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Abstract

What is the role of randomness in computation? This thesis focuses on the prBPP =
prP conjecture, which asserts that randomness is not crucial for efficiently solving
decision problems, as well as for solving a broad class of search problems.

The contributions in this thesis are two-fold. First, we make unconditional progress
in the long-term effort towards proving the prBPP = prP conjecture. We consider
several restricted settings that are prominent frontiers in the study of the conjecture,
and within these restricted settings we study a relaxed version of the conjecture, called
quanti�ed derandomization. We then show two complementary results: We construct
algorithms that solve this relaxed version within these restricted settings, and we show
that even very mild improvement to the parameters achieved by these algorithms
would suffice to prove the original (“non-relaxed”) version of the conjecture in these
restricted settings. Moreover, we point at an inherent limitation of certain “black-
box” techniques in this context, which preclude algorithms that rely only on these
techniques from closing the remaining gap in the parameters.

Secondly, we significantly strengthen the connections between the prBPP = prP
conjecture and the question of lower bounds for algorithms and for non-uniform cir-
cuits. Specifically, we show that any proof that prBPP = prP implies circuit lower
bounds that are significantly stronger compared to what was previously known; and
(in the other direction), we show that strong lower bounds for uniform probabilistic
algorithms imply (almost-)polynomial-time average-case derandomization of BPP .
Lastly, we prove that certain lower bounds for a weak uniform model of computation
are both sufficient and necessary in order to prove that the prBPP = prP conjecture
is completely equivalent to specific circuit lower bounds.
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Chapter 1

Introduction

“The marriage of randomness and computation has been one of the most
fertile ideas in computer science”. Mathematics and Computation, Avi Wigder-
son, 2017.

This thesis focuses on the promise-BPP = promise-P conjecture, which asserts that
randomness has limited usefulness for solving a broad class of computational problems.

As noted in the quote above, randomness plays a key role in many settings in
computer science. For example, three settings in which randomness is crucial are
sublinear-time algorithms, cryptography, and learning theory. In contrast, many inter-
esting computational problems can be efficiently solved by deterministic algorithms
that do not use randomness at all. This naturally raises the question of classification:
Which computational problems can only be efficiently solved using randomness? And
more generally, what role does randomness play in computation?

The promise-BPP = promise-P conjecture, or prBPP = prP in short, asserts that
randomness is not crucial for efficiently solving decision problems; specifically, it asserts
that every decision problem that can be solved in polynomial time using randomness
can also solved in polynomial time without using randomness.1 Note that this con-
jecture does not assert that randomness is completely useless in this context, but only
that randomness is not crucial in this context, and can be removed at a relatively-mild
cost (i.e., with at most a polynomial overhead in the running time). For example, the
conjecture allows for the possibility that certain problems can be solved polynomially
faster using randomness, and also that randomness can yield simpler algorithms.

This prBPP = prP conjecture has a fundamental place in complexity theory.
First, as is typical in many other settings in theoretical computer science, our focus
on decision problems is a methodological simplification, and also captures a more
general class of problems: For example, if prBPP = prP , then a corresponding
class of prBPP search problems can also be solved in deterministic polynomial time
(see [Gol11]). And secondly, this conjecture is closely-related to many other funda-

1An appropriate reference for the prBPP = prP conjecture seems to be [Gil77], which introduced
the relevant concepts and raised a similar conjecture (see [Gil77, End of Sec 3]).
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mental questions in complexity theory, and in particular to questions that refer to
lower bounds for algorithms and circuits (for more details see Chapter 4).

The prBPP = prP conjecture is often interpreted as an algorithmic problem,
namely the problem of constructing efficient deterministic algorithms that simulate
(or replace) efficient randomized algorithms. Historically, there have been several fa-
mous examples of decision problems for which initially only probabilistic algorithms
were known, but that were subsequently discovered to also be solvable by determinis-
tic algorithms (the most famous example is that of deciding whether a given integer is
prime; see [AKS04]). However, there are still decision problems that we currently only
know how to solve efficiently using randomness. The most prominent of these prob-
lems is a “meta-algorithmic” problem called the Circuit Acceptance Probability Problem

(CAPP), which is in fact complete for prBPP (i.e., CAPP can be solved in deterministic
polynomial time if and only if prBPP = prP ; see Proposition 2.4.2).

The main contributions in this thesis are two-fold. First, we make unconditional
progress in the long-term effort towards proving the prBPP = prP conjecture. We
study a problem called quanti�ed derandomization, which was introduced by Goldreich
and Wigderson [GW14] and constitutes a relaxed version of the CAPP problem men-
tioned above (see Section 3.1 for details about this relaxed problem). Focusing on
several restricted settings that are well-known frontiers in the study of CAPP, we show
two complementary types of results: On the one hand we construct relatively-efficient
algorithms that solve the quantified derandomization problem within these restricted
settings; and on the other hand we show that even very mild improvement to the pa-
rameters achieved by the foregoing algorithms would suffice to solve CAPP (i.e., solve
the original and “non-relaxed” problem) in these restricted settings. In some of these
settings, the gap between the parameters of the algorithm that we construct and pa-
rameters that would suffice to solve CAPP is remarkably small (see, e.g., Sections 3.3
and 3.5). We also point at an inherent limitation of certain “black-box” techniques in
the context of quantified derandomization, which preclude algorithms that rely only
on these techniques from closing the remaining gap in the parameters.

Secondly, we significantly strengthen the connections between the prBPP = prP
conjecture and other fundamental questions in theoretical computer science, and in
particular the question of lower bounds for algorithms and for non-uniform circuits.
First, we show that any proof that prBPP = prP implies circuit lower bounds that are
significantly stronger compared to what was previously known (see Section 4.2). Sec-
ondly, in the other direction, we show that near-exponential lower bounds for uniform
probabilistic algorithms against certain functions computable in polynomial space im-
ply (almost-)polynomial-time average-case derandomization of BPP (see Section 4.3).
Lastly, we prove that certain lower bounds for a weak uniform model of computation
imply that the prBPP = prP conjecture is completely equivalent to specific circuit lower
bounds (see Section 4.4).
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1. INTRODUCTION

1.1 Works on which the thesis is based

In Chapter 3 we include contributions that focus on quantified derandomization.
Sections 3.2, 3.3, and 3.4 are based on the work [Tel19a]. Section 3.5 is based on
the work [Tel18b] and on a joint work with Chen [CT19]. Section 3.6 is based on
a joint work with Doron and Ta-Shma [DTST19]. And Section 3.7 is based on the
work [Tel17b].

In Chapter 4 we include contributions that focus on connections between the
prBPP = prP conjecture and lower bounds. Section 4.2 is based on the work [Tel19b].
Sections 4.3 and 4.4 are based on a joint work with Chen, Rothblum, and Yogev [CRT+19].

In Appendix A we provide high-level descriptions of several other results that were
obtained during our doctoral studies, but that were not mentioned above. Specifically,
Section A.1 is based on a joint work with Oliveira and Santhanam [OST19], Section A.2
is based on the work [Tel18a], and Section A.3 is based on the work [Tel20].

Finally, in Appendix B we include five surveys and expositions of known results
that were initially published in our personal website.
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Chapter 2

Preliminaries

We denote by {D → R} the set of functions from domain D to range R. We will be
interested in Boolean functions, represented either as functions f : {0, 1}n → {0, 1} or
as functions f : {−1, 1}n → {−1, 1}. We say that a function f : {−1, 1}n → {−1, 1}
accepts an input x ∈ {−1, 1}n if f (x) = −1. For two Boolean functions f and g over a
domain D, we say that f and g are δ-close if Prx∈D[ f (x) = g(x)] ≥ 1− δ.

For any set L ⊆ {0, 1}∗ and n ∈ N, we denote by Ln = L ∩ {0, 1}n the restriction
of L to n-bit inputs. Similarly, for f : {0, 1}∗ → {0, 1}∗, we denote by fn : {0, 1}n →
{0, 1}∗ the restriction of f to the domain of n-bit inputs.

Distributions and random variables will be denoted by boldface letters. Given a
set Σ, which will typically be clear from the context, we denote by uk the uniform
distribution over Σk. Given a distribution d, we write x ∼ d to denote a value x that is
sampled according to d; when we write x ∈ Σk in probabilistic expressions, we mean
the uniform distribution over Σk.

For a vector w = (w1, ..., wn) ∈ Rn, we denote by ‖w‖2 the standard `2-norm

‖w‖2 =
√

∑i∈[n] w2
i . For h < n, we denote w>h = (wh+1, ..., wn) ∈ Rn−h and w≥h =

(wh, ..., wn) ∈ Rn−h+1. For two vectors w, x ∈ Rn, we denote 〈w, x〉 = ∑i∈[n] wi · xi.

2.1 Standard mathematical facts

2.1.1 Distributions with limited independence

We say that random variables x1, ..., xn ∈ {0, 1}n are t-wise independent if for every set
S ⊆ [n] of size |S| = t, the marginal distribution (xi)i∈S is uniform over {0, 1}t. We
will use the following well-known tail bound (for a proof see [BR94, Lemma 2.3]):

Fact 2.1.1 (tail bound for t-wise independent distributions). Let n ∈N, and let t ≥ 4 be
an even number. Let x1, ..., xn be random variables in {0, 1} that are t-wise independent, and
denote µ = E

[
1
n ·∑i∈[n] xi

]
. Then, for any ζ > 0 it holds that Pr

[∣∣∣ 1
n ·∑i∈[n] xi − µ

∣∣∣ ≥ ζ
]
≤

8 ·
(

t·µ·n+t2

ζ2·n2

)t/2
.

11



2. PRELIMINARIES

We say that x1, ..., xn ∈ {0, 1}n are δ-almost t-wise independent if for every set S ⊆ [n]
of size |S| = t, the statistical distance between (xi)i∈S and the uniform distribution
over {0, 1}t is at most δ. Then, the following well-known tail bound holds:

Fact 2.1.2 (tail bound for almost t-wise independent distributions; see, e.g., [LRT+09,
Lem 18]). Let n ∈ N, let t ≥ 4 be an even number, and let δ > 0. Let x1, ..., xn be random
variables in {0, 1} that are δ-almost t-wise independent, and denote µ = E

[
1
n ·∑i∈[n] xi

]
.

Then, for any ζ > 0 it holds that Pr
[∣∣∣ 1

n ·∑i∈[n] xi − µ
∣∣∣ ≥ ζ

]
< 8 ·

(
t·µ·n+t2

ζ2·n2

)t/2
+ (2 · n)t · δ.

In particular, for t = Θ(1) and ζ = µ/2 and δ = 1/p(n), where p is a sufficiently large
polynomial, we have that

Pr

[
1
n
· ∑

i∈[n]
xi ∈ µ± (µ/2)

]
= O

(
(µ · n)−t/2

)
.

We will also need the following fact, which, loosely speaking, asserts that con-
catenating two independently-chosen distributions that are almost t-wise independent
yields a distribution that is still almost t-wise independent.

Fact 2.1.3 (concatenating almost t-wise independent distributions). Let n, n′ ∈ N, let
δ, δ′ < 1

2 , and let t ∈ N. Let y be a distribution over {0, 1}n that is δ-almost t-wise indepen-
dent, and let z be a distribution over {0, 1}n′ that is δ′-almost t-wise independent. Let r = y ◦ z
be a distribution that is obtained by concatenating a sample from y and an independent sample
from z. Then, the distribution r is (δ + δ′)-almost t-wise independent.

Proof. Fix a set S ⊆ [n + n′] of size |S| = t, and let us prove that the `1-distance
between rS and the uniform distribution is at most 2 · (δ + δ′) (which implies that the
statistical distance between them is at most δ + δ′). Partition S into W = S ∩ [n] and
W ′ = S \ [n], and denote w = |W| and w′ = |W ′|. Then, we have that:

‖rS − ut‖1 = ‖yW ◦ zW ′ − uw ◦ uw′‖1

≤ ‖yW ◦ zW ′ − yW ◦ uw′‖1 + ‖yW ◦ uw′ − uw ◦ uw′‖1

= ‖zW ′ − uw′‖1 + ‖yW − uw‖1 ,

which is upper-bounded by 2 · δ′ + 2 · δ.

2.1.2 Concentration and anti-concentration inequalities

We will rely on two standard facts that assert concentration and anti-concentration
bounds for certain distributions. Specifically, we will need a standard version of Ho-
effding’s inequality, and a corollary of the Berry-Esséen theorem:

Theorem 2.1.4 (Hoeffding’s inequality; for a proof see, e.g., [DP09, Sec. 1.7]). Let
w ∈ Rn, and let z be a uniformly-chosen random vector in {−1, 1}n. Then, for any t > 0 it
holds that

Pr [| 〈w, z〉 | ≥ t · ‖w‖2] ≤ exp(−Ω(t2)) .

12



2.2 Restrictions of functions

Theorem 2.1.5 (a corollary of the Berry-Esséen theorem; see, e.g., [DGJ+10, Thm 2.1,
Cor 2.2]). Let w ∈ Rn and µ > 0 such that for every i ∈ [n] it holds that |wi| ≤ µ · ‖w‖2,
and let z be a uniformly-chosen random vector in {−1, 1}n. Then, for any θ ∈ R and t > 0 it
holds that:

Pr [〈w, z〉 ∈ θ ± t · ‖w‖2] ≤ 2 · (t + µ) .

2.2 Restrictions of functions

Given a function f : {0, 1}n → {0, 1}, a restriction of f is a subset W ⊆ {0, 1}n.
We say that a function f simplifies under a restriction W to a function from a class
H ⊆ {{0, 1}n → {0, 1}} if there exists h ∈ H such that for every w ∈ W it holds that
h(w) = f (w).

We will be interested in restrictions that are subcubes, and such restrictions can be
described by a string ρ ∈ {0, 1, ?}n, where the subcube consists of all x ∈ {0, 1}n such
that for every i ∈ [n] for which ρi 6= ? it holds that xi = ρi. The living variables under
ρ are the input bits indexed by the set {i ∈ [n] : ρi = ?}. We will sometimes describe
a restriction by a pair ρ = (I, z), where I = {i ∈ [n] : ρi = ?} is the set of living
variables and z = (ρi)i∈([n]\I) ∈ {0, 1}[n]\I is the sequence of values that ρ assigns to
the variables that are fixed. The function f restricted to a subcube ρ is denoted by
f �ρ : {0, 1}n → {0, 1} such that f �ρ(x) = f (y), where for every i ∈ [n] it holds that
yi = xi if ρi = ? and yi = ρi otherwise. We will also consider the composition of
restrictions to subcubes, where a composition ρ = ρ1 ◦ ρ2 yields the restricted function
f �ρ =

(
f �ρ2

)
�ρ1

.

