
Lecture Notes on Testing Monotonicity

Oded Goldreich∗

April 7, 2016

Summary: For each n, we consider functions from a partially ordered set Dn to a
totally ordered set Rn. Such a function f : Dn → Rn is called monotone if for every
x < y in Dn it holds that f(x) ≤ f(y), where < denotes the partial order of Dn and ≤
refers to the total order in Rn. We shall focus on two special cases:

1. Boolean functions on the Boolean Hypercube: In this case, Dn is the ℓ-dimensional
Boolean hypercube (with the natural partial order), where ℓ = log2 n, and Rn =
{0, 1}. According to this partial order, x1 · · · xℓ ≤ y1 · · · yℓ if and only if xi ≤ yi for
every i ∈ [ℓ].

2. Real functions on the discrete line: In this case, Dn = [n] and Rn = R, both with
the natural total order.

We shall later consider also the case of the hypergrid domain Dn = [m]ℓ, for any m, ℓ ∈ N

such that mℓ = n, and general ranges Rn. In all these cases, we obtain property testers
of complexity poly(ǫ−1 log n).

In addition, we briefly survey relatively recent developments as well as known results
regarding testing convexity, submodularity, and the Lipschitz property of functions from
[m]ℓ to R.

These notes are based on Goldreich et al. [11] (for case 1), Ergun et al. [7] (for case 2), and Dodis
et al. [6] (for their “interpoltaion”).

Notation: The Hamming weight of a sequence x ∈ [m]ℓ, denoted wt(x), is the number of locations
that hold a non-zero value; that is, wt(x) = |{i∈ [|x|] : xi 6=0}|.

1 Introduction

Leaving the land of algebraic functions behind us, we find the notion of a monotone function most
appealing. The definition of this notion presumes a partial order on the domain of the function
and a total order on its range. We say that f : D → R is monotone if, for every x, y ∈ D if x < y
(according to the partial order on D), then f(x) ≤ f(y) (according to the order on R).

The most natural partially ordered domains are the total order on the “line” [n] = {1, 2, ..., n}
and the partial order on the hypercube {0, 1}ℓ. Interpolating these two case, we consider the

∗Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel.

1

partial order on the hypergrid [m]ℓ, where (x1,, xm) < (y1, ..., ym) if xi ≤ yi for all i ∈ [m] and
(x1,, xm) 6= (y1, ..., ym).

We shall consider testing monotonicity in all these cases, both when the range is Boolean and
when it is arbitrary. In all cases, we shall consider pair tests, which are (non-adaptive) two-query
proximity-oblivious testers (POTs) that, when given orcale access to f : D → R, select a pair
(x, y) ∈ D2 such that x < y and accept if and only if f(x) ≤ f(y). The focus will be on choosing a
distribution on these pairs, and analyzing the detection probability of the resulting POT.

Organization. In Section 2 we consider the case of Boolean functions defined on the Boolean
Hypercube {0, 1}ℓ. Its core is Section 2.1, which provides a detailed analysis of a simple tester. An
alternative tester is reviewed in Section 2.2, but this part is merely an overview of advanced material
that is only meant for optional reading. In Section 3 we study the case of multi-valued functions on
the discrete line [n]; the core of this section is Section 3.1, whereas Section 3.2 presents additional
results that are not used elsewhere in this chapter. Lastly, in Section 4, we consider multi-valued
functions on the hybpergrid [m]ℓ, where generalizes the previous two cases.

2 Boolean functions on the Boolean Hypercube

We consider Boolean functions of the form f : {0, 1}ℓ → {0, 1}. Such a function f is called monotone

if for every x < y in {0, 1}ℓ it holds that f(x) ≤ f(y), where x1 · · · xℓ ≤ y1 · · · yℓ if and only if xi ≤ yi

for every i ∈ [ℓ] (and, indeed, x1 · · · xℓ = y1 · · · yℓ if and only if xi = yi for every i ∈ [ℓ]).
It is instructive to think of {0, 1}ℓ (with the above partial order) as a directed version of the

Boolean hypercube. The Boolean hypercube of dimension ℓ is a graph with vertex set {0, 1}ℓ and
edge set {{u, v} : wt(v⊕u) = 1}; that is, u is adjacent to v if and only if they differ on a single bit.
In the directed version, which we consider, the edge {u, v} is directed from the vertex of smaller
Hamming weight to the vertex with higher (by 1) weight.

2.1 The edge test

We show that the natural algorithm that selects uniformly an edge of the Boolean hypercube
and compares the values of the function at its end-points constitutes a relatively good proximity-
oblivious tester. Such an edge corresponds to a pair (x, y) such that x < y and x differs from y in
a single bit (i.e, wt(x⊕ y) = 1), and the algorithm accepts if and only if f(x) ≤ f(y). Specifically,
we refer to the following algorithm.

Algorithm 1 (testing whether f : {0, 1}ℓ → {0, 1} is monotone): Select uniformly v ∈ {0, 1}ℓ and
i ∈ [ℓ], query f at v and v⊕0i−110ℓ−i, and accept if and only if f is monotone on this pair; that is,
letting {x, y} = {v, v⊕0i−110ℓ−i} such that x < y, the algorithm accepts if and only if f(x) ≤ f(y).

Let Πn denote the set of monotone of Boolean functions over {0, 1}ℓ, where n = 2ℓ.

Theorem 2 (Algorithm 1 is a POT for monotonicity): Algorithm 1 is a (one-sided error) proximity
oblivious tester for Πn with detection probability δ/ℓ, where δ denotes the distance of the given
function from being monotone.

2

We comment that this analysis of Algorithm 1 is asymptotically tight in a strong sense: for every
α ∈ (exp(−Ω(ℓ)), 0.5), there exists a function f : {0, 1}ℓ → {0, 1} that is at distance δ ∈ [α, 2α] from
being monotone such that Algorithm 1 rejects f with probability 2δ/ℓ (see [11, Prop. 4, Part 1]).

Proof: Algorithm 1 accepts each monotone function with probability 1, since the set of all possible
executions check conditions that are a subsets of the local conditions used in the definition of
monotonicity (i.e., the edges (u, v) are a subset of the set of all pairs (x, y) such that x < y).1 The
point, however, is showing that if f : {0, 1}ℓ → {0, 1} is at distance δ from being monotone, then
it is rejected with probability at least δ/ℓ. We shall prove the counter-positive. That is, assuming
that f is accepted with probability 1− ρ, we shall show that f is (ℓ · ρ)-close to being monotone.

We shall show that f can be made monotone by modifying its values on at most ρℓ·2ℓ points. We
shall proceed in iterations such that in the ith iteration we make f “monotone in the ith direction”,
while preserving its monotonicity in the prior directions.

Definition 2.1 (monotonicity in direction i): Let f : {0, 1}ℓ → {0, 1} and i ∈ [ℓ]. We say that f is

monotone in direction i if for every v′ ∈ {0, 1}i−1 and v′′ ∈ {0, 1}ℓ−i it holds that f(v′0v′′) ≤ f(v′1v′′).

We make f monotone in direction i by applying a corresponding “switching operator”, denoted Si,
which maps Boolean functions to Boolean functions as follows.

Definition 2.2 (switch in direction i): For every i ∈ [ℓ], the switch operator Si is defined such
that for every function f : {0, 1}ℓ → {0, 1} the function Si(f) : {0, 1}ℓ → {0, 1} is monotone in
direction i and satisfies {Si(f)(v′0v′′), Si(f)(v′1v′′)} = {f(v′0v′′), f(v′1v′′)} for every v′ ∈ {0, 1}i−1

and v′′ ∈ {0, 1}ℓ−i. (Indeed, Si(f)(x) denotes the value of the function Si(f) at the point x.)

That is, for every v′ ∈ {0, 1}i−1 and v′′ ∈ {0, 1}ℓ−i if f(v′0v′′) ≤ f(v′1v′′) then (Si(f)(v′0v′′), Si(f)(v′1v′′)) =
(f(v′0v′′), f(v′1v′′)), and otherwise (Si(f)(v′0v′′), Si(f)(v′1v′′)) = (f(v′1v′′), f(v′0v′′)). Either way,
it holds that Si(f)(v′0v′′) ≤ Si(f)(v′1v′′).

