
TEL AVIV UNIVERSITY
The Iby and Aladar Fleischman Faculty of Engineering

The Zandman-Slaner School of Graduate Studies

ON FINDING SMALL SUBGRAPHS IN

BOUNDED-DEGREE GRAPHS

A thesis submitted toward the degree of

Master of Science in Engineering

by

Yaniv Sabo

November 2016

TEL AVIV UNIVERSITY
The Iby and Aladar Fleischman Faculty of Engineering

The Zandman-Slaner School of Graduate Studies

ON FINDING SMALL SUBGRAPHS IN

BOUNDED-DEGREE GRAPHS

A thesis submitted toward the degree of

Master of Science in Engineering

by

Yaniv Sabo

This research was carried out at Tel Aviv University

in the Department of Electrical Engineering - Systems

Faculty of Engineering

under the supervision of Prof. Dana Ron

November 2016

Acknowledgments

I would like to express my sincere gratitude to my advisor Prof. Dana Ron. Her

patience, immense knowledge and guidance were beyond compare and I am truly

grateful.

I would also like to thank my family and friends, for supporting me spiritually

throughout writing this thesis and my life in general.

Abstract
We study the problem of �nding a copy of a subgraph H in a graph G that is far from

being free of having copies of H. We consider this problem in the bounded-degree

graphs model. In this model, each of the n vertices has at most d neighbors, and an

algorithm is allowed to make queries regarding the neighbors of vertices in the graph.

The graph is said to be ε-far from being H-free if more than ε · dn of its edges must

be deleted to make the graph free from having copies of H.

We present an algorithm for �nding a copy ofH in graphs that are ε-far from being

H-free and have bounded (constant) treewidth. This algorithm makes a number

of queries that is polynomial in 1/ε, the size of H and the degree bound d. The

complexity of the algorithm is independent of the number of vertices, n.

We also present an algorithm for the special case in which H is a path of length

k. Our algorithm uses speci�c properties of graphs that are far from having k-

paths. Finding k-paths was previously studied by Reznik (Master's thesis, Weizmann

Institute of Science, 2011). Reznik gave an algorithm for the case in which G is cycle-

free, where the query complexity of the algorithm is polynomial in k, d and 1/ε. We

propose a conjecture that, if proven to be true, implies that our algorithm works for

any graph that is ε-far from being k-path free with query complexity polynomial in

k, d, and 1/ε. As a sanity check, we establish the conjecture for cycle-free graphs.

i

ii

Table of Contents

Nomenclature v

List of Figures v

1: Introduction 1

1.1 Property Testing . 1

1.2 Testing for Subgraph Freeness . 2

1.3 A Simple Algorithm for Finding Subgraphs 3

1.4 Previous Work . 3

1.4.1 Partition Oracles . 4

1.5 Our Main Results . 5

1.6 Other Related Work . 6

1.6.1 Minors . 6

1.6.2 Random DFS Walks . 7

2: Preliminaries 8

2.1 Basic De�nitions and Notations . 8

2.2 Testing Graph Properties in the Bounded-Degree Model 8

2.3 Random DFS scans . 9

2.4 Treewidth . 9

iii

3: Searching For Subgraphs 11

3.1 Reduction of Unconnected H to Connected H 11

3.2 The Procedure . 12

3.3 General Claims and De�nitions . 13

3.4 Cycle Free Graphs . 15

3.5 Bounded-Treewidth Graphs . 17

4: Random DFS Walks for Finding k-Paths 21

4.1 Small Cuts Property . 21

4.2 The Algorithm . 22

4.3 Cycle Free Graphs . 25

4.4 A Lower Bound For Deterministic DFS Walks 28

5: Further Observations 31

5.1 Extending the Bijection for General Graphs 31

5.1.1 Building a Bijection Between Sets of DFS Walks 32

5.2 An Auxiliary Graph for Analyzing Random DFS Walks 34

5.3 Partition Oracle for Graphs Without k-Paths 35

References 36

Appendix A: Iterative Approach 38

A.1 Chain Graph . 39

A.2 Full Tree Graph . 40

A.2.1 Adding an edge between a vertex and a descendant of it . . . 40

A.2.2 Adding an edge between vertices with their least common an-

cestor at the root . 45

A.2.3 Adding an edge between vertices with their least common an-

cestor at the root while preserving vertex degrees 47

iv

List of Figures

3.1 A case in which H is a k-path with k = 4. The dashed rectangles

denote the classi�cation of di�erent subsets of vertices in the graph

and the bold edges are the exit edges 15

4.1 An example of a DFS walk from w to v. The clouds indicate a set

of vertices to which the DFS strayed. Once it �nishes visiting every

vertex in the clouds, it backtracks and returns to traversing P 27

4.2 The graph we construct for showing a lower bound in the non-random

DFS case. v is a vertex in T , depicted with edges connecting it

to other vertices in T . Also, v is the middle vertex in the k-path

〈v1, ..., v k−1
2
, v, v k+1

2
, ..., vk−1〉. 29

5.1 DFS walk D, starting from u and reaching v. The edge numbering

indicates the order in which the edges were taken during the walk.

Notice that there may be other edges incident to the depicted vertices

(u, v, w, x). Also, the edge connecting x and u was not traveresed

during the walk, since when we reached x we had already visited u. . 31

5.2 M(D), starting from v and reaching u. The edge numbering indicates

the order in which the edges were taken during the walk. This is not

a legal DFS walk, since when we reached x we were not allowed to

backtrack from it to w, because it has an incident edge leading to u,

and u was uncovered at that point. 32

v

5.3 An example of a mapping between a single DFS from z1 to z5 and

a single DFS from z5 to z1. The bold edges indicate edges actually

taken by the DFS. Note that if, for example, there were more edges

connecting z4 and C2, there would have been more possible DFS walks

in the left �gure. 33

A.1 Tree rooted at v, such that vj is a descendant of vi. We add an edge

connecting vi and vj, depicted as the curved edge 40

A.2 Tree rooted at v, such that vi and vj have v as their least common

ancestor. We add an edge connecting vi and vj, depicted as the curved

edge . 45

vi

1 Introduction

1.1 Property Testing

Property testing is the study of highly e�cient algorithms that decide whether a given

object (e.g., a graph) has a certain predetermined property (e.g., bipartiteness), or

is signi�cantly di�erent from any object that has the property. The algorithm is

given access to an oracle for performing (local) queries to the input and a small

probability of failure is allowed. Property testing was �rst explicitly de�ned in the

work of Rubinfeld and Sudan [RS96], who considered testing whether a function is

a low-degree polynomial. A systematic study of property testing with special focus

on graph properties was undertaken in [GGR98].

In order to de�ne a property testing problem, we need to describe the type of

queries that the algorithm is allowed to perform, provide a distance measure between

objects and de�ne the class of objects for which the property holds. The algorithm

is given a distance parameter, denoted ε, and should accept inputs (with probability

at least 2/3) for which the property holds and reject inputs (with probability at least

2/3) which are ε-far from any other object for which the property holds. If the input

neither has the property nor is far from having it, then the algorithm can either

accept or reject. In the following sections, when we use the term high probability, we

mean high constant probability, i.e., probability at least 2/3. In some cases testing

algorithms have a non-zero error probability only on inputs that are far from having

the property. In such a case, when they reject an input, they always provide evidence

that the input does not have the property.

The main complexity measure for property testing algorithms is their query com-

plexity. The aim is to design testing algorithms whose query complexity is sub-linear

in the size of the tested object, and possibly even independent of this size.

1

The study of testing graph properties was initiated by Goldreich, Goldwasser and

Ron [GGR98]. A graph property is a set of graphs closed under graph isomorphism

(renaming of vertices). When studying graph properties, the form of queries, and

in some cases the distance measure, depend on the graph representation. In this

work we are interested in bounded degree graphs, represented by adjacency lists. We

describe the precise model shortly.

1.2 Testing for Subgraph Freeness

In this thesis, we study the problem of testing H-freeness for a given small subgraph

H. A graph G has the property of H-freeness if there is no subgraph of G that is

isomorphic to H. We study the problem in the bounded-degree incidence-lists model

presented in [GR97]. In this model, a tester forH-freeness is a randomized algorithm,

which gets as input a degree bound, d, a distance parameter, ε, and the number of

vertices in the graph, n. The tester is given access to an oracle, allowing it to make

queries regarding the graph. These queries are of the form (v, i) where v is a vertex

in the graph and i is a number between 1 and d, with the answer being the i-th

neighbor of v (if v has at least i neighbors, otherwise a special symbol is returned).

The algorithm should distinguish with probability at least 2/3 between the case in

which G has no copy of H and the case in which it is necessary to remove at least

εdn edges from the graph for there to be no remaining copies of H in G. In the

�rst case the tester should accept G, and in the second case it should reject G. We

are interested in testers that perform a sub-linear number of queries with respect to

the size of the graph. We shall actually design algorithms for which the number of

queries is independent of the number of vertices in the graph, and depends only on

the parameters ε, d, the size of H, and possibly on properties of H. As we show in

Subsection 3.1, we can assume without loss of generality that H is connected.

Speci�cally, we will be interested in algorithms that have one-sided error. Namely,

the tester must accept the graph with probability 1 if it is H-free. This means that

in order to reject a graph the tester must �nd evidence of the subgraph H in G, since

otherwise it might reject graphs that are H-free. Therefore, another way of stating

the problem is of �nding a copy of H in G (with high probability), when G is ε-far

from being H-free. We will give special consideration to the case in which H is a

k-path, i.e., k vertices v1, v2, ..., vk such that there is an edge between vi and vi+1 for

1 ≤ i ≤ k − 1.

2

1.3 A Simple Algorithm for Finding Subgraphs

As observed in [GR97], if G is ε-far from being H-free, then it is trivial to �nd, with

high success probability, a subgraph H in G using O(dτ+1/ε) queries, where τ is the

diameter of H. Notice that there should exist at least εn vertices that participate in

some copy of H. Otherwise, we can just remove all edges incident to such vertices, so

that we are left with no copy of H in the graph, while removing less than εdn edges.

Hence, if we choose a vertex in the graph with uniform probability and perform a

BFS up to depth τ , we will �nd a copy of H with probability at least ε. By executing

this O(1/ε) times, we will �nd evidence ofH with high probability, performing a total

of O(dτ+1/ε) queries. Notice that using this method, we get query complexity that is

independent of the size of the input graph, but exponential in τ . We are interested

in the question of whether it is possible to �nd a subgraph H with query complexity

polynomial in d, 1/ε and the size of H when G is ε-far from being H-free.

1.4 Previous Work

The speci�c problem of �nding a k-path in graphs that are far from k-path free,

was �rst addressed by Czumaj et al. [CGR+12], as a simple special case of �nding

an M -minor (in graphs that are far from M -minor free) for M that is a tree. A

graph G is M-minor free for a given graph M , if M cannot be obtained from G

by a sequence of vertex removals, edge removals and edge contractions.1 (We give

more details on previous work related to testing minor freeness in Subsection 1.6.)

Observe that while �nding subgraphs and �nding minors are very di�erent problems

in general, in the case of a k-path, the problem of �nding a k-path minor is the same

as �nding a k-path. Czumaj et al. [CGR+12] raised the question whether there is

an algorithm for �nding a k-path in bounded-degree graphs that are far from k-path

free whose query complexity is poly(d, k, 1/ε). Note that the desired bound is on

the query complexity and not the running time, since by setting d = n, k = n and

ε = 1/n2, we would get an algorithm for �nding a Hamiltonian path (if one exists).

Reznik studied this question in [Rez11]. He shows that it is possible to �nd (with

high probability) a k-path in a cycle-free graph that is ε-far from being k-path free,

1 An edge contraction is an operation that removes an edge from the graph and merges the two

vertices that it previously connected. Namely, an edge (u, v) is replaced by a single vertex u′,
where every vertex w that was a neighbor of either u or v, is now a neighbor of u′.

3

with query complexity polynomial in k, d and 1/ε. He gives two algorithms (random

DFS and random walks) for �nding k-paths. The random DFS algorithm has query

complexity O
(
dk2

ε4

)
and the random walk algorithm has query complexity O

(
d15k7

ε4

)
.

