitions (where 3 repetitions suffice).
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• Round complexity: O
(
r(n, ϵ

2) + q(n, ϵ
2)
)
in general, and O

(
r(n, ϵ

2)
)
if the original cs-IPP uses

non-adaptive queries.

Furthermore, perfect completeness is preserved.

Constructions of (1-round) computational PIR schemes that have very low communication com-
plexity are known based on various hardness assumptions (e.g., quadratic residuosity). Examples
include [22], which achieves communication complexity O(nα) for any constant α > 0 for retrieving
a single bit, and [23], which achieves poly-logarithmic communication complexity for retrieving a
single bit, with additional savings when retrieving larger blocks.

We remark that in [19] it was shown that the existence of a computational PIR scheme with
communication complexity o(n/ log n) implies the existence of weak CRHFs. In Appendix B we
show that the existence of a computational PIR scheme with poly-logarithmic communication com-
plexity implies the existence of a relaxed version of strong CRHFs that suffices for the purposes
of this work (and in particular suffices for Theorem 3.10 to hold).18 Hence, assuming only the
existence of a computational PIR scheme with communication complexity polylog(n) (resp., O(nα)
for any constant α > 0), we can get the guarantees of Theorem 3.10 where cR(n) is polylog(n)
(resp., O(nα+γ) for any constant γ > 0); that is, there is no need to assume the existence of CRHFs
as well.

Proof: We modify Construction 3.6 to handle the case where the original verifier is not necessarily
public-coin. Recall that in the public-coin case, we could first emulate the original interaction
and only then ask the prover to provide the answers to the queries, since the messages of the
original verifier were independent of the answers to those queries. To extend Construction 3.6 to
handle general cs-IPPs, where the original verifier’s messages may depend on the answers to its
prior queries, we will ask the prover to provide the answers to those queries during the emulation
of the original interaction. Note, however, that revealing to the prover the query locations may
compromise the soundness of the original verifier. Thus, we use the PIR scheme to request the
answers to the queries without revealing their locations.

Specifically, we modify Construction 3.6 by replacing Stages 2 and 3 of the interacting module
with the following:

Construction 3.11 (Modified Steps 2&3 of the interacting module in Construction 3.6).

The interacting module emulates a random execution of the original verifier with proximity
parameter ϵ/2, such that whenever the original verifier makes a query to the input-oracle, the
interacting module instead requests the answer from the prover in the form of a PIR query.
Specifically, the interacting module and the prover execute the computational PIR scheme, where
the prover takes the role of the sender and the interacting module takes the role of the receiver.
The honest prover’s input to the PIR scheme is a string y constructed as follows: If the input
string x is partitioned into blocks x = (b1, b2, . . . , bm) in the tree commitment scheme, then y
equals (b1, π1, b2, π2, . . . , bm, πm), where each πj is the opening of block bj. Each pair (bj , πj)
forms a block of the PIR scheme.

If the original verifier queries position i, the interacting module sends a PIR query to retrieve
the block (bj , πj) such that bj is the tree-commitment block containing position i. It receives the

18In the relaxed version, rather than requiring the running time of the CRHF indexing and the evaluation algorithms
to be polynomial, we require only that the description length of the hash function outputted by the indexing algorithm

is polynomial, and allow the algorithms to run in time 2O(kδ), where δ is the parameter of the strong collision-
resistance. This relaxed definition suffices for us since we use the CRHF family with k = (logn)1/δ, whereas we only
require a running time that is polynomial in n.
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corresponding answer from the prover, and uses it to reconstruct the block value (bj , πj) per the
PIR scheme. The (alleged) answer to the query is set to be the value within bj at the position
corresponding to i. The interacting module then continues the execution of the original verifier
with this answer.

In the general case, each PIR execution is performed in a separate round. However, if the orig-
inal verifier makes non-adaptive queries, then the PIR executions corresponding to the queries
made between each interaction round can be carried out in parallel.19 Each of the PIR executions
is made with fresh randomness.

The resulting interaction transcript, alleged answers, and alleged openings are used by the de-
ciding module in the same manner as in Construction 3.6.

All other components (the shared randomness, querying module, deciding module, and Stages 1
and 4 of the interacting module) remain identical to Construction 3.6.