Now, assuming that f is accepted with probability 1 − ρ, we shall consider the sequence of
functions f0, ..., fℓ such that f0 = f and fi = Si(fi−1) for every i ∈ [ℓ]. We shall show that fℓ

is monotone and that
∑

i∈[ℓ] δ(fi, fi−1) ≤ ℓ · ρ, where δ(g, h) = Prx[g(x) 6= h(x)] is the standard
distance between functions. The fact that fi = Si(fi−1) is monotone in direction i follows by the
definition of the switch operator, whereas the fact that fi preserves the monotonicity of fi−1 in each
direction j < i needs to be proved. This will follow as a special case of a general claim that will
also allow us to establish

∑
i∈[ℓ] δ(fi, fi−1) ≤ ℓ · ρ. Towards this claim, we shall need the following

definition.

Definition 2.3 (violation in direction i): Let g : {0, 1}ℓ → {0, 1} and i ∈ [ℓ]. For v′ ∈ {0, 1}i−1

and v′′ ∈ {0, 1}ℓ−i, the directed edge (v′0v′′, v′1v′′) is a violating edge of g in direction i if g(v′0v′′) >
g(v′1v′′). We denote by Vi(g) the set of violating edges of g in direction i.

Clearly, g is monotone in direction i if and only if it has no violating edges in direction i (i.e.,
Vi(g) = ∅). We are now ready to state our main claim.

1
Advanced comment: Actually, the only functions that are accepted by Algorithm 1 with probability 1 are

monotone, since the subset of local conditions checked by the algorithm impose all the local conditions in the definition.
To see this, consider, for every x < y, a (shortest) directed path (in the hypercube), denoted x(0) = x, x(1), ..., x(t) = y,
leading from x to y, and use f(x(0)) ≤ f(x(1)) ≤ · · · ≤ f(x(t)). Indeed, w.l.o.g., x(i) = x1 · · ·xjyj+1 · · · yℓ, where j is
the location of the ith non-zero bit in x ⊕ y. (See the related Exercise 1.)

3

Claim 2.4 (the effect of the switch operator on the set of violations): Let g : {0, 1}ℓ → {0, 1} and
i, j ∈ [ℓ]. Then, |Vj(Si(g))| ≤ |Vj(g)|.

It follows that if g is monotone in direction j, then so is Si(g). The fact that
∑

i∈[ℓ] δ(fi, fi−1) ≤ ℓρ

will follow by using two additional observations (see Facts 1 and 2 below).2

Proof: The case of i = j is trivial (since Vi(Si(g)) = ∅), and so, we consider i 6= j. For sake
of notational simplicity and without loss of generality, we may consider the case of i = 1 and
j = 2. The key observation is that the analysis of the effect of Si on the violations of g in
direction j can be reduced to the effects on the violations of the functions obtained (from g)
by all possible restrictions of the other ℓ − 2 coordinates. That is, for every u ∈ {0, 1}ℓ−2, we
consider the residual function gu(στ) = g(στu), and observe that V2(g) = ∪u∈{0,1}ℓ−2V2(gu) (and

V2(S1(g)) = ∪u∈{0,1}ℓ−2V2(S1(gu))).3 Hence, it suffices to prove that |V2(S1(gu))| ≤ |V2(gu)| holds
for every u. This can be verified by a case analysis, but it is instructive to make a picture.

0 0

1 1x

x

x

x

x x

x x0

1

0

1

01

10

1

0 0

1

1

0

0

1

0 0

1 1

Figure 1: The remaining four cases in the proof of Claim 2.4. In the first two (leftmost) cases the
sorted column equals (xx)⊤, whereas in the other two cases the sorted column is (01)⊤.

Pictorially, consider a 2-by-2 Boolean matrix M such that the (σ, τ)-entry corresponds to
gu(σ, τ). The foregoing claim (i.e., |V2(S1(gu))| ≤ |V2(gu)|) asserts that if we sort the columns

2Specifically, we shall show that
P

i∈[ℓ] |Vi(f)| = ρ · ℓ · 2ℓ−1 (Fact 1) and δ(fi, fi−1) = 2−(ℓ−1) · |Vi(fi−1)| (Fact 2).
Combining these facts with Claim 2.4, it will follows that

X

i∈[ℓ]

δ(fi, fi−1) = 2−(ℓ−1) ·
X

i∈[ℓ]

|Vi(fi−1)|

≤ 2−(ℓ−1) ·
X

i∈[ℓ]

|Vi(f)|

= ρ · ℓ

as claimed.
3This is because the question of whether the edge (σ0u, σ1u) is violating depends only on the values at its

endpoints, whereas S1 satisfies {S1(g)(0τu), S1(g)(1τu)} = {g(0τu), g(1τu)}. Hence, the contribution of the edges
(00u, 01u) and (10u, 11u) to V2(g) and V2(S1(g)) depend only on the values of g and S1(g) on 00u, 01u, 10u and 11u.

4

of M , then the number of unsorted rows may only decrease. The only cases worthy of consideration
are those in which at least one of the columns of M is unsorted, since otherwise sorting the columns
has no effect. Now, if both columns are unsorted, then they are both equal to the vector (10)⊤, and
sorting the columns only means permuting the rows, which means that the number of violations
(which is zero) is preserved. We are left with four cases, depicted in Figure 1, in which exactly one
column is sorted. In the first two cases (where the sorted column is monochromatic), sorting the
columns means permuting the rows (which again preserves the number of violations). In the other
two cases (where the sorted column is (01)⊤), sorting the columns means eliminating all violations
(since the resulting columns will both equal (01)⊤).

By repeated applications of Claim 2.4, we obtain

Corollary 2.5 (on the sets of violations in the sequence of fi’s):

1. For every i ∈ [ℓ], the function fi is monotone in each direction j ≤ i. In particular, fℓ is
monotone.

2. For every i, j ∈ [ℓ], it holds that |Vj(fi)| ≤ |Vj(f)|.

Proof: Recalling that fi = Si(fi−1) and applying Claim 2.4 (with g = fi−1), we get that, for every
i, j ∈ [ℓ], it holds that |Vj(fi)| ≤ |Vj(fi−1)|. Hence, for every j ∈ [ℓ] and 0 ≤ i1 < i2 ≤ ℓ, it holds
that |Vj(fi2)| ≤ |Vj(fi1)|. Now, Item 1 follows because |Vj(fi)| ≤ |Vj(fj)| = 0 (for every j ≤ i),
whereas Item 2 follows because |Vj(fi)| ≤ |Vj(f0)| (for every i > 0).4

We now establish the two facts mentioned above (i.e., right after Claim 2.4):5

Fact 1: 2 ·∑i∈[ℓ] |Vi(f)| = ρ · ℓ2ℓ.

This follows since the choice (v, i) makes Algorithm 1 rejects f if and only if the (directed
version of the) edge {v, v ⊕ 0i−110ℓ−i} is violating (for f in direction i).6 (Indeed, each
such violating edge (v′0v′′, v′1v′′) contributes to two choices (i.e., to (v′0v′′, |v′| + 1) and
(v′1v′′, |v′|+ 1)).)

Fact 2: 2ℓ · δ(fi, fi−1) = 2 · |Vi(fi−1)|.
This is a special case of 2ℓ ·δ(Si(g), g) = 2 · |Vi(g)|, which holds because Si(g)(x) 6= g(x) if and
only if the (directed version of the) edge {x, x⊕ 0i−110ℓ−i} is violating (for g in direction i).7

(Indeed, each such violating edge contributes twice to δ(fi, fi−1).)

4Recall that f0 = f .
5See also Footnote 2, which also provides a preview of their use.
6Formally,

ρ = Pr(v,i)∈{0,1}ℓ×[ℓ]

ˆ

f(v[i−1]0v[i+1,ℓ]) > f(v[i−1]1v[i+1,ℓ])
˜

=
1

ℓ
·

X

i∈[ℓ]

Pr(v′,v′′)∈{0,1}i−1×{0,1}ℓ−i

ˆ

f(v′0v′′) > f(v′1v′′)
˜

=
1

ℓ
·

X

i∈[ℓ]

|Vi(f)|

2ℓ−1

where the second equality uses the fact that the value of the bit vi is irrelevant to the event being analyzed.
7Formally, δ(Si(g), g) = Prx∈{0,1}ℓ [Si(g)(x) 6= g(x)], which equals the probability that x is an endpoint of an edge

in Vi(g), which in tuen equals 2 · |Vi(g)|/2ℓ.