The analysis of these algorithms (on cycle-free graphs) is based on �rst establishing

the existence of a special subgraph (in which it is relatively simple to �nd a k-path)

in cycle-free graphs that are ε-far from being k-path free. Reznik then shows that

both searches, given they had started from a vertex in this subgraph, generally stay

in it, while occasionally straying from the subgraph.

1.4.1 Partition Oracles

There has been some previous work on designing partition oracles for various fam-

ilies of graphs. These procedures are also given query access to the incidence lists

representation of a bounded-degree graph and a distance parameter ε′. A partition

oracle is de�ned with respect to a class of graphs, C. When the procedure is queried

on a vertex in the graph, it returns the part (subset of vertices) to which the vertex

belongs in a partition of the graph vertices. The partition should be such that the

parts are small (relative to 1/ε′) and if the graph belongs to C, with high probability,

the total number of edges between parts is at most ε′|V |. In particular, there has

been work done on designing partition oracles for graphs that are free from some

constant size minor, M .

One can make use of a partition oracle to �nd a subgraph H in a graph G, under

the premise that G is free from some minor M (of constant size) and given that G

is ε-far from being H-free. This can be accomplished by uniformly selecting a set

of starting vertices and performing a local search for H from each of them, while

limiting the number of steps. During the walk, the partition oracle procedure is

called in order to make sure that the walk does not leave the part it started at.

Intuitively, because there aren't many edges between parts, then there should be

many vertices that belong to a part with copies of H contained entirely in it. If we

start the search at one of these parts and use the oracle to make sure we do not leave

it, we will be able to �nd a copy of H while visiting a small number of vertices, since

the parts are relatively small.

In [LR13] a quasi-polynomial partition oracle was given for graphs with an ex-

cluded minor M . We can use this to construct a quasi-polynomial (in 1/ε, d and

the size of H, assuming constant size M) algorithm for �nding H in graphs with an

excluded minor M which are ε-far from being H-free.

4

In [EHNO11] a partition oracle was designed for the class of graphs with bounded-

treewidth (which will be de�ned in Section 2). Assuming that the bound on the

treewidth is constant, the oracle given in [EHNO11] has complexity poly(d/ε). There

are known families of graphs with bounded treewidth, such as cactus graphs, out-

erplanar graphs and pseudoforests. On the other hand, there are families of graphs

with an excluded minor that do not have bounded treewidth, such as planar graphs.

1.5 Our Main Results

Our �rst result is an algorithm that, given query access to a cycle-free graph G with

maximum degree d, tests forH-freeness (with one-sided error). The query complexity

of the algorithm is polynomial in d, 1/ε and the size of H. We take a di�erent

approach from the one appearing in [Rez11], allowing us to �nd general subgraphs

(instead of just k-paths) and give a relatively simple proof that the algorithm works

for cycle-free graphs. The query complexity of our algorithm for k-paths in cycle-

free graphs is similar to what is shown in [Rez11]. We then extend this result to

bounded-treewidth graphs (which will be de�ned in Section 2). We do so by making

use of results appearing in [EHNO11], in which an e�cient partition oracle is given

for bounded-treewidth graphs. As previously explained, it is possible to make a

more direct, black-box use of the partition oracle to give an algorithm for �nding

H in bounded-treewidth graphs which are ε-far from being H-free. However, we

have chosen to build on a lemma from [EHNO11] to show that our simple and

more e�cient algorithm works for bounded-treewidth graphs as well. We also use a

procedure (Procedure 1) that is similar to to a procedure that appears in [EHNO11]

(Algorithm 2).

The second part of this thesis focuses on k-paths. Our original goal was to obtain a

one-sided error algorithm for testing k-path freeness in general graphs, whose query

complexity is polynomial in d, k, and 1/ε. While this goal was not achieved, we

made a step that we hope will lead to achieving this goal in the future. We start

by presenting a basic property of DFS walks for which the set of vertices visited

during the DFS induces a subgraph that does not contain any k-path. We then state

a conjecture regarding a certain property of random DFS walks. This conjecture

allows us to design a framework for a proof which, given that this conjecture is

proven true, shows that the random DFS algorithm indeed �nds a k-path with high

probability in general bounded-degree graphs that are ε-far from being k-path free.

5

As a sanity check for the viability of this conjecture we prove its correctness for the

case of random DFS walks in cycle-free graphs. The question of the correctness of

this conjecture in general bounded-degree graphs is left open.

Note that we are only referring to the query complexity of the algorithms we

present in this thesis, and not the running time. As observed in Subsection 1.4, when

d = n, k = n and ε = 1
n2 �nding a k-path is equivalent to �nding a Hamiltonian path.

The general approach we took involves traversing a subset of vertices S, querying the

edges incident to each of them, and then �nding a k-path in the subgraph induced

by S. The task of �nding a k-path in S might require exponential running time (in

terms of k, d and 1/ε) but this does not a�ect the query complexity, which only

depends on the size of S.

1.6 Other Related Work

1.6.1 Minors

The problem of testing minor-freeness for any given constant size minorM in bounded-

degree graphs, was �rst studied by Benjamini, Schramm, and Shapira [BSS08]. They

showed a general result for testing whether a graph holds some monotone 2 hyper-

�nite 3 graph property. We focus here on a corollary of this result, for minor free

graphs. They gave a two-sided error testing algorithm whose query complexity for

constant degree graphs and constant size M is O
(

2d
dpoly(d/ε)

)
, i.e., independent of

the size of G. This result was later improved (in terms of the dependance on the

distance parameter, ε, and the degree bound, d) by Hassidim et al. [HKNO09], who

obtained a testing algorithm forM -minor freeness whose complexity is O
(
dpoly(1/ε)

)
,

and later in [LR13], to dO(log2(1/ε)).

As mentioned earlier, the problem of one-sided error testing of M -minor freeness

(i.e., �nding a minor in graphs that are far from M -minor free) was considered by

Czumaj et al. [CGR+12]. On the negative side they show that for any �xed M that

contains a simple cycle, the query complexity of one-sided error testing of M -minor

freeness is Ω(
√
n). On the positive side they give an algorithm that �nds a simple

2 A graph property P is monotone if every subgraph of a graph in P is also in P
3 A graph G = (V,E) is (δ, k)-hyper-�nite if one can remove δ|V | edges from G and obtain a graph

with connected components of size at most k. A collection of graphs is hyper-�nite if for every

δ > 0 there is some �nite k = k(δ) such that every graph in the collection is (δ, k)-hyper-�nite

6

cycle in a graph that is ε-far from being cycle free, with expected running time of

Õ (poly(d/ε) ·
√
n). This positive result, which is equivalent to one-sided error testing

of C3-minor freeness, is extended to Ck-minor freeness. They also consider the case

of �nding a T -minor, where T is a tree (in graphs that are far from being T -minor

free), and give an algorithm whose complexity depends only on d, ε, and the size of

T .

1.6.2 Random DFS Walks

We were interested in analyzing certain properties of random DFS walks, by which

we mean a DFS such that in each step of the search, the next vertex is chosen

uniformly at random among the set of unvisited neighbors of the current vertex (or

backtracking, as usual, in the case of an empty set). However, we were not able

to �nd previous work discussing properties of random DFS walks. There are some

works analyzing non-backtracking random walks, which are random walks that do

not return to the previous vertex visited, such as [ABLS07]. One can consider these

as random walks with a memory bank of one already-visited-vertex, as opposed to

the random DFS walks which are random walks with a memory bank of |V | already-
visited-vertices.

7

2 Preliminaries

2.1 Basic De�nitions and Notations

We denote by G = (V,E) a simple undirected graph with n vertices, such that each

vertex in V has at most d neighbors. Also, we denote by N(U) the set of vertices in

V \ U that are neighbors of vertices in U , i.e. N(U) = {v ∈ V \ U | ∃u ∈ U, (u, v) ∈
E}. For a subset of vertices S ⊆ V , we denote by G(S) the subgraph induced by the

vertices in S.

2.2 Testing Graph Properties in the Bounded-Degree

Model

Let P be a property of graphs. That is, P de�nes a subset of graphs, where the

subset is closed under graph isomorphism. We say that a graph G has the property

if G ∈ P . In the bounded degree model, a graph is said to be ε-far from having a

property P if more than εdn edge modi�cations should be performed on the graph

so that it obtains the property. In this case ε measures (up to a factor of 2), the

fraction of entries in the incidence lists representation of G that should be modi�ed

so that G ∈ P .

In the bounded-degree model, a testing algorithm is allowed to probe the inci-

dence lists of the vertices in the graph. More precisely, the algorithm is given query

access to a function fG : V × [d]→ V
⋃

Γ such that f(v, i) = u if u is the ith neighbor

of v (according to some arbitrary but �xed ordering of the neighbors), and f(v, i) = Γ

if v has less than i neighbors. We now spell the meaning of property testing in this

model.

8

De�nition 1. A tester for a graph property P is a probabilistic algorithm that, given

input paramters n, d, ε and query access to fG, outputs a binary verdict that satis�es

the following two conditions.

1. If G ∈ P then the tester accepts with probability at least 2/3.

2. If G is ε-far from having the property P then the tester rejects with probability

at least 2/3.

If the tester accepts every graph in P with probability 1, then we say that it has

one-sided error.

The query complexity of a tester is the number of queries it makes, as a function

of the parameters n, d, ε and other parameters that relate to the tested property.

2.3 Random DFS scans

We use DFS scans to traverse the graph, with two small variations. First, we limit

the number of steps the search is allowed to do. Secondly, we scan the graph in a

random order, so whenever we reach a vertex we haven't seen before or backtrack to

an already visited vertex, we choose the next neighbor to visit randomly from the

set of neighbors which were not already visited. Unless stated otherwise, when we

say that a DFS performed s steps, we mean that it visited s distinct vertices.

2.4 Treewidth

The de�nition of treewidth was �rst introduced in [BB73] where it was referred to as

dimension and later rediscovered in [RS84]. First, we de�ne the tree decomposition

of an undirected graph G = (V,E). A tree decomposition is an undirected tree

T = (V ′, E ′) with nodes w1,w2,...,wm and a function X : V ′ → 2V , such that the

following conditions hold:

1. Each vertex in V must appear in some X(wi) in T , i.e.
⋃
iX(wi) = V .

2. The subset of nodes wi ∈ V ′ for which X(wi) contains a vertex v ∈ V must

form a connected subtree in T .

9

3. For each pair of vertices u, v ∈ V that are connected by an edge (u, v) ∈ E,
there must exist some node wi in T for which u, v ∈ X(wi).

The width of a tree decomposition is de�ned as the size of the largest subset of

vertices among {X(wi)}, minus one. The treewidth of a graph G is the minimal

width over all possible tree decompositions of G.

10

3 Searching For Subgraphs

In this section we describe a polynomial time algorithm that aims to �nd a subgraph

H in a degree bounded graph G, given that G is ε-far from being H-free. We start

by showing a reduction of the case in which H is not connected, to the case in which

H is connected. We then present a few claims and de�nitions relevant for general

graphs. After that we show that if the graph is cycle-free and ε-far from being H-free,

our algorithm �nds some copy of H with high probability. Finally, we make a slight

adjustment to the algorithm and prove that it also �nds H in bounded-treewidth

graphs. We denote by h the number of vertices in H. All the algorithms we present

in this section are given query access to the graph G, as de�ned in Subsection 2.2.

3.1 Reduction of Unconnected H to Connected H

In this subsection we show that we can assume without loss of generality that H is

connected. The argument is very similar to the one appearing in [CGR+12, Sub-

section 7.2]. Let H be a graph with connected components H1, ..., Hm. We are

interested in �nding a copy of H in a graph that is ε-far from being H-free. Note

that simply �nding a copy of Hi for every i ∈ [m], is not su�cient, since these copies

might overlap or have edges between them. The algorithm presented next assumes

query access to a subgraphs of G, denoted Gi. This can be achieved by omitting,

from the query result on G, vertices that are not contained in Gi.

Algorithm 1. Test-Unconnected-H-Freeness(ε)

1. Set G0 = G. For i = 1 to m, perform

(a) Invoke the Hi-freeness tester on Gi−1 with distance parameter ε/2. We

invoke it O(logm) times, so that the probability we did not �nd any copy

of Hi in Gi−1, if Gi−1 is ε/2-far from being Hi-free, is at most 1
3m

.