We identify strings r ∈ {−1, 1}(q+1)·n, where n, q ∈ N, with restrictions ρ = ρr ∈
{−1, 1, ?}n, as follows: Each variable is assigned a block of q + 1 bits in the string; the
variable remains alive if the first q bits in the block are all 1, and otherwise takes the
value of the (q+ 1)th bit. When we refer to a “block” in the string that corresponds to a
restriction, we mean a block of q + 1 bits that corresponds to some variable. When we
say that a restriction is chosen from a distribution r over {−1, 1}(q+1)·n, we mean that
a string is chosen according to r, and interpreted as a restriction. In addition, we will
sometimes identify a pair of strings y ∈ {−1, 1}q·n and z ∈ {−1, 1}n with a restriction
ρ = ρy,z. In this case, the restriction ρ = ρy,z is the restriction ρr that is obtained by
combining y and z to a string r in the natural way (i.e., appending a bit from z to each
block of q bits in y). Note that the string y determines which variables ρ keeps alive,
and the string z determinse the values that ρ assigns to the fixed variables.

2.3 Models of computation

Throughout the current text, fix any standard model of uniform computation, for
example a multitape Turing Machine or a RAM Turing Machine. In specific places
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2. PRELIMINARIES

where our results will be sensitive the the relevant model of computation, we will
point this out explicitly.

We now recall standard definitions of other models of computation that will be
used in the current thesis: Specifically, non-uniform Boolean circuits (see Section 2.3.1),
Merlin-Arthur protocols (see Section 2.3.2) and multivariate polynomials over finite
fields (see Section 2.3.3).

2.3.1 Non-uniform circuits

We will consider Boolean circuit families {Cn}n∈N such that Cn gets n input bits and
outputs a single bit. Whenever we refer to circuits (without qualifying which type),
we mean non-uniform circuit families over the De-Morgan basis (i.e., the gates of the
circuit can compute the ∧,∨, and ¬ functions) with fan-in at most two and unlimited
fan-out, and without any specific structural restrictions (e.g., without any limitation on
their depth). The size of a circuit is the number of its gates, unless specifically indicated
otherwise (in Section 3.5 we will measure the size of certain circuits by the number of
their wires). Moreover, we consider some fixed standard form of representation for
such circuits, where the representation size is quasilinear in the size of the circuit.

2.3.1.1 Constant-depth circuits

The circuit class AC0 consists of all circuit families over the De-Morgan basis such that
the circuit gates have unbounded fan-in and fan-out, and for every n ∈ N, the size of
Cn is at most poly(n), and the depth of Cn (i.e., the length of the longest path from an
input gate to the output gate) is upper bounded by a constant. We also assume that for
every n ∈ N it holds that Cn has 2 · n input gates that correspond to the input literals
(i.e., the input bits x1, ..., xn and their negations ¬x1, ...,¬xn); and that Cn is layered, in
the sense that in a fixed circuit, for every integer d, all gates at distance d from the
input gates are of the same gate-type (i.e., either ∧ or ∨).

2.3.1.2 Constant-depth circuits with modular gates

The circuit class AC0[⊕] is defined similarly to AC0, the only difference being that the
basis is extended: The gates can compute the ∧,∨,¬, and ⊕ functions (rather than
only ∧,∨, and ¬). We stress that a ⊕-gate can compute either the parity of its input
gates, or the negated parity of its input gates. We also assume that all AC0[⊕] circuits
are layered, in the sense that in a fixed circuit, for every integer d, all gates at distance
d from the input gates are of the same gate-type (i.e., either ∧, or ∨, or ⊕).

For every integer m ∈ N, the class AC0[m] is defined analogously, by extending
the basis to ∧,∨,¬ and MODm, where MODm : {0, 1}n → {0, 1} outputs zero if the
sum of its inputs is zero modulo m, and outputs one otherwise. We denote ACC0 =
∪m∈NAC0[m].

14



2.3 Models of computation

2.3.1.3 Linear threshold circuits

A linear threshold function (or LTF, in short) Φ : {−1, 1}n → {−1, 1} is a function
of the form Φ(x) = sgn(〈x, w〉 − θ), where w ∈ Rn is a vector of real “weights”,
and θ ∈ R is a real number (the “threshold”), and 〈x, w〉 = ∑i∈[n] xi · wi denotes the
standard inner-product over the reals (as already defined above).1 Indeed, the majority
function is the special case where the weights are identical (e.g., wi = 1 for all i ∈ [n])
and the threshold is zero (i.e., θ = 0).

The following are standard definitions (see, e.g., [Ser07; DGJ+10]), which refer to
“structural” properties of LTFS and will be useful for us in Section 3.5.

Definition 2.3.1 (regularity). For ε > 0, we say that a vector w ∈ Rn is ε-regular if for
every i ∈ [n] it holds that |wi| ≤ ε · ‖w‖2. An LTF Φ = (w, θ) is ε-regular if w is ε-regular.

Definition 2.3.2 (critical index). When w ∈ Rn satisfies |w1| ≥ |w2| ≥ ... ≥ |wn|, the
ε-critical index of w is defined as the smallest h ∈ [n] such that w>h is ε-regular (and h = ∞
if no such h ∈ [n] exists). The critical index of an LTF Φ = (w, θ) is the critical index of w′,
where w′ ∈ Rn is the vector that is obtained from w by permuting the coordinates in order to
have |w′1| ≥ ... ≥ |w′n|.

Definition 2.3.3 (balanced LTF). For t ∈ R, we say that an LTF Φ = (w, θ) is t-balanced if
|θ| ≤ t · ‖w‖2; otherwise, we say that Φ is t-imbalanced.

We will be interested in linear threshold circuits, which are circuits that consist only
of LTF gates with unbounded fan-in and fan-out. We assume that linear threshold
circuits are layered, in the sense that for each gate Φ, all the gates feeding into Φ have
the same distance from the inputs. For n, d, m ∈ N, let Cn,d,m be the class of linear
threshold circuits over n input bits of depth d ≥ 1 and with at most m wires. For
some fixed sizes and depths, linear threshold circuits are known to be stronger than
circuits with majority gates; however, linear threshold circuits can be simulated by
circuits with majority gates with a polynomial size overhead and with one additional
layer (see [GHR92; GK98]). Thus, the class T C0 as a whole equals the class of linear
threshold circuits.

Representation of linear threshold circuits One of the algorithms that we present
(specifically, the algorithm in Theorem 3.5.1) gets as input an explicit representation
of a linear threshold circuit C, where the weights and thresholds of the LTFs in C may
be arbitrary real numbers. We will not be specific about how exactly C is represented
as an input to the algorithm, since the algorithm works in any reasonable model. In
particular, the algorithm only performs addition, subtraction, and comparison operations
on the weights and thresholds of the LTFs in C.

1When dealing with LTFs we can assume, without loss of generality, that 〈w, x〉 6= θ for every x ∈
{−1, 1}n (because for every Boolean function over {−1, 1}n that is computable by an LTF there exists an
LTF that computes the function such that 〈w, x〉 6= θ for every x ∈ {−1, 1}n).
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Explicitly considering one convenient model, one may assume that the weights and
threshold of each LTF are integers of unbounded magnitude (since the real numbers
can be truncated at some finite precision without changing the function). In this case,
the circuit C has a binary representation, and the required time to perform addition,
subtraction, and comparison on these integers is linear in the representation size.2

2.3.2 Merlin-Arthur protocols

We recall the standard definition of Merlin-Arthur protocols (i.e., MA verifiers) that
receive non-uniform advice.

Definition 2.3.4 (MA verifiers with non-uniform advice). For t, ` : N → N, a set
S ⊆ {0, 1}∗ is inMAT IME [t]/` if there exists a probabilistic machine V, called a veri�er,
such that the following holds: The verifier V gets input x ∈ {0, 1}∗, and a witness w ∈ {0, 1}∗,
and an advice string a ∈ {0, 1}∗, and runs in time t(|x|); and there exists a sequence {an}n∈N

of advice such that |an| = `(n) and:

1. For every x ∈ S there exists w ∈ {0, 1}t(|x|) such that Pr[V(x, w, a|x|) = 1] ≥ 2/3.

2. For every x /∈ S and every w ∈ {0, 1}t(|x|) it holds that Pr[V(x, w, a|x|) = 1] ≤ 1/3.

If in Item (1) the probability that V(x, w, a|x|) = 1 is one (i.e., the verifier has perfect
completeness when given “good” advice), then we denote S ∈ MAT IME0[t]/`.

It is common to denote byMAT IME [t] the classMAT IME [t]/0 (i.e., when the
verifier receives no non-uniform advice). Note thatMA =

⋃
c∈NMAT IME [nc].

Any Merlin-Arthur verifier can be modified to have perfect completeness, at the
cost of a polynomial overhead in the running time, using the ideas of [Lau83] (see [FGM+89]).
Moreover, this statement also holds in the setting when the verifier relies on non-
uniform advice. We include a proof of this fact for completeness:

Theorem 2.3.5 (MA verifiers have perfect completeness, wlog). There exists a uni-
versal constant c > 1 such that the following holds. Let t, ` : N → N such that t
is time-constructible, and let S ⊆ {0, 1}∗ such that S ∈ MAT IME [t]/`. Then, S ∈
MAT IME0[tc]/`.

Proof. Let V be the MAT IME [t]/` verifier (with two-sided error) for S, and let
{an}n∈N be a sequence of “good” advice strings for V. By standard error-reduction,
we can assume that V runs in time t′ = poly(t) and (when given the “good” advice)
has error probability at most 1/3t′. Denote by V(x, w, r, a′) the decision of V on input
x with proof w and randomness r and advice a′.

2It is well-known that every LTF over n input bits has a representation with integer weights of mag-
nitude 2Õ(n) (for proof see, e.g., [Hås94]), and therefore the circuit C actually has a representation of size
poly(n). However, we do not know of a polynomial-time algorithm to find such a representation for a
given circuit C.
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2.3 Models of computation

We construct a verifier V ′ with perfect completeness for S. On input x ∈ {0, 1}n

and with advice a′ ∈ {0, 1}`(n), the verifier V ′ expects to receive as proof both a string
w ∈ {0, 1}t(n) and t′ = t′(n) strings s̄ = s1, ..., st′ ∈ {0, 1}t′ . The verifier V ′ uniformly
chosses r ∈ {0, 1}t′ , and accepts x ∈ {0, 1}n if and only if there exists i ∈ [t′] such that
V(x, w, r⊕ si, a′) = 1. Now, when a′ equals the “good” advice an, the following holds:

• If x ∈ S, then there exists (w, s̄) such that for every r ∈ {0, 1}t′ there exists
i ∈ [t′] satisfying V(x, w, r ⊕ si, an) = 1; this is because for any w such that
Prr[V(x, w, r, an) = 1] ≥ 1− 1/3t′ we have that

Pr
s̄
[∃r ∈ {0, 1}t′ st ∀i ∈ [t′], V(x, w, r⊕ si, an) = 0]

≤ ∑
r∈{0,1}t′

Pr
s̄
[∀i ∈ [t′], V(x, w, r⊕ si, an) = 0]

≤ 2t′ · (1/3t′)t′ ,

which is less than one.

• If x /∈ S then for every (w, s̄) that the prover sends it holds that Prr[∃i ∈
[t′] st V(x, w, r⊕ si, an) = 1] ≤ ∑i∈[t′] Prr[V(x, w, r⊕ si, an) = 1] ≤ 1/3.

2.3.3 Polynomials over finite fields

A multivariate polynomial p : Fn → F of degree d over a finite field F can be viewed
as a codeword in the corresponding Reed-Muller code; thus, if p is non-zero, then the
relative distance of the corresponding Reed-Muller code, which is stated below, lower
bounds the fraction of inputs on which p does not vanish.

Theorem 2.3.6 (distance of the Reed-Muller code; see, e.g., [GRS19, Lem 9.4.1]). For
any d, q ∈ N, let a = bd/(q− 1)c and b = d (mod q − 1). The relative distance of the
Reed-Muller code of degree d over alphabet q is δRM(d, q) = q−a · (1− b/q) ≥ q−d/(q−1).

The OR : Fk → F function maps any non-zero input z ∈ Fk \ {0k} to 1 ∈ F, and
maps 0k to zero. We consider a generalization of this function, which we call multival-
ued OR; a multivalued OR function maps any non-zero z ∈ Fk \ {0k} to some non-zero
element (i.e., different non-zero inputs may yield different outputs), while still map-
ping 0k to zero. That is:

Definition 2.3.7 (multivalued OR functions). For any finite field F, we say that a poly-
nomial mvOR : Fk → F is a multivalued OR function if mvOR(0k) = 0, but mvOR(x) 6= 0 for
every x 6= 0k.

For a fixed field F there are many different k-variate multivalued OR functions.
Indeed, the standard OR function is a multivalued OR function, but it has maximal de-
gree k · (q− 1) as a polynomial. We will need k-variate multivalued OR functions that
are of much lower degree (i.e., degree approximately k); such functions can be con-
structed relying on well-known techniques in algebraic geometry (see, e.g., [CLO15,
Exercise 8] for a reference to the well-known underlying techniques):
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Proposition 2.3.8 (low-degree multivalued OR function). Let F be a finite field and let
k ∈ N. Then, there exists a multivalued OR function mvOR : Fk → F that is computable by a
polynomial of degree less than 2k.

Proof. For F = F2 we can use the polynomial f (x1, ..., xk) = Πi∈[k](1 + xi) + 1, which
has degree exactly k. For all other fields, let us first assume that k is a power of
two. Our construction is based on a known construction of a bivariate quadratic
polynomial f (2) : F2 → F that vanishes only at (0, 0) (see below). Given such a
polynomial, for every k ≥ 4 that is a power of two, we recurse the construction; that
is, we define f (k)(x1, ..., xk) = f (2)

(
f (k/2)(x1, ..., xk/2), f (k/2)(xk/2+1, ..., xk)

)
. Observe

that f (k)(x1, ..., xk) = 0 if and only if xi = 0 for every i ∈ [k], whereas deg( f (k)) = k.
Finally, for any k that is not a power of two, we use a padding argument to obtain a
polynomial of degree 2dlog(k)e < 2 · k.

The following construction of the bivariate polynomial f (2) is taken from [BSGH+06,
Footnote 28]. Fix any irreducible monic quadratic polynomial p : F → F, denoted
p(z) = z2 + α · z + β; such a polynomial exists since there are |F|2 monic quadratic
polynomials, but only |F| + (|F|2 ) < |F|2 of them have a root.3 Note that β 6= 0,
since p is irreducible. Then, we let f (2)(x, y) = x2 + α · x · y + β · y2. Note that
f (2)(0, 0) = 0, and that for any σ ∈ F \ {0} it holds that f (2)(σ, 0) = σ2 6= 0 and
f (2)(0, σ) = β · σ2 6= 0. Finally, observe that for any σ1, σ2 ∈ F such that σ1 · σ2 6= 0 we
have that f (2)(σ1, σ2) = σ2

2 · p(σ1/σ2); thus, f (2)(σ1, σ2) = 0 if and only if p(σ1/σ2) = 0,
which cannot happen since p is irreducible.

A minor improvement to the proof of Proposition 2.3.8. The proof of Proposi-
tion 2.3.8 transforms any irreducible monic quadratic polynomial p : F → F into a
corresponding quadratic polynomial f (2) : F2 → F that vanishes only at (0, 0). In the
proof, the construction of p was non-explicit, and relied on a counting argument. We
now show two different constructions of p that are more explicit: One construction for
fields of odd characteristic, and another construction for fields of characteristic two.