5

By combining these two facts with Item 2 of Corollary 2.5 we get

δ(f, fℓ) ≤
∑

i∈[ℓ]
δ(fi−1, fi)

=
∑

i∈[ℓ]
2−(ℓ−1) · |Vi(fi−1)|

≤ 2−(ℓ−1) ·
∑

i∈[ℓ]
|Vi(f)|

= ℓ · ρ

where the first equality follows by Fact 2, the second inequality follows by Item 2 of Corollary 2.5,
and the second equality follows by Fact 1. Recalling that (by Item 1 of Corollary 2.5) the function
fℓ is monotone, we conclude that f is ℓρ-close to monotone. The theorem follows.

Digest. The proof of Theorem 2 shows that the absolute distance of f from being monotone,
denoted ∆M(f), is upper-bounded by twice the number of violating edges (of f). Denoting the latter
set by V (f), it is tempting to think that ∆M(f) ≤ |V (f)|, since each violation can be corrected
by modifying one endpoint of the edge, but this ignores the possibility that the correction of one
violation may cause other violations. Indeed, in the proof of Theorem 2, we performed modifications
with more care: We proceed in iterations such that in the ith iteration, we eliminate a subset of
violations in fi, denoted Vi(fi), while making sure that the number of violations in the resulting
function, denoted fi+1, does not exceed |V (fi) \Vi(fi)|. We stress that V (fi+1) is not necessarily a
subset of V (fi)\Vi(fi), yet |V (fi+1)| ≤ |V (fi)\Vi(fi)|. Recall that the set of violations Vi(fi), which
constitutes a matching, is not eliminated by modifying fi at one endpoint of each edge, but rather by
switching the pair of values at the endpoints of each edge. (Thus, |{x : fi(x) 6= fi+1}| = 2 · |Vi(fi)|,
rather than half this amount.) This “wasteful” method of modifying fi enables proving that
|V (fi+1)| ≤ |V (fi) \ Vi(fi)|, and it follows that ∆M(f) ≤ 2 · |V (f)|.

On the tightness of the analysis. Recall that the relative distance of f from being monotone,
denoted δM(f), equals ∆M(f)/2ℓ, whereas the probability that Algorithm 1 rejects f , denoted ρ(f),

equals |V (f)|
ℓ·2ℓ/2

. Hence, ∆M(f) ≤ 2 · |V (f)| translates to δM(f) ≤ 2−ℓ+1 · |V (f)| = ℓ · ρ(f). As stated

upfront, the upper bound δM(f) = O(ℓ · ρ(f)) is tight: For every α ∈ (exp(−Ω(ℓ)), 0.5), there exists
a function f : {0, 1}ℓ → {0, 1} such that δM(f) ∈ [α, 2α] and δM(f) = Ω(ℓ · ρ(f)) (see [11, Prop. 4,
Part 1]). For example, for f(x) = 1− x1 it holds that δM(f) = 0.5 and ρ(f) = 1/ℓ.

On the other hand, δM(f) = Ω(ℓ ·ρ(f)) does not hold for all f ’s: For every α ∈ (exp(−Ω(ℓ)), 0.5),
there exists a function f : {0, 1}ℓ → {0, 1} such that δM(f) ∈ [α, 2α] and δM(f) = Θ(ρ(f)) (see [11,
Prop. 4, Part 2]). For example, for f(x) = wt(x) mod 2 it holds that δM(f) ≈ 0.5 and ρ(f) ≈ 0.5
(see Exercise 2).

2.2 Path tests

The fact that the analysis of the rejection probability of Algorithm 1 is tight (i.e., there are non-
monotone functions f that this algorithm rejects with probability O(δM(f)/ℓ)), does not mean that
one cannot do better, even when using two-query tests. Algorithm 1 checks the values at the
endpoints of a uniformly selected edge of the hypercube, which seems the most natural thing to

6

do. Indeed, this is the best choice for tests that examines the values at the endpoints of an edge
selected according to any distribution.8

Of course, there is no reason to restrict two-query testers to examine the values at the endpoints
of an edge of the hypercube. Indeed, without loss of generality, the two queries made by the test
must be comparable (or else it makes no sense to compare the answers), but these two queries may
reside on the endpoints of a path of (almost) arbitrary length. Also, for the purpose of ǫ-testing,
little is lost when restricting the random path to having both endpoints be strings of Hamming
weight in [(ℓ/2) ± O(

√
ℓ log(1/ǫ))], since vertices with Hamming weight that deviates from this

interval occupy at most a 0.1ǫ fraction of the hyper-cube. (Also, little is lost by restricting the
tester to be non-adaptive.)9

To see the benefit of this generalization, consider the function f(x) = 1 − x1, which is 0.5-far
from being monotone. While the edge test rejects this function with probability 1/ℓ, a tester that
examines the endpoints of a random path of length

√
ℓ (which starts at a uniformly distributed

vertex) rejects this function with probability 1/
√

ℓ. It turns out that rejection probability Θ̃(1/
√

ℓ)
is achievable and is optimal for two-query Ω(1)-testers. On the other hand, the rejection probability
of such optimal two-query testers cannot be linear in the distance of the function from monotonicity;
actually, if, for some function F : N → N, a two-query proximity-oblivious tester (with one-sided
error) rejects f with probability δM(f)/F (ℓ), then F (ℓ) = Ω(ℓ/ log ℓ) (cf. [1]).

Following is a description of a generic “path tester”: In light of the foregoing, this tester
selects a “random path” (i.e., a pair of comparable vertices) such that each of its endpoints is
almost uniformly distributed. This is done by selecting the first vertex, denoted u, uniformly, and
selecting the second vertex, denoted v, uniformly among all vertices that are at distance d from u,
where the distance is selected according to some distribution, denoted Dℓ. One specific suggestion
that works well (see Theorem 4) is to have Dℓ be uniform over the set {2i : i ∈ {0, 1, ..., ⌊log ℓ⌋}}.

Algorithm 3 (the generic path test, parameterized by a distribution Dℓ over [ℓ]):

1. Select comparable u, v ∈ {0, 1}ℓ by the following process. First, select u uniformly in {0, 1}ℓ,
and then select d ← Dℓ and j ∈ {−1,+1} uniformly. Now, select v uniformly among all
ℓ-bit long strings of weight wt(u) + j · d that are comparable to u (i.e., either u < v or
u > v, depending on j).10 Specifically, if j = 1, then v is selected uniformly in {z > u :
wt(z) = wt(u) + d}, else v is selected uniformly in {z < u : wt(z) = wt(u) − d}. Indeed, if
wt(u) + j · d 6∈ {0, 1, ..., ℓ}, then no vertex v is selected and the algorithm halts accepting.

2. Query f at u and v and accept if and only if f is monotone on this pair; that is, letting
{x, y} = {v, u} such that x < y, the algorithm accepts if and only if f(x) ≤ f(y).

Indeed, having Dℓ ≡ 1 corresponds to the edge test of Algorithm 1. We now consider two alternative
choices for the distribution Dℓ:

8Consider such an algorithm and let i ∈ [ℓ] denote the direction that is selected with the lowest probability, where
the direction of an edge {u, v} is the coordinate on which u and v differ. Then, the function f(x) = 1− xi is rejected
with probability at most 1/ℓ, while it is 0.5-far from being monotone.

9See Exercise ??.
10Indeed, in this case the vertex v is not uniformly distributed among u’s neighbors, altghough typically (i.e., when

wt(u) ≈ ℓ/2) this is approximately the case. To have v be distributed uniformly among u’s neighbors, one should
select j = −1 with probility wt(u)/ℓ.

7

The path tester: One natural choice is to have Dℓ be distributed as |wt(Uℓ) − (ℓ/2)|, where Uℓ is
uniformly distributed in {0, 1}ℓ. That is, Dℓ represents the devaition from ℓ/2 of the Hamming
weight of a uniformly distributed ℓ-bit long string.11 In this case, Dℓ resides in [Θ(

√
ℓ)] with

constant probability, and equals 1 with probability Θ(1/
√

ℓ). Hence, the corresponding tester
(which typically uses long paths) is called the pure path tester.

The combined path and edge tester: In contrast, lettingDℓ be uniform over the set {2i : i ∈ {0, 1, ..., ⌊log ℓ⌋}}
yields a distribution in which both the values 1 and 20.5⌊log ℓ⌋ ≈

√
ℓ occur with probability

1/ log ℓ. Hence, the corresponding tester (i.e., that uses this “skewed” Dℓ) is called the com-

bined path and edge tester.

While an exact analysis of the pure path test is still unknown, an almost exact analysis of the
combined path and edge test is known.