11

(b) If the tester did not �nd a copy of Hi in any of its executions, then accept.

(c) Otherwise, remove from Gi−1 the copy of Hi found by the tester. Also,

remove any vertex adjacent to a vertex that belongs to the copy of Hi

found. Set Gi as the resulting graph.

2. If every iteration found a copy of Hi, reject the graph.

It is easy to see that if the algorithm rejects the graph, then it found a distinct

copy of Hi for every i ∈ [m], such that there are no edges between these copies.

Therefore, it found a copy of H in G. Also, the query complexity of the algorithm

is O(logm) ·
∑m

i=1 qi(ε/2, k, d) where qi is the query complexity of a tester for Hi-

freeness.

Note that if G is ε-far from being H-free, then it is also ε-far from being Hi-free

for every i ∈ [m]. Since we remove in all the iterations at most hd2 edges, Gi−1 is

ε/2-far from being Hi free for every i ∈ [m] (assuming that εdn
2
≥ hd2, otherwise one

can easily query the entire graph with query complexity polynomial in h, d and 1/ε).

Therefore, with probability at least 1− 1
3m

, the ith iteration will �nd a copy of Hi in

Gi−1. It follows that with probability at least 2/3, Algorithm 1 will �nd a copy of H

in G. From this point on, we assume that H is a connected graph.

3.2 The Procedure

We start by describing a procedure that we will use for �nding copies of H both in

cycle-free graphs and in bounded-treewidth graphs. The parameters B and ξ will be

chosen in the following subsections. The parameter R is only used for the recursion

and the procedure will always be called with R = ∅.

Procedure 1. Local-Find-H(R, B, u, ξ)

1. Perform a DFS scan from u, without visiting any vertex in R, for at most B

steps and denote the set of vertices encountered by S.

2. For each v ∈ S perform at most d queries to obtain all its neighbors.

3. If G(S) contains H, return True.

12

4. If ξ > 0 then for each v ∈ S − {u} call Local-Find-H(R
⋃
{v}, B, u, ξ − 1). If

one of these executions returned True then return True, otherwise return False.

By the above description, the query complexity of Procedure 1 is O
(
Bξ
)
. Both

our algorithms for cycle-free graphs and bounded-treewidth graphs will simply per-

form Procedure 1, O(1/ε) times with di�erent values of ξ and B until the procedure

�nds a copy of H or terminates. Notice that in Step 1 we perform a DFS scan,

however as we explain shortly, this can be any local search on the graph (e.g. BFS).

Lemma 1. Let U be a set of vertices such that G(U) is connected. If |N(U)| = ξ and

G(U) contains a copy of H, then for any vertex u ∈ U , executing Local-Find-H(∅,
|U |, u, ξ̂) with ξ̂ ≥ ξ returns True with probability 1

Proof: We prove the claim by induction on ξ. If |N(U)| = 0, that is, there are no

neighbors of vertices in U which are outside of U , then the DFS performed reaches

all vertices in U and thus a copy of H is found in Step 3. Next, consider the case

that ξ > 0. If the DFS scan does not visit any vertices outside U , then the set S

discovered during the procedure contains U entirely and thus a copy of H is found

in Step 3. In such a case the algorithm returns True. Therefore, if we reached Step

4 of the procedure this must mean we reached a vertex v ∈ N(U). This implies

that v ∈ S and after removing it from the graph, u will be inside a set U ′ such that

|N(U ′)| ≤ ξ − 1. By induction, the procedure call Local-Find-H(G′, |U |, u, ξ̂ − 1)

with v removed should return True.

Notice that in Lemma 1 we made no use of the fact that we perform a DFS scan,

and any other local search on the graph has the same e�ect.

3.3 General Claims and De�nitions

In this subsection we present a few general claims and de�nitions, relevant for general

graphs, and not speci�cally cycle-free or bounded-treewidth graphs.

Claim 2. If G is ε-far from being H-free then it contains at least εn
h
vertex-disjoint

copies of H

Proof: If G has less than εn
h
vertex-disjoint copies of H, one can simply remove all

the edges incident to these vertices (less then εdn edges) and obtain a graph which

is free from H, in contradiction to G being ε-far from H-freeness.

13

From this point we assume that G is ε-far from being H-free. We let H1,H2,...,Ht

denote the t ≥ εn
h

vertex-disjoint copies of H, referred to in Lemma 2. We would

like to show that with high constant probability, our algorithm will �nd one of these

copies of H. To this end, we wish to bound the number of edges leading �out� (in

some sense) of these copies of H. We �rst introduce some de�nitions. The �rst

de�nition will allow us to classify vertices in the graph as follows: vertices in some

Hi, vertices in some T (Hi) and the rest of the vertices.

De�nition 2. For each Hi we let T (Hi) ⊆ V denote the subset of vertices that satisfy

the following conditions:

1. T (Hi) is disjoint from every Hj, i.e. T (Hi) ⊆ V \
⋃t
j=1Hj.

2. There exists a path from each vertex in T (Hi) to some vertex in Hi.

3. Any path from u ∈ T (Hi) to v /∈ T (Hi) must pass through a vertex in Hi.

Using this de�nition, the following claim easily follows.

Claim 3. T (Hi) and T (Hj) are disjoint for any i 6= j.

Proof: To verify this, assume in contradiction that there is some u ∈ T (Hi)∩T (Hj).

By De�nition 2, there is a path P ′ from u to Hi and u /∈ Hi. Let us denote by v

the �rst vertex on the path P ′ which belongs to either Hi or Hj. Without loss of

generality, we assume that v ∈ Hi. According to our de�nition of T (Hj) , any path

from u to v must go through a vertex in Hj, in contradiction to our de�nition of v.

A similar argument holds if v ∈ Hj.

De�nition 3. An edge (u, v) ∈ E is called an exit edge from Hi if u ∈ Hi and

v /∈ Hi ∪ T (Hi).

Notice that for an exit edge (u, v) from Hi, it can't hold that v is in any T (Hj).

By our de�nition v /∈ T (Hi) and there is a path from v to Hi not going through any

Hj 6= Hi. We illustrate De�nitions 2 and 3 in Figure 3.1.

14

T (H1)

H1 H2 T (H2)

Figure 3.1: A case in which H is a k-path with k = 4. The dashed

rectangles denote the classi�cation of di�erent subsets of vertices in

the graph and the bold edges are the exit edges

Lemma 4. If u belongs to Hi that has at most ξ exit edges and such that |T (Hi)| ≤ 4h
ε

, then Local-Find-H(∅, h+ 4h
ε
, u, ξ̂) with ξ̂ ≥ ξ returns True with probability 1

Proof: Let us denote U ′ , Hi

⋃
T (Hi). Note that u ∈ U ′ and since there are at

most ξ exit edges leading out of Hi, it follows that |N(U ′)| ≤ ξ. Therefore we can

simply use Lemma 1 with U = U ′.

3.4 Cycle Free Graphs

In what follows, we consider the case that G is cycle-free. We start by describing the

algorithm we use for �nding H in cycle-free graphs that are ε-far from being H-free.

Algorithm 2. Test-H-Freeness-Cycle-Free(ε)

1. Repeat the following O(1/ε) times.

(a) Uniformly select a vertex u in G.

(b) Call Procedure 1 with u, ξ = 2 and B = h + 4h
ε
. If Procedure 1 returned

True, the algorithm rejects.

15

2. If no iteration caused rejection, accept the graph.

Our algorithm for testing H-freeness performs O
(
h2

ε3

)
queries. Also, it rejects

the graph G only if it found some copy of H in it, so it indeed has one-sided error.

We wish to establish the following theorem.

Theorem 1. If G is cycle-free and ε-far from being H-free, then Algorithm 2 �nds

a copy of H in G with high constant probability.

Before showing this, we need a few more claims. We now give an upper bound

on the number of exit edges from a majority of the subgraphs Hj.

Lemma 5. At least half of the sets {Hi}ti=1 have at most two exit edges

Proof: Consider the graph G′ constructed by removing from G the set of vertices

which appear in
⋃t
j=1Hj and

⋃t
j=1 T (Hj), along with the edges incident to them.

We denote by {Cj}sj=1 the set of connected components in G′. Note that by the

de�nition of connected components, there is no edge between any vertex in Ci and

any vertex in Cj for i 6= j.

We construct an auxiliary graph GC which has t+ s nodes {uHj}tj=1 ∪ {uCj}sj=1.

We add an edge between uA and uB if there is an edge e ∈ E(G) between some

vertex in A and some vertex in B. Note that because the vertices in any set Cj are

connected in G and so are the vertices in any Hj, a cycle in GC must correspond to

a cycle in G. Therefore the graph GC is also a forest. Furthermore, there is no edge

between uCi and uCj for any i 6= j, by the de�nition of connected components.

Any exit edge from Hi in G corresponds to an edge in GC incident to uHi . Say

(u, v) is some exit edge from Hi. This means that v /∈ Hi and v is not in any T (Hj),

so v must belong to some Hj or Cj. Hence, (u, v) corresponds to the edge between

uHi and uHj or uCj . The opposite implication also holds. Any edge in GC incident to

some uHi corresponds to an exit edge from Hi. Therefore, the number of exit edges

from Hi is equal to the number of edges in GC incident to uHi .

Let G′C be the graph obtained from GC by removing all isolated nodes. This does

not a�ect the number of edges in GC . As we mentioned above, uCi is not connected

to any uCj . So if uCi was not removed from GC , this means it must have at least one

neighbor uHj . But if it only has one neighbor, according to our de�nition of T (Hj),

it must mean that Cj ⊆ T (Hj), in contradiction to the de�nition of Cj. It follows

that any uCj remaining in G′C must have degree of at least 2.

16

The average degree of nodes in a tree is less than 2. This implies that the average

degree of the nodes uHj is also less than 2. Therefore at least half the nodes uHj
have degree at most 2. This means that at least half the subgraphs Hj have at most

2 exit edges.

From now on we only consider copies of H that have at most two exit edges.

Assume, without lost of generality, that these are the �rst copies of H in the union⋃
iHi. That is, they are H1, H2, ..., Ht′ where t

′ ≥ εn
2h
. The number of vertices in the

union of these copies of H is at least εn
2
because they are disjoint.

Lemma 6. At least half of the sets H1,H2,...,Ht′ satisfy |T (Hi)| ≤ 4h
ε

Proof: We assume contrary to the claim that for at least half of the subgraphs

it holds that |T (Hi)| > 4h
ε
. Since there at least εn

2h
such subgraphs, and since the

sets T (Hi) are disjoint, we will get a contradiction because this means that there are

more than εn
4h

4h
ε

= n vertices in the graph.

We are now ready to show Theorem 1.

Proof of Theorem 1: Using Lemmas 5 and 6 we now know that there are at least
εn
4h

disjoint copies of H taken from the original sets Hi, for which there are only two

exit edges and T (Hi) is of size at most 4h
ε
. This means that there at least εn

4
vertices

that belong to the union of these sets. Using Lemma 4, we know that if we execute

Procedure 1 starting from one of these vertices u with ξ = 2, we will surely �nd the

copy of H which contains u. Since we perform the procedure O(1
ε
) times during our

algorithm, each one from a randomly chosen start veretx, we have high probability

of �nding some copy of H.

3.5 Bounded-Treewidth Graphs

Algorithm 2 can be adapted to �nd, with high probability, any �xed subgraph H in

G given that G is ε-far from being H-free and has constant treewidth w. The only

modi�cation to the algorithm is that we will apply Procedure 1 with a number of

exit edges that is polynomial in w and a larger value of B (but still polynomial in ε,

h and d).

Algorithm 3. Test-H-Freeness-Bounded-Treewidth(ε, w)

1. Repeat the following O(1/ε) times.

17

(a) Uniformly select a vertex u in G.

(b) Call Procedure 1 with u, ξ = 2(w + 1) and B = O
(
d5wO(w) log(d/ε)

ε3

)
. If the

call returned True, the algorithm rejects.