We turn to the analysis of the resulting system. Recall that we use the notation q̃ = q(n, ϵ
2), c̃ =

c(n, ϵ
2), r̃ = r(n, ϵ

2). Starting with the communication complexity, we modify the communication
bound from Eq. (6) to account for the cost of executing the PIR scheme for each of the q̃ original
queries. Recall that the length of a block in the tree commitment scheme is k = polylog(n) if
H is strong collision-resistant, and k = nα for arbitrary α > 0 if H is weak collision-resistant.
Additionally, recall that the length of an opening in the tree commitment scheme is less than
k · log n. Thus, the block length used in the PIR scheme is O(k · logn). The PIR input string y has
total length O(n · log n) since it contains the n-bit input x plus m = n/k openings of size less than
k · logn each. Therefore, the term O(k · log n) in Eq. (6) is replaced with the communication cost
of retrieving a block of size O(k · logn) from a string of length O(n · log n) using the PIR scheme.

As for the round complexity, recall that Stages 1 and 4 (in Construction 3.6) remain unchanged,
and each requires 1 interaction round. In the general case, the modified Stages 2 and 3 require r̃+ q̃
rounds since each query may require a separate round. If the original verifier uses non-adaptive
queries, then the queries that the verifier makes between each interaction round can be emulated
in parallel. Hence, in this case the modified Stages 2 and 3 can be executed in 2 · r̃ rounds,20 and
the total round complexity is thus O(r̃).

Completeness follows from the completeness of the original verifier and the correctness of the
PIR scheme. We turn to the soundness condition.

Claim 3.12 (computational soundness claim). Let V ′ denote the resulting verifier in Construc-
tion 3.6 as modified by Construction 3.11. Let P be a cheating prover that can be implemented by
a polynomial-size family of circuits, and let {xn}n be an infinite sequence of strings such that xn
is ϵ-far from Πn. Then, there exists a negligible function µ : N → R such that for all n, on oracle
access to xn and after interacting with P , the verifier V ′ accepts with probability at most 1/3+µ(n).

Proof: We define h, r, Bval
h,r, Vh,r(i), and x′h in the same way as in the proof of Theorem 3.5.

Similarly to the proof of Theorem 3.5, we consider an idealized prover P ′ that acts identically to P ,
except that it opens all blocks consistently with x′h. That is, for each PIR-query that P ′ receives,
P ′ follows the honest sender strategy in the PIR scheme, with respect to an input string formed by
augmenting x′h with arbitrary openings values, following the same format as the honest prover’s PIR
input in Construction 3.11. Additionally, when receiving the random consistency-check locations

19Since the PIR scheme consists of only 1 round, it is straightforward that its security extends to parallel executions.
That is, we have that any two sequences of (at most polynomially many) PIR queries are indistinguishable.

20Note that, as will be discussed later, to obtain soundness error 1/3 we will perform O(1) sequential repetitions.
Thus, the round complexity will increase by an additional constant factor.
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in Stage 4, P ′ answers with the corresponding values in x′h. In the rest of the interaction, P ′ follows
the strategy of P .

Similarly to the proof of Theorem 3.5, it suffices to show that P ′ cannot pass both the Original
and Consistency Checks with high probability. For each n, fix h to an arbitrary hash function h′.
By the same argument as Eq. (7), for each n such that x′h′ is (ϵ/2)-far from xn it holds that P ′

passes the Consistency Check with probability at most 1/3. It is left to deal with n’s for which x′h′

is (ϵ/2)-close to xn. We show that there exists a negligible function µ′ such that for each such n it
holds that:

Pr
[
P ′ passes the Original Check on input xn |h = h′

]
≤ 1

3
+ µ′(n) (9)

Let P ′h′ and V ′h′ denote the strategies of P ′ and V ′ from the second round onward, after fixing the
hash function in the first round to h′. Note that P ′h′ can be implemented by a polynomial-size

family of circuits with x′h′ hard-wired. Consider a prover P̃ that interacts with the original verifier

by emulating the messages of P ′h′ , such that whenever P ′h′ expects to receive a PIR-query, P̃ feeds
it with a “dummy” PIR query that it obtains by running the query algorithm of the PIR scheme
on index 1, using fresh randomness. Note that P̃ can be implemented by a polynomial-size family
of circuits.

Let rV denote the randomness of the original verifier and rR denote the randomness used to
generate a single PIR query. Let rR = (r1, . . . , rq̃) be a sequence of q̃ = q(n, ϵ

2) independent
random variables each distributed according to rR (representing the randomness for generating q̃
PIR queries). Let U = U(rV , rR) denote the emulated view of the original verifier created in the
interaction between P ′h′ and V ′h′ on input xn (in the modified Steps 2&3), where V ′h′ uses randomness

rV for the original verifier emulation and randomness rR for the PIR queries. Let Ũ = Ũ(rV , rR)
denote the view of the original verifier when interacting with P̃ on input x′h′ , where the original

verifier uses randomness rV , and P̃ uses randomness rR to generate the dummy queries. Note that
rV , rR, U and Ũ implicitly depend on n.