Theorem 4 (the combined edge and path test [13]): Algorithm 3, with Dℓ that is uniform over
{2i : i ∈ {0, 1, ..., ⌊log ℓ⌋}}, constitutes a (one-sided error) proximity oblivious tester with detection
probability Ω̃(δ2/

√
ℓ), where δ denotes the distance of the given function from being monotone.

Note that the detection probability bound provided by Theorem 4 is quadratic in δ and linear in
1/
√

ℓ, whereas the bound in Theorem 2 is linear in both δ and 1/ℓ. Indeed, the point of Theorem 4
is obtaining an improved performance in terms of ℓ; in fact, this improved performance is optimal
(up to polylogarithmic factors).12 It is conjectured that the pure path test also achieves the bound
stated in Theorem 4. More generally, we pose the following question.

Open Problem 5 (which path testers are best for constant δ?): Which choices of the distribution
Dℓ preserve the result of Theorem 4?

3 Multi-valued functions on the discrete line

Here we consider multi-valued functions of the form f : [n]→ Rn, where Rn is an arbitrary totally
ordered set (e.g., any subset of the real numbers). Such a function f is called monotone if for every
x < y in [n] it holds that f(x) ≤ f(y). Recall that a special case of this problem, where Rn = {0, 1},
was presented in the first lecture.

3.1 A tester based on binary search

It will be instructive to view the values of f : [n] → Rn as residing in an array of n cells and to
assume that all values of f are distinct (i.e., |{f(i) : i∈ [n]}| = n). Consider the following tester for
monotonicity that selects i ∈ [n] uniformly at random, and then tries to find the value f(i) in the
said array by conducting a binary search. If f is indeed (strictly) monotone, then this search will
succeed in finding f(i) in location i. Hence, this (binary-search) tester performs 1+⌈log2 n⌉ queries,
and accepts if and only if f(i) is found in this binary search. (In order to waive the requirement
that f has distinct values, we augment f(i) to ((f(i), i) when comparing values of f , while using
the lexicographic order on pairs.)13

11
Advanced comment: A related alternative is to have Dℓ be uniform over [O(

p

ℓ log(1/ǫ))].
12

Advanced comment: More generally, if a pair tester has detection probability Ω(δb/ℓa), then 2a + b ≥ 3
(see [13]). Hence, both Theorems 2 and 4 meet this lower bound, at (a, b) = (1, 1) and (a, b) = (0.5, 2), respectively.

13That is, instead of comparing f(i) to f(j), we compare (f(i), i) to (f(j), j) and say that (f(i), i) is (strictly)
smaller than (f(j), j) if either f(i) < f(j) or both f(i) = f(j) and i < j hold.

8

As noted above, this tester always accepts monotone functions, and the point is lower-bounding
the rejection probability of the tester as a function of the distance of f from being monotone. We
shall show that if f : [n] → Rn is δ-far from monotone, then the foregoing tester rejects it with
probability greater than δ. We shall actually prove the counter-positive.

Claim 6 (on the rejection probability of the binary search tester): If the binary search tester
accepts f : [n]→ Rn with probability 1− δ, then f is δ-close to monotone.

Teaching note: The foregoing tester as well as the following proof are presented in

a somewhat loose style, since we shall later provide a more rigorous presentation and

analysis of a related tester (see Algorithm 7 and its analysis). In fact, the reader may

skip the following proof and proceed directly to Algorithm 7 (and later derive a proof of

Claim 6 by minor modifications to the proof of Lemma 8).

Proof: Note that the only random choice performed by the tester is the choice of i ∈ [n] made at
its very first step. We call i ∈ [n] good if an execution that starts with choosing i is completed with
acceptance. For simplicity, we assume that all values in f are distinct or alternatively consider an
execution in which f is replaced by f ′ such that f ′(i) = (f(i), i).

We first claim that if i < j are both good, then f(i) < f(j). To prove this claim, we consider
the pair of binary searches conducted for f(i) and for f(j). Since both i and j are good, the first
binary search ended at location i and the second binary search ended at j. Let t ∈ [⌈log2 n⌉] be the
first step in which these two binary searchers took different choices when comparing the “sought
for” value against a “pivot” value associated with location pt (which is at the end of the first half
of the currently eligible interval).14 Since the two searches took different halves (of the current
interval) and ended at i and j, respectively, the search for f(i) went to the first half whereas the
search for f(j) went to the second half. But due to the comparisons made at this step, it follows
that f(i) ≤ f(pt) and f(j) > f(pt). Hence, f(i) < f(j), as claimed.

Finally, we observe that the restriction of f to the set of good points yields a monotone function.
Hence, by modifying f on the non-good points, we obtain a monotone function over [n]. Recalling
that there are (1− δ) · n good points, the claim follows.

A related tester. The foregoing tester was presented as if the tester is adaptive. Specifically,
after selecting a random i ∈ [n], the tester takes choices that supposedly depend on the values of
f that it obtains. However, a closer look reveals that the correct choices (of which half interval
to take) can be determined a priori (by the value of i), and if the examined values of f do not
match these choices, then it is safe to reject immediately. This observation leads to the following
non-adaptive tester, where the sequence of intervals and pivot points is determined a priori in
Step 2.

Algorithm 7 (testing whether f : [n]→ Rn is monotone): Let ℓ = ⌈log2 n⌉ and [a0, b0] = [1, n].

1. Uniformly select i ∈ [n].

14The binary search for the value v starts with the eligible interval [1, n]. In the first step, the pivot location
p1 = ⌈(n + 1)/2⌉ is used, and the search takes the half interval [1, p1] if and only if v ≤ f(p1); otherwise, the search
takes [p1 + 1, n]. The description of subsequent steps is analogous: The pivot of the interval [a, b] is p = ⌈(a + b)/2⌉,
and the search takes [a, p] if and only if v ≤ f(p).

9

2. For t = 1, ..., ℓ, let pt = ⌈(at−1 + bt−1)/2⌉ and

[at, bt] =

[at−1, pt] if i ≤ ptpt + 1, bt−1 > pt + 1, bt−1

otherwise

3. Query f at i as well as at p1,, pℓ.

4. For t = 1, ..., ℓ, if i ≤ pt and f(i) > f(pt), then reject. Likewise, for t = 1, ..., ℓ, if i > pt and
f(i) < f(pt), then reject.

10

If the algorithm did not reject in Step 4, then it accepts.

Algorithm 7 performs 1 + ⌈log2 n⌉ queries and always accepts a monotone function. To complete
its analysis we show that if f : [n]→ Rn is δ-far from being monotone, then Algorithm 7 rejects it
with probability greater than δ.

Lemma 8 (on the rejection probability of Algorithm 7): If Algorithm 7 accepts f : [n]→ Rn with
probability 1− δ, then f is δ-close to monotone.

The proof is analogous to the proof of Claim 6, but it is more rigorous due to the more detailed
description of the algorithm, which facilitates clear references to its steps. (The main clarification
is in the second paragraph of the proof.)

Proof: Note that the only random choice performed by Algorithm 7 is the choice of i ∈ [n]
made in Step 1, and call i ∈ [n] good if an execution that starts with choosing i is completed with
acceptance.

We first claim that if i < j are both good, then f(i) ≤ f(j). Let t ∈ [ℓ] be the smallest integer
for which the tth interval (i.e., [at, bt]) determined (in Step 2) for i is different from the tth interval
determined for j. It follows that pt is assigned the same value in both executions, but exactly
one element in {i, j} took the first half. Therefore, exactly one of these two elements is smaller or
equal to pt, and since i < j, it must be that i ≤ pt and j > pt. Now, by the corresponding part
of Step 4, it follows that f(i) ≤ f(pt) and f(j) ≥ f(pt), or else the corresponding execution would
have rejected (in contradiction to the hypothesis that both i and j are good). Hence, f(i) ≤ f(j),
as claimed.

Denoting the set of good choices by G, we observe that the restriction of f to G yields a monotone
function. Hence, by modifying f only on points in [n] \G, we obtain a monotone function over [n].
(For example, we can modify f at i ∈ [n] \G such that f(i) = f(j), where j is the smallest element
in G that is greater than i, and if no such element exists we set f(i) to equal the largest element
in Rn.) Using |G| = (1− δ) · n, the lemma follows.

Corollaries. Let Πn denote the set of monotone of functions with domain [n] and range Rn.
Then, by Lemma 8, we have –

Theorem 9 (Algorithm 7 is a POT for monotonicity): Algorithm 7 is a (one-sided error) (1 +
⌈log2 n⌉)-query proximity oblivious tester for Πn with detection probability δ, where δ denotes the
distance of the given function from being monotone.