2. If no iteration caused rejection, accept the graph.

Algorithm 3 makes O
(
B2(w+1)/ε

)
queries, which is polynomial in ε, d and h for

constant values of w. We wish to show the following theorem.

Theorem 2. If G is ε-far from being H-free and has treewidth w, then Algorithm 3

�nds a copy of H in G with high constant probability.

In order to show that the algorithm indeed �nds a copy of H in our case, we use

the following de�nition and claim from [EHNO11].

De�nition 4 (De�nition 2 in [EHNO11]). Let G = (V,E) be a graph. A subset of

vertices S ′ ⊆ V is a neighborhood of v in G if v ∈ S ′ and the subgraph induced by

S ′ is connected. We say that S ′ is an (m, δ, c)-isolated neighborhood of v if S ′ is a

neighborhood of v in G, |S ′| ≤ m, |N(S ′)| ≤ c and |N(S′)|
|S′| ≤ δ.

Proposition 3 (Lemma 4 in [EHNO11]). Let G be a graph with treewidth bounded

by w. For any ε′, δ there exists a function g : V → 2V with the following properties:

1. For all v ∈ V , v ∈ g(v).

2. g(v) is connected.

3. There are at least (1−ε′/20)n vertices in G such that g(v) is an (m′, δ, 2(w+1))-

isolated neighborhood of v, with m′ = 28860d3(w+1)5

δε′2
.

As mentioned before, Edelman et al. [EHNO11] designed a partition oracle whose

complexity is polynomial in d and ε for the class of bounded treewidth graphs (assum-

ing constant treewidth w). The oracle is based on a global partitioning algorithm,

which accesses the whole graph, and the oracle emulates this algorithm locally. We

show that if the global partitioning algorithm �nds a partition with at most εn

edges between parts, then this partition has a certain property that ensures that our

algorithm �nds a copy of H with high probability. Since the global partitioning algo-

rithm presented in [EHNO11] has positive success probability (when the graph has

treewidth bounded by w), such a partition must exist. This algorithm is described

in the proof of the following lemma.

18

Lemma 7. If G has treewidth w, then there exists a partition P of G with the

following properties.

1. There are at most εn/4 edges between di�erent parts in P .

2. There exists a set of vertices U such that |U | ≥ (1− ε/80)n. Each vertex in U

belongs to a part Pi for which there exists a set S ′ ⊆ V with |N(S ′)| ≤ 2(w+1),

|S ′| ≤ m and Pi ⊆ S ′. m is of size O(d
5wO(w) log(d/ε)

ε3
).

Proof: Algorithm 3, described in [EHNO11], attempts to construct a global parti-

tion of a graph G. The algorithm is given as input the treewidth w and the parameter

ε′. In the proof of Theorem 1 in [EHNO11] it is shown that the parts in this parti-

tion are relatively small and that if G has treewidth w, then the algorithm has high

constant probability of outputting a partition such that the total number of edges

between parts is at most ε′n.

The algorithm works by iterating over the vertices in a random order and building

the di�erent parts while doing so. For each vertex v, if v is not already contained in

some part of the partition, then the algorithm attempts to �nd an (m, δ, 2(w + 1))-

isolated neighborhood of v (using a deterministic algorithm similar to our Procedure

1), which we denote by S ′. If v does not have such a neighborhood, S ′ is set to

{v}. The algorithm then extracts, as a new part, the subset of vertices S̃ ⊆ S ′ that

are not already in some part in the partition. Note that S̃ might contain several

connected components, in that case each of these components will be a di�erent

part in the partition. The parameters m and δ are chosen so that Proposition 3

applies, implying that almost all vertices (except for an O(ε′) fraction of them)

have an (m, δ, 2(w+ 1))-isolated neighborhood. Speci�cally, m = O
(
d5wO(w) log(d/ε′)

ε′3

)
and δ = ε′

100·(2w+3)!·(1+logm+log(2w+3))
. We set ε′ = ε/4, so that there must exist some

partition P , produced by the algorithm, with at most εn/4 edges between parts. From

this point on, for the sake of succinctness, we use the shorthand isolated neighborhood

when referring to an (m, δ, 2(w + 1))-isolated neighborhood.

As we described above, a new part is built in the algorithm by taking some

isolated neighborhood of v (if such a neighborhood exists), denoted S ′, and extracting

the subset of vertices in S ′ that are not already contained in some part previously

constructed. The subset of extracted vertices constitutes the new part in the partition

(there might be more than one connected component in this subset, in that case each

component de�nes a di�erent part). Note that, by de�nition, S ′ is also an isolated

19

neighborhood of any other vertex in S ′. Therefore, for any v ∈ V that has an isolated

neighborhood in G, the part that v belongs to in P is a subset of some isolated

neighborhood that v belongs to. The parameters in the algorithm are chosen so that

|S ′| = O
(
d5wO(w) log(d/ε)

ε3

)
. Since S ′ is an (m, δ, 2(w + 1))-isolated neighborhood, by

de�nition |N(S ′)| ≤ 2(w + 1). Furthermore, the parameters are chosen such that

Proposition 3 applies, so we know there are at most εn/80 vertices that do not have

such an isolated neighborhood (actually, even less than that because of details in the

proof appearing in [EHNO11]).

We are now ready to prove Theorem 2.

Proof of Theorem 2: By Lemma 7, there exists a partition P of G with the

two properties stated in the lemma. For the sake of the analysis, consider removing

all edges between parts and all edges incident to vertices in V \ U . In this process

we remove at most εdn/2 edges from the graph, so the resulting graph G′ is at least

ε/2-far from being H-free. Using Claim 2, at least εn/2 vertices in G′ belong to some

copy of H. We denote this set of vertices by U ′. Since there are no edges incident to

vertices in V \ U , all these vertices also belong to U , i.e. U ′ ⊆ U . By the de�nition

of U , every vertex in U ′ belongs to a part which is a subset of some set S ′ of size at

most m and it holds that |N(S ′)| ≤ 2(w + 1). There are no edges between parts in

G′, so every copy of H must be completely contained in some part of the partition

and therefore also contained in some S ′. Using Lemma 1, we know that if we perform

our procedure on G starting at any vertex in U ′, with ξ = 2(w + 1) and B = m,

we would �nd that copy of H. After executing Procedure 1 O(1/ε) times, we �nd a

copy of H with high probability.

20

4 Random DFS Walks for Finding k-

Paths

In this section we focus on the case in which H is a k-path. Our original goal was

to design and analyze an algorithm whose query complexity is poly(k, d, 1/ε), which

works for all graphs with degree bound d. We were not able to accomplish this goal,

but we have made some progress, presented in this section.

We start by presenting a property of a DFS search when it is executed to �nd

k-paths. We then present an algorithm that searches for k-paths, based on random

DFS walks. After that we provide a framework for a proof that this algorithm indeed

�nds k-paths with high probability in graphs which are ε-far from being k-path

free, conditioned on a conjecture regarding random DFS walks. We establish this

conjecture for the speci�c case of cycle-free graphs. This gives us another algorithm

for �nding k-paths in cycle-free graphs which are ε-far from being k-path free, and

also servers as a sanity check for the viability of the conjecture.

Finally, we prove the necessity of randomness in the DFS walks. We show this

by constructing a graph that is ε-far from being k-path free, such that performing

speci�c non-random DFS walks on it requires relatively many steps for �nding a

k-path.

4.1 Small Cuts Property

Recall that a vertex cut is a set of vertices whose removal from G renders G dis-

connected. Our starting point is a property of the DFS search that states that if

such a search did not �nd any k-path, then there is a relatively small vertex cut S ′

separating the vertices visited during the DFS, S, from the rest of the graph. In

other words, the vertex cut S ′ is a set of vertices whose removal from G renders the

21

set of vertices S \ S ′ disconnected from the rest of the graph. The following lemma

describes this property.

Lemma 8. If a DFS search on a connected bounded degree graph G = (V,E) which

visited a set of vertices S did not �nd a k-path, then there exists a subset S ′ ⊆ S

such that N(S \ S ′) ⊆ S ′ and |S ′| < k.

Proof: The DFS holds a stack of vertices S ′ that were visited during the search

but were not backtracked from. Every vertex v ∈ S \ S ′ was visited during the DFS

search and backtracked from. Therefore, all of the edges incident to v were traversed.

This means that every vertex in S \ S ′ only has edges connecting it to S, implying

that N(S \ S ′) ⊆ S ′. The set S ′ contains the vertices in the DFS stack, that were

not backtracked from. Because the graph is connected, these vertices are connected

by a path, following the order in which they were visited by the DFS. Since the DFS

did not discover a k-path, it follows that |S ′| < k.

In other words, if the DFS search failed to �nd a k-path while visiting s vertices,

then it found a set S̃ = S \ S ′ such that |S̃| > s − k and |N(S̃)| < k. Note that S̃

might not be connected. Also, since the graph is degree bounded by d, there are at

most dk edges connecting vertices in S with vertices in V \ S.

4.2 The Algorithm

We wish to use Lemma 8 in order to de�ne a su�cient condition for proving that a

random DFS based algorithm �nds evidence of a k-path with high probability in a

graph which is ε-far from being k-path free.

Algorithm 4. Test-k-Path-Freeness(ε, k, d, s, α)

1. Uniformly select a set of q = 128s
ε

vertices in G, denoted Y .

2. For each vertex in Y , perform p = s
kα

random DFS walks, each visiting a total

of s vertices. If the subgraph induced by the vertices visited in any of these

walks contains a k-path, reject the graph. Otherwise, accept it.

The query complexity of the algorithm is O
(
s3

εαk

)
, where α and s are two param-

eters of the algorithm. When executing the algorithm, the parameter s will be chosen

to be polynomial in ε, k and d and α will be a constant. We will also sometimes use

22

p(ε, k, d) and q(ε, k, d) as both of these are functions of s. Notice that as before, since

the algorithm has one-sided error, we only need to show that with high probability

it will �nd evidence of a k-path in a graph that is ε-far from being k-path free. First,

we give a de�nition for an �easy" vertex and another de�nition which we will also

use shortly.

De�nition 5. Let v be a vertex in a graph G. We will say that v is an easy vertex, if

a random DFS starting from v and visiting a total of s(ε, k, d) vertices �nds a k-path

with probability higher than 1/p(ε, k, d)

De�nition 6. Let v be a vertex in a graph G. We denote by DFSs(v) the random

variable whose value is the set of vertices visited in a random DFS, for s steps,

starting from v. We will make a slight abuse of notation and also use it as a function

of a randomly chosen vertex, i.e. DFSs(u) where u is chosen randomly from the set

of vertices of a graph.

We denote by U the subset of vertices in G that are easy. Notice that if |U | ≥
c|V |/q(ε, k, d), for a constant c, then with high probability our algorithm will sample

a vertex v ∈ U . Thus, by the de�nition of U , one of the p walks performed starting

at v will �nd a k-path with high probability. In this case our algorithm will �nd

evidence of such a path with high probability. Hence we only need to handle the

case in which |U | < c|V |
q(ε,k,d)

≤ εn
16s

, for a large enough constant c. We now show a

lemma that holds if this is indeed the case.

Lemma 9. Suppose that the following conditions hold for a graph G:

1. Algorithm 4 �nds a copy of a k-path with probability less then 2/3.

2. There exists a setW = {u1, u2, ..., uw} of vertices in G, such that |W | = w = εn
8k

and with probability at least α, it holds that |
⋃w
i=1DFS

s(ui)| ≥ εn/16.

Then G is ε-close to being k-path free.

Proof: We assume that the conditions described in the lemma hold. Let W =

{u1, u2, ..., uw} be as de�ned in Item 2 of the lemma and observe that the random

variables DFSs(ui) are independent. Suppose we perform a single random DFS walk

DFSs(ui) from each vertex ui ∈ W . We assume, without lost of generality, that the

�rst w′ vertices u1, u2, ..., uw′ in the set W are non-easy vertices. By De�nition

23

5, a DFS starting at a non-easy vertex has probability at most 1/p of �nding a k-

path. Therefore, the expected number of DFS walks, starting from non-easy vertices,

which contain a k-path, is bounded by w′/p ≤ εn
8kp

. Using Markov's inequality, the

probability that there will be more then εn
4kαp

such DFS walks is bounded by α/2. In

other words, with probability at least 1− α/2 there will be at most εn
4kαp

DFS walks

in {DFSs(u1), DFSs(u2), ..., DFSs(uw′)}, which contain at least one k-path.