Our construction for the case of odd characteristic follows [BSGH+06, Footnote
28]. Specifically, let α ∈ F be a quadratic non-residue (i.e., for every σ ∈ F it holds
that σ2 6= α); there exists such α since the characteristic is odd.4 Then, the irreducible
polynomial is p(z) = z2 − α.

Now, for the case of characteristic two, denote the multiplicative group of F by F∗.
Our construction will use an element α ∈ F that is defined in the following claim:

Claim 2.3.9. Let F be a field of characteristic two. Then, there exists α ∈ F∗ such that for
every z ∈ F∗ it holds that z + z−1 6= α.

3Because every quadratic polynomial with a root is either of the form p(z) = (z + α)2 or of the form
p(z) = (z + α) · (z + β), for α 6= β ∈ F.

4Recall that over fields of characteristic two the mapping x 7→ x2 is a bijection: This is since x2 = y2 if
and only if x = ±y, but over fields of characteristic two this means that x = y.
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Proof. Consider the mapping Φ : F∗ → F such that Φ(z) = z + z−1. Note that Φ(1) =
0, and that for every z ∈ F∗ \ {1} it holds that z + z−1 6= 0. 5 Hence, Φ maps 1 7→ 0
and F∗ \ {1} to F∗, which means that there exists α ∈ F∗ such that Φ(z) 6= α for all
z ∈ F∗. �

Now, for α ∈ F∗ as in Claim 2.3.9, the irreducible polynomial is p(z) = z2 + α · z+ 1.
Indeed, observe that p(0) 6= 0, and for z 6= 0 it holds that p(z) = 0 if and only if
z + z−1 = α, which cannot happen due to our choice of α.

2.4 Derandomization, pseudorandom generators and hitting-
set generators

2.4.1 Circuit acceptance probability problem

We now formally define the circuit acceptance probability problem (or CAPP, in short);
this well-known problem is also sometimes called Circuit Derandomization, Approx
Circuit Average, and GAP-SAT or GAP-UNSAT.

Definition 2.4.1 (CAPP). The circuit acceptance probability problem with parameters α, β ∈
[0, 1] such that α > β and for size S : N → N (or (α, β)-CAPP[S], in short) is the following
promise problem:

• The YES instances are (representations of) circuits over v input bits of size at most S(v)
that accept at least an α fraction of their inputs.

• The NO instances are (representations of) circuits over v input bits of size at most S(v)
that accept at most a β fraction of their inputs.

We define the CAPP[S] problem (i.e., omitting α and β) as the (2/3, 1/3)-CAPP problem. We
define CAPP to be the problem when there is no restriction on S.

We typically consider the complexity of CAPP as a function of the input size, which
corresponds to the size of the (description of the) circuit. In this context, solving
CAPP[S] becomes easier as the function S grows larger: This is because for a given input
size n = Õ(S(v)), if S is large then it means that the number of variables is small
compared to n. Recall that a naive deterministic algorithm can solve the problem in
time 2v · poly(S), whereas the naive probabilistic algorithm solves the problem in time
v · poly(m) ≤ poly(S).

It is well-known that CAPP is complete for prBPP under deterministic polynomial-
time reductions; in particular, CAPP can be solved in deterministic polynomial time if
and only if prBPP = prP .

5This is the case because over a field of characteristic two, z + z−1 = 0 for a non-zero z implies that
z2 = 1, but the latter happens only for z = 1.
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Proposition 2.4.2 (CAPP is complete for prBPP ; see, e.g., [Vad12, Cor 2.31] or [Gol08,
Exer 6.14]). Any problem in prBPP can be reduced to CAPP in deterministic polynomial
time. Consequently, relying on the fact that CAPP ∈ prBPP , we have that CAPP ∈ prP if
and only if prBPP = prP .

Lastly, some of our results will refer to non-deterministic algorithms that solve
(1, 1/3)-CAPP. To avoid confusion we now define precisely what we mean by the
latter notion:

Definition 2.4.3 (non-deterministically solving CAPP). We say that (1, 1/3)-CAPP can be

solved in non-deterministic time T : N×N→N if there exists a non-deterministic machine
that, when given as input a circuit C of size m over v variables, runs in time T(m, v) and
satisfies the following: If C has acceptance probability one, then for some non-deterministic
choice the machine accepts; and if C has acceptance probability at most 1/3, then the machine
always rejects (regardless of the non-deterministic choices).

2.4.2 Pseudorandom generators and hitting-set generators

We next recall the standard definitions of Hitting-Set Generators (HSGs) and of Pseu-
dorandom Generators (PRGs). We will present two sets of definitions: One instanti-
ated for Boolean functions (see Section 2.4.2.1) and one instantiated for multivariate
polynomials over finite fields (see Section 2.4.2.2).

2.4.2.1 PRGs and HSGs for Boolean functions

We will use the following two standard definitions of pseudorandom generators and
of hitting-set generators for Boolean functions.

Definition 2.4.4 (pseudorandom distribution). For ε > 0 and a domain D, we say that a
distribution w over D is ε-pseudorandom for a class of functions F ⊆ {D→ {0, 1}} if for
every f ∈ F it holds that Prw∼w [ f (w) = 1] ∈ Prw∈D [ f (w) = 1]± ε. In this case, we say
that functions in F are ε-fooled by w.

Definition 2.4.5 (pseudorandom generators). Let F =
⋃

n∈N Fn, where for every n ∈ N

it holds that Fn ⊆ {{0, 1}n → {0, 1}}, and let ε : N→ [0, 1] and ` : N→N. An algorithm
G is a pseudorandom generator for F with error parameter ε and seed length ` if for every
n ∈N it holds that G(1n, u`(n)) is a distribution over {0, 1}n that is ε-pseudorandom for Fn.

Definition 2.4.6 (hitting-set generators). Let F =
⋃

n∈N Fn, where for every n ∈ N it
holds that Fn is a set of functions {0, 1}n → {0, 1}, and let ` : N→N. An algorithm G is a
hitting-set generator for F with seed length ` if for every n ∈N, when G is given as input 1n

and a random seed of length `(n), it outputs a string in {0, 1}n such that for every f ∈ Fn it
holds that Pry∈{0,1}`(n) [ f (G(1n, y)) 6= 0] > 0. For ε : N → (0, 1], we say that G has density
ε if for every n ∈N and f ∈ Fn it holds that Pry∈{0,1}`(n) [ f (G(1n, y)) 6= 0] ≥ ε(n).
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We will need the following well-known construction of a pseudorandom generator
from a function that is “hard” for non-uniform circuits, by Umans [Uma03] (following
the line of works initiated by Nisan [Nis91] and Nisan and Wigderson [NW94]).

Theorem 2.4.7 (Umans’ PRG; see [Uma03, Thm 6]). There exists a constant c > 1 and an
algorithm G such that the following holds. When G is given an n-bit truth-table of a function
f : {0, 1}log(n) → {0, 1} that cannot be computed by circuits of size s, and a random seed of
length `(n) = c · log(n), it runs in time nc, and for m = s1/c outputs an m-bit string that is
(1/m)-pseudorandom for every size-m circuit over m bits.

Corollary 2.4.8 (near-optimal non-uniform hardness-to-randomness using Umans’ PRG).
There exists a universal constant ∆ > 1 such that for every time-computable S : N→ N and
for T(n) = 2∆·S−1(n∆), we have that

1. If E 6⊂ SIZE [S] then CAPP ∈ i.o.prDT IME [T].

2. If E 6⊂ i.o.SIZE [S] then CAPP ∈ prDT IME [T].

2.4.2.2 PRGs and HSGs for polynomials

We recall the standard definitions of hitting-set generators and of pseudorandom gen-
erators for multivariate polynomials over finite field. Recall that HSGs for a class of
polynomials need to produce a set of inputs such that any polynomial from the class
evaluates to non-zero on some input in the set. That is:

Definition 2.4.9 (hitting-set generator). Fix a field F, and let d, n ∈ N. A function
H : {0, 1}` → Fn is a hitting-set generator for a set of polynomials P ⊆ {Fn → F} if
for every non-zero function p ∈ P there exists s ∈ {0, 1}` satisfying p(H(s)) 6= 0. In this
case, the set S = {H(s) : s ∈ {0, 1}`} is called a hitting-set for P .

Definition 2.4.10 (explicit hitting-set generators). Let `, q, d : N → N, let {Fq(n)}n∈N

such that for every n ∈N it holds that Fq(n) is a field of size q(n), and let H = {Hn : {0, 1}`(n) →
Fn

q(n)} such that for every n ∈N it holds that Hn is a hitting-set generator for polynomials of
degree d(n). We say that H is polynomial-time computable if there exists an algorithm that
gets as input s ∈ {0, 1}` and outputs Hn(s) in time poly(`, log(q), n).

In Definition 2.4.9, the generator G gets a seed from {0, 1}`, rather than from F`

(as is also common in some texts); indeed, the seed length `(n) of the generator G
might depend on the size of F. This choice was made because it is more general, and
because we want to measure the seed length in bits.

The standard definition of PRGs for polynomials in p : Fn → F that we will use is
as follows. Consider the distribution over F that is obtained by uniformly choosing
x ∈ Fn and outputting p(x), and the distribution over F that is obtained by choosing
a seed s for a PRG G and outputting p(G(s)). We require that the statistical distance
between the two distributions is small. That is:
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Definition 2.4.11 (pseudorandom generator). Fix a field F, let d, n ∈ N, and let ρ > 0.
A function G : {0, 1}` → Fn is a pseudorandom generator with error ρ for polynomials of

degree d if for every polynomial p : Fn → F of degree at most d it holds that

∑
σ∈F

∣∣∣ Pr
s∈{0,1}`

[p(G(s)) = σ]− Pr
x∈Fn

[p(x) = σ]
∣∣∣ ≤ ρ .

An alternative standard definition of PRGs for polynomials requires that the “char-

acter distance”
∣∣∣Ex∈Fn [ep(x)]−Ex[ep(G(s))]

∣∣∣ will be small, where e is any (fixed, non-
trivial) character of F. The “character distance” and the statistical distance are equiv-
alent, up to a multiplicative factor of

√
q− 1 (see [Lov09, Lem 2.4]).

Lastly, we recall the standard lower bound on the size of hitting-sets for polynomi-
als of degree d (for completeness, we include its proof) and state the complementary
upper-bound that is obtained by a standard probabilistic argument.

Fact 2.4.12 (lower bound on the size of hitting-sets for linear subspaces). Let F be a finite
field, let n ∈ N, and let C ⊆ {Fn → F} be a linear subspace of dimension D = dim(C).
Then, any hitting-set for C has at least D points. In particular, for any d < n, any hitting-set
for degree-d polynomials Fn → F has size at least (n+d

d ), and correspondingly the seed length
of any hitting-set generator for such polynomials is at least d · log(n/d).

Proof. Assume towards a contradiction that S ⊆ Fn is a hitting-set for C with D − 1
points. Consider a generator matrix M for the linear subspace C, which is a full-rank
D × |F|n matrix over F whose D rows span C. Let MS be the projection of M to the
D− 1 columns corresponding to the points in S.

Since MS is a D × (D − 1) matrix, there exists a non-trivial linear combination of
the rows of MS that yields the all-zero row. Now, since S is a hitting-set for C, the
only function in C that vanishes on all of S is the all-zero function; in particular, any
non-trivial linear combination of the rows of MS that yields the all-zero row (which
induces a corresponding function in C that vanishes on S) also yields the all-zero row
in M. Thus, we obtain a non-trivial linear combination of the rows of M that yields
the all-zero row, contradicting the hypothesis that M is full-rank.

The “in particular” part follows since the dimension of the corresponding Reed-
Muller code (which is a linear subspace of Fn) is D = (n+d

d ) > (n
d) > (n/d)d, where we

used the hypothesis that d < n.

Fact 2.4.13 (upper bound on the size of hitting-sets). Let F be a finite field, let n ∈N, and
let d < n. Then, there exists a (non-explicit) hitting-set generator for polynomials Fn → F of
degree d with seed length O(d · log(n/d) + log log(q)).

Proof. The number of degree-d polynomials is at most q(
n+d

d ), and each of them vanishes
on at most 1− δ of its inputs, where δ ≥ q−d/(q−1) is the distance of the corresponding
Reed-Muller code. Thus, if we randomly choose

O
(
(1/δ) ·

(
n + d

d

)
· log(q)

)
< O

(
qd/(q−1) ·

(
2n
d

)
· log(q)

)
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elements in Fn, with high probability we obtain a hitting-set for degree-d polynomials.
The number of bits that we need to sample an element from this hitting-set is

O
(

d
q− 1

· log(q) + d · log(n/d) + log log(q)
)
< O (d · log(n/d) + log log(q)) .

2.4.2.3 PRGs and HSGs for uniform circuits, and average-case derandomization

We now define the notions of “average-case” derandomization of probabilistic algo-
rithms. The first definitions that we need are of circuits that distinguish a distribution

from uniform, and of distributions that are pseudorandom for uniform algorithms, as fol-
lows:

Definition 2.4.14 (distinguishing distributions from uniform). For two functions str, ` :
N → N, let G be an algorithm that gets input 1n and a random seed of length `(n) and
outputs a string of length str(n). Then:

1. For n ∈ N and n′ ∈ str−1(n), we say that Dn : {0, 1}n → {0, 1} ε-distinguishes

G(1n′ , u`(n′)) from uniform if
∣∣∣Pr[Dn(G(1n′ , u`(n′))) = 1]− Pr[Dn(un) = 1]

∣∣∣ > ε.

2. For a probabilistic algorithm A, an integer n, and ε > 0, we say that G(1n, u`(n))

is ε-pseudorandom for A if the probability that A(1str(n)) outputs a circuit that ε-
distinguishes G(1n, u`(n)) from uniform is at most ε.

When applying this definition without specifying a function str, we assume that str is the
identity function.

We now use Definition 2.4.14 to define pseudorandom generators for uniform circuits

and hitting-set generators for uniform circuits, which are analogous to the standard defi-
nitions of PRGs and HSGs for non-uniform circuits:

Definition 2.4.15 (PRGs for uniform circuits). For ` : N → N, let G be an algorithm
that gets as input 1n and a random seed of length `(n), and outputs strings of length n.
For t, a : N → N and ε : N → (0, 1), we say that G is an ε-i.o.-PRG for (t, a)-uniform
circuits if for every probabilistic algorithm A that runs in time t(n) and gets a(n) bits of non-
uniform advice there exists an infinite set SA ⊆ N such that for every n ∈ SA it holds that
G(1n, u`(n)) is ε(n)-pseudorandom for A. If for every such algorithm A there is a set SA as
above that contains all but finitely-many inputs, we say that G is an ε-PRG for (t, a)-uniform
circuits.

Definition 2.4.16 (HSGs for uniform circuits). For ` : N → N, let H be an algorithm
that gets as input 1n and a random seed of length `(n), and outputs strings of length n. For
t, a : N → N and ε : N → (0, 1), we say that H is an ε-HSG for (t, a)-uniform circuits

if the following holds. For every probabilistic algorithm A that gets input 1n and a(n) bits
of non-uniform advice, runs in time t(n), and outputs a circuit Dn : {0, 1}n → {0, 1}, and
every sufficiently large n ∈N, with probability at least 1− ε(n) (over the coin tosses of A) at
least one of the following two cases holds:
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1. There exists s ∈ {0, 1}`(n) such that Dn(G(1n, s)) = 1.