As we will prove below, we claim that U and Ũ are computationally indistinguishable. This
implies that the probability that P ′h′ passes the Original Check on input xn is at most negligibly

higher than the probability that the original verifier accepts when interacting with P̃ in input x′h′

(as otherwise the efficient decision process of the original verifier distinguishes the views U and Ũ).
From the computational soundness of the original verifier, for all sufficiently large n’s such that x′h′

is (ϵ/2)-close to xn (and hence (ϵ/2)-far from Π), the probability that the original verifier accepts
x′h′ when interacting with P̃ is at most 1/3. Hence, we get Eq. (9), as desired.

Proof that U and Ũ are computationally indistinguishable. We essentially follow a standard
argument for showing preservation of security under sequential composition.21 In the following,
we will refer to emulation rounds as the rounds in the interaction with V ′h′ that correspond to an
emulation of the original interaction, whereas we will refer to PIR rounds as the rounds in which
the PIR scheme is executed. Note that both U and Ũ describe the view of the original verifier on
input x′h′ when interacting with the strategy of P ′h′ in the emulation rounds, where the difference is

what is being fed to P ′h′ in the PIR rounds. In the case of Ũ , we have that P ′h′ is fed with dummy
PIR queries, whereas in the case of U , we have that P ′h′ is fed with PIR queries corresponding to
the actual locations that the original verifier queries in the respective part of the interaction.

21As mentioned before, security under parallel composition (which we use in the non-adaptive case) is straightfor-
ward here, because indistinguishability of the queries easily extends to indistinguishability of any two sequences of
(at most polynomially many) queries.
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Assume towards contradiction that there exists a polynomial-size family of circuits {Dn}n that
distinguishes between U and Ũ .22 For starters, suppose that the original verifier makes only one
query (i.e., q̃ = 1). Since {Dn}n distinguishes U and Ũ , there exists (for each n) a fixed randomness
string r′V such that {Dn}n distinguishes U(r′V , rR) and Ũ(r′V , rR). We construct a polynomial-
size family of circuits {D′n}n that distinguishes between a dummy PIR query and a PIR query
corresponding to the actual location that the original verifier queries when using randomness r′V
(and receiving the messages that P ′h′ sends prior to the query). Given a query Q, the circuit
D′n emulates the interaction between the original verifier and the strategy of P ′h′ in the emulation
rounds, where the verifier gets oracle access to x′h′ and uses randomness r′V , and P ′h′ is fed with Q in
the PIR round. It then runs the distinguisher Dn on the resulting view of the original verifier. Note
that if Q is the actual PIR query, then the view is distributed according to U(r′V , rR), and if Q is

the dummy query, then the view is distributed according to Ũ(r′V , rR). Since {Dn}n distinguishes

U(r′V , rR) and Ũ(r′V , rR), it follows that {D′n}n distinguishes between the aforementioned queries,
contradicting the security of the PIR scheme.

Turning to the actual case, where there can be multiple queries, we use a hybrid argument. For
each i ∈ [q̃]∪{0}, we define a hybrid view Ui = Ui(rV , rR). The hybrid Ui describes the view of the
original verifier when given randomness rV , oracle access to x′h′ , and interacting with the strategy
of P ′h′ in the emulation rounds, where in the PIR rounds P ′h′ is fed with PIR queries generated
using rR as follows: In the first i PIR executions, P ′h′ is fed with PIR queries corresponding to the
actual locations that the original verifier queries in the respective part of the interaction, and in
the remaining q̃ − i PIR executions, P ′h′ is fed with dummy PIR queries.23 Note that U0 = Ũ and
Uq̃ = U .

Since {Dn}n distinguishes the views U0 and Uq̃, it holds that (for each n) there exists i ∈ [q̃] such
that {Dn}n distinguishes Ui−1 and Ui. Thus, there exist fixed randomness strings r′V , r

′
1, . . . , r

′
i−1

such that {Dn}n distinguishes U ′i−1 = Ui−1(r
′
V , r

′
1, . . . , r

′
i−1, ri, . . . , rq̃) and U ′i = Ui(r

′
V , r

′
1, . . . , r

′
i−1,

ri, . . . , rq̃). We construct a polynomial-size family of circuits {D′n}n that distinguishes between a
dummy PIR query and the PIR query corresponding to the actual location that the original verifier
queries in its ith query in the execution described by U ′i−1, contradicting the security of the PIR
scheme. The circuit D′n has i and r′V , r

′
1, . . . , r

′
i−1 hard-wired. Given a query Q, it emulates the

interaction described by U ′i−1, except that in the ith PIR execution it feeds P ′h′ with Q. It then
runs the distinguisher Dn on the resulting view of the verifier. Note that if Q is the actual ith

PIR query, then the resulting view is distributed according to U ′i , and if Q is the dummy query,
then the resulting view is distributed according to U ′i−1. Since {Dn}n distinguishes U ′i and U ′i−1,
it follows that {D′n}n distinguishes between the aforementioned queries, contradicting the security
of the PIR scheme. This concludes the proof that U and Ũ are computationally indistinguishable.