Since the probability that |
⋃w
i=1DFS

s(ui)| ≥ εn/16 is at least α, there must be

at least one set of DFS walks that both cover almost the entire graph and have at

most εn
4kαp

walks, starting from non-easy vertices, which contain at least one k-path.

We will now look at one of these sets of DFS walks and show how we use it to make

the graph k-path free by removing less than εdn edges. We denote this �xed set

of DFS walks by S(ui)
def
= DFSs~ri(ui), where ~ri is the vector of choices indicating

which edge to traverse in each step of the DFS walk. Note that S(ui) is not a

random variable. It holds that |
⋃w
i=1 S(ui)| ≥ εn/16 and at most εn

4kαp
of the sets

S(u1), S(u2), ..., S(uw′) induce a subgraph in G which contains a k-path.

For the sake of the analysis, consider removing all edges incident to vertices not

in
⋃w
i=1 S(ui). Since there are at most εn/16 such vertices, we will need to remove

at most εdn/16 edges. Next, for each DFS walk S(uj) which contains a k-path, we

remove all edges incident to vertices in S(uj). Since |S(ui)| = s for all i, we will

need to remove at most sd edges for each S(uj) that contains at least one k-path.

There are at most εn
4kαp

sets S(uj), starting from a non-easy vertex uj, which contain

a k-path. Also, in the entire graph there are at most εn
16s

easy vertices. Therefore,

we will remove at most εdns
4kαp

+ εdn
16

edges. By choosing 1/p ≤ kα
s
we get that we need

to remove at most 5εdn/16 edges.

Now, we are only left with edges incident to vertices that belong to at least one

S(ui), such that S(ui) does not contain any k-path. We denote these DFS walks by

Z = {S(ui1), S(ui2), ..., S(ui`)}. Using Lemma 8, we know that each S(ui) de�nes an

edge-cut with at most kd edges, which separates S(ui) from the rest of the graph.

Every DFS walk S(uj) ∈ Z does not contain any k-path, so after removing the edge

cut separating S(uj) from the rest of the graph, for each S(uj) ∈ Z, the resulting

graph will be k-path free. Since |Z| ≤ εn
8k
, we need to remove at most εdn/8 more

edges to have the graph completely k-path free.

We made the graph k-path free by removing less than εdn edges, hence it is closer

than ε to being k-path free.

We now present a conjecture regarding random DFS walks which, if proven to be

24

correct, is enough to establish that Algorithm 4 �nds a k-path in any graph that is

ε-far from being k-path free, given the correct choice of s (polynomial in ε, k and d)

and α (constant). There are also alternative possible conjectures to this that achieve

the same result.

Conjecture 10. For any connected graph G that is ε-far from being k-path free and

vertex v ∈ V , if we uniformly choose a start vertex u, then Pr
(
v ∈ DFSs′(u)

)
≥

1
m(1/ε,k,d)

s′

n
where m(1/ε, k, d) is some polynomial.

The following lemma shows that if this conjecture is indeed true, there exist some

set of vertices as the one required for Lemma 9. Hence, Algorithm 4 works for general

graphs.

Lemma 11. Assume that Conjecture 10 holds. If we select a multi-set of vertices

W = {u1, u2, ..., ut} uniformly at random for t = εn
8k
, then |

⋃t
i=1DFS

s(ui)| ≥ εn/16

with high constant probability, for s = poly(ε, k,m).

Proof: If Conjecture 10 is true, then for each v ∈ V it holds that Pr
(
v ∈ DFSs′(u)

)
≥

s′

mn
for a uniformly chosen u. Therefore, it holds that

Pr

(
v /∈

t⋃
i=1

DFS(ui)

)
=

t∏
i=1

Pr (v /∈ DFS(ui)) ≤
(

1− s′

mn

) εn
2k

≤ e−
εs′

128km

By choosing s′ = s ≥ 128km1
ε

log 64
ε
we get that the expected number of vertices

not covered by these walks is at most εn/64 and using Markov's inequality we know

that with probability at least 3/4 we cover the entire graph except for at most εn/16

vertices.

4.3 Cycle Free Graphs

We now prove Conjecture 10 for cycle-free graphs and thus show that by executing

Algorithm 4 with correct parameters, one can �nd a k-path, with high constant

probability, in every cycle-free graph which is ε-far from being k-path free.

Lemma 12. Let G be a connected cycle-free graph. For any vertex v ∈ V , if we

randomly choose a start vertex u and perform a random DFS walk for s steps starting

at u, the probability of visiting v during the DFS is at least s
2d2n

.

25

Proof: Until this point, when we said that a DFS performs s steps, we meant that

it visits s distinct vertices. In this proof when we use the term DFS step we refer

to a transition made by the DFS from one vertex to another, including the steps

performed while backtracking from a vertex. Therefore, if a DFS performs s such

steps, it might visit less than s distinct vertices, but this only helps our argument.

Let us denote the sequence of vertices encountered during the random DFS walk

by
−−−→
DFS(u) = {X0(u), X1(u), ..., Xs(u)} where Xi(u) is the vertex the DFS search

encounters in its ith-step. In particular, X0 = u. We wish to lower bound the

probability of visiting v during the DFS walk, where the probability is taken over

the uniformly selected starting vertex u ∈ V and the vector of choices indicating

which edge to traverse in each step of the DFS walk, which we denote by ~r. i.e, we

seek a lower bound on Pr~r,u

[
v ∈
−−−→
DFS(u)

]
.

Notice that
−−−→
DFS(u) is a function of a random variable - the starting vertex

u, however we will make a slight abuse of notation and also use it as a func-

tion of a constant vertex (although it is still a random variable). There might

be duplicates in
−−−→
DFS(u) because the DFS backtracks to already visited vertices

during the search. We will also denote by
−−−→
DFSji (u) the sub-sequence of vertices

{Xi(u), Xi + 1(u), ..., Xj(u)}. Notice that:

Pr~r,u

[
v ∈
−−−→
DFS(u)

]
≥ 1

n

∑
u′∈V \{v}

Pr~r

[
v ∈
−−−→
DFS(u′)

]
=

1

n

∑
u′∈V \{v}

Pr~r [(v = X0(u
′)) ∪ (v = X1(u

′)) ∪ ... ∪ (v = Xs(u
′))]

=
1

n

∑
u′∈V \{v}

∑
1≤i≤s

Pr~r

[
(v = Xi(u

′)) ∩ (v /∈
−−−→
DFSi−10 (u′))

]
(4.1)

We need to bound the probability that a random DFS reaches v in the ith-step

and that it hasn't reached v before that. Similarly to the proof of Claim 6 in [Rez11],

we can build a one-to-one mapping between DFS walks starting at w and reaching

v for the �rst time in the ith-step, to DFS walks starting from v and reaching w

in the ith-step, without returning to v before that. Let us denote by D some DFS

starting from w and reaching v for the �rst time in the ith-step. Since the graph is

cycle-free, there is only one unique path connecting w to v. We denote this path by

P = 〈w = z1, ..., zq = v〉. The graph is cycle free, therefore any DFS from w reaching

26

v must traverse the edges of P while occasionally leaving the path. The DFS will

not stray from v, as D is de�ned as a DFS walk �rst reaching v in the last step. An

example of such a DFS is depicted in Figure 4.1.

w z2 z3 zq−1 v

Figure 4.1: An example of a DFS walk from w to v. The clouds

indicate a set of vertices to which the DFS strayed. Once it �n-

ishes visiting every vertex in the clouds, it backtracks and returns to

traversing P .

We construct the bijection M(D) of D by performing a DFS walk on the same

vertices as D, but starting from v and reaching w at the end, i.e traversing the edges

of P in the opposite direction. All other DFS steps will be the same in M(D) as

they were in D, except that we will �rst take stray walks from zq−1 (since we do not

stray from v), then from zq−2 and so on until we reach w, where again we will stray

just like the DFS walk D has. It is easy to see that M(D) is also an i-step DFS walk

and that it does not return to v before reaching w.

Almost all corresponding steps taken by D andM(D) have the same probability,

except for the last step taken in D (reaching v), which has no corresponding step

in M(D), and the �rst step taken in M(D) (leaving v). Therefore , it holds that
1
d
Pr~r(M(D)) ≤ Pr~r(D) ≤ dPr~r(M(D)). Using this and summing over all such DFS

walks D, it is easy to see that for any w ∈ V \ {v} it holds that:

1

d
Pr~r

[
w = Xi(v), v /∈

−−−→
DFSi−11 (v)

]
≤ Pr~r

[
v = Xi(w), v /∈

−−−→
DFSi−10 (w)

]
≤ d · Pr~r

[
w = Xi(v), v /∈

−−−→
DFSi−11 (v)

]
After substituting this in Equation (4.1) we get:

27

Pr~r,u

[
v ∈
−−−→
DFS(u)

]
≥ 1

2dn

∑
u′∈V \{v}

∑
1≤i≤s

Pr~r

[
u′ = Xi(v), v /∈

−−−→
DFSi−11 (v)

]
=

1

2dn

∑
1≤i≤s

Pr~r

[
v /∈
−−−→
DFSi1(v)

]

Since we assume the graph is connected and it's maximum degree is d, there

must be an edge connecting v to a vertex ũ, such that if we remove all edges incident

to v from G, ũ will belong to a connected set of at least n−1
d

vertices. Assuming

s < n−1
d
, if the DFS would choose this edge as the �rst edge to traverse, we know

that with probability 1 the DFS will not return to v in less than s steps. Therefore

Pr~r,u

[
v ∈
−−−→
DFS(u)

]
≥ s

2d2n

4.4 A Lower Bound For Deterministic DFS Walks

Algorithm 4, as well as one of the algorithms presented in [Rez11], is based on

selecting, uniformly at random, a set Y of vertices and for each u ∈ Y performing

a random DFS starting at u. If any of these walks �nds a k-path then the graph

is rejected, otherwise it is accepted. The property we presented in the previous

subsection holds for any DFS performed, and not necessarily a random DFS. We

were interested in the question of whether it is necessary that the DFS be random.

In this subsection, we present a speci�c cycle-free graph, which is ε-far from being

k-path free. We then show an ordering over the edges, such that if a deterministic

DFS (following the edge order) is executed starting at any vertex in the graph, the

number of steps performed before �nding a k-path will be exponential in k.

We assume that k is an odd number, however this is only for our convenience

and can easily be generalized. We also require that d(k + 1) < 1/ε. We construct

the graph in the following manner:

1. Let T be a full d/2-tree with depth k/4 and denote its root by r.

2. For each vertex v ∈ T , add k − 1 new vertices P (v) = {v1, v2, ..., vk−1}. Also,
add edges such that the vertices in P (v) ∪ {v} form a k-path, with v at the

center. That is, connect the path 〈v1, ..., v k−1
2
, v, v k+1

2
, ..., vk−1〉.

28

3. Construct a separate, full d/4-tree with depth k/8, denoted T ′, with it's root

also at r. Hence, every vertex in T ′ is new, except for the root r.

This graph is depicted in Figure 4.2.

r T ′T

v

v k+1
2

vk−1

v k−1
2

v1

k/4

k/8

Figure 4.2: The graph we construct for showing a lower bound in

the non-random DFS case. v is a vertex in T , depicted with edges

connecting it to other vertices in T . Also, v is the middle vertex in

the k-path 〈v1, ..., v k−1
2
, v, v k+1

2
, ..., vk−1〉.

Note that every vertex in the graph has degree less then d. The total number

of vertices in the graph is n = k|T | + |T ′| − 1 < (k + 1)|T |. There are |T | disjoint
k-paths in the graph, so one has to remove at least |T | edges to make the graph

k-path free. Therefore, the graph is at least 1
d(k+1)

-far from being k-path free. We

29

require d(k + 1) < 1/ε, hence it is also ε-far from being k-path free. We now select

the DFS steps performed, starting at each possible vertex in the graph:

1. For any starting vertex v ∈ T , the DFS will traverse the edges of T towards

the root, until it reaches r. Then it will start traversing T ′, in any order. We

only require that it does not leave T ′ until it covered T ′ entirely. Since T is of

depth k/4 and T ′ is of depth k/8, we will only �nd a k-path after completely

covering T ′.