Observing that Algorithm 7 rejects if and only if at least one of the checks of Step 4 rejects,
we obtain a two-query POT with detection probability δ/ℓ. Specifically, we refer to a version of
Algorithm 7 in which Steps 3 and 4 are replaced by selecting t ∈ [ℓ] uniformly at random, and
comparing f(i) to f(pt); that is, the test rejects if and only if either i ≤ pt and f(i) > f(pt) or
i > pt and f(i) < f(pt).

Theorem 10 (a two-query POT for monotonicity): The foregoing algorithm is a (one-sided error)
two-query proximity oblivious tester for Πn with detection probability δ/ℓ, where δ denotes the
distance of the given function from being monotone and ℓ = ⌈log2 n⌉.

11

Proof: Using the terminology of Lemma 8, we observe that if i is not good (w.r.t Algorithm 7),
then the two-query algorithm rejects with probability at least 1/ℓ (since at least one of the ℓ relevant
checks fails). On the other hand, by Lemma 8, a function that is at distance δ from Πn must have
at least δ · n points i ∈ [n] that are not good.

3.2 Other testers

Theorem 10 presents a two-query POT with detection probability δ/⌈log2 n⌉ for monotone functions
over [n] (i.e., for the property Πn). An alternative proof of a similar lower bound follows as a special
case of the following result.

Theorem 11 (general analysis of two-query POTs for monotonicity): Let G = ([n], E) be a con-
nected multi-graph such that for every 1 ≤ i < j ≤ n either {i, j} ∈ E or there exists k ∈ (i, j)
such that {i, k}, {k, j} ∈ E. Consider an algorithm that selects an edge {i, j} ∈ E uniformly at
random, and accepts if and only if f(i) ≤ f(j), where i < j. Then, this algorithm constitutes a
(one-sided error) two-query proximity oblivious tester for Πn with detection probability δ · n/2|E|,
where δ denotes the distance of the given function from being monotone.

Theorem 10 follows as a special case by noting that the n · ℓ pairs of possible queries (of the
corresponding two-query version of Algorithm 7) define a graph that satisfies the hypothesis of
Theorem 11, since every i < j are connected via pt (for an adequate t). (We also mention that the
algorithm that compares the values at random pair of points (i, j) ∈ [n]2 is a POT with detection
probability δ/n.)15

Proof: Fix f 6∈ Πn and let δ denotes the distance of f from Πn. We say that a pair (i, j) ∈ [n]2

such that i < j is a violation if f(i) > f(j). Viewing the set of violating edges as a graph, denoted
Gf , we observe that Gf has no vertex cover of size smaller than δn, since the restriction of f to any
independent set is a monotone function (and so f can be made monotone by modifying its value
at the vertices of the vertex cover).16 It follows that Gf has a matching of size at least δn/2; in
fact, each maximal matching in Gf must have such a size (or else we obtain a vertex cover of size
smaller than δn).

Note, however, that this matching, denoted Mf , need not be a subset of E, since Mf is a match-
ing in the (“violation”) graph Gf and E is the edge-set of the (“query”) graph G. Nevertheless, for
each {i, j} ∈Mf \ E such that i < j there exists k ∈ {i + 1, ..., j − 1} such that {i, k}, {k, j} ∈ E.
It follows that either f(i) > f(k) or f(k) > f(j), or else f(i) ≤ f(k) ≤ f(j) in contradiction to
the hypothesis that the pair (i, j) is a violation. In other words, each violating pair in Mf yields
a violating pair in E, and the latter pairs are distinct since Mf is a matching. Hence, the tester

rejects with probability at least |M
f |
|E| > δn

2|E| .

15The analysis of this naive tester is asymptotically optimal: Consider, for example, the function f : [n] → [n] such
that f(i) = 2 · ⌈i/2⌉+(i mod 2)−1 ∈ {2⌈i/2⌉−1, 2⌈i/2⌉}, which is at distance 0.5 from being monotone, but has only

n/2 violating pairs (and hence is rejected with n/2

(n

2
)
≈ 1/n). It is even easier to see that the analysis of the two-query

POT referred to by Theorem 10 is asymptotically optimal: Consider, for example, the function f : [n] → {0, 1} such
that f(i) = 1 if and only if i < n/2.

16Indeed, the same observation is implicit in the proof of Lemma 8. See Exercise 3.

12

Comments. It turns out that a graph satisfying the hypothesis of Theorem 11 must have
Ω(n log n) edges. (See [15] for a proof as well as a wider perspective.) On the other hand, some
two-query POTs for Πn are not covered by Theorem 11: For example, an algorithm that selects
i ∈ [n− 1] uniformly and accepts if and only if f(i) ≤ f(i+ 1) rejects each f 6∈ Πn with probability
at least 1/(n − 1). Finally, recall that in the special case of Boolean functions (i.e., Rn = {0, 1}),
we have seen (in the first lecture) a two-query POT with detection probability Ω(δ2).

4 Multi-valued functions on the Hypergrid

Generalizing the previous cases, we now consider the case of Dn = [m]ℓ, for any m, ℓ ∈ N such that
mℓ = n, and general Rn. (Indeed, in Section 2 we had m = 2 and Rn = {0, 1}, whereas in Section 3
we had m = n.) That is, we consider functions of the form f : [m]ℓ → Rn. Such a function f is called
monotone if for every x < y in [m]ℓ it holds that f(x) ≤ f(y), where x = x1 · · · xℓ < y = y1 · · · yℓ if
and only if xi ≤ yi for every i ∈ [ℓ] (and, indeed, x1 · · · xℓ = y1 · · · yℓ if and only if xi = yi for every
i ∈ [ℓ]).

It turns out that testing monotonicity in this case reduces to testing monotonicity in the one
dimensional case. This is based on the observation that f : [m]ℓ → Rn is monotone if and only if f
is monotone in each direction (i.e., if and only if for every α ∈ [m]i−1 and β ∈ [m]ℓ−i the function
f ′(z) = f(αzβ) is monotone in z).17 Hence, we consider the following algorithmic schema.

Algorithm 12 (testing whether f : [m]ℓ → Rn is monotone):

1. Select uniformly i ∈ [ℓ], as well as α ∈ [m]i−1 and β ∈ [m]ℓ−i.

2. Invoke a monotonicity tester for functions from [m] to Rn, while providing it with oracle
access to the function f ′ such that f ′(z) = f(αzβ).

Algorithm 12 preserves the query complexity of the tester used in Step 2. Also, by the foregoing
characterization, it follows that if a one-sided error tester is used in Step 2, then Algorithm 12
has one-sided error. The analysis of the rejection probability of this testing schema combines
two reductions (which refer only to two-query POTs). The first reduction refers only to Boolean
functions, and it lower-bounds the rejection probability of the schema in terms of the rejection
probability of the (two-query) tester used in Step 2.

Lemma 13 (dimension reduction for the Boolean case): Let T be a two-query POT for mono-
tonicity of Boolean functions over [m] that selects pairs according to distribution D and accepts
h : [m] → {0, 1} if and only if h(x) ≤ h(y), where (x, y) ← D. Let ̺m denotes the detection
probability function of T ; that is, if h is at distance δ from a monotone Boolean function, then
Pr[T h(m) = 0] = Pr(x,y)←D[h(x) > h(y)] ≥ ̺m(δ). Suppose that ̺m is convex. Then, using T in

Step 2 of Algorithm 12 yields a two-query POT for monotonicity of Boolean functions over [m]ℓ

with detection probability function ̺(δ) = ̺m(δ/2ℓ); that is, if g : [m]ℓ → {0, 1} is at distance δ
from a monotone Boolean function, then the algorithm rejects it with probability at least ̺m(δ/2ℓ).

In particular, using the POT of Theorem 10 in Step 2, we obtain a POT for monotone Boolean
functions over [m]ℓ such that functions that are at distance δ from monotone are rejected with

probability at least δ/⌈log2 m⌉
2ℓ = Ω(δ/ log n), where n = mℓ.

17See Exercise 1.

13

The second reduction refers to functions over any partial order, and it relates the performance of
any two-query POT in the case of a general range to the performance of the same POT on a binary
range. Specifically, the probability that this POT rejects any function that is δ-far from the set
of monotone functions (with general range) is lower-bounded in terms of the probability that this
very POT rejects any Boolean function that is δ-far from the set of monotone (Boolean) functions.
(This is reminiscent of the “0-1 principle for sorting network” that states that a comparison-based
sorting network that works on binary inputs also works on general inputs, except that here the
“extension of the range” does not come for free.)