Completing the proof of Claim 3.12. As described above, from the indistinguishability of U
and Ũ we derive Eq. (9), and therefore we conclude that the probability that P ′ passes both the
Original and Consistency Checks is at most negligibly higher than 1/3. By the same argument
used in the proof of Theorem 3.5, this implies that the probability that the actual prover P passes
all checks is at most negligibly higher than 1/3, completing the proof. □

Claim 3.12 shows that the resulting verifier V ′ has computational-soundness error 1/3 + µ,
where µ is a negligible function that depends on the cheating prover. To reduce this error to 1/3,
we use O(1) sequential repetitions. ■

22That is, there exists a positive polynomial p such that for infinitely many n’s it holds that |Pr[Dn(U(rV , rR)) =

1]− Pr[Dn(Ũ(rV , rR)) = 1]| ≥ 1/p(n).
23Note that if PIR executions are performed in parallel, then we may feed P ′

h′ in the same PIR round a mix of
actual PIR queries and dummy PIR queries.
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3.3 Transforming the emulation to the isolated model (at a significant cost)

In the previous section, we showed that (under standard computational assumptions) cs-IPPs can
be efficiently emulated in the pre-coordinated model. We turn to consider what can be achieved in
the isolation model.

We observe that all of our emulations in the pre-coordinated model (i.e., Theorem 3.4, 3.5
and 3.10) can be transformed to the isolated model at the cost of increasing the product of the
query and communication complexities by roughly n/ϵ. More precisely, we can get the following
tradeoff between the resulting query and communication complexities: For any q′ > O(1/ϵ), we
can obtain query complexity q′ while increasing the communication complexity (relative to that
obtained in the respective theorems) by an additive O

(
n
ϵ·q′

)
· t(n) term, where t(n) is as in the

statement of Theorem 3.4. This tradeoff is nearly optimal, since we show in Section 4 that cs-IPPs
in the isolated model that use q queries and c > 0 bits of communication can be emulated by testers
with query complexity O(c · q), whereas there exist properties that have very efficient cs-IPPs that
require nearly-linear queries to test. Concretely, there exists a property Π that requires Ω(n0.999)
queries to test, but can be verified by a doubly-efficient MAP with proof length O(logn) and query
complexity poly(1/ϵ) (see [15] followed by [10, Thm. 1.3]). By the aforementioned emulation of
isolated cs-IPPs by testers, the product of the query and communication complexities in any isolated
cs-IPP for Π must be greater than Ω(n0.999).

To transform our emulations to the isolated model, we only modify the way that we check for
consistency between the committed string and the actual input. Recall that in the pre-coordinated
emulations, consistency is verified by comparing the two strings at O(1/ϵ) random locations that are
shared between the querying and interacting modules. To transform the emulation to the isolated
model, where the two modules can no longer share randomness, we proceed as follows: Let C > 0
be a sufficiently large constant, and let q′ > C · 1ϵ be the desired query complexity. The querying
module queries the input at q′ distinct random points in [n]. Independently, the interacting module
asks the prover (in Stage 4) to reveal the committed string at ℓ = C · n

ϵ·q′ distinct random points
in [n]. We say that a collision occurs when a location is both queried by the querying module
and revealed by the prover. The deciding module checks (in the Consistency Check) that at every
collision, the value provided by the prover matches the value obtained by the querying module.

To establish the correctness of the emulations under this modification, we only need to show
that if the prover provides values consistent with some string x′ that is (ϵ/2)-far from the actual
input x, then the Consistency Check fails with high probability. First, observe that the expected
number of collisions is q′·ℓ

n = C · 1ϵ . Hence, with probability at least 1− exp(−Ω(C)), there are at
least C

2 ·
1
ϵ collisions.24 Second, consider the probability space under the condition of having at least

k
def
= C

2 ·
1
ϵ collisions, and consider the first k queries made by the querying module that are a part of

a collision. Observe that (conditioned on having at least k collisions) these queries are distributed
uniformly over all possible k distinct points in [n]. Therefore, since x and x′ disagree on at least an
ϵ/2 fraction of locations, the probability, conditioned on having at least C

2 ·
1
ϵ collisions, that x and

x′ agree on all collision locations, is less than (1− ϵ/2)C/(2ϵ) ≤ exp(−Ω(C)). Overall, the deciding
module detects a disagreement between x and x′ with probability at least (1−exp(−Ω(C)))2, which
can be made sufficiently high by setting C to be sufficiently large.