2. For each vertex v ∈ T , if the DFS starts at a vertex in P (v), the search will

start by walking to v, traversing at most k/2 edges, and then perform the DFS

as if it started at v. Again, note that no k-path will be found before covering

T ′, since the maximum length of a path found until then is k/2+k/4+k/8 < k.

3. For each vertex v ∈ T ′, simply traverse T ′, and avoid leaving it until covering

T ′ entirely.

Notice that the di�erent DFS walks described above de�ne a single global ordering

over the edges, such that a DFS walk starting at any vertex in the graph follows this

ordering. A DFS starting at any vertex in the graph will have to cover T ′ entirely

before �nding a k-path, hence it will perform Ω
(
(d/4)k/4

)
steps before �nding a

k-path.

30

5 Further Observations

In this section we present a few additional approaches and ideas that we have encoun-

tered during our research. In the appendix we discuss another direction for proving

our conjecture, which involves some technical calculations.

5.1 Extending the Bijection for General Graphs

Notice that in the proof of Lemma 12, the only use we made of the fact that the

graph is cycle free was in the symmetric bijection between DFS walks from u to v

(reaching v for the �rst time in the last step) and DFS walks from v to u (which do

not return to v before reaching u). A natural approach would be to try and show

that such a bijection, or a similar one, exists for general graphs. The problem with

simply applying the original proof for general graphs is that a certain DFS walk

between u and v might not even be reversible as described in the proof of Lemma

12. Consider the case depicted in Figure 5.1.

u w v

x

1 3

2

Figure 5.1: DFS walk D, starting from u and reaching v. The edge

numbering indicates the order in which the edges were taken during

the walk. Notice that there may be other edges incident to the

depicted vertices (u, v, w, x). Also, the edge connecting x and u was

not traveresed during the walk, since when we reached x we had

already visited u.

The bijection we constructed for cycle-free graphs would attempt to map D to

the (illegal) DFS walk depicted in Figure 5.2.

31

v w u

x

31

2

Figure 5.2: M(D), starting from v and reaching u. The edge num-

bering indicates the order in which the edges were taken during the

walk. This is not a legal DFS walk, since when we reached x we were
not allowed to backtrack from it to w, because it has an incident edge

leading to u, and u was uncovered at that point.

5.1.1 Building a Bijection Between Sets of DFS Walks

An alternative approach one might take, would be to construct a bijection between

sets of DFS walks leading from u to v and sets of DFS walks leading from v to u.

Consider a DFS walk D in a connected graph G, leading from u to v, reaching v

in its last step. The DFS holds a stack of vertices, connected by a path, that were

visited during the DFS but were not backtracked from. We denote these vertices by

P (D) = (z1, ..., zq) where z1 = u and zq = v. We also denote by PR(D) the reversed

path, i.e., PR(D) = (zq, ..., z1). The walk D traverses the edges connecting (zi, zi+1)

for 1 ≤ i ≤ q − 1 while occasionally straying from the path P , and returning to it

afterwards. In each such excursion, an entire connected component (if we were to

remove P from the graph) was completely traversed and backtracked from. Let us

denote these components by C(D) = {C1, ..., Ct}.

Consider some components Ci. There is some vertex zj ∈ P , such that when

the walk D visited zj, it selected the edge connecting zj to a vertex in Ci. However,

note that there might also exist an edge between Ci and some vertex from the set

{z1, ..., zj−1}, which is what made our original bijection invalid for the general case.

We de�ne DFS(u, v, P, C) as the set of all DFS walks D from u to v, reaching

v for the �rst time in the last step, such that P (D) = P and C(D) = C. We also

de�ne DFSR(u, v, P, C) as the set of all DFS walks D′ from v to u, which do not

return to v before reaching u, such that P (D′) = PR and C(D′) = C. Our bijection

will map the set DFS(u, v, P, C) to the set DFSR(u, v, P, C).

Given the set DFS(u, v, P, C), one can construct DFSR(u, v, P, C) by �rst re-

versing P and getting PR = (zq, ..., z1). Then, the excursion to each Ci ∈ C must

take place from the minimal j such that zj is connected by an edge to some vertex

in Ci, since otherwise the DFS will not be legal. We denote by α(zj) the set of

32

edges leading from zj to some component in C, such that there is no edge from zk

with k < j to that component in C. The set DFSR(u, v, P, C) will contain every

permutation possible over the edges in α(zj), for every 1 ≤ j ≤ q. Each permutation

indicates the order in which the edges leading out of zk into sets in C are taken (there

might be multiple edges leading from zj to some Ci, the DFS will only take the �rst

of them occurring in the permutation). An example of the mapping is depicted in

Figure 5.3.

z1 z2 z3 z4 z5

C1

C2

z1 z2 z3 z4 z5

C1

C2

Figure 5.3: An example of a mapping between a single DFS from

z1 to z5 and a single DFS from z5 to z1. The bold edges indicate

edges actually taken by the DFS. Note that if, for example, there

were more edges connecting z4 and C2, there would have been more

possible DFS walks in the left �gure.

This bijection is indeed valid. However, it does not hold the main property

we need - that the sum over all probabilities of DFS walks in DFS(u, v, P, C) is

close (up to a polynomial factor) to the sum over all probabilities of DFS walks in

DFSR(u, v, P, C). Consider the case in which P = (z1, ..., zk−1), C = {C1, ..., Cd−2}
such that there are d− 2 additional edges incident to zk−2, connecting it to a vertex

in each Ci. Also, for each 1 ≤ i ≤ d− 2, there are d− 2 edges, each connecting zi+1

to some vertex in Ci. This is only possible if d + 1 < k. The set DFS(u, v, P, C)

contains DFS walks over P that stray from P when visiting zk−2. The sum over all

probabilities of DFS walks in DFS(u, v, P, C) is d−(d−1), because we need to avoid

taking any edge incident to zi, leading out of P , for i < k−2, and we need to traverse

all edges incident to zk−2, leading out of P , in some order, before moving to zk−1. On

the other hand, the set DFSR(u, v, P, C) holds DFS walks, such that the excursion

to Ci is taken from the vertex zi+1. The sum over all probabilities of DFS walks

33

in DFSR(u, v, P, C) is 1
d

(
1− 1

d

)d−2
> 1

2de
since we need to avoid straying from PR

when visiting zk−2, and then take some edge leading to Ci when visiting zi+1 before

moving on to zi.

5.2 An Auxiliary Graph for Analyzing Random DFS

Walks

We would have liked to better understand properties of random DFS walks. As we

mentioned in the introduction, we were unable to �nd previous work on random DFS

walks. A tool one might use, is to model the random DFS walk as a �nite Markov

chain M = (X0, ..., Xk). A state in the state space S of this chain is a pair (~v, I)

where ~v is a vector of length 0 ≤ |~v| ≤ n, with elements which are vertices in the

graph (without repetitions in the vector), and I ⊆ E. ~v represents the sequence

of vertices that were visited during the DFS walk and not yet backtracked from. I

are edges incident to vertices in ~v that were already taken during the DFS walk, or

leading to vertices that were already visited during the DFS. The vertex at position

i in ~v, ~vi, is the i
th vertex in the stack that the DFS keeps, which holds vertices that

were not backtracked yet from.

The initial state would be X0 = (~v, I) = (∅, ∅). The transition probability be-

tween two states Pr [Xi = (~v, I) | Xi−1 = (~v′, I ′)] would be:

1. 0 if it impossible to change from state Xi−1 to Xi in a single step.

2. 1 if all edges incident to ~v′|~v′| appear in I
′ and Xi is the next appropriate state.

3. 1 over the number of edges incident to ~v′|~v′| which do not appear in I ′ otherwise

One can now use methods for analyzing Markov chains, in order to understand

properties of random DFS walks. For instance, the probability of being at a vertex u

during the ith-step of the DFS would be
∑

(~v,I)∈S,~v|~v|=u Pr [Xi = (~v, I)]. Note that we

are interested in walks that �nd k-paths, so it might be helpful to limit the length

of the vector ~v to k − 1, since otherwise we already found a k-path.

34

5.3 Partition Oracle for Graphs Without k-Paths

As we discussed in the introduction, there has been work done on designing partition

oracles for various families of graphs, and in particular, graphs with an excluded

minor. We noted in Subsection 1.4.1 that a quasi-polynomial partition oracle was

given for graphs with an excluded minor in [LR13]. It is still unknown whether

there exists a partition oracle for graphs with an excluded minor, which only makes

a polynomial number of queries.

A problem one might consider is of designing a partition oracle for graphs without

a k-path minor. As we explained in Subsection 1.6.1, this is equivalent to designing a

partition oracle for graphs without a k-path as a subgraph. The question that arises

is whether it is possible to build a partition oracle that makes a polynomial number

of queries (assuming constant k) for this particular family of excluded minors. This

is similar to work done in [EHNO11] for graphs with constant tree-width.

Recall the partition oracle given in [EHNO11], that we explained in Subsection

3.5. One approach that we considered, is making a small variation in the procedure

used in [EHNO11] for �nding an isolated neighborhood of a vertex v, while keeping

the rest of the algorithm the same as in [EHNO11]. An isolated neighborhood of a

vertex v is, intuitively, a connected subset of vertices that contains v and has a small

vertex cut separating it from the rest of the graph. As we have shown in Lemma

8, if the graph G has no k-path, then the DFS we perform also �nds a small vertex

cut seperating almost all of the vertices visited during the DFS from the rest of the

graph. So it is tempting to simply replace the procedure used in [EHNO11] with

performing a DFS walk (even a deterministic one). However, the problem that arises

is that when we perform a DFS walk starting at v, the subset of vertices found with

a small vertex cut might not contain v. Also, it might not be connected. Thus, it is

unclear how to �nd an isolated neighborhood of v in a graph that is k-path free.

35

References

[ABLS07] N. Alon, I. Benjamini, E. Lubetzky, and S. Sodin. Non-backtracking ran-

dom walks mix faster. Communications in Contemporary Mathematics,

(9):585�603, 2007.

[BB73] U. Bertel and F. Brioschi. On non-serial dynamic programming. Journal

of Combinatorial Theory, pages 137�148, 1973.

[BSS08] I. Benjamini, O. Schramm, and A. Shapira. Every minor-closed property

of sparse graphs is testable. Proceedings of the Fourtieth Annual ACM

Symposium on the Theory of Computing, pages 393�402, 2008.

[CGR+12] A. Czumaj, O. Goldreich, D. Ron, C. Seshadhri, A. Shapira, and

C. Sohler. Finding cycles and trees in sublinear time. Random Structures

and Algorithms, pages 139�184, 2012.

[EHNO11] A. Edelman, A. Hassidim, H. N. Nguyen, and K. Onak. An e�cient par-

titioning oracle for bounded-treewidth graphs. Proceedings of RANDOM,

pages 530�541, 2011.

[GGR98] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its con-

nection to learning and approximation. JACM, pages 653�750, 1998.

[GR97] O. Goldreich and D. Ron. Property testing in bounded degree graphs.

Proceedings of the 29th Annual ACM Symposium on the Theory of Com-

puting, pages 406�415, 1997.

[HKNO09] A. Hassidim, J. A. Kelner, H. N. Nguyen, and K. Onak. Local graph

partitions for approximation and testing. Proceedings of FOCS, pages

22�31, 2009.

36

[LR13] R. Levi and D. Ron. A quasi-polynomial time partition oracle for graphs

with an excluded minor. ICALP, pages 709�720, 2013.

[Rez11] A. Reznik. Finding k-paths in cycle-free graph. Master's thesis, Weiz-

mann Institute of Science, 12 2011.

[RS84] N. Robertson and P. D. Seymour. Graph minors iii: Planar tree-width.

Journal of Combinatorial Theory, pages 49�64, 1984.

[RS96] R. Rubinfeld and M. Sudan. Robust characterization of polynomials with

applications to program testing. SIAM Journal on Computing, pages

252�271, 1996.