Lemma 14 (range reduction): Let P be an arbitrary partial order set over n elements, and R be an
arbitrary totally ordered set. Let D be an arbitrary distribution over pairs (x, y) ∈ P × P such that
x < y (according to the partial order P). Suppose that for some convex function ̺ : (0, 1] → (0, 1]
and for every g : P → {0, 1} it holds that

Pr(x,y)∼D[g(x)>g(y)] ≥ ̺(δ2(g)),

where δ2(g) denotes the distance of g from the set of Boolean monotone functions. Then, for every
f : P → R it holds that

Pr(x,y)∼D[f(x)>f(y)] ≥ ̺(δ(f))

⌈log2 |R|⌉ ,

where δ(f) denotes the distance of f from the set of monotone functions (with range R).

Hence, we lose a factor of log2 |R| in the detection probability, where without loss of generality we
may use R as the range of the tested function (and so |R| ≤ n). Letting Πn denote the set of all
monotone functions from [m]ℓ to Rn, where n = mℓ, and combining all the above18, we get –

Corollary 15 (a two-query POT for multi-value monotonicity over [m]ℓ): There exists an efficient
(one-sided error) two-query proximity oblivious tester for Πn with detection probability Ω(δ/ log2 n),
where δ denotes the distance of the given function from being monotone.

Indeed, the above lower bound is a simplification of δ
2ℓ·⌈log2 m⌉·⌈log2 |Rn|⌉ .

4.1 Dimension reduction (proof of Lemma 13)

This proof generalizes the proof of Theorem 2. Specifically, monotonicity in direction i ∈ [ℓ] is
defined in the natural manner (extending Definition 2.1), whereas the switch operator is replaced
by a sorting operator; that is, for every i ∈ [ℓ], the sorting operator Si is defined such that for
every function f : [m]ℓ → {0, 1} the function Si(f) : [m]ℓ → {0, 1} is monotone in direction i
and satisfies

∑
k∈[m] Si(f)(αkβ) =

∑
k∈[m] f(αkβ) for every α ∈ [m]i−1 and β ∈ [m]ℓ−i. (Indeed,

this generalizes Definition 2.2, since for v1, v2 ∈ {0, 1} there is a 1-1 correspondence between the
possible sets {v1, v2} and the possible values v1 + v2.)

When counting violations in direction i we shall use a more refined extension of Definition 2.3.
Specifically, for every i ∈ [ℓ], α ∈ [m]i−1 and β ∈ [m]ℓ−i, we have

(m
2

)
directed pairs rather than

one: For 1 ≤ k1 < k2 ≤ m, the directed pair (αk1β, αk2β) is a violating (k1, k2)-pair of g in direction

18Starting with a POT for Boolean functions over [m], we first apply Lemma 13 to obtain a POT for Boolean
functions over [m]ℓ, and then apply Lemma 14 to obtain a POT for multi-valued functions over [m]ℓ.

14

i if g(αk1β) > g(αk2β). We denote by V k1,k2
i (g) the set of violating (k1, k2)-pairs of g in direction

i.
The generalization of Claim 2.4 asserts that for every g : [m]ℓ → {0, 1} and i, j ∈ [ℓ] and

1 ≤ k1 < k2 ≤ m, it holds that |V k1,k2

j (Si(g))| ≤ |V k1,k2

j (g)|. This is proved by fixing i = 1,

j = 2, k1 < k2 and u ∈ [m]ℓ−2, and considering the function gk1,k2
u : [m] × [2] → {0, 1} such that

gk1,k2
u (σ, τ) = g(σkτ u). The key observation is that the effect of S1 on V k1,k2

2 can be decomposed

among the various gk1,k2
u ’s. Furthermore, considering an m-by-2 Boolean submatrix, note that the

number of unsorted rows may only decrease when the columns are sorted. This is the case, because
the minimal number of unsorted rows in a submatrix with tτ ones in the τ ’s column is min(t1−t2, 0),
and this minimum is obtained when the columns are sorted.

Starting with an arbitrary Boolean function f0 : [m]ℓ → {0, 1}, we consider the (analogous)
sequence of fi’s defined by fi = Si(fi−1). Generalizing Corollary 2.5, we infer that fℓ is monotone

and that |V k1,k2
j (fi)| ≤ |V k1,k2

j (f0)|, for every i, j ∈ [ℓ] and 1 ≤ k1 < k2 ≤ m. Letting δi,α,β denote
the (relative) distance of the sequence fi−1(α1β), ..., fi−1(αmβ) from a monotone sequence, we get

δ(f0, fℓ) ≤
∑

i∈[ℓ]
δ(fi−1, fi)

=
∑

i∈[ℓ]
E(α,β)∈[m]i−1×[m]ℓ−i [|{k ∈ [m] : fi−1(αkβ) 6= fi(αkβ)}|] /m

≤
∑

i∈[ℓ]
E(α,β)∈[m]i−1×[m]ℓ−i [2δi,α,β]

where the last inequality follows by observing that the distance of a Boolean sequence s = (e1, ..., em)
from its sorted version (i.e., 0m−wt(s)1wt(s)) is at most twice the distance of s to being monotone.19

On the other hand, the probability, denoted ρ, that Algorithm 12 rejects f0, when using T in Step 2
(where T selects pairs of queries according to the distribution D), is

ρ = Ei∈[ℓ]E(α,β)∈[m]i−1×[m]ℓ−i

[
Pr(k1,k2)∼D[f0(αk1β) > f0(αk2β)]

]

= m−(ℓ−1) · Ei∈[ℓ]
[
E(k1,k2)∼D[|V k1,k2

i (f0)|]
]

≥ m−(ℓ−1) · Ei∈[ℓ]
[
E(k1,k2)∼D[|V k1,k2

i (fi−1)|]
]

≥ Ei∈[ℓ]E(α,β)∈[m]i−1×[m]ℓ−i [̺m(δi,α,β)]

where the first equality is due to the definition of T , the second equality is due to the definition
of Vk1,k2, the first inequality is due to the (second item of the) generalization of Corollary 2.5, and
the last inequality is due to the definitions of T and ̺m. Using the convexity of ̺m and combining
the above, we get

ρ ≥ Ei∈[ℓ]E(α,β)∈[m]i−1×[m]ℓ−i [̺m(δi,α,β)]

≥ ̺m

(
Ei∈[ℓ]E(α,β)∈[m]i−1×[m]ℓ−i [δi,α,β]

)

≥ ̺m(δ(f0, fℓ)/2ℓ).

Recalling that fℓ in monotone (by the first item of the generalization of Corollary 2.5), the lemma
follows (since f0 is at distance at most δ(f0, fℓ) from being monotone).

19This assertion relies on the hypothesis that the sequence is binary and does not hold otherwise; see Exercise 4.

15

4.2 Range reduction (overview of the proof of Lemma 14)

Without loss of generality, we assume that R = [r] and that r is a power of two. The key idea
is that the values assigned to the two endpoints of a violating edge are either both at the same
half of the interval [1, r] or are in different halves (i.e., one value is in [1, 0.5r] and the other is in
[0.5r + 1, r]). The first type of edges can be handled by a reduction to two disjoint intervals each
of length r/2, whereas the edges of the second type can be handled by a reduction to an interval
of length two (with the two values representing the two halves). Needless to say, these separate
handlings should be performed in a way that allows for their later integration.

Towards this end, for every 1 ≤ a < b ≤ r, we define a filter operator Fa,b such that for every
function f : P → [r] the function Fa,b(f) : P → [a, b] satisfies

Fa,b(f)(x) =

a if f(x) ≤ a
b if f(x) ≥ b
f(x) otherwise (i.e., if f(x) ∈ [a, b])

(1)

Hence, the two types of violations with respect to f appear either in F1,0.5r(f) (or in F0.5r+1,r(f))
or in F0.5r,0.5r+1(f). In order to facilitate the integration, we introduce a corresponding discarding

operator Da,b, which allows ignoring the modifications that are required for making Fa,b(f) monotone
and focusing on what is required beyond this in order to make f itself monotone. Specifically, for
every function f : P → [r], we fix a monotone function g : P → [a, b] that is closest to Fa,b(f), and
define

Da,b(f)(x) =

{
g(x) if Fa,b(f)(x) 6= g(x)
f(x) otherwise (i.e., if Fa,b(f)(x) = g(x))

(2)

In particular, if f(x) 6∈ [a, b], then Da,b(f)(x) = f(x) unless Fa,b(f)(x) 6= g(x); that is, values
outside of [a, b] are modified by Da,b only if they are modified when making the filtered function
monotone.20 Now, given an arbitrary function f : P → [r], we consider the following sequence of
auxiliary functions:

1. f ′ = F0.5r,0.5r+1(f), which ranges over {0.5r, 0.5r + 1}

2. f ′′ = F1,0.5r(D0.5r,0.5r+1(f
′)), which ranges over [1, 0.5r].