2. The circuit Dn satisfies Prx∈{0,1}n [Dn(x) = 1] ≤ ε(n).

It is well-known that PRGs for uniform circuits can be used to derandomize BPP
“on average” (see, e.g., [Gol11, Prop. 4.4]). Analogously, HSGs for uniform circuits can
be used to derandomize RP “on average”. That is, loosely speaking, if there exists an
HSG for uniform circuits, then for any L ∈ RP there exists a deterministic algorithm
D such that for every efficiently-samplable distribution X , the probability over x ∼ X
that D(x) 6= L(x) is small. For simplicity, we prove the foregoing claim for HSGs that
are computable in polynomial time and have logarithmic seed length:

Claim 2.4.17 (HSGs for uniform circuits ⇒ derandomization of RP “on average”).
For ε : N→ (0, 1) such that ε(n) ≤ 1/3, assume that for every k ∈ N there exists a ε-HSG
for (nk, 0)-uniform circuits that is polynomial-time computable and that has logarithmic seed
length. Then, for every L ∈ RP and every c ∈ N, there exists a deterministic polynomial-
time algorithm D such that for every probabilistic algorithm F that runs in time nc and every
sufficiently large n ∈N, the probability (over the internal coin tosses of F) that F(1n) outputs
a string x ∈ {0, 1}n such that D(x) 6= L(x) is at most ε(n).

Proof. Let M be an RP machine that decides L in time nc′ , for some c′ ∈ N. The
deterministic algorithm D gets input x ∈ {0, 1}n, enumerates the seeds of the HSG for
output length m = nc′ and with the parameter k = O(1 + c/c′), and accepts x if and
only if there exists an output r of the HSG such that M accepts x with random coins r.
Note that D never accepts inputs x /∈ L (since M is an RP machine), and thus we only
have to prove that for every algorithm F as in the claim’s statement, the probability
that x = F(1n) satisfies both x ∈ L and D(x) = 0 is at most ε(n).

To do so, let F be a probabilistic algorithm that runs in time nc. Consider the
probabilistic algorithm A that, on input 1m, runs the algorithm F on input 1n to obtain
x ∈ {0, 1}n, and outputs a circuit Cm,x : {0, 1}m → {0, 1} that computes the decision of
M at input x as a function of M’s m = nc′ random coins. Note that the algorithm A
runs in time at most mO(1+c/c′), and also note that the only probabilistic choices that A
makes are a choice of x = F(1n). Thus, by Definition 2.4.16 for every sufficiently large
m, with probability at least 1− ε(m) > 1− ε(n) over choice of x = F(1n) (i.e., over the
coin tosses of A), if D(x) = 0 then Prr[Cm,x(r) = 1] = Pr[M(x) = 1] ≤ ε(n) ≤ 1/3,
which means that x /∈ L.

2.4.2.4 PRGs for linear threshold functions

Pseudorandom generators for the class of linear threshold functions have a nice al-
ternative characterization; this characterization was communicated to us by Rocco
Servedio, and is attributed to Li-Yang Tan. Towards presenting this characterization,
let us define the notion of a distribution that is ε-pseudorandomly concentrated.
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Definition 2.4.18 (ε-pseudorandomly concentrated distribution). For n ∈N and ε > 0,
we say that a distribution z over {−1, 1}n is ε-pseudorandomly concentrated if the follow-
ing holds: For every w ∈ Rn and every a < b ∈ R it holds that Pr [〈w, z〉 ∈ [a, b]] ∈
Pr [〈w, un〉 ∈ [a, b]]± ε.

We now show that PRGs for LTFs are essentially equivalent to algorithms that
output pseudorandomly concentrated distributions.

Claim 2.4.19 (being pseudorandomly concentrated is equivalent to being pseudoran-
dom for LTFs). Let z be a distribution over {−1, 1}n. Then,

1. If z is ε-pseudorandom for LTFs, then z is (2ε)-pseudorandomly concentrated.

2. If z is ε-pseudorandomly concentrated, then z is ε-pseudorandom for LTFs.

Proof. Let us first prove Item (1). Fix w ∈ Rn and I = [a, b] ⊆ R. For any fixed
z ∈ {−1, 1}n, exactly one of three events happens: Either 〈w, z〉 ∈ I, or 〈w, z〉 < a,
or 〈w, z〉 > b. Since the event 〈w, z〉 < a can be tested by an LTF (i.e., by the LTF
Φ(z) = sgn(a−〈w, z〉)), this event happens with probability Prz∈{−1,1}n [〈w, z〉 < a]± ε
under a choice of z ∼ z. Similarly, the event 〈w, z〉 > b happens with probability
Prz∈{−1,1}n [〈w, z〉 > b] ± ε under a choice of z ∼ z. Thus, the probability under a
choice of z ∼ z that 〈w, z〉 ∈ I is Prz∈{−1,1}n [〈w, z〉 ∈ I]± 2ε.

To see that Item (2) holds, let Φ = (w, θ) be an LTF over n input bits, and let
M = ‖w‖1 = ∑i∈[n] |wi|. Then, for every z ∈ {−1, 1}n it holds that Φ(z) = −1 if and
only if z ∈ [−M, θ]. Thus, Pr[Φ(z) = −1] = Pr[z ∈ [−M, θ]] ∈ Pr[un ∈ [−M, θ]]± ε =
Pr[Φ(un) = −1]± ε.

We will rely on the following construction of a pseudorandom generator for LTFs,
by Gopalan, Kane, and Meka [GKM15]:

Theorem 2.4.20 (a PRG for LTFs; [GKM15, Cor. 1.2]). For every ε > 0, there exists a
polynomial-time computable pseudorandom generator for the class of LTFs with seed length
O
(
log(n/ε) · (log log(n/ε))2).

2.5 Dispersers, extractors, and averaging samplers

We now recall the standard definition of dispersers and of extractors [N]× {0, 1}` →
[M]. We will typically think of N and M as vector spaces Fn and Fm, and in particular
as Boolean hypercubes {0, 1}n and {0, 1}m.

Definition 2.5.1 (disperser). A function Disp : [N]× {0, 1}` → [M] is a (k, δ)-disperser if
for every T ⊆ [M] of size |T| ≥ δ · |M|, the probability over x ∈ [N] that for all s ∈ {0, 1}` it
holds that Disp(x, s) /∈ T is less than 2k/|N|. The value ` is the seed length of the disperser.

Dispersers can be defined in an equivalent way using the notion of min-entropy; let
us recall this notion:
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Definition 2.5.2 (min-entropy). We say that a random variable x has min-entropy k if for
every x ∈ supp(x) is holds that Pr[x = x] ≤ 2−k.

Then, Definition 2.5.1 is equivalent to the following definition: Disp is a (k, δ)-
disperser if for any random variable x over [N] with min-entropy k, the support of
Disp(x, u`) covers at least (1− δ) · |M| elements from [M].

We will be particularly interested in dispersers Fn × {0, 1}` → Fm that can be
computed by low-degree multivariate polynomials over F. Specifically, we require
that for each fixed seed s ∈ {0, 1}` and output index i ∈ [m], the function that maps
any z ∈ Fn to the ith output of Disp at z with seed s (i.e., z 7→ Disp(z, s)i) has low
degree as a polynomial Fn → F.

Definition 2.5.3 (degree of a disperser). We say that a disperser Disp : Fn×{0, 1}` → Fm

has degree d if for every fixed s ∈ {0, 1}` and i ∈ [m], the polynomial ps,i : Fn → F defined
by ps,i(z) = Disp(z, s)i is of degree at most d. If d = 1, then we say the disperser is linear.

Recall that there are two standard dispersers that are linear: The naive disperser,
which treats its input z ∈ Fn as a list of samples from Fm and its seed as an index
of a sample in this list; and the subspace sampler, which treats its input as the de-
scription of an affine subspace in Fm and its seed as an index of an element in the
subspace. Nevertheless, these dispersers have disadvantages (small output length and
large seed length, respectively), and in our results we will use more sophisticated
linear dispersers (see Section 3.6.4 for details).

While in dispersers we only care about covering almost all of [M], in extractors we
want to do it uniformly; that is, we require that Ext(x, u`) to be δ-close in statistical
distance to the uniform distribution um over [M]. Formally:

Definition 2.5.4 (seeded extractor). A function Ext : [N] × {0, 1}` → [M] is a (k, δ)-
extractor if for every random variable x over [N] with min-entropy k it holds that Ext(x, u`)
is δ-close in statistical distance to um. The value ` is the seed length of the extractor.

As the support size of a distribution which is δ-close to um is at least (1− δ) · |M|,
any (k, δ)-extractor is readily a (k, δ)-disperser. We also recall that standard fact that
seeded extractors are essentially equivalent to averaging samplers; that is:

Definition 2.5.5 (averaging samplers). A function f : {0, 1}n × {0, 1}t → {0, 1}m is an
averaging sampler with accuracy ε > 0 and error δ > 0 (or (ε, δ)-averaging sampler, in
short) if it satisfies the following. For every T ⊆ {0, 1}m, for all but a δ-fraction of the strings
x ∈ {0, 1}n it holds that Prz∈{0,1}t [ f (x, z) ∈ T] = |T|/2m ± δ. We will also identify f with
a function Samp : {0, 1}n → ({0, 1}m)2t

in the natural way (i.e., Samp(x)i = f (x, i)).

Proposition 2.5.6 (seeded extractors are equivalent to averaging samplers; see, e.g., [Vad12,
Cor 6.24]). Let f : {0, 1}n × {0, 1}t → {0, 1}m. Then, the following two assertions hold:

1. If f is a (k, ε)-extractor, then f is an averaging sampler with accuracy ε and error
δ = 2k−n.
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2. If f is an averaging sampler with accuracy ε and error δ, then f is an (n− log(ε/δ), 2ε)-
extractor.

We will use the following well-known construction by Guruswami, Umans, and
Vadhan [GUV09].

Theorem 2.5.7 (the near-optimal extractor of [GUV09], instantiated as a sampler and
for specific parameters). Let γ ≥ 1 and β > α > 0 be constants. Then, there exists a
polynomial-time algorithm that for every m computes an (m−γ, 2−(α−β)·m)-averaging sampler
Samp : {0, 1}m′ → ({0, 1}m)D, where m′ = (1 + β) ·m and D = poly(m).
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Chapter 3

Quantified Derandomization

3.1 Introduction

As mentioned in Section 1, the prBPP = prP conjecture holds if and only if a specific
“meta-algorithmic” problem, called the Circuit Acceptance Probability Problem (CAPP),
can be solved in deterministic polynomial time. Since CAPP will be our starting-point
for the current section, let us properly define this problem:

Definition 3.1.1 (CAPP; for a more detailed definition see Definition 2.4.1). The Circuit
Acceptance Probability Problem, denoted CAPP, is the following promise problem:

• The YES instances are (representations of) circuits that accept all but at most 2v/3 of
their inputs, where v is the number of input gates to the circuit.

• The NO instances are (representations of) circuits that reject all but at most 2v/3 of their
inputs, where v is the number of input gates to the circuit.

Note that CAPP can be easily solved using randomness, since an algorithm can
sample random inputs for the given circuit and estimate, with high probability and
up to a small error, the fraction of inputs that the circuit accepts. On the other hand,
any problem in prBPP can be reduced in deterministic polynomial time to CAPP,
and thus a deterministic deterministic T-time algorithm for CAPP would imply that
prBPP ⊆ prDT IME [T(poly(n))] (see Proposition 2.4.2). Thus, we say that CAPP is
complete for prBPP under polynomial-time reductions; informally, we will say that
derandomization of prBPP is equivalent to deterministically solving CAPP.

Let us now focus on the maximal error probability that we allow probabilistic algo-
rithms in the definition of prBPP , which is 1/3, and on the corresponding number
of exceptional inputs that we allow in the definition of CAPP, which is 2v/3. It is well-
known that the precise constant value 1/3 is arbitrary: The reason is that the error of
any probabilistic algorithm can be reduced from 1/3 to any small constant, by stan-
dard error-reduction. In fact, by running the algorithm polynomially-many times with
“fresh” randomness each time, and taking a majority vote of the outcomes, the error
of the algorithm can be reduced to be exponentially small in the input length.
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Moreover, using randomness-efficient methods for error-reduction (e.g., as described
in Section 2.5), one can modify a polynomial-time algorithm that uses n random coins
and errs with probability at most 1/3 into a polynomial-time algorithm that solves
the same problem using m = poly(n) random coins and having error probability at
most 2−m+m.01

(and indeed, this is just one possible target setting of the parameters).
Thus, we could equivalently define prBPP using a tiny error probability such as
2−m+m.01

instead of 1/3 (where m is the number of random coins), and polynomial-time
derandomization of prBPP (in any of these equivalent definitions) is equivalent to the
existence of a deterministic polynomial-time algorithm that solves a corresponding
version of CAPP that refers to v-bit circuits that either accept all but at most 2v.01

of
their inputs or reject all but at most 2v.01

of their inputs.
Since the error probability of probabilistic algorithms (and in the definition of CAPP)

can be made so small without losing generality, one might mistakenly suspect that
the precise value of the error probability does not matter at all. This is obviously
false: If a probabilistic algorithm has no error at all, and correctly computes a Boolean
function regardless of its random choices, then derandomizing it is trivial.1 Therefore,
we deduce that for some small values of the error (e.g., the value zero) it is easy to
derandomize the corresponding class of probabilistic algorithms, whereas for larger
values of the error (e.g., the value 2−m+m.01

), derandomizing the corresponding class
of probabilistic algorithms is just as difficult as derandomizing prBPP .

In other words, the precise value for the error probability matters a great deal: It’s
just that the more interesting values for it – values that do not trivialize the problem,
but for which we also do not know if problem is equivalent to the original version
– are very small. This observation was first put forward by Goldreich and Wigder-
son [GW14], who introduced the following parametrized version of CAPP, which they
named quanti�ed derandomization:

Definition 3.1.2 (quantified derandomization). For a function B : N → N, the problem
of quanti�ed derandomization of circuits with B exceptional inputs is the following promise
problem:

1. The YES instances are (representations of) circuits that accept all but at most B(v) of
their inputs, where v is the number of input gates to the circuit.

2. The NO instances are (representations of) circuits that reject all but at most B(v) of their
inputs, where v is the number of input gates to the circuit.

We say that B quanti�es the number of exceptional inputs to the circuit.

Observe that solving quantified derandomization of circuits with B exceptional
inputs is equivalent to derandomizing probabilistic algorithms that err on at most B

1Note that derandomizing algorithms that never err is trivial as long as such algorithms are also
forbidden to output “fail” (or “don’t know”). In contrast, derandomizing algorithms that never err but
output “fail” with small probability (i.e., derandomizing ZPP) does not seem trivial at all.
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of their random strings.2 Indeed, when B(v) = 2v/3 the quantified derandomization
problem is identical to CAPP. However, following the discussion above, our interest will
typically be in much smaller values of B, such as B(v) = 2o(v) or even B(v) = 2vo(1)

.
Indeed, our hope is that by studying such a potentially-easier version of CAPP we can
make progress towards solving the original version of CAPP, and hence also towards
proving that prBPP = prP .