37

A Iterative Approach

In Lemma 12 we've shown that in the case of cycle free graphs, if we perform a DFS

walk for s steps starting from a uniformly chosen vertex, then the probability of

�nding any given vertex in the graph is at least s
p(d)n

where p(d) is a polynomial in

d. An approach one might take, for general graphs, is showing this iteratively. We

know that this property holds for trees, so by showing that after adding each edge

the lower bound on the probability of reaching a vertex in the graph isn't rapidly

decreasing, we might hope to prove this for general graphs. We �rst introduce the

following de�nition.

De�nition 7. For a vertex v in G = (V,E) its neighborhood of depth s′ is the set of

vertices of distance at most s′ from v, i.e., N s′(v) = {u ∈ V | dist(u, v) ≤ s′}.

For a graph G = (V,E), we start by looking at the �rst edge added to some tree

connecting all the vertices in the graph, spanned by the original edges E. In other

words, given some order on E, the �rst edge that creates a cycle in the graph.

First, we note that the proof for cycle free graphs can be extended to a more

general class of graphs. If it holds that for every vertex v ∈ V the subgraph induced

by N s(v) forms a tree, then Lemma 12 holds. This is easy to see by noticing that

any DFS walk visiting a vertex not in N s(v) will never reach v in s steps. Therefore,

one can obtain E ′ by removing from E any edge that is not in the subgraph induced

by N s(v), add new edges to E ′ such that the entire graph becomes a tree, and still

get the same probability of reaching v in a random DFS walk for s setps as it was in

G.

Following this observation, we actually only need to examine the �rst edge added

to the cycle-free graph which, for some vertex u, connects two vertices v, w for which

dist(u, v) + dist(u,w) < 2s. Actually, it can be proven that only edges connecting

two vertices of distance at most s from u are of interest to us.

38

We were not able to �nd an iterative proof for lower bounding the probability of

reaching a vertex in G, during a DFS walk for s steps. In the rest of this section,

we examine a few speci�c examples of cycle-free graphs that we looked at in order

to better understand the e�ect of adding an edge to them.

A.1 Chain Graph

We start by examining the simple case of a chain graph, i.e., G = (V,E) with

V = {v1, v2, ..., vn} and E =
⋃n−1
i=1 {(vi, vi+1)}. We consider an edge e = (vj, vk)

added to E and we are interested in calculating the change in the probability of

reaching the vertex vi in a random DFS walk. For simplicity, we assume that i, j, k

are all far enough from 1 and n (with respect to the size of s) so we don't have to

take into considerations the e�ect of reaching either ends of the chain during the

DFS walk. Before adding the edge, the probability of reaching vi during a random

DFS walk for s steps, starting at a uniformly chosen vertex, is:

Pr~r,u (vi ∈ DFS(u)) =
1

n
+

2s

2n
=
s+ 1

n

First, we handle the case in which i < j < k < i+ s. The probability of reaching

vi is now:

Pr~r,u (vi ∈ DFS(u)) =
1

n
+

s

2n
+
j − i− 1

2n

+
1

3n
+
k − j − 1

2n
+

2

3n

+
s− k + i

2n
+
k − j − 1

4n
=
s+ 1

n
+
k − j − 1

4n

Now, for the case i < j < i+ s < k < 2s+ 2i− j:

Pr~r,u (vi ∈ DFS(u)) =
1

n
+

s

2n
+
j − i− 1

2n

+
1

3n
+
s+ i− j

4n
+
s+ i− j − 1

4n

+
1

6n
+
s+ i− j − 1

4n
=
s+ 1

n
+
s+ i− j − 2

4n

Notice that this does not depend on k. In both cases, the probability of reaching

vi increased after adding an edge.

39

A.2 Full Tree Graph

We now examine the case of a full tree graph, where each vertex has d neighbors

(except for leaves) and we assume the degree bound is d + 1. During this analysis,

we avoid handling vertices near leaves (with respect to the size of s). For any vertex

v in the tree, there are d(d− 1)i−1 vertices of distance i from v and each such vertex

starting a DFS walk has probability 1
d(d−1)i−1 of reaching v during the walk. So the

probability of reaching v during a DFS walk for s steps starting at a uniformly chosen

vertex is s+1
n
. In the following analysis, we denote by ∆ the di�erence incurred in

the probability of reaching v as a result of adding an edge, i.e., the probability of

reaching v before we add the edge minus the probability after.

A.2.1 Adding an edge between a vertex and a descendant of

it

Consider adding an edge between a vertex vi at distance i from v and a descendant

of it vj of distance j from v. Also i < s and j < s. This case is depicted in Figure

A.1.

v

vi

vj

i

j − i

Figure A.1: Tree rooted at v, such that vj is a descendant of vi. We

add an edge connecting vi and vj, depicted as the curved edge

Notice that for each vertex in the graph, there are at most two possible paths

for reaching v: traversing the tree edges connecting the vertex to v, just as before,

40

and walking to vj, moving to vi using the newly added edge and walking towards v

using the tree edges. We sum over these paths seperately. If we look at the original

tree as if it was rooted at v, every vertex that is not a descendant of vi has the same

probability of reaching v. This is true because it can only reach v using the �rst type

of paths, and since this path does not include vi or vj, the probability remains the

same. So we actually only need to compare the probability of reaching v before and

after adding the edge from vertices in the subtree of vi. Let us denote this subtree

by Ti. Also, we will denote by vi+1 the vertex connected to vi which is on the path

connecting vi and vj.

We start by upper bounding the di�erence in the probability of reaching v before

and after adding the edge, indicating that the probability decreases and then we will

give an exact analysis of this case. Let us calculate the probability before we add

the edge. We are only interested in the subtree of vi, so we will denote by k the

distance of a vertex u from vi. The probability of reaching v after starting a DFS

at u is 1
d(d−1)i+k−1 and there are (d− 1)k vertices of distance k from vi. Therefore, it

holds that:

Pr~r,u (v ∈ DFS(u), u ∈ Ti) =
s−i∑
k=0

(d− 1)k

nd(d− 1)i+k−1
=

s− i+ 1

nd(d− 1)i−1

We next examine the two types of paths, after we add the edge:

1. For the �rst type of paths, the probability of reaching v from any vertex in Ti

decreases (if it was non zero to begin with). This is because the degree of vi

and vj increases. Notice that if we start the DFS from a descendant of vj, in

order to remain in the �rst type of path we must not take the newly added

edge connecting vj to vi when we visit vj, but on the other hand we don't

have the option of taking the edge from vi to vj because we already visited vj.

Similarly, if we start a DFS at a vertex in Ti which is not a descendant of vj,

we must not take the edge leading from vi to vj. Therefore, the probability of

reaching v using the �rst type of paths, starting at a vertex of distance k from

vi is
1

d2(d−1)k+i−2 . So the probability of reaching v if we start at a vertex in Ti,

41

using the �rst type of path, is:

s−i∑
k=0

(d− 1)k

nd2(d− 1)i+k−2
− 1

nd2(d− 1)i−2

+
1

n(d+ 1)(d− 1)i−1
− 1

nd2(d− 1)j−2
+

1

n(d+ 1)(d− 1)j−1

=
s− i+ 1

nd2(d− 1)i−2
+

1

nd2(d+ 1)(d− 1)i−1
+

1

nd2(d+ 1)(d− 1)j−1

Where the additional terms are added because we need to give special care for

vi and vj.

2. For the second type of paths, the analysis becomes a bit more complicated. A

vertex at distance k from vj will need to traverse k + 1 + i edges in order to

reach v using this type of paths, so we can examine all vertices of distance at

most s−i−1 from vj, i.e, look at the tree as if it was rooted at vj and sum these

probabilities for all vertices in the subtree composed of vertices with distance

at most s − i − 1 from vj. However, there are certain vertices in this subtree

for which this path is not possible: vi and any vertex u for which the path

connecting u to vj passes through vi. Additionaly, even for vertices for which

this path is possible, the probability of reaching vj is not always of the same

form. For most vertices of distance k ≥ 1 from vj, the probability of this path is
1

d3(d−1)k+i−2 because there are three vertices we visit during the walk for which

the probability of choosing the correct edge is 1/d: the start vertex, vj and

vi. However, there is a set of vertices for which this probability is 1
d2(d−1)k+i−1 ,

because if we already visited vi+1 during the walk, when we reach vi we will

have probability 1/(d− 1) of choosing the correct edge. This set of vertices are

the descendants of vi+1 which are not descendants of vi.

We upper bound the probability for these paths, by ignoring these two prob-

lems. We sum over all vertices of distance at most s − i − 1 from vj and we

will take the higher probability for each of them. We get that the probability

of reaching v using the second type of paths is:

42

s−i−1∑
k=1

(d− 1)k

nd2(d− 1)k+i−1
+

1

n(d+ 1)d(d− 1)i−1

=
s− i− 1

nd2(d− 1)i−1
+

1

n(d+ 1)d(d− 1)i−1

=
s− i

nd2(d− 1)i−1
− 1

nd2(d+ 1)(d− 1)i−1

Now if we take the original probability of reaching v, before adding the edge, and

subtract the new probability we get:

∆ ≥ s− i+ 1

nd(d− 1)i−1
− s− i+ 1

nd2(d− 1)i−2
− s− i
nd2(d− 1)i−1

− 1

nd2(d+ 1)(d− 1)j−1

=
s− i+ 1

nd2(d− 1)i−1
− s− i
nd2(d− 1)i−1

− 1

nd2(d+ 1)(d− 1)j−1

=
1

nd2(d− 1)i−1
− 1

nd2(d+ 1)(d− 1)j−1

It is easy to see that the probability decreases after we add the edge connecting

vi and vj. Actually, the probability decreases by much more, because the bound we

gave for the second type of paths is not tight at all.

In order to �nd the exact value of ∆, instead of a lower bound, we give an accurate

calculation for the second type of paths. As we have said, we are interested in vertices

at distance of at most s− i− 1 from vj. We will now look at the tree as rooted at vj.

With this outlook, we will not want to include in the sum the vertex vi or any vertex

which is a descendant of vi, because for these vertices this path is not possible. Also,

we will need to give special consideration to vertices which are descendants of vi+1

and not vi, because as we have mentioned before, for these vertices the probability

of the second type of paths is slightly higher. A vertex of distance k from vi+1 will

have to traverse k edges to reach vi+1, another j − i− 1 edges to reach vj and then

i + 1 edges for walking towards v. So we will be interested in vertices which are

decendents of vi+1, not vi, and of distance at most s − j from vi+1. Therefore the

43

exact calculation is now:

s−i−1∑
k=1

(d− 1)k

nd3(d− 1)k+i−2
+

1

n(d+ 1)d(d− 1)i−1
−

s−j∑
k=0

(d− 1)k

nd3(d− 1)k+j−3

+

s−j∑
k=1

(d− 2)(d− 1)k−1

nd2(d− 1)k+j−2
+

1

nd2(d− 1)j−2

=
s− i− 1

nd3(d− 1)i−2
+

1

n(d+ 1)d(d− 1)i−1
− s− j + 1

nd3(d− 1)j−3
+

(s− j)(d− 2)

nd2(d− 1)j−1
+

1

nd2(d− 1)j−2

=
s− i

nd3(d− 1)i−2
+

1

n(d+ 1)d(d− 1)i−1
− s− j + 1

nd3(d− 1)j−3
+

s− j + 1

nd2(d− 1)j−2
− s− j
nd2(d− 1)j−1

=
s− i

nd3(d− 1)i−2
+

1

n(d+ 1)d(d− 1)i−1
+

s− j + 1

nd3(d− 1)j−2
− s− j
nd2(d− 1)j−1

=
s− i

nd3(d− 1)i−2
+

1

n(d+ 1)d(d− 1)i−1
+

1

nd3(d− 1)j−2
− s− j
nd3(d− 1)j−1

So, again, if we subtract the new probability of reaching v, after adding the edge,

from the original probability, we get:

∆ =
s− i+ 1

nd(d− 1)i−1
− s− i+ 1

nd2(d− 1)i−2
− 1

nd2(d+ 1)(d− 1)i−1
− 1

nd2(d+ 1)(d− 1)j−1

− s− i
nd3(d− 1)i−2

− 1

n(d+ 1)d(d− 1)i−1
− 1

nd3(d− 1)j−2
+

s− j
nd3(d− 1)j−1

=
s− i+ 1

nd2(d− 1)i−1
− s− i
nd3(d− 1)i−2

+
s− j

nd3(d− 1)j−1

− 1

nd2(d+ 1)(d− 1)i−1
− 1

nd2(d+ 1)(d− 1)j−1
− 1

n(d+ 1)d(d− 1)i−1
− 1

nd3(d− 1)j−2

=
s− i

nd3(d− 1)i−1
+

s− j
nd3(d− 1)j−1

− 1

nd3(d− 1)j−2
− 1

nd2(d+ 1)(d− 1)j−1

It is easy to see that the probability of reaching v decreased after adding an edge

connecting vi and vj. The expression we have gotten for ∆ gave us some intuition

to the e�ect adding an edge has on the probability of reaching v. We thought that

one might be able to show that the probability of reaching v changes, as a result of

adding an edge, in an amount that is proportional to the probability of reaching v

during a random DFS while also visiting vi or vj.