3. f ′′′ = F0.5r+1,r(D1,0.5r(f
′′)), which ranges over [0.5r + 1, r].

Denoting by δ[a,b](g) the relative distance of g : P → [a, b] from the set of monotone functions over
P with range [a, b], one can prove the following claims.

Claim 1: δ[1,r](f) ≤ δ[0.5r,0.5r+1](f
′) + δ[1,0.5r](f

′′) + δ[0.5r+1,r](f
′′′).

Claim 2: Pr(x,y)∼D[f(x)>f(y)] ≥ Pr(x,y)∼D[f ′(x)>f ′(y)].

Claim 3: Pr(x,y)∼D[f(x)>f(y)] ≥ Pr(x,y)∼D[f ′′(x)>f ′′(y)] + Pr(x,y)∼D[f ′′′(x)>f ′′′(y)].

Claim 2 is quite easy to establish (see Exercise 5). Claims 1 and 3 seem quite intuitive, but they
do require proofs, which are a bit tedious (and are omitted here). Once all claims are proved, the
lemma can be proved by induction. The induction step proceeds as follows, when s = log2 r:

20Note that, if f(x) ∈ [a, b], then Fa,b(f)(x) = f(x), which implies Da,b(f)(x) = g(x).

16

Pr(x,y)∼D[f(x)>f(y)] ≥ 1

s
·Pr(x,y)∼D[f ′(x)>f ′(y)]

+
s− 1

s
·
(
Pr(x,y)∼D[f ′′(x)>f ′′(y)] + Pr(x,y)∼D[f ′′′(x)>f ′′′(y)]

)

≥ 1

s
· ̺(δ[0.5r,0.5r+1](f

′)) +
s− 1

s
·
(

̺(δ[1,0.5r](f
′′))

s− 1
+

̺(δ[0.5r+1,r](f
′′′))

s− 1

)

≥
̺(δ[0.5r,0.5r+1](f

′) + δ[1,0.5r](f
′′)) + δ[0.5r+1,r](f

′′′))

s

≥
̺(δ[1,r](f))

s

where the first inequality uses Claims 2 and 3, the second inequality uses the induction hypothesis,
the third inequality uses the convexity of ̺, and the last inequality uses Claim 1.

5 Suggested Reading and Exercises

Monotonicity testing was first considered by Goldreich et al. [11] and Ergün et al. [7]: While Gol-
dreich et al. [11] considered Boolean functions over the partial order associated with the hypercube,
Ergun et al. [7] considered multi-valued functions over the total order associated with the line (see
Sections 2.1 and 2.2, respectively).21 The interpolation of both cases, presented in Section 4, refers
to multi-valued functions over the partial order associated with the hypergrid [m]ℓ. This case is
reduced to the case of Boolean functions over [m]ℓ, which is then reduced to the case of Boolean
functions over [m]. The range reduction is due to Dodis et al. [6], whereas the dimension reduction
appears in [11, 6]. Recall that the resulting two-query POT has detection probability at least
δ/O(log n · log |Rn|), where n = mℓ and Rn denotes the range of these functions (see Corollary 15).
An improved bound of δ/O(log n) was recently obtained in [3], and this is optimal for |Rn| = Ω(

√
ℓ).

We mention that a study of monotonicity testing in general partially ordered sets was initiated by
Fischer et al. [9].

The exact complexity of testing monotonicity of Boolean functions over the Boolean hypercube
has attracted much attention for over a decade. In particular, the question was whether the
detection probability must decrease linearly with the dimension. In fact, it was conjectured that the
detection probability may decrease linearly with the square root of the dimension. This conjecture
was established, up to polylogarithmic factors (see Theorem 4), by Khot, Minzer, and Safra [13].
Their result improved over a prior result of Chakrabarty and Seshadhri [2], which established a sub-
linear dependence on the dimension. Interestingly, this upper bound is almost tight [4] (improving
over [5]). For other related results regarding the complexity of testing monotonicity (and related
problems), the reader is referred to [8, 3].

Related problems

Two properties of functions that are related to monotonicy via their reference to a (partially)
ordered domain as well as the specific domains considered are the property of satisfying the Lipschitz

21The focus of Goldreich et al. [11] was on monotonicity testing, whereas the investigation of Ergun et al. [7] was
far broader than that.

17

condition and submodularity. In both cases, we consider the domain [m]ℓ as well as special cases
in which either m = 2 or ℓ = 1.

Lipschitz functions. A function f : [m]ℓ → R is called c-Lipschitz if for every x, y ∈ [m]ℓ it
holds that |f(x) − f(y)| ≤ c · ‖x − y‖1, where ‖x − y‖1 =

∑
i∈[ℓ] |xi − yi|. The study of testing

(and reconstructing) Lipschitz functions was initiated by Jha and Raskhodnikova [12], who were
motivated by applications to data privacy. Although it seem that testing Lipschitz functions can
not be reduced to testing monotonicity, Chakrabarty and Seshadhri presented a uniform framework
that covers both problems [3], and obatined a two-query POT of detection probability δ/O(ℓ log m)
for both problems.22

Submodular functions. A function f : [m]ℓ → R is called submodular if for every x = (x1, ..., xℓ)
and y = (y1, ..., yℓ) in [m]ℓ it holds that

f(max(x, y))− f(min(x, y)) ≤ (f(x)− f(min(x, y))) + (f(y)− f(min(x, y))) (3)

where max((x1, ..., xℓ), (y1, ..., yℓ)) = (max(x1, y1), ...,max(xℓ, yℓ)) and ditto for min(x, y). Indeed,
Eq. (4) is equivalent to f(max(x, y)) + f(min(x, y)) ≤ f(x) + f(y), and it is meaningless for ℓ = 1.
The study of testing submodularity was initiated by Parnas, Ron, and Rubinfeld [14], who focused
on the case of ℓ = 2 (which corresponds to “Monge matrices”), and presented a O(1)-query POT
that has detection probability Ω(δ/ log2 m).23 Seshadhri and Vondrak [16] considered the case of
m = 2 (which corresponds to “modular set functions”), and showed a natural four-query POT of

detection probability δ
eO(
√

ℓ).

Convex functions. Another property considered in [14] is convexity. A function f : [m]ℓ → R

is called convex if for every x, y ∈ [m]ℓ and every α ∈ [0, 1] such that z = αx + (1 − α)y ∈ [m]ℓ it
holds that f(z) ≤ α ·f(x)+ (1−α) ·f(y). While submodularity refers to the “rectangle spanned by
x and y” (along with max(x, y) and min(x, y)), convexity refers to the line that connects x and y.
Focusing on the case of ℓ = 1, a O(1)-query POT was shown in [14] to have detection probability
Ω(δ/ log m).24

Invariances. We note that all properties studied in this lecture are invariant under a permutation
of the variables; that is, for each of these properties Π, the function f : {0, 1}ℓ → {0, 1} is in Π if
and only if for every permutation π : [ℓ]→ [ℓ] the function fπ(x1, ..., xℓ) = f(xπ(1), ..., xπ(ℓ)) is in Π.

Exercises

The following exercises detail some claims that were made in the main text. In addition, Exercise 5
calls for proving Claims 1-3 of Section 4.2.

22Throughout this section, δ denotes the distance of the tested function from the property.
23The property tester presented in [14, Alg. 3] employs a O(log2 m)-query POT of detection probability Ω(δ), but

this POT conducts O(log2 m) unrelated checks, which are determined non-adaptively, such that each check uses only
O(1) queries (see [14, Def. 9] and [14, Clm. 4]). (See the analogous passage from Theorem 9 to Theorem 10.)

24The property tester presented in [14, Alg. 1] employs a O(log m)-query POT of detection probability Ω(δ), but this
POT (see [14, Proc. 1]) proceeds in log2 m iterations that are actually non-adaptive and check unrelated conditions.
(See an analogous passage in Footnote 23.)