The current study of CAPP focuses on restricted cases of this problem, most impor-
tantly when the input circuit is guaranteed to come from some predetermined “weak”
circuit class, such as AC0. Even for such weak classes, our current knowledge of
deterministic algorithms for CAPP is limited, and any progress on constructing such
deterministic algorithms is inherently tied to progress in proving new lower bounds
for the corresponding circuit class (see Chapter 4 for further details).

Similarly, most of the work on quantified derandomization focuses on cases where
the input circuit comes from some “weak” class. Fixing such a “weak” circuit class
C, let us consider the problem of quantified derandomization of C-circuits with B
exceptional inputs. As a simplisitic mental model, let us think of two values of B in
this context: The first value, which we call the feasible value, is the maximal value for
which we are able to unconditionally solve the problem by a deterministic polynomial-
time algorithm; and the second value, which we call the threshold value, is the minimal
value to which we are able to reduce CAPP in polynomial time. This model is simplistic
since it fixes or neglects parameters other than B that will be of vital importance in
certain settings, such as the running time of our algorithms and potential overheads in
the circuit class C.3 Nevertheless, the model is instructive in outlining a main driving
force in this study: Narrowing the gap between the feasible setting of the parameters

(i.e., of B, of C, and of the algorithms’ running time) and the threshold setting of the

parameters, and hopefully eliminating this gap and solving CAPP for C-circuits.
The current chapter focuses on contributions in the study of quantified derandom-

ization. In high-level, we include three main contributions:

• We study quantified derandomization of classes of constant-depth circuits that are
major frontier in the study of CAPP. In particular, we study quantified derandom-
ization of AC0, of AC0[⊕], of ACC0, and of T C0. For each class, we significantly
narrow the gap between the feasible setting of the parameters and the threshold
setting of parameters; this is done both by constructing new quantified deran-
domization algorithms, and by constructing new reductions from CAPP.

2Specifically, there exists a deterministic T-time algorithm that solves quantified derandomization of
circuits with B exceptional inputs if and only if the class of problems solvable by probabilistic algorithms
that err on at most B of their random strings is contained in ∪cDT IME [T(nc)]. This is analogous
to the fact that derandomizing prBPP is equivalent to solving CAPP, and follows the same proof as
Proposition 2.4.2.

3In more detail, the model fixes the running time of the algorithm for quantified derandomization and
of the reduction from CAPP to be polynomial, whereas the question is obviously interesting also when
the running time of these algorithms is super-polynomial; and the model also ignores the possibility that
the reduction from CAPP to quantified derandomization might incur overheads in the class C (i.e., might
map C-circuits to circuits from a somewhat larger class).
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For some of these classes, the remaining gap between the feasible setting and
the threshold setting is remarkably small. For example, for the class AC0 this
gap refers to the difference in the value of B(v), and specifically in the precise
universal constant c ∈ N in the expression B(v) = 2v/(log v)d−c

, where d is the
depth of the circuit; and for the class of constant-depth linear threshold circuits
(i.e., T C0) the gap refers to a difference in the number of wires of the circuit, and
specifically in the precise universal constant c ∈ N in the bound n1+c−d

on the
number of wires (where d again is the depth of the circuit).

• We provide a partial explanation for the fact that there remains a very small gap
between the feasible setting of parameters and the threshold setting of parame-
ters. Specifically, many of the results above are proved using certain “black-box”
algorithmic techniques, both for the quantified derandomization algorithm and
for the reduction from CAPP. We show that when relying solely on these spe-
cific “black-box” techniques for both algorithms, there will necessarily be a gap
between the feasible setting and the threshold setting.

• We study hitting-set generators for polynomials Fn → F that vanish rarely. We prove
non-explicit results, showing that there exist hitting-sets for such polynomials
that are of smaller size than the size of any hitting-set for all polynomials of
the corresponding degree; and we also construct efficiently-computable hitting-
set generators for polynomials that vanish rarely, in settings where no explicit
construction of hitting-set generator for general polynomials is known. We com-
plement these results by showing lower bounds on the size of any hitting-set for
polynomials that vanish rarely.

Organization and included works. In Section 3.2, which is based on results from [Tel19a],
we present several lemmas that will be used throughout the chapter. In Section 3.3,
which is based on the work [Tel19a], we present our results for the circuit class AC0.
In Section 3.4, which is also based on [Tel19a], we present our results for the circuit
class AC0[⊕]. In Section 3.5, which is based on [Tel18b] and on a joint work with
Chen [CT19], we present our results for the classes T C0 and ACC0. In Section 3.6,
which is based on a joint work with Doron and Ta-Shma [DTST19], we present the re-
sults for polynomials that vanish rarely. And in Section 3.7, which is based on [Tel17a],
we present the limitations of certain “black-box” techniques.

3.2 Randomized tests

In this section we present several lemmas that will be used several times through-
out the chapter. We first explain, in high-level, the ideas behind these lemmas (see
Section 3.2.1); then we present the lemmas in the context of Boolean functions (see
Section 3.2.2) and in the context of polynomials over finite fields (see Section 3.2.3).
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3.2.1 Overview

Let G ⊆ {0, 1}n be a set of good objects, and assume that we want to efficiently and
deterministically find some x ∈ G. That is, we want to solve the search problem of
finding a good object in G. A common technique to do so is to construct a simple
deterministic test T : {0, 1}n → {0, 1} (say, T is a small-depth circuit or a low-degree
polynomial) that decides G (i.e., T(x) = 1 if and only if x ∈ G). The existence of such
a test T is useful, since if T is sufficiently simple such that we are able to construct a
hitting-set generator for T, then the generator outputs x ∈ G with positive probability
(because the output distribution of the generator contains x ∈ T−1(1) = G). Indeed,
this approach reduces the task of finding x ∈ G to the task of constructing a test T for
G that is sufficiently simple such that we are able to construct a hitting-set generator
for T.

Intuitively, the randomized tests technique is based on the observation that an argu-
ment similar to the one above holds also when we replace the single deterministic test
T by a distribution T over (deterministic) tests such that, for every fixed x ∈ {0, 1}n, it
holds that T(x) computes the indicator function of G, with probability 1− ε > 1/2.
That is:

Observation 3.2.1. For a ε < 1/2, assume that T is a distribution as above, and let w be a
distribution over {0, 1}n that is a hitting-set with density 1− ε for every T ∈ T. Then, there
exists w in the support of w such that w ∈ G.

Proof. Consider the behavior of a random test T ∼ T on a random element from the
hitting-set w ∼ w. On the one hand, we have that Pr[T(w) = 1] ≥ 1− ε (because for
every T ∈ T it holds that Pr[T(w) = 1] ≥ 1− ε). On the other hand, we have that
Pr[T(w) = 0] ≥ Pr[w /∈ G] ·minx/∈G{Pr[T(x) = 0]} ≥ Pr[w /∈ G] · (1− ε). Combining
the two statements, we deduce that Pr[w /∈ G] ≤ ε/(1− ε) < 1.

Indeed, this approach reduces the task of finding x ∈ G to the tasks of constructing
a distribution T over simple tests as above, and of constructing a hitting-set generator
with high density for the deterministic tests in the support of T. The main benefit
in this approach over the previous one (in which we had a single deterministic test)
is that in some cases, the use of randomness allows us to obtain very simple residual tests,
which are simpler than any deterministic test for G; one appealing example for such a
case appears in Section 3.3.2. We stress that when constructing the distribution T we
can be wasteful in the use of randomness, because the existence of T is only a part of
the analysis: The actual algorithm for finding x ∈ G is merely a hitting-set generator,
whereas only the proof that the generator outputs x ∈ G relies on the existence of the
distribution T.

Two relaxations of the hypotheses for the argument above can immediately be
made, and turn out to be very useful. First, we do not have to assume that w is a
hitting-set with high density for the tests in the support of T, but rather only use the
hypothesis that Pr[T(w) = 1] is high. When the set G of good objects is dense (i.e.,
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Prx∈{0,1}n [x ∈ G] is high), the latter hypothesis is satisfied when w is a pseudoran-
dom set for the tests in the support of T (rather than a hitting-set with high density).
Secondly, while our argument relies on the hypothesis that T(x) = 0 with high prob-
ability for every x /∈ G, it does not rely on the hypothesis that T(x) = 1 with high
probability for every x ∈ G.

Let us demonstrate one appealing setting in which the two relaxed hypotheses
above hold (this example simplifies and abstracts the setting in the proof of Theo-
rem 3.3.3). Assume that the set G of good objects is indeed dense, and moreover that
G contains a dense subset E ⊆ G of excellent objects that have additional useful prop-
erties. (For example, when G is dense, a random object is not only in G, but with
high probability it is also a “hard” function, or an expander.) Now assume that we
are able to construct a distribution T over simple tests that only distinguishes between
excellent objects and bad ones; that is, T solves a promise problem with some “gap”
between the “yes” instances (i.e., E) and the “no” instances (i.e., {0, 1}n \G). Denoting
the uniform distribution over {0, 1}n by un, in this case we have that Pr[T(un) = 1] is
high, whereas Pr[T(x) = 0] is high for every x /∈ G. Thus, in such a setting, in order
to find a good object x ∈ G it suffices to construct a pseudorandom generator for the
tests in the support of T (see Corollary 3.2.3).

3.2.2 Boolean functions

We first prove the following claim, which corresponds to the setting that was described
after Observation 3.2.1 and refers to two relaxations of the observation. Specifically,
our goal will be to find some x ∈ G, and we will use a distribution T that rejects every
x /∈ G, with high probability, and accepts a random input, with high probability; and
a distribution w that is pseudorandom for the tests in the support of T.

Lemma 3.2.2 (randomized tests, “hitting” a Boolean function). Let n ∈ N, let G ⊆
{0, 1}n, and let δ1, δ2, δ3, δ4 > 0 be error parameters.

• Let T be a distribution over {{0, 1}n → {0, 1}} such that Pr[T(un) = 1] ≥ 1− δ1 and
such that for every x /∈ G it holds that Pr[T(x) = 0] ≥ 1− δ2.

• Let w be a distribution that δ4-fools all but an δ3-fraction of the tests in T; that is, the
probability over T ∼ T that

∣∣∣Pr[T(un) = 1]− Pr[T(w) = 1]
∣∣∣ > ε4 is at most ε3.

Then, the probability that w ∈ G is at least 1−∑i∈[4] δi.

Proof. To upper-bound the probability that w /∈ G, we first show that a random test
T ∼ T accepts a pseudorandom input from the distribution w with high probability. To
see this, let T be the set of tests in the support of T that are δ4-fooled by w; that is,
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3. QUANTIFIED DERANDOMIZATION

T =
{

T ∈ supp(T) :
∣∣∣Pr[T(un) = 1]− Pr[T(w) = 1]

∣∣∣ ≤ δ4

}
. Then, we have that

Pr[T(w) = 1] = Pr[T ∈ T ] · Pr[T(w) = 1|T ∈ T ]
+ Pr[T 6∈ T ] · Pr[T(w) = 1|T 6∈ T ]

≥ Pr[T ∈ T ] · (Pr[T(un) = 1|T ∈ T ]− δ4)

+ Pr[T 6∈ T ] · (Pr[T(un) = 1|T 6∈ T ]− 1)
≥ Pr[T(un) = 1]− (δ3 + δ4) , (3.2.1)

and relying on our hypothesis, Eq. (3.2.1) is lower-bounded by 1− δ1 − δ3 − δ4.
Now, note that if Pr[w /∈ G] is high, then there is significant probability that a

random test from T will reject a pseudorandom input from w. Specifically,

Pr[T(w) = 0] ≥ Pr[w /∈ G] ·min
x/∈G

{
Pr

T∼T
[T(x) = 0]

}
≥ Pr[w /∈ G]− δ2 . (3.2.2)

By combining Eq. (3.2.2) with the fact that Pr[T(w) = 0] ≤ δ1 + δ3 + δ4, it follows that
Pr[w /∈ G] ≤ ∑i∈[4] δi.

The following result refers to the setting that was described in the end of Sec-
tion 3.2.1. The result follows as a special case of Lemma 3.2.2.

Corollary 3.2.3 (randomized tests, “hitting” a Boolean function; a special case). Let
n ∈N, and let ε1, ε2, ε3, ε4, ε5 > 0 be error parameters.

• Let G ⊆ {0, 1}n and E ⊆ G such that Pr[un ∈ E] ≥ 1− ε1.

• Let T be a distribution over over {{0, 1}n → {0, 1}} such that for every x ∈ E it holds
that Pr[T(x) = 1] ≥ 1− ε2 and for every x /∈ G it holds that Pr[T(x) = 0] ≥ 1− ε3.

• Let w be a distribution that ε5-fools all but an ε4-fraction of the tests in T; that is, the
probability over T ∼ T that

∣∣∣Pr[T(un) = 1]− Pr[T(w) = 1]
∣∣∣ > ε5 is at most ε4.

Then, the probability that w /∈ G is at least 1−∑i∈[5] εi.

Proof. Since Pr[un ∈ E] ≥ 1− ε1 and for every x ∈ E it holds that Pr[T(x) = 1] ≥
1− ε2, we have that Pr[T(un) = 1] ≥ 1− (ε1 + ε2). We thus invoke Lemma 3.2.2 with
δ1 = ε1 + ε2 and with δi = εi+1 for i ∈ {2, 3, 4}.

In Lemma 3.2.2 and Corollary 3.2.3 our goal was simply to “hit” the (dense) set
G. In contrast, in the following lemma our goal will be to approximate the density of
the set G. Specifically, we think of G = p−1(1) for some function p : {0, 1}n → {0, 1},
and we do not assume that G is dense. We fix any distribution h such that for every
x ∈ {0, 1}n, with high probability it holds that h(x) = p(x). Our conclusion is that
any distribution w that is pseudorandom for the functions in the support of h is also
pseudorandom for p.
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Lemma 3.2.4 (randomized tests, “fooling” a Boolean function). Let n ∈N, let ε > 0, and
let p : {0, 1}n → {0, 1} Assume that there exists a distribution h over functions {0, 1}n →
{0, 1} such that for every fixed x ∈ {0, 1}n it holds that Pr[h(x) = p(x)] ≥ 1− ε. Finally,
let w be a distribution over {0, 1}n such that for every h in the support of h it holds that∣∣∣Prx∈{0,1}n [h(x) = 1]− Pr[h(w) = 1]

∣∣∣ ≤ ε. Then,∣∣∣ Pr
x∈{0,1}n

[p(x) = 1]− Pr[p(w)]
∣∣∣ ≤ 5ε .

Lemma 3.2.4 follows as a special case of a more general claim below (see Lemma 3.2.8),
and therefore we omit its proof.

3.2.3 Polynomials over finite fields

We now present several results that follow the high-level intuition from Section 3.2.1
and apply to the setting of polynomials over finite fields. We first prove a result that
refers to “hitting” a set G ⊆ Fn and is very similar to Observation 3.2.1.