24This follows from the extension of the Chernoff Bound for sampling without replacement (i.e., for the Hypergeo-
metric distribution).
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4 The limits of computationally sound IPPs in the isolated model

In this section we prove Theorem 1.2 which asserts that any property that can be verified by a
cs-IPP in the isolated model using q queries and c > 0 bits of communication, can be tested using
O(c · q) queries.

Proof: Let (Q, I,D) be the querying, interacting, and deciding modules of a verifier in an isolated
cs-IPP for a property Π =

⋃
nΠn, and let RQ and RI be the randomness of the querying and

interacting modules, respectively. For each input x ∈ {0, 1}n and each fixed interaction transcript
τ ∈ {0, 1}c, let pxτ denote the probability that the deciding module accepts x given interaction
transcript τ :

pxτ
def
= Pr [D(Qx(RQ), τ, R

τ
I ) = 1]

where Rτ
I denotes a random variable that is uniform over all randomness strings of the interacting

module that are consistent with the transcript τ .25

Let P denote the honest prover. For each x′ ∈ {0, 1}n, let vxP (x′) denote the probability that

the deciding module accepts x when interacting with the strategy of the honest prover on input x′:

vxP (x′)
def
= Pr

[
D
(
Qx(RQ), ⟨P (x′), I(RI)⟩

)
= 1

]
=

∑
τ∈{0,1}c

Pr
[
T (P (x′), I(RI)) = τ

]
· pxτ

(10)

where T (P (x′), I(RI)) denotes the transcript of the interaction between P (x′) and I(RI).
We construct a tester for Π. Given oracle access to x ∈ {0, 1}n, the tester works as follows.

For each τ ∈ {0, 1}c the tester obtains an estimate of pxτ , denoted p̃xτ , by making O(c) repeated
invocations of Qx. Specifically, it samples r ∼ RQ, invokes Q

x on r, and uses the result to compute
PrRτ

I
[D(Qx(r), τ, Rτ

I ) = 1] for each τ ∈ {0, 1}c.26 It repeats this process independently O(c) times,
and takes p̃xτ to be the average of the corresponding computed values. We stress that the same
invocations of Qx are used towards all 2c estimates. Hence, the tester makes a total of O(c · q)
queries. Based on these estimates, for each x′ ∈ Πn the tester obtains an estimate of vxP (x′), denoted

ṽxP (x′), by substituting p̃xτ for pxτ in Eq. (10) (and computing all coefficients Pr [T (P (x′), I(RI)) = τ ]

by brute-force). It then accepts if and only if there exists an x′ ∈ Πn such that ṽxP (x′) > 1/2.

Correctness. By Chernoff’s Bound, using O(c) independent samples for the estimates p̃xτ we can
ensure that each estimate p̃xτ falls within additive deviation less than 1/6 from pxτ with probability
at least 1 − 1

3 · 2
−c. By the union bound, with probability at least 2/3 all 2c estimates p̃xτ are

successful, which in turn implies that all approximations ṽxP (x′) (for all x
′ ∈ Πn) are successful; that

is, fall within additive deviation less than 1/6 from vxP (x′) (because the values vxP (x′) are convex

combinations of the pxτ ’s).
We next show that if all estimates ṽxP (x′) are successful, then if x is in Πn the tester accepts,

and, for all sufficiently large n’s, if x is ϵ-far from Πn the tester rejects.27 If x is in Πn, then (by
the completeness condition) it holds that vxP (x) ≥ 2/3, and hence, if all estimates are successful, we

have that ṽxP (x) > 2/3− 1/6 = 1/2, and the tester will accept.

25That is, a randomness string r is consistent with the transcript τ if for every prefix of τ of the form (τ ′, α), where
α represents a verifier message, it holds that the next message of the interacting module given randomness string r
and partial interaction transcript τ ′ is α.

26The probabilities PrRτ
I
[D(Qx(r), τ, Rτ

I ) = 1] can be computed by scanning all possible values for Rτ
I .

27This is sufficient because we only care about asymptotic complexities. For smaller n’s the tester can decide if the
input is in the property by reading the entire input.
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We turn to the case where x is ϵ-far from Πn. Let Γϵ(Πn)
def
= {x ∈ {0, 1}n : x is ϵ-far from Πn}.