44

A.2.2 Adding an edge between vertices with their least com-

mon ancestor at the root

We also examine the simpler case in which vi and vj are not descendants of one

another, but instead the path connecting them passes through v, i.e, their least

common ancestor in the tree rooted at v is v. We also assume i+ j ≥ s, as this is the

best case in our scenario, i.e, with the highest probability of reaching v. The reason

for this will become clear soon. This case is depicted in Figure A.2.

v

vivj

ij

Figure A.2: Tree rooted at v, such that vi and vj have v as their least
common ancestor. We add an edge connecting vi and vj, depicted as

the curved edge

Similarly to the case in which vj is a descendant of vi, the only original paths

for which the probability changes are paths from vertices which are descendants of

either vi or vj to v. For every other vertex the same path is still available and has

the same probability. Additionaly, after adding the edge, there are new DFS walks

possible: starting at a vertex of distance k ≤ s− i− 1 from vj, walking towards vj,

moving to vi and traversing to v. Of course, the same can be said by switching i and

j.

Again, we will denote descendants of vi by Ti and descendants of vj by Tj. Just

as before, the probability of reaching v with a DFS starting at Ti or Tj before we

add the edge is:

45

Pr~r,u (v ∈ DFS(u), u ∈ Ti)+Pr~r,u (v ∈ DFS(u), u ∈ Tj) =
s− i+ 1

nd(d− 1)i−1
+

s− j + 1

nd(d− 1)j−1

After we add the edge, the probability of the original paths is:

s−i∑
k=1

(d− 1)k

nd2(d− 1)i+k−2
+

1

n(d+ 1)(d− 1)i−1
+

s−j∑
k=1

(d− 1)k

nd2(d− 1)j+k−2
+

1

n(d+ 1)(d− 1)j−1

=
s− i

nd2(d− 1)i−2
+

1

n(d+ 1)(d− 1)i−1
+

s− j
nd2(d− 1)j−2

+
1

n(d+ 1)(d− 1)j−1

We calculate the probability of the new paths by looking at the graph as if it was

rooted at vi (respectively, vj). A vertex of distance k from vi will need to traverse k

edges to reach vi, take the newly added edge to vj and another j edges to reach v.

Since i+ j ≥ s this path is possible for any vertex of distance k ≤ s− j − 1 ≤ i− 1

from vi and the probability of such a path is 1
d3(d−1)k+j−2 . Therefore the probability

of the new paths is:

s−i−1∑
k=1

d(d− 1)k−1

nd3(d− 1)k+i−2
+

1

n(d+ 1)d(d− 1)i−1
+

s−j−1∑
k=1

d(d− 1)k−1

nd3(d− 1)k+j−2
+

1

n(d+ 1)d(d− 1)j−1

=
s− i− 1

nd2(d− 1)i−1
+

1

n(d+ 1)d(d− 1)i−1
+

s− j − 1

nd2(d− 1)j−1
+

1

n(d+ 1)d(d− 1)j−1

We now calculate the di�erence in the probability of reaching v: the probability

of reaching v before we add the edge minus the probability after.

46

∆ =
s− i+ 1

nd(d− 1)i−1
+

s− j + 1

nd(d− 1)j−1

− s− i
nd2(d− 1)i−2

− 1

n(d+ 1)(d− 1)i−1
− s− j
nd2(d− 1)j−2

− 1

n(d+ 1)(d− 1)j−1

− s− i− 1

nd2(d− 1)i−1
− 1

n(d+ 1)d(d− 1)i−1
− s− j − 1

nd2(d− 1)j−1
− 1

n(d+ 1)d(d− 1)j−1

=
s− i

nd2(d− 1)i−1
+

s− j
nd2(d− 1)j−1

+
1

n(d+ 1)d(d− 1)i−1
+

1

n(d+ 1)d(d− 1)j−1

− s− i− 1

nd2(d− 1)i−1
− 1

n(d+ 1)d(d− 1)i−1
− s− j − 1

nd2(d− 1)j−1
− 1

n(d+ 1)d(d− 1)j−1

=
1

nd2(d− 1)i−1
+

1

nd2(d− 1)j−1

Similarly to the previous case, in which the edge added connects two vertices such

that one is a descendant of the other, we showed that the probability of reaching v

during a random DFS decreases as a result of adding the edge connecting vi and vj.

However, in this case the amount by which the probability decreased is smaller, and

is only proportional to the probability of reaching v from vi or vj during a random

DFS.

A.2.3 Adding an edge between vertices with their least com-

mon ancestor at the root while preserving vertex de-

grees

One might consider our comparsion between the tree before adding the edge and the

tree after to be �unfair�, since we are comparing a graph of maximal degree d with

a graph of maximal degree d + 1. So instead we will now consider a graph which is

almost a full d-tree. Each vertex, which is not a leaf, will have d neighbors in the

tree, except for vi and vj which will have d− 1 neighbors in the tree. Also, vi and vj

will be connected by an edge.

Just like in the previous analysis, there are two possible types of paths: paths

which use only the tree edges, and paths which also use the edge connecting vi and

vj. As before, for any vertex which is not a descendant of vi or vj, the probability of

the path which uses only the tree edges is the same as it is in the full tree graph. The

probability of reaching v and starting at Ti or Tj, using only the tree edges, decreases

in the new graph because the subtrees Ti and Tj become smaller. It is now:

47

s−i∑
k=1

(d− 2)(d− 1)k−1

nd(d− 1)k−1(d− 1)i
+

s−j∑
k=1

(d− 2)(d− 1)k−1

nd(d− 1)k−1(d− 1)j

=
(s− i)(d− 2)

nd(d− 1)i
+

(s− j)(d− 2)

nd(d− 1)j

Note that for vi and vj the probability of the path using only the tree edges does

not change. Now, let us calculate the probability of paths using the edge connecting

vi and vj. We will now assume that i = j = 1, therefore only descendants of vi and vj

can use this edge, and not any vertex which is a predecessor of vi or vj. A vertex at

distance k from vi will need to traverse k edges to reach vi, take the edge connecting

it to vj and traverse an additional j edges. So we get:

s−i−1∑
k=1

(d− 2)(d− 1)k−1

nd(d− 1)k−1(d− 1)(d− 1)i
+

1

nd(d− 1)i

+

s−j−1∑
k=1

(d− 2)(d− 1)k−1

nd(d− 1)k−1(d− 1)(d− 1)j
+

1

nd(d− 1)j

=
(s− i− 1)(d− 2)

nd(d− 1)i+1
+

1

nd(d− 1)i
+

(s− j − 1)(d− 2)

nd(d− 1)j+1
+

1

nd(d− 1)j

We now calculate the di�erence in the probability of reaching v: the probability

of reaching v in the tree graph minus the probability of reaching v in this new, almost

tree graph.

48

∆ =
s− i

nd(d− 1)i−1
+

s− j
nd(d− 1)j−1

− (s− i)(d− 2)

nd(d− 1)i
− (s− j)(d− 2)

nd(d− 1)j

− (s− i− 1)(d− 2)

nd(d− 1)i+1
− 1

nd(d− 1)i
− (s− j − 1)(d− 2)

nd(d− 1)j+1
− 1

nd(d− 1)j

=
s− i

nd(d− 1)i
+

s− j
nd(d− 1)j

− (s− i− 1)(d− 2)

nd(d− 1)i+1
− 1

nd(d− 1)i
− (s− j − 1)(d− 2)

nd(d− 1)j+1
− 1

nd(d− 1)j

=
s− i

nd(d− 1)i+1
+

s− j
nd(d− 1)j+1

+
d− 2

nd(d− 1)i+1
− 1

nd(d− 1)i
+

d− 2

nd(d− 1)j+1
− 1

nd(d− 1)j

=
s− i− 1

nd(d− 1)i+1
+

s− j − 1

nd(d− 1)j+1

Like we have seen in the previous cases, the probability of reaching v decreased

after adding an edge connecting vi and vj. The amount by which it decreased seems

similar to the case in which we added an edge connecting two vertices, such that one

is a descendant of the other.

49

50

 תקציר

רחוק מלהיות G, כאשר Gבגרף Hגרף -בעבודה זו אנו חוקרים את הבעיה של מציאת עותק של תת
אנו בוחנים את הבעיה הזו במודל של גרפים חסומי דרגה. במודל זה, לכל . Hחסר עותקים של

שאילתות לגבי השכנים של לבצע מורשהשכנים והאלגוריתם dבגרף יש לכל היותר קודקוד
-אם יש להוריד יותר מ Hרחוק מלהיות חסר עותקים של -G 𝜖בגרף. נאמר כי הגרף הקודקודים

𝜖𝑑𝑛 מ צלעות-G על מנת שהוא יהיה חסר עותקים שלH.

 Hרחוקים מלהיות חסרי עותקים של -𝜖ם ינבגרפים שה Hאנו נציג אלגוריתם למציאת עותק של
, 𝜖/1-מספר שאילתות פולינומי ב מבצעהאלגוריתם שלהם חסום על ידי קבוע. Treewidth-ושה

. הסיבוכיות של האלגוריתם בלתי תלויה במספר הקודקודים dובחסם על הדרגה Hבגודל של
 .nבגרפים,

. האלגוריתם שלנו משתמש kהוא מסלול באורך Hבנוסף, נתאר אלגוריתם למקרה המיוחד בו

. הבעיה הזו נחקרה ע"י kבתכונות מסוימות של גרפים שרחוקים מלהיות חסרי מסלולים באורך
(. רזניק הציג אלגוריתם למקרה בו הגרף חסר 1122רזניק)עבודת מאסטר, מכון ויצמן, אביב

השערה, שאם תוכח, . אנחנו מציעים d-וב 𝜖 ,k/1-מעגלים והראה כי הסיבוכיות שלו פולינומית ב
עם kרחוק מלהיות חסר מסלולים באורך -𝜖גוררת כי האלגוריתם שלנו עובד על כל גרף שהוא

 הזו עבור גרפים חסרי מעגלים.הוכחנו את ההשערה . d-וב 𝜖 ,k/1-סיבוכיות פולינומית ב

 אביב-אוניברסיטת תל

 הפקולטה להנדסה ע"ש איבי ואלדר פליישמן

 סליינר-לתארים מתקדמים ע"ש זנדמןבית הספר

 גרפים בגרפים חסומי דרגה-חיפוש תת

 אוניברסיטה" בהנדסת חשמלחיבור זה הוגש כעבודת מחקר לקראת התואר "מוסמך

 על ידי

 יניב סבו

 העבודה נעשתה בבית הספר להנדסת חשמל

 במחלקה למערכות

 דנה רוןפרופ' בהנחיית

 זתשע" חשוון

 אביב-אוניברסיטת תל

 הפקולטה להנדסה ע"ש איבי ואלדר פליישמן

 סליינר-בית הספר לתארים מתקדמים ע"ש זנדמן

 גרפים בגרפים חסומי דרגה-חיפוש תת

 התואר "מוסמך אוניברסיטה" בהנדסת חשמלחיבור זה הוגש כעבודת מחקר לקראת

 על ידי

 יניב סבו

 זתשע" חשוון