18

Exercise 1 (characterization of monotonicity over the hypergrid): Prove that the function f :
[m]ℓ → Rn is monotone if and only if it is monotone in each direction (i.e., if and only if for every
i ∈ [ℓ] and for every α ∈ [m]i−1 and β ∈ [m]ℓ−i, the function f ′(z) = f(αzβ) is monotone in z).

Guideline: For the less obvious direction, given x = x1 · · · xℓ < y = y1 · · · yℓ in [m]ℓ, consider the
sequence points x1 · · · xiyi+1 · · · yℓ ∈ [m]ℓ, for i = 0, 1, ..., ℓ.

Exercise 2 (a typical case in which Algorithm 1 is asymptotically optimal): Recall that δM(f)
denotes the relative distance of f : {0, 1}ℓ → {0, 1} from being monotone, whereas ρ(f) denotes
the probability that Algorithm 1 rejects f . Note that ρ(f) ≤ 2δM(f) for every f . Show that for
f(x) = wt(x) mod 2 it holds that δM(f) ≈ 0.5 and ρ(f) ≈ 0.5

Guideline: Consider the set of edges between strings of odd Hamming weight and strings that are
one unit heavier (i.e., the edge (x, y) is in this set if and only if wt(x) is odd and wt(y) = wt(x)+1).
Note that Algorithm 1 rejects f if and only if it selected such an edge, and that this set of edges
constitutes a matching.

Exercise 3 (vertex covers in the graph of violating pairs): Let P be an arbitrary partial order set
over n elements, and suppose that f : P → R is at distance δ from the set of monotone functions
over P (with range R). Consider the graph Gf such that {x, y} is an edge if x < y but f(x) > f(y).
Then, Gf has no vertex cover of size smaller than δn.

Guideline: Since the restriction of f to any independent set of Gf is a monotone function, f can be
made monotone by modifying its values at the vertex cover.

Exercise 4 (distance to monotone vs distance to the sorted version): Prove that the distance of
a sequence s = (e1, ..., em) ∈ Rm to its sorted version is at most |R| times the distance of s to a
monotone m-sequence over R. Show that this upper bound is tight.

Guideline: As a warm-up consider the case of R = {0, 1}. Suppose that s has z zeros and let t
denote the number of ones in the z-bit long prefix of s. Then, s is at distance 2t from its sorted
version, and at distance at least t from a monotone sequence, where the last assertion is proved
by considering a matching between the t ones in the z-bit long prefix of s and the t zeros at its
(m− z)-bit long suffix. For a general R, suppose that s has mi occurrences of the value i ∈ R and
let m′i =

∑
j≤i mj. Let D+

i ⊆ [m′i−1 + 1,m′i] (resp., D−i ⊆ [m′i−1 + 1,m′i]) be the set of positions
that hold the value i in the sorted version of s but hold a value larger (resp., smaller) than i in s
itself. (In the warm-up, D+

0 ⊆ [1, z] had size t, and ditto D−1 ⊆ [z +1,m].) Note that s differs from
its sorted version on

∑
i |D+

i ∪D−i | positions. Show that ∪i<jD
+
i ×D−j contains a matching of size∑

i |D+
i ∪ D−i |/|R|, by considering the cycle structure of a permutation that sorts s by moving a

minimal number of elements. (Note that each such cycle has at least one edge in ∪i<jD
+
i ×D−j ,

whereas w.l.o.g it has at most one position in each interval [m′i−1 +1,m′i].)
25 To see that the upper

bound is tight consider the sequence (m, 1, 2, ...,m − 1).

Exercise 5 (Claims 1-3 of Section 4.2): Prove Claims 1-3 of Section 4.2. Claim 2 is proved by
showing that the filter operator never increases the number of violating pairs. As a warm-up towards
proving Claims 1 and 3, prove the following weaker analogues:

25A simpler proof of the upper bound is indeed welcomed.

19

Claim 1w: δ[1,r](f) ≤ δ[0.5r,0.5r+1](f) + δ[1,0.5r](f) + δ[0.5r+1,r](f).

Claim 3w: Pr(x,y)∼D[f(x)>f(y)] is lower-bounded by

Pr(x,y)∼D[F1,0.5r(f)(x)>F1,0.5r(f)(y)] + Pr(x,y)∼D[F0.5r+1,r(f)(x)>F0.5r+1,r(f)(y)].

Claims 1-3 appear as items of [6, Lem. 14], using somewhat different notations, and their proofs
appear in [6, Sec. 4.1-4.2].

Guideline: Moving from the warm-up claims to the actual claims requires establishing some features
of the operator Da,b. Denoting the set of violating pairs for g by V (g), the most useful features
include

1. V (Da,b(h)) ⊆ V (h);

2. if (x, y) ∈ V (h) and |{h(x), h(y)} ∩ [a, b]| = 2, then (x, y) 6∈ V (Da.b(h));

3. if (x, y) ∈ V (Da,b(h)), then [Da,b(h)(y),Da,b(h)(x)] ⊆ [h(y), h(x)].

These facts appear as items of [6, Lem. 13].

References

[1] J. Briet, S. Chakraborty, D. Garcia-Soriano, and A. Matsliah. Monotonicity testing and
shortest-path routing on the cube. Combinatorica, Vol. 32 (1), pages 35–53, 2012.

[2] D. Chakrabarty and C. Seshadhri. A o(n) monotonicity tester for boolean functions over
the hypercube. In 45th ACM Symposium on the Theory of Computing, pages 411–418,
2013.

[3] D. Chakrabarty and C. Seshadhri. Optimal bounds for monotonicity and lipschitz testing
over hypercubes and hypergrids. In 45th ACM Symposium on the Theory of Computing,
pages 419–428, 2013.

[4] X. Chen, A. De, R.A. Servedio, and L. Tan. Boolean Function Monotonicity Testing
Requires (Almost) n1/2 Non-adaptive Queries. In 47th ACM Symposium on the Theory
of Computing, pages 519–528, 2015.

[5] X. Chen, R.A. Servedio, and L. Tan. New Algorithms and Lower Bounds for Monotonicity
Testing. In 55th IEEE Symposium on Foundations of Computer Science, pages 286–295,
2014.

[6] Y. Dodis, O. Goldreich, E. Lehman, S. Raskhodnikova, D. Ron, and A. Samorodnitsky.
Improved Testing Algorithms for Monotonicity. ECCC, TR99-017, 1999. Extended ab-
stract in 3rd RANDOM, 1999.

[7] F. Ergun, S. Kannan, R. Kumar, R. Rubinfeld, and M. Viswanathan. Spot checkers.
Journal of Computer and System Science, Vol. 60, pages 717–751, 2000. Extended abstract
in 30th STOC, 1998.

20

[8] E. Fischer. On the strength of comparisons in property testing. Information and Compu-
tation, Vol. 189(1), pages 107–116, 2004.

[9] E. Fischer, E. Lehman, I. Newman, S. Raskhodnikova, R. Rubinfeld, and A. Samorodnit-
sky. Monotonicity Testing Over General Poset Domains. In 34th ACM Symposium on the
Theory of Computing, pages 474–483, 2002.

[10] O. Goldreich (ed.). Property Testing: Current Research and Surveys. Springer, LNCS,
Vol. 6390, 2010.

[11] O. Goldreich, S. Goldwasser, E. Lehman, D. Ron, and A. Samorodnitsky. Testing Mono-
tonicity. Combinatorica, Vol. 20 (3), pages 301–337, 2000. Extended abstract in 39th
FOCS, 1998.

[12] M. Jha and S. Raskhodnikova. Testing and Reconstruction of Lipschitz Functions with
Applications to Data Privacy. SIAM Journal on Computing, Vol. 42(2), pages 700–731,
2013. Extended abstract in 52nd FOCS, 2011.

[13] S. Khot, D. Minzer, and S. Safra. On Monotonicity Testing and Boolean Isoperimetric
type Theorems. ECCC, TR15-011, 2015.

[14] M. Parnas, D. Ron, and R. Rubinfeld. On Testing Convexity and Submodularity. SIAM
Journal on Computing, Vol. 32 (5), pages 1158–1184, 2003.

[15] S. Raskhodnikova. Transitive Closure Spanners: A Survey. In [10].

[16] C. Seshadhri, J. Vondrak. Is Submodularity Testable? Algorithmica, Vol. 69(1), pages
1–25, 2014. Extended abstract in 2nd Innovations in (Theoretical) Computer Science,
2011.

21