Lemma 3.2.5 (randomized tests, “hitting” polynomials). Let n ∈ N, let F be any finite
field, let G ⊆ Fn, and let ε1, ε2, ε3 ∈ [0, 1) be three parameters. Assume that

1. There exists a distribution p over {Fn → F} such that for every x /∈ G it holds that
Pr[p(x) = 0] ≥ 1− ε1.

2. There exists a distribution w over Fn such that for some set H ⊆ {Fn → F} satisfying
Pr[p ∈ H] ≥ 1− ε2, for every fixed p ∈ H it holds that Pr[p(w) 6= 0] > ε3.

Then, Pr[w ∈ G] > ε3 · (1− ε2)− ε1.

Proof. First observe that Pr[p(w) 6= 0] is high; this is the case since

Pr[p(w) 6= 0] ≥ Pr[p ∈ H] · Pr
p∼p

[p(w) 6= 0|p ∈ H] > ε3 · (1− ε2) . (3.2.3)

On the other hand, we also have that

Pr[p(w) 6= 0] = Ex∼w

[
Pr

p∼p
[p(x) 6= 0]

]
≤ Pr

x∼w
[x ∈ G] + Pr

x∼w
[x /∈ G] ·max

x/∈G

{
Pr

p∼p
[p(x) 6= 0]

}
≤ Pr[w ∈ G] + ε1 , (3.2.4)

and the lemma follows by combining Eqs. (3.2.3) and (3.2.4).

The next result, which follows as a corollary of Lemma 3.2.5, refers to the setting
in which we assume that the set G is dense, that p distinguishes between G and ¬G,
and that w is a hitting-set for polynomials that vanish rarely.
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Corollary 3.2.6 (randomized tests, “hitting” polynomials; a special case). Let ε, ρ, µ, γ ∈
[0, 1) such that ρ + ε < 1, and let G ⊆ Fn be such that Pr[un ∈ G] ≥ 1− ε. Assume that
there exists a distribution p over polynomials p : Fn → F and a distribution w over Fn such
that:

1. For every fixed x ∈ G it holds that Pr[p(x) 6= 0] ≥ 1− ρ, and for every fixed x /∈ G it
holds that Pr[p(x) = 0] ≥ 1− γ.

2. For every p : Fn → F in the support of p that vanishes on at most a
√

ρ + ε fraction of
its inputs it holds that Pr[p(w) 6= 0] > µ.

Then, Pr[w ∈ G] > µ · (1−√ρ + ε)− γ.

Proof. Let H be the set of polynomials in the support of p that vanish on at most√
ρ + ε of the inputs x ∈ Fn. Note that Pr[p ∈ H] > 1−√ρ + ε, because

Pr[p(un) 6= 0] ≥ Pr[un ∈ G] ·min
x∈G
{Pr[p(x) 6= 0]} ≥ 1− (ρ + ε) ,

and using Markov’s inquality. We therefore invoke Lemma 3.2.5 with parameters
ε1 = γ and ε2 =

√
ρ + ε < 1 and ε3 = µ.

In the next argument, instead of trying to “hit” a fixed set G ⊆ Fn, we will fix a
polynomial p : Fn → F, and try to “fool” p (i.e., we want to construct a pseudorandom
generator for p). Indeed, we will need to explain exactly what we mean by “fooling”
in the context of functions over finite fields. Towards presenting the argument, let
us first define the notion of randomly computing p by a distribution of functions that is
typically over simpler functions.

Definition 3.2.7 (randomly computing a function). Let F be a finite field, let p : Fn → F,
and let H be a class of functions Fn → F. For ρ, ρ′ > 0, we say that p can be randomly

computed with error ρ by a distribution h that is (1− ρ′)-typically in H, if:

1. For every x ∈ Fn it holds that Pr [p(x) = h(x)] ≥ 1− ρ.

2. The probability that h ∈ H is at least 1− ρ′.

The following claim extends an argument that is implicit in the work of Bogdanov
and Viola [BV10, Proof of Lemma 23]. Loosely speaking, our claim is the following:
If p can be computed with small error by a distribution h that is typically in H, then
any distribution w over Fn that “fools” every h ∈ H also “fools” p, where “fooling” a

function f means that for some (fixed) mapping ζ : F→ C it holds that
∣∣∣E[ζ( f (w))]−

E[ζ( f (un))]
∣∣∣ is small. It is useful to think of ζ : F→ C as a fixed non-trivial character

e : F→ C, in which case we have that maxv,w∈F{|ζ(v)− ζ(w)|} = 2.
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Lemma 3.2.8 (randomized tests, “fooling” polynomials; an extension of a claim that
is implicit in [BV10]). Let n ∈ N, let F be any finite field, let ε > 0. Also, let ζ : F → C,
and let δ = maxv,w∈F{|ζ(v) − ζ(w)|}. Let p : Fn → F, and assume that there exists a
distribution h over polynomials Fn → F such that for every fixed x ∈ Fn it holds that
Pr[h(x) = p(x)] ≥ 1 − ε. Finally, let w be a distribution over Fn such that for every
polynomial h in the support of h it holds that

∣∣∣Ex∈Fn [ζ(h(x))]−E[ζ(h(w))]
∣∣∣ ≤ ε. Then,∣∣∣Ex∈Fn [ζ(p(x))]−E[ζ(p(w))]

∣∣∣ ≤ (2δ + 1) · ε .

Proof. Let un be the uniform distribution over Fn. For simplicity of notation, define
p′ = ζ ◦ p : Fn → C, and for every h in the support of h, define h′ = ζ ◦ h : Fn → C.
Also denote by h′ the distribution that is obtained by sampling h ∼ h and outputting
h′ = ζ ◦ h. By the triangle inequality,∣∣∣E[p′(un)]−E[p′(w)]

∣∣∣ ≤ ∣∣∣E[p′(un)]−E[h′(un)]
∣∣∣

+
∣∣∣E[h′(un)]−E[h′(w)]

∣∣∣
+
∣∣∣E[h′(w)]−E[p′(w)]

∣∣∣ . (3.2.5)

To upper bound the first item in Equation (3.2.5), note that∣∣∣E[p′(un)]−E[h′(un)]
∣∣∣ ≤ Ex∼Fn,h∼h

[∣∣∣p′(x)− h′(x)
∣∣∣]

≤ Ex∈Fn

[
Pr

h∼h
[h(x) 6= p(x)] · max

v,w∈F
{|ζ(v)− ζ(w)|}

]
≤ δ · ε ,

where the last inequality holds because for every fixed x ∈ Fn we have that Prh∼h[h(x) 6=
p(x)] ≤ ε. The third item in Equation (3.2.5) is similarly upper bounded by δ · ε, by
replacing the uniform choice of x ∈ Fn with a choice of x ∼ w.

To upper bound the second item in Equation (3.2.5), note that∣∣∣E[h′(un)]−E[h′(w)]
∣∣∣ ≤ Eh∼h

[∣∣∣E[h′(un)]−E[h′(w)]
∣∣∣] ≤ ε ,

where we used the hypothesis that for every polynomial h in the support of h it holds

that
∣∣∣Ex∈Fn [ζ(h(x))]−E[ζ(h(w))]

∣∣∣ ≤ ε.

3.3 Constant-depth circuits

3.3.1 The main results

Let us first state the threshold values for quantified derandomization of AC0, and
then turn to describe our algorithms for quantified derandomization. Goldreich and
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Wigderson showed that the value B(n) = 2n/ log0.99·D(n) is a threshold value for quan-
tified derandomization of depth-D circuits. Specifically, they reduced the standard
derandomization problem of depth-d circuits to the problem of quantified derandom-
ization of circuits of depth D � d with B(n) = 2n/ logD−O(d)(n) (see [GW14, Thm 3.4 (full
version)]). Since their work, Cheng and Li [CL16] improved the known techniques for
error-reduction within AC0, which allows us to further decrease the threshold value,
as follows:

Theorem 3.3.1 (threshold for quantified derandomization of AC0). For any d ≥ 2 and
D > d+ 11, the standard derandomization problem of depth-d circuits reduces in deterministic
polynomial-time to the quantified derandomization problem of circuits of depth D that accept
all but B(n) = 2n/ logD−d−11(n) of their inputs.

Our main result for AC0 circuits is a derandomization of depth-D circuits with
B(n) = 2n/ logD−2(n) exceptional inputs; this value of B(n) is only slightly smaller than
the threshold value in Theorem 3.3.1. The quantified derandomization algorithm runs
in time that is significantly faster than the current state-of-the-art for derandomizing
AC0:

Theorem 3.3.2 (quantified derandomization of AC0 with B(n) = 2n/ logD−2(n)). For any
D ≥ 2, there exists a hitting-set generator with seed length Õ(log3(n)) for the class of depth-D
circuits over n input bits that accept all but at most B(n) = 2Ω(n/ logD−2(n)) of their inputs.

We stress that the power of the poly-logarithm in the seed length in Theorem 3.3.2
does not depend on the depth D. Any standard hitting-set generator for AC0 (i.e.,
with B(n) = 2n/2) with such a seed length would be a major breakthrough, and in
particular would significantly improve the lower bounds of Håstad for AC0 [Hås87]
(see, e.g., [Vad12, Prob. 7.1] and [TX13, “Barriers to Further Progress”]).

The values of B(n) in Theorems 3.3.1 and 3.3.2 are indeed very close, yet the
smaller value allows for derandomization in time 2Õ(log3(n)) whereas the larger value
is a threshold for standard derandomization. This represents a progress towards the
goal of the quantified derandomization approach, which is to close the gap between
the two parameters: That is, to either increase the value of B(n) in Theorem 3.3.2, or
decrease the value of B(n) in Theorem 3.3.1, and obtain a standard derandomization
of AC0.

Theorem 3.3.2 is a special case of the following, more general result, which ex-
tends the main theorem of Goldreich and Wigderson [GW14]. Their algorithm works
with logarithmic seed and B(n) = 2n1−Ω(1)

exceptional inputs. The following result is
parametrized (by the parameter t), and can work with more than 2n1−Ω(1)

exceptional
inputs, at the expense of a longer (i.e., super-logarithmic) seed; Theorem 3.3.2 is the
special case where both B(n) and the seed are the largest possible in this result.

Theorem 3.3.3 (quantified derandomization ofAC0: a general trade-off). For any D ≥ 2
and t : N → N such that t(n) ≤ O(log(n)), there exists a hitting-set generator that uses a
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seed of length Õ(t2 · log(n)) for the class of depth-D circuits over n input bits that accept all
but at most B(n) = exp

(
n1−1/Ω(t)/td−2

)
of their inputs.

Indeed, the main result in [GW14] is essentially obtained (up to a poly log log(n)
factor in the seed length) by setting t = O(1), whereas Theorem 3.3.2 is obtained by
setting t = O(log(n)). Theorem 3.3.3 is based on a new derandomization of Hastad’s
switching lemma, which is our main technical contribution in this section.

Theorem 3.3.4 (new width-dependent derandomization of the switching lemma; see
Theorem 3.3.14). Let m, n ∈ N, let w ≤ O(log(m)), and let δ > 0. Then, there exists
an algorithm that gets as input a random seed of length Õ(w2 · log(mn/δ)), runs in time
poly(n), and outputs a restriction ρ ∈ {0, 1, ?}n such that for every depth-2 formula F :
{0, 1}n → {0, 1} of size m and width w, with probability 1−O(δ) the following holds:

• The number of variables that are kept alive by ρ is Ω (n/w).

• There exist “lower-sandwiching” and “upper-sandwiching” formulas Flow and Fup for
F (i.e., for every x ∈ {0, 1}n it holds that Flow(x) ≤ F(x) ≤ Fup(x)) such that both
Flow�ρ and Fup�ρ can be computed by decision trees of depth O(log(1/δ)), and each of
them agrees with F�ρ on 1− δ of the inputs (in the subcube that corresponds to ρ).

The actual bound on the seed length of the algorithm from Theorem 3.3.4 in our
result is better when δ = ω(1/m); see Theorem 3.3.14 for the precise expression. Note
that the seed length depends on the width of the formula F; previous derandomiza-
tions of the switching lemma can also be adapted to depend on the width, but when
the width is o(log(n)) the seed length in Theorem 3.3.4 is significantly shorter than in
these adaptations; see Section 3.3.2 for further details.

3.3.2 Proof overviews

Theorem 3.3.2 is a special case of the more general Theorem 3.3.3. However, since there
is a simple and more direct way to prove Theorem 3.3.2, we describe this simpler way
first, and only then turn to the describe the proof of the more general theorem.

Let C be a depth-D circuit that accepts all but B(n) = Ω
(

2n/ logD−2(n)
)

of its in-
puts. The hitting-set generator first uses pseudorandom restrictions to simplify C to
a depth-2 circuit, by fixing values for all but n′ = Ω(n/ logD−2(n)) of the variables.
These pseudorandom restrictions are chosen using an adaptation of the derandomized
switching lemma of Trevisan and Xue [TX13] (either Tal’s [Tal17] improvement or the
adapted version in Proposition 3.3.12), which requires a seed of length Õ(log3(n)). At
this point, there are n′ ≥ log(B(n)) + 1 living variables, and therefore the simplified
circuit (over n′ input bits) has acceptance probability at least 1/2 (since C has at most
B(n) unsatisfying inputs). Hence, we can use any pseudorandom generator for depth-
2 circuits with seed length at most Õ(log3(n)) (e.g., that of De et al. [DET+10]) in order
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to fix values for the remaining n′ variables, thus finding a satisfying input for C, with
high probability.4

Turning to the more general Theorem 3.3.3, the high-level structure of its proof is
similar to that of the proof of Theorem 3.3.2: We first use a derandomized switching
lemma to radically simplify the circuit, while keeping more than log(B(n)) variables
alive, and then use a pseudorandom generator for the simplified circuit to find a
satisfying input. The key difference from Theorem 3.3.2 is that the first step uses a
new derandomization of the switching lemma, which we establish.

The new derandomization of the switching lemma depends on the width (i.e.,
bottom fan-in) of the depth-2 formula that we want the restriction to simplify. Pre-
vious known derandomizations of the lemma can also be adapted to depend on
the width of the formula: For typical settings of the parameters (i.e., polynomial
size and polynomially-small error), the derandomization of Goldreich and Wigder-
son [GW14] can be adapted to yield a seed length of Õ(2w) · log(n) for formulas of
width w (see Proposition 3.3.18), and the derandomization of Trevisan and Xue [TX13]
can be adapted (using the pseudorandom generator of Gopalan, Meka, and Rein-
gold [GMR13]) to yield a seed length of Õ(w) · log2(n) (see Proposition 3.3.12). We
show a derandomization that requires a seed of length Õ(w2 · log(n)) (see Theo-
rem 3.3.14). Indeed, in this new result, the dependency of the seed length on w is
exponentially better than in [GW14], and the seed length is shorter than in [TX13] for
any w = o(log(n)). The caveat, however, is that we do not show that the formula itself
is simplified in the subcube corresponding to the restriction; instead, we show that
the formula is approximated by a decision tree of bounded depth in this subcube (i.e.,
there exists such a decision tree that agrees with the formula on almost all inputs in
the subcube). This weaker conclusion suffices for our main application (i.e., for The-
orem 3.3.3) as well as for all other applications of derandomized switch lemmas that
we are aware of.