For each n, define a cheating prover strategy P̃n that equals P (x∗n) such that x∗n is an input in
Πn that maximizes the probability that the verifier falsely accepts some x ∈ {0, 1}n which is ϵ-far
from Πn when interacting with P (x∗n) (that is, x

∗
n is the input that among all x′ ∈ Πn maximizes

the value maxx∈Γϵ(Πn)(v
x
P (x′))). A polynomial-size family of circuits can implement {P̃n}n, because

it may have x∗n hard-wired and emulate the polynomial-time honest prover. Therefore, from the
computational soundness of the verifier, for all sufficiently large n’s, for all x ∈ Γϵ(Πn), the verifier
rejects x when interacting with P̃n with probability at least 2/3. Thus, for all sufficiently large
n’s, for all x ∈ Γϵ(Πn), by the maximality of x∗n we have that vxP (x′) ≤ 1/3 for all x′ ∈ Πn. Hence,

if all estimates are successful, then ṽxP (x′) < 1/3 + 1/6 = 1/2 for all x′ ∈ Πn, and the tester will
reject. ■

Remark: We can modify the foregoing emulation (of isolated cs-IPPs by testers) so as to get a
tester with query complexity O((ℓ+ logn) · q), where ℓ is the total length of the prover’s messages.
An analogous result was shown in [12] for their emulation of statistically sound isolated IPPs (see
the remark after the proof of [12, Thm. 1.2]). There, they obtain a tester with query complexity
O((ℓ+ r · log ℓ) · q) where r is the number of rounds of the isolated IPP.

To prove the foregoing claim, consider again the expression from Eq. (10):

vxP (x′) =
∑

τ∈{0,1}c
Pr

[
T (P (x′), I(RI)) = τ

]
· pxτ

The idea is that we can approximate vxP (x′) by sampling a few RI ’s, thereby reducing the number
of fixed-transcript probabilities pxτ we need to approximate. Similar to the argument we had when
sampling from RQ, the same samples of RI can be used towards approximating all values vxP (x′)

(i.e., for all x′). Specifically, in order to get with high constant probability a constant additive
approximation of all (possibly 2n) values vxP (x′), we need to take t = O(n) samples of RI . Once we
have sampled the RI ’s, it suffices to approximate only the pxτ ’s for transcripts τ that are consistent
with the messages that the interacting module sends when using the random strings that were
sampled. Note that once the random string of the interacting module is fixed, its messages are
determined from the messages of the prover. Hence, for each sample r ∼ RI , there are 2ℓ possible
transcripts that are consistent with the messages that I sends when using randomness r, where ℓ
is the total length of the prover’s messages. Since we take t samples of RI , we need to approximate
t · 2ℓ of the fixed-transcript probabilities pxτ in total. To achieve this, we need only O(log(t · 2ℓ)) =
O(ℓ+ log n) samples of RQ.
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Appendices

A Reducing the amount of randomness in public-coin IPPs

The following claim shows that for any public-coin cs-IPP, the number of coin-tosses made by
the verifier, excluding those that it sends during the interaction with the prover, can be reduced
to O(log n) at the cost of making the verifier non-uniform. We define cs-IPPs with a non-uniform
verifier to be a relaxation of cs-IPPs that allows the verifier to be implementable by a (non-uniform)
polynomial-size family of circuits.

Claim A.1. Suppose that a property Π has an r-round public-coin cs-IPP with query complexity
q and communication complexity c, and assume that c ≤ n. Then, Π has an r-round public-coin
cs-IPP with a non-uniform verifier that has query complexity O(q) and communication complexity
O(c), such that the number of coin-tosses made by the verifier, excluding those it sends during the
interaction with the prover, is at most O(log n). Furthermore, perfect completeness is preserved,
and if the original cs-IPP uses non-adaptive queries, then so does the resulting cs-IPP.

We note that the claim holds also if the original cs-IPP has a non-uniform verifier. Note that the
overall randomness complexity of the resulting verifier is at most O(c+ log n).

Proof: Since the original verifier is public-coin, we can (w.l.o.g.) decompose it to a querying,
interacting, and deciding modules Q, I, and D, respectively, such that its decision when interacting
with a prover P on input x is expressed as:

D(Qx(⟨P (x), I(RI)⟩, RQ))

where RI represents the coins that the interacting module sends during the interaction with the
prover, and RQ represents independent coins used by the querying module. Observe that the
verifier’s acceptance probability when interacting with prover P on input x can be decomposed as
follows: ∑

τ∈{0,1}c
Pr[⟨P (x), I(RI)⟩ = τ ] · Pr[D(Qx(τ,RQ)) = 1] (11)

We construct a new querying module Q′ that, together with the original modules I and D, will
constitute the claimed verifier. More specifically, we will construct a querying module Q′ that has
randomness R′Q of length at most O(logn), such that for all inputs x ∈ {0, 1}n and for all possible
interaction transcripts τ ∈ {0, 1}c, it holds that