Our starting point in the proof of this lemma is a result of Gopalan, Meka, and
Reingold [GMR13], which asserts that for any depth-2 formula F of width w and
any β > 0, there exists a formula Flow of width at most w and size at most m′ =
2Õ(w)·log log(1/β) such that Flow is “lower-sandwiching” for F (i.e., Flow(x) ≤ F(x) for all
x ∈ {0, 1}n) and Prx∈{0,1}n [F(x) 6= Flow(x)] ≤ β. Now, since Flow is both small (i.e., m′

is upper bounded) and of bounded width, we can find a restriction that simplifies it
using a relatively short seed; specifically, we can use an adapted version of the lemma
of [TX13] (see Proposition 3.3.12), and the required seed length (when we want the
probability of error to be 1/poly(n)) is only Õ(w) · log(m′) · log(n) = Õ(w2) · log(n) ·
log log(1/β).

The main challenge that underlies this approach is that, while Flow agrees with F

4Actually, there is one minor subtlety in this description: In the derandomizations of [TX13; Tal17], the
expected number of living variables is close to n/ logd−2(n), but it is not guaranteed that approximately
this many variables remain alive with high (or even constant) probability. Nevertheless, the latter does
hold when instantiating their generic construction in a specific manner; see the proof of Theorem 3.3.3
for further details.
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on most inputs x ∈ {0, 1}n, it is not clear that Flow also agrees with F on most inputs
in the subcube that corresponds to ρ; that is, it is not guaranteed that Flow�ρ will agree
with F�ρ on most of their inputs. To make sure that Flow�ρ will agree with F�ρ on
most of their inputs, we will choose ρ such that it “fools” additional tests that check
whether or not Flow�ρ and F�ρ indeed typically agree. To design these tests we use the
randomized tests technique: Specifically, a natural randomized test to decide whether
or not Flow�ρ and F�ρ typically agree is to sample random inputs inside the subcube
that corresponds to ρ, and accept if and only if Flow�ρ and F�ρ agree on the sampled
inputs.

Indeed, the residual tests under this distribution are simpler (in any reasonable sense)
than any deterministic test that decides whether or not Flow�ρ and F�ρ agree on most
of their inputs. The remaining task is thus to construct a hitting-set generator with
high density for these residual tests. We will now describe how to do so, relying both
on the specific details of the construction of Flow from [GMR13], in order to construct
circuits with a specific structure that will be convenient for us for each residual test,
and on relaxations of the randomized tests technique that follow the ones suggested
in the end of Section 3.2.1 (i.e., using Corollary 3.2.3).

We want to use the lemma to simplify polynomially-many depth-2 formulas (i.e.,
simplify an entire “layer” of a constant-depth circuit). Thus, we want that for every
fixed formula F it will hold that Flow�ρ and F�ρ agree on an all but an α-fraction of
their inputs, where α = 1/poly(n). We say that a restriction ρ is good if Flow�ρ and
F�ρ agree with probability at least 1 − α. If we start from a formula Flow with the
approximation parameter β = poly(α), then almost all restrictions ρ′ are excellent, in
the sense that Flow�ρ′ and F�ρ′ agree with probability 1−

√
β � 1− α. For each fixed

F and Flow, to distinguish between excellent restrictions and restrictions that are not
good, the distribution T of tests uniformly samples poly(α) inputs inside the subcube
that corresponds to its input restriction ρ, and accepts ρ if and only if F and Flow agree
on the sampled inputs.

The next step is to show that each residual test T ∈ T can be computed by a
circuit with a convenient structure. To do so, we observe that the construction of
Flow in [GMR13] is based on a sequence of specific syntactic modifications to F: Each
syntactic modification is a simplification of a quasi-sunflower, a notion introduced by
Rossman [Ros14] (for more specific details see Section 3.3.4.1). We define the tests
T ∈ T to accept if and only if the specific syntactic modifications used to transform F into
Flow did not affect the formula at the relevant inputs. Then, we show that each such
test T can be decided by a depth-3 circuit with a top AND gate and bottom fan-in w
(relying on the hypothesis that the original formula F has width w; see Claim 3.3.15.3).

Now, since almost all restrictions are excellent, and each excellent restriction is
accepted with high probability by T, it follows that almost all tests in T belong to the
subset T′ ⊆ T of tests that accept almost all of their input restrictions. We will in fact
construct a hitting-set generator for the residual tests T ∈ T′. This can be done relying
both on the fact that T ∈ T′ has very high acceptance probability and on the fact that
it can be computed by a depth-3 circuit with a top AND gate and bottom fan-in w (the
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latter allows us to use the pseudorandom generator of [GMR13] for formulas of small
width; see Claim 3.3.15.4).

To prove Theorem 3.3.3, we will repeat the following step: First reduce the width of
the formulas in the next-to-bottom layer by a pseudorandom restriction (see Claim 3.3.16.1),
and then use the new switching lemma to approximate the circuit by a circuit in which
all the formulas in the next-to-bottom layer are simplified (and thus the latter circuit
has smaller depth). Since all our approximations are “lower-sandwiching”, any satis-
fying input for the latter circuit is also satisfying for the former circuit.

3.3.3 Proof of Theorem 3.3.1

Let c = D − d − 11. Starting from a depth-d circuit C : {0, 1}n → {0, 1}, we will
employ error-reduction within AC0, by first sampling inputs for C using the seeded
extractor of Cheng and Li [CL16], and then taking the disjunction of the evaluation of
C on these inputs. The extractor will be of depth c+ 10, and will work for min-entropy
n′/ logc(n′), where n′ is the number of random bits that it uses. Thus, this construction
will yield a circuit C′ : {0, 1}n′ → {0, 1} of depth D = d + (c + 10) + 1 that accepts all
but 2n′/ logc(n′) = 2n′/ logD−d−11(n′) of its inputs. Details follow.

Let C : {0, 1}n → {0, 1} be a circuit of depth d. We will rely on the following
theorem from [CL16], which we cite with minor changes of notation:

Theorem 3.3.5 (an AC0-computable seeded extractor [CL16, Thm 1.5]). For any con-
stant c ∈ N, and k = Ω (n′/ logc(n′)) and any ε = 1/poly(n′), there exists an explicit
construction of a strong (k, ε)-extractor Ext : {0, 1}n′ × {0, 1}d → {0, 1}n that can be com-
puted by an AC0 circuit of depth c + 10, where d = O(log(n)), n = kΩ(1) and the extractor
family has locality O(logc+5(n)).

We will not need the strongness property or the locality property in the current
proof. Let n′ = poly(n) such that for k = Ω (n′/ logc(n′)) it holds that n = kΩ(1),
and let Ext : {0, 1}n′ × {0, 1}d → {0, 1}n be the seeded extractor from Theorem 3.3.5,
instantiated with error parameter ε = 1/4. We construct a circuit C′ : {0, 1}n′ →
{0, 1} that first computes the values Ext(x, z), for each possible seed z ∈ {0, 1}d, then
evaluates C on each value E(x, z), and finally takes an OR of these evaluations; that is,
C′(x) = ∨z∈{0,1}s C (Ext(x, z)).

Note that C′ has depth D and size poly(n). Also note that the number of inputs
x ∈ {0, 1}n′ for which Prz[C(Ext(x, z))] < 1/4 is at most 2n′/ logc(n′). 5 In particular, C′

accepts all but at most 2n′/ logc(n′) of its inputs, and for each satisfying input x for C′,
we can find a corresponding satisfying input for C among {Ext(x, z)}z∈{0,1}s .

3.3.4 Proofs of Theorems 3.3.2 and 3.3.3

The first step towards proving Theorems 3.3.2 and 3.3.3 is to establish a derandomized
switching lemma that simplifies depth-2 formulas of bounded-width; that is, to prove

5Otherwise, the uniform distribution on such inputs yields a source X of min-entropy n′/ logc(n′)
such that C distinguishes Ext(X) from the uniform distribution over {0, 1}n with probability 1/4.
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Theorem 3.3.4. After presenting several required definitions in Section 3.3.4.1, we
prove the lemma in Section 3.3.4.2. Then, in Section 3.3.4.3, we use the lemma to prove
Theorems 3.3.2 and 3.3.3.

3.3.4.1 Preliminary definitions, and results from [GMR13]

For any restriction ρ ∈ {0, 1, ?}n, denote by C(ρ) the subcube that corresponds to the
living variables under ρ; that is, C(ρ) = {x ∈ {0, 1}n : ∀i ∈ [n] s.t. ρi 6= ? it holds that xi = ρi}.
We identify strings r ∈ {0, 1}(q+1)·n, where n, q ∈ N, with restrictions ρ = ρr ∈
{0, 1, ?}n, as follows: Each variable is assigned a block of q + 1 bits in the string; the
variable remains alive if the first q bits in the block are all zeroes, and otherwise takes
the value of the (q + 1)th bit. When we refer to a “block” in the string that corresponds
to a restriction, we mean a block of q + 1 bits that corresponds to some variable. When
we say that a restriction is chosen from a distribution r over {0, 1}(q+1)·n, we mean that
a string is chosen according to r, and interpreted as a restriction. Moreover, when we
say that an algorithm “reads bits” in the restriction, we mean that it reads bits in the
corresponding string.

In addition, we will sometimes identify a pair of strings y ∈ {0, 1}q·n and z ∈ {0, 1}n

with a restriction ρ = ρy,z such that the string y determines which variables ρ keeps
alive, and the string z determines the values that ρ assigns to the fixed variables.
Specifically, the restriction ρ = ρy,z is the restriction ρr that is obtained by combining y
and z to a string r by appending a bit from z to each block of q bits in y.

Throughout the section, whenever we consider a depth-2 formula for a function
F : {0, 1}n → {0, 1}, we allow the formula to be a redundant representation of F (i.e.,
not necessarily the most concise representation of F as a formula), and in particular
we allow formulas in which some clauses are simply constants. We will identify any
clause of a depth-2 formula with the corresponding subset of the literals; the clause is
a conjunction of the literals if the formula is a DNF, and otherwise it is a disjunction
of the literals. We say that a function Flow : {0, 1}n → {0, 1} is lower-sandwiching

for F if for every x ∈ {0, 1}n it holds that Flow(x) ≤ F(x). Similarly, we say that
Fup : {0, 1}n → {0, 1} is upper-sandwiching for F if for every x ∈ {0, 1}n it holds that
F(x) ≤ Fup(x).

Refinements: Definition and basic facts. We need several definitions that are related
to the results of Gopalan, Meka, and Reingold [GMR13]. Their main theorem involves
a process of sparsification of a depth-2 formula. The sparsification process is iterative:
In each iteration, they identify a quasi-sunflower in the formula (a notion that was
introduced by Rossman [Ros14]), and simplify the quasi-sunflower using one of two
operations. The first operation is simply the removal of a clause from the formula; and
the second operation is the removal of a set f1, ..., fu of u ≥ 2 clauses, replacing them
with a new clause that consists of the set of literals that are shared by all the u clauses
(i.e., replacing f1, ..., fu with the clause

⋂
j∈[u] f j). The following definition generalizes
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this sparsification process.6

Definition 3.3.6 (refinements of a depth-2 formula). Let F : {0, 1}n → {0, 1} be a depth-
2 formula with at least two clauses. We define the following three syntactic operations on F,
which we call re�nement steps.

1. A removal step is simply the removal of a clause from F.

2. A merging step is the removal of u ≥ 2 clauses f1, ..., fu from F, and the addition of a
new clause that consists of the set of literals that appear in all the u clauses (i.e., replacing
f1, ..., fu with the new clause

⋂
j∈[u] f j). If

⋂
j∈[u] f j = ∅, then the new clause computes

the constant one function if F is a DNF, and the constant zero function if F is a CNF.

3. A clean-up step is the removal of one or more clauses that compute the constant zero
function from a DNF, or of one or more clauses that compute the constant one function
from a CNF.

We say that a depth-2 formula F′ : {0, 1}n → {0, 1} is a re�nement of another depth-2
formula F : {0, 1}n → {0, 1} if F′ can be obtained from F either by a sequence of removal steps
and clean-up steps, or by a sequence of merging steps and clean-up steps.

We now state some basic facts about refinements, which will be useful for us later
on. The following two facts follow from Definition 3.3.6:

Fact 3.3.7 (refinements under negations). Let F : {0, 1}n → {0, 1} and F′ : {0, 1}n →
{0, 1} be depth-2 formulas. Then, F′ is a refinement of F if and only if ¬(F′) is a refinement
of ¬F.

Fact 3.3.8 (sandwiching refinements). Let F : {0, 1}n → {0, 1} be a DNF. Then, any
refinement of F that is obtained by a sequence of removal steps and clean-up steps is lower-
sandwiching for F, and any refinement of F that is obtained by a sequence of merging steps
clean-up steps is upper-sandwiching for F.

Loosely speaking, the following claim asserts that if F′ is a refinement of F, then
for any restriction ρ it holds that (F′)�ρ is a refinement of F�ρ. That is, intuitively,
restricting both F and F′ by ρ does not affect the fact that the latter formula is a
refinement of the former.

Claim 3.3.9 (refinements under restrictions). Let F : {0, 1}n → {0, 1} be a depth-2 formula
of width w and size m, and let F′ : {0, 1}n → {0, 1} be a refinement of F. Then, for any
restriction ρ ∈ {0, 1, ?}n it holds that F�ρ can be computed by a depth-2 formula Φ of width
w and size m such that F′�ρ is a refinement of Φ.

The proof of Claim 3.3.9 relies on an elementary (and tedious) case analysis, so we
defer it to Appendix 3.3.5.2.

6The reason that we need this generalization is in order to facilitate the proof of Claim 3.3.9; this is
also the reason that we allow formulas to have redundant clauses that compute constant functions.
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Two theorems from [GMR13]. For ε > 0 and two Boolean functions F and F′ over a
domain D, we say that F and F′ are ε-close if Prx∈D[F(x) = F′(x)] ≥ 1− ε. We say that
F′ is an ε-re�nement of F if F′ is both a refinement of F, and ε-close to F. Similarly, we
say that F′ is an ε-lower-sandwiching re�nement (resp., ε-upper-sandwiching re�nement)
of F if F′ is both ε-close to F and a lower-sandwiching (resp., upper-sandwiching)
refinement of F. Then, the main result of Gopalan, Meka, and Reingold [GMR13] can
be stated as follows:

Theorem 3.3.10 ([GMR13, Thm 1.2]). Let F : {0, 1}n → {0, 1} be a depth-2 formula of
width w, and let β > 0. Then, there exist β-lower-sandwiching and β-upper-sandwiching
refinements of F, denoted by Flow and Fup, respectively, such that the size of Flow and of Fup is
at most m′ = 2Õ(w)·log log(1/β), and their width is at most w.

We will also need a pseudorandom generator construction from [GMR13]. In fact,
we will rely on an assertion from the proof of their generator construction.