Pr[D(Q′
x
(τ,R′Q)) = 1] ∈ Pr[D(Qx(τ,RQ)) = 1]± 1/7

That is, Q′ preserves the second term in Eq. (11) up to an additive deviation of 1/7. This implies
that the acceptance probability of the new verifier on any input f and when interacting with any
prover P is the same as that of the original verifier up to an additive deviation of 1/7, which in
turn implies that the completeness and (computational) soundness errors of the new system are
at most 1/3 + 1/7. We reduce the error via O(1) parallel repetitions (error reduction by parallel
repetitions is possible since the system is public-coin [5, 4, 16]). The repetitions will increase the
communication and query complexities (but not the round complexity) by a constant factor.

To construct the described querying moduleQ′, we follow the standard argument for randomness
reduction (see, e.g., [13, Thm. 3] and [14, Apdx. A]). Consider a matrix in which each column
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corresponds to a possible pair (τ, x) consisting of an interaction transcript τ ∈ {0, 1}c and an input
string x ∈ {0, 1}n, and each row corresponds to a possible randomness string rQ in the support
of RQ. Each entry in the matrix that corresponds to column (τ, x) and row rQ, contains the
corresponding decision of the original verifier: D(Qx(τ, rQ)).

Note that the matrix has at most 2c · 2n columns. If we proceed in the standard argument for
randomness reduction, we get that there exists a multi-set of size s = O(log(2c · 2n)) = O(c + n)
of the matrix’s rows that preserves the average of all columns up to an additive deviation of 1/7.
The new querying module Q′ will have this multi-set hard-wired, and will emulate the original
querying module Q with a randomness string selected uniformly at random from the multi-set.
Due to the hypothesis that c ≤ n, we have that s = O(n). Hence, the randomness complexity
of Q′ is log(s) = O(log n), as desired. Furthermore, since the size of the multi-set (which will
be hard-wired) is polynomial in n (specifically, O(n)), we have that Q′ can be implemented by a
(non-uniform) polynomial-size family of circuits. ■

B Poly-logarithmic PIR implies a relaxed form of strong CRHFs

In [19], it was shown that if there exists a computational PIR scheme with communication com-
plexity o(n/ logn), then there exists a family of (private-coin) weak CRHFs. In this section, we
show that the construction of [19] can be modified to establish that if there exists a computational
PIR scheme with poly-logarithmic communication complexity, then there exists a relaxed version
of (private-coin) strong CRHFs, where this relaxed version suffices for the purposes of this work.
In the relaxed version, rather than requiring the running time of the indexing and the evaluation
algorithms to be polynomial, we require only that the description length of the hash function out-
putted by the indexing algorithm is polynomial, and allow the algorithms to run in time 2O(kδ),
where δ is the parameter of the strong collision-resistance. Specifically, we refer to the following
definition:

Definition B.1 (strong collision-resistant hashing functions – a relaxed definition). Let H =⋃
k∈N Hk such that Hk ⊆ {h : {0, 1}2k → {0, 1}k}. H is said to be a family of strong collision-

resistant hashing functions (CRHFs) if there exists a mapping from strings s ∈ {0, 1}∗ to functions
hs ∈ H, and a parameter δ > 0 such that:

1. (Efficient indexing): There exists a probabilistic algorithm I, called an indexing algorithm, that
for every k ∈ N, given 1k, samples a string s such that hs ∈ Hk, and: (1) the length of s is

at most polynomial in k, and (2) the running time of I is at most 2O(kδ).

2. (Efficient evaluation): There exists an algorithm, called an evaluation algorithm, that, given

x ∈ {0, 1}2k and s in the range of I(1k), returns hs(x), and runs in time at most 2O(kδ).

3. (Hard-to-form collisions): For every (non-uniform) family of circuits {Ck}k∈N of size at most

2O(kδ), it holds that:

Pr
s←I(1k)

(x1,x2)←Ck(s)

[hs(x1) = hs(x2) ∧ x1 ̸= x2] ≤ 2−ω(k
δ)

The above relaxed definition suffices for the purposes of this work. This stems from the fact
that, in the tree commitment scheme (see Definition 3.1), when committing to an n-bit long string,

we use the strong CRHF with k = (logn)1/δ, and thus a running time of 2O(kδ) is polynomial in n.
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Requiring the description length of the hash functions to remain polynomial in k ensures that the
communication complexity of the commitment scheme remains succinct.

We proceed to establish the following:

Theorem B.2. If there exists a computational PIR scheme with poly-logarithmic communication
complexity (according to Definition 2.4), then there exists a family of strong CRHFs according to
Definition B.1.

We start by describing the construction of [19] (which showed how to obtain weak CRHF from
a PIR scheme with communication complexity o(n/ logn)), and then show how to modify it to get
Theorem B.2.

The construction of [19]. Consider a computational PIR scheme with communication com-
plexity c = o(n/ log n), defined by a Query, Answer, and Reconstruction algorithms (Q,A,R),
respectively. We shall construct a weak CRHF family. The construction uses an error correcting
code ECC(·) that takes as input a string of size 2k and outputs a string of size n(k) = O(k),
such that for any two distinct strings x ̸= x′ ∈ {0, 1}2k, the relative Hamming distance between
y = ECC(x) and y′ = ECC(x′) is at least some constant ϵ > 0.

The basic construction proceeds as follows: The indexing algorithm, on input 1k, outputs
q = Q(n, i, r), where n = n(k) (as in the error correcting code), i is a uniformly random index
in [n], and r is the randomness used by the query algorithm Q. The hash function hq, on input
x ∈ {0, 1}2k, is defined as hq(x) = A(y, q), where y = ECC(x). The actual construction takes
t = ω(log n) independent copies of the basic construction. Specifically, the indexing algorithm
outputs q = (q1, . . . , qt) = (Q(n, i1, r1), . . . , Q(n, it, rt)), and the hash function evaluates to hq(x) =
(A(y, q1), . . . , A(y, qt)), where i1, . . . , it and r1, . . . , rt are independent random variable distributed
identically to i and r, respectively, and as before y = ECC(x).

Note that the indexing and evaluation algorithms run in time poly(k), because the query and
answer algorithms run in time poly(n). (In particular, this implies that the hash function description
length |q| is polynomial in k.) We next show that hq shrinks its input. Observe that hq takes
strings of length 2k to strings of length t · |A(y, q)| ≤ t · c. Hence, if c = o(n/ logn) then we can set
t = ω(log n) such that the output length is at most k.

We turn to analyze the collision resistance property. Suppose that a family of circuits of
size poly(k) (equiv., poly(n)) finds, given q, two distinct strings x ̸= x′ ∈ {0, 1}2k that collide
under hq; that is, hq(x) = A(y, q) = A(y′, q) = hq(x

′), where y = ECC(x) and y′ = ECC(x′).
By the correctness of the PIR scheme, y and y′ must agree on i (since yi = R(n, i, r, A(y, q)) =
R(n, i, r, A(y′, q)) = y′i). However, since x ̸= x′, we have that y and y′ differ on at least ϵ · n
locations. Thus, finding a collision implies finding ϵ · n locations that i is not equal to. Without
access to the query q, the probability of guessing such locations is at most 1 − ϵ. Now, finding a
collision under hq implies finding, for each index ij (where j ∈ [t]), a fraction of ϵ locations that ij
is not equal to. Without access to q, the probability of succeeding is at most (1− ϵ)t, which by the
choice of t is negligible in n (equiv., in k). By the semantic security of the PIR query algorithm
Q, we conclude that finding a collision under hq (when given q) is feasible only with negligible
probability, establishing the (weak) collision-resistance property.

Adjusting the construction to get strong collision resistance: Proof of Theorem B.2.
Let (Q,A,R) be a computational PIR scheme with communication complexity c = logα(n), for
some constant α > 0. Let δ > 0 be a parameter to be set later such that δ = 1

α+O(1) . We

construct a family of strong CRHFs with parameter δ (according to the relaxed Definition B.1).
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The construction is identical to the construction of [19] described above, where the only exception

is that we use n = 2k
δ
(rather than n = O(k)).

We begin by showing that hq shrinks its input. As before, hq takes strings of length 2k to strings
of length t · |A(y, q)| ≤ t · c. We have c = logα(n), and recall that t needs to satisfy t = ω(logn);
e.g., we can set t = log2(n). Therefore, the output length is at most logα+O(1)(n) = kδ·(α+O(1)).
Hence, we can set δ = 1

α+O(1) such that the output length is at most k.

The description length of a hash function outputted by the indexing algorithm (given 1k) is
t · |Q(n, i, r)| ≤ t · c = logα+O(1)(n) = poly(k). The running time of the indexing algorithm and the

evaluation algorithm is at most 2O(kδ) since the running time of both the PIR query algorithm Q
and the PIR answer algorithm A is polynomial in n.

Finally, we consider the (strong) collision-resistance property. By the same analysis of the
original construction above, given q, any family of poly(n)-size circuits can succeed in finding a

collision under hq with probability at most negligible in n. Since we have set n = 2k
δ
, this implies

that, given q, any family of circuits of size at most 2O(kδ), can succeed in finding a collision under
hq with probability at most 2−ω(k

δ), as desired.
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