Theorem 3.3.11 ([GMR13, In the proof of Thm 3.1]). Let F : {0, 1}n → {0, 1} be a depth-
2 formula of width w, and let δ0 > 0. Then, every δ-almost t-wise independent distribution
δ0-fools F, where log(1/δ) = O(w2 · log2(w) + w · log(w) · log(1/δ0)) and t = O(w2 ·
log(w) + w · log(1/δ0)).

3.3.4.2 Width-dependent derandomizations of the switching lemma

In the proposition statements in this section, the letter n denotes the number of input
bits for a formula, the number of clauses (i.e., size) is denoted by m, the width is
denoted by w, and δ > 0 is an error parameter (which will typically take the value
δ = 1/poly(n) in our applications). As a first step, we need to adapt the derandomized
switching lemma of Trevisan and Xue [TX13] such that it will depend on the width of
the depth-2 formula that we wish to “switch”. Then, we will state and prove our new
derandomized switching lemma, which is the main technical part in this section.

Proposition 3.3.12 (an adaptation of the derandomized switching lemma of [TX13]).
Let m : N → N, let w : N → N such that w(n) ≤ O (log(m(n))), and let δ : N → [0, 1)
such that δ(n) ≤ 2−O(w(n)). Let r be a distribution over {0, 1}O(log(w))·n that is δ′-almost
t′-wise independent, where log(1/δ′) = O(t′) = Õ(w) · log(1/δ) · log(m) + O(log(n/δ)).
Then, for any depth-2 formula F : {0, 1}n → {0, 1} of width w = w(n) and size m = m(n),
with probability at least 1− 2δ (where δ = δ(n)) over choice of ρ ∼ r it holds that:

1. The restricted formula F�ρ can be computed by a decision tree of depth D = O(log(1/δ)).

2. The number of variables that are kept alive by ρ is at least Ω (n/w).

In particular, a restriction ρ ∼ r can be sampled using a seed of length Õ(w) · log(1/δ) ·
log(m) + O(log(n/δ)).

Proof. Loosely speaking, the main lemma of Trevisan and Xue [TX13] reduces the
task of finding a restriction that simplifies F to the task of “fooling” a large number
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of auxiliary CNFs. Going through their proof, we observe is that if F has width w,
then each of the auxiliary CNFs also has width (roughly) w; that is, their proof can be
adapted to show the following:

Lemma 3.3.13 (a variation on [TX13, Lem 7]). Let F : {0, 1}n → {0, 1} be a depth-2
formula of size m and width w. For q ∈ N and p = 2−q, let ρ ∈ {0, 1, ?}n be a restriction
that is chosen according to a distribution over {0, 1}(q+1)·n that δ0-fools all CNFs of width
w′ = w · (q + 1). Then, the probability that F�ρ cannot be computed by a decision tree of depth
D is at most 2D+w+1 · (5pw)D + δ0 · 2(D+1)·(2·w+log(m)).

The proof of Lemma 3.3.13 is a relatively straightforward adaptation of the original
proof in [TX13], so we defer it to Appendix 3.3.5.1. We will use the lemma with the
parameters p = 1/O(w) and δ0 = 2−O(D·(w+log(m))), in order to get the probability
of error down to δ. Relying on Theorem 3.3.11, the auxiliary CNFs of width w′ are
δ0-fooled by r, 7 and therefore with probability 1− δ it holds that F�ρ can be computed
by a decision tree of depth D.

The expected number of variables that the pseudorandom restriction leaves alive
is Ω(n/w) (because the distribution on each block of O(log(w)) bits in r, which corre-
sponds to a variable, is of statistical distance at most δ′ from uniform, where δ′ < 2−w).
Since r is δ′-almost t′-wise independent, where δ′ < 1/poly(n/δ) and t′ > O(log(w)),
the blocks in r that correspond to each variable are 1

poly(n/δ)
-almost O(1)-wise inde-

pendent. Relying on Fact 2.1.2, the probability that Ω(n/w) variables remain alive is
at least 1− δ.

We mention that the derandomized switching lemma of Goldreich and Wigder-
son [GW14, second step of the proof of Lemma 3.3] can also be adapted to depend on
the width w of the formula that we want to “switch”; in this case, the required seed
length is Õ(w) · 2w · log(1/δ), where δ is the probability of error (and the target depth
of the decision tree is D = O(log(1/δ))). We provide the details in Appendix 3.3.5.1.
We now turn to state the new width-dependent derandomization of the switching
lemma and prove it:

Theorem 3.3.14 (a new width-dependent derandomization of the switching lemma).
Let m : N → N, let w : N → N such that w(n) ≤ O (log(m(n))), let δ : N → [0, 1),
and let α : N → [0, 1). Let δ′ > 0 and t′ ∈ N such that log(1/δ′) = O(t′) = Õ(w2) ·
log(1/δ) · log log(m/αδ) + Õ(w) · log(m/αδ) +O(log(n/δ)). Let y be a distribution over
{0, 1}O(log(w))·n that is δ′-almost t′-wise independent, and let z be a distribution over {0, 1}n

that is δ′-almost t′-wise independent. Finally, let ρ = ρy,z be a restriction that is chosen by
using a sample from y to determine which variables are kept alive, and an independent sample
from z to determine values for the fixed variables.

7This is because according to Theorem 3.3.11, CNFs of width w′ are δ0-fooled by any distribution that
is δ′′-almost t′′-wise independent, where t′′ = O

(
(w′)2 · log(w′) + w′ · log(1/δ0)

)
= Õ(w) · log(1/δ) ·

log(m) and log(1/δ′′) = O
(
(w′)2 · log2(w′) + w′ · log(w′) · log(1/δ0)

)
= Õ(w) · log(1/δ) · log(m).
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Then, for any depth-2 formula F : {0, 1}n → {0, 1} of width w = w(n) with m = m(n)
clauses, with probability at least 1− 4δ (where δ = δ(n)) over choice of ρ it holds that:

1. There exists a lower-sandwiching refinement Flow of F such that Flow�ρ and F�ρ are
α-close (i.e., Prx∈C(ρ)[Flow(x) = F(x)] ≥ 1− α) and such that the restricted refinement
Flow�ρ can be computed by a decision tree of depth D = O(log(1/δ)).

2. There exists an upper-sandwiching refinement Fup of F such that Fup�ρ and F�ρ are α-
close and such that Fup�ρ can be computed by a decision tree of depth D = O(log(1/δ)).

3. The number of variables that are kept alive by ρ is at least Ω (n/w).

In particular, a restriction ρ can be sampled using a seed of length Õ(w2) · log(1/δ) · log log(m/αδ)+
Õ(w) · log(m/αδ) + O(log(n/δ)).

Note that when m = Θ(1/δ) = Θ(1/α) = poly(n), the seed length in Theo-
rem 3.3.14 is Õ(w2 · log(n)). As in the overview in Section 3.3.2, our strategy in the
proof of Theorem 3.3.14 will be as follows. Let Flow and Fup be the refinements of
F from Theorem 3.3.10. Using the fact that Flow and Fup are of width w and of size
2Õ(w)·log log(m/αδ), we will rely on Proposition 3.3.12 to prove that, with high probabil-
ity, both Flow�ρ and Fup�ρ simplify to depth-D decision trees. The main challenge will
be to prove that with high probability it holds that Flow�ρ (resp., Fup�ρ) and F�ρ are
α-close. The following lemma is the key one needed to establish the latter assertion,
and after proving the lemma, we will use it to prove Theorem 3.3.14.

Lemma 3.3.15. Let m : N→ N, let w : N→ N such that w(n) ≤ O (log(m(n))), and let
δ : N → [0, 1). Let F : {0, 1}n → {0, 1} be a depth-2 formula of size m = m(n) and width
w = w(n). For α > 0 and β ≤ α6·(δ/4)4

m4·log6(1/δ)
, let F′ : {0, 1}n → {0, 1} be a β-refinement of F.

Fix I ⊆ [n], and let z be a distribution over {0, 1}n that β-fools all DNFs of width w. Let
ρ = ρI,z ∈ {0, 1, ?}n be the restriction that is obtained by fixing values to the variables indexed
by [n] \ I according to the corresponding bits of z. Then, with probability at least 1− δ over
choice of z it holds that F′�ρ is an α-refinement of a depth-2 formula of size m and width w for
F�ρ.

Proof. We will prove the claim assuming that F is a DNF; if F is a CNF, then we can
rely on Fact 3.3.7 to deduce that the assertion of the lemma holds for F if and only if
it holds for the DNF ¬F. Also note that by Claim 3.3.9, for any ρ ∈ {0, 1, ?}n it holds
that F′�ρ is a refinement of a depth-2 formula of size m and width w for F�ρ. Thus, we
only need to prove that with probability at least 1− δ it holds that F′�ρ is α-close to
F�ρ. Recall that I ⊆ [n] is fixed throughout the proof; for brevity of notation, for any
z ∈ {0, 1}n denote ρz = ρI,z.

In high-level, the proof follows the overview that was presented in Section 3.3.2,
and in particular relies on Corollary 3.2.3. We first define a set E of excellent restric-
tions, which are restrictions ρ such that F′�ρ is

√
β-close to F�ρ, and show that almost

all restrictions are excellent. We will then define a set B of bad restrictions, which are
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restrictions ρ such that F′�ρ is not α-close to F�ρ. After defining E and B we will define
the distribution T over tests that accepts, with high probability, every restriction in E,
and rejects, with high probability, every restriction in B. Then, we will show that the
residual tests T ∈ T are relatively “simple”, in the sense that they can be computed
by depth-3 circuits with a specific structure (i.e., top AND gate and bottom fan-in w).
And finally, we will show a hitting-set generator for the set of tests in the support of
T that accept almost all of their input restrictions, and conclude the argument using
Corollary 3.2.3.

Excellent restrictions and bad restrictions. For any ρ ∈ {0, 1, ?}n, let err(ρ) = Prx∈C(ρ)[F′(x) 6=
F(x)] be the fraction of inputs in C(ρ) on which F and F′ disagree. Our goal is to show
that Prz∼z [err(ρz) ≤ α] ≥ 1− δ. Consider the following two sets:

Definition 3.3.15.1 (excellent and bad restrictions). Let E = {z ∈ {0, 1}n : err(ρz) ≤√
β} be the set of excellent choices of restrictions, and let B = {z ∈ {0, 1}n : err(ρz) > α}

be the set of bad choices of restrictions.

Since F′ is β-close to F, a random restriction ρI,un is excellent with probability at
least 1−

√
β. 8 We want to show that a pseudorandom restriction ρz = ρI,z is not bad,

with probability at least 1− δ.

A distribution over simple tests. Let t = O(log(1/δ)/α). We now define a distribution T
over tests {0, 1}n → {0, 1}, such that the random variable T(z) will essentially be the
result of the following random test: Given z ∈ {0, 1}n, the test uniformly samples t
inputs in C(ρz), and accepts z if and only if F and F′ agree on all the t inputs.

For x ∈ {0, 1}|I| and z ∈ {0, 1}n, denote by x�z ∈ C(ρz) the string that is obtained
by fixing the variables indexed by I according to x, and the rest of the variables (i.e.,
the ones indexed by [n] \ I) according to the corresponding bits from z. For any
x ∈ {0, 1}|I|, let Tx : {0, 1}n → {0, 1} be the function such that Tx(z) = 1 if and
only if F′(x�z) = F(x�z). Also, for x̄ = x(1), ..., x(t) ∈ {0, 1}t·|I|, let Tx̄ be the function
Tx̄(z) = ∧t

i=1Tx(i)(z). Finally, let T be the distribution over tests that is obtained by
uniformly choosing x̄ ∈ {0, 1}t·|I| and outputing Tx̄. Note that T(z) is indeed the
result of uniformly sampling t inputs in C(ρz), and accepting z if and only if F′ and F
agree on all the t sampled inputs.

By our choice of the parameter t, and since β is sufficiently small, the distribution
T indeed distinguishes between E and B:

Fact 3.3.15.2. For any z ∈ E it holds that PrT∼T[T(z) = 1] ≥ (1−
√

β)t ≥ 1− t ·
√

β, and
for any z ∈ B it holds that PrT∼T[T(z) = 1] < (1− α)t < δ/3.

For η =
√

t + 1 · β1/4, let T′ be the set of tests Tx̄ ∈ T that accept at least 1− η
of their inputs (i.e., T′ = {Tx̄ : Prz∈{0,1}n [Tx̄(z) = 1] ≥ 1 − η}). We will abuse the

8Because E[err(ρI,un )] = Prx∈{0,1}n [F′(x) 6= F(x)] ≤ β, which implies that Pr[err(ρI,un ) >
√

β] <√
β.
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notations T and T′, by using them both to denote sets and to denote the uniform
distribution over the corresponding set. To see that the set T′ is dense in T, note that

ETx̄∈T

[
Pr

z∈{0,1}n
[Tx̄(z) = 1

]
= Ez∈{0,1}n

[
Pr

Tx̄∈T
[Tx̄(z) = 1]

]
≥ Pr

z∈{0,1}n
[z ∈ E] ·min

z∈E

{
Pr

Tx̄∈T
[Tx̄(z) = 1]

}
,

which is at least 1−
√

β− t ·
√

β = 1− η2. Therefore, the probability over Tx̄ ∈ T that
Tx̄ rejects more than η of its input restrictions is at most η.

A hitting-set generator for T′. Towards designing a hitting-set generator with high den-
sity for every Tx̄ ∈ T′, we first show that each Tx̄ ∈ T can be computed by a depth-3
circuit with a top AND gate and small bottom fan-in. To do so, we first show that for
a single x ∈ {0, 1}|I| (rather than for x̄ = x(1), ..., x(t)) it holds that Tx can be computed
by a depth-3 circuit with a top AND gate and small bottom fan-in.

Claim 3.3.15.3. For every fixed x ∈ {0, 1}|I|, the function Tx : {0, 1}n → {0, 1} can be
computed by a depth-3 circuit with a top AND gate of fan-in at most m such that the bottom
fan-in of the circuit is at most w.

Proof. Denote the number of refinement steps that were applied to F to obtain F′ by
k ≤ m. For any i ∈ [k], let F(i) be the formula in the beginning of the ith refinement
step in the transformation of F to F′, and let F(k+1) = F′. Note that Tx(z) = 1 if
and only if for every i ∈ [k] it holds that F(i)(x�z) = F(i+1)(x�z) (one direction is
immediate, whereas the other direction follows by the monotonicity of the sequence
F(1)(x�z), ..., F(k+1)(x�z) 9).

For every i ∈ [k], let Tx,i be the function such that Tx,i(z) = 1 if and only if
F(i)(x�z) = F(i+1)(x�z). We will show that each Tx,i can be computed by a DNF of
width w. This claim suffices to conclude the proof, since it implies that Tx can be
computed by a circuit with a top AND gate that is connected to k ≤ m DNFs of width
w. To prove the claim, fix i ∈ [k], and let us conduct a case analysis:

• If the ith refinement step was a clean-up step, then Tx,i ≡ 1.

• If the ith step was a removal step, then let f (i) be the clause that was removed
from F(i) in the ith step, and let F(i+1) =

(
F(i) \ f (i)

)
be the formula that is

obtained by dropping the clause f (i) from F(i). Note that F(i+1)(x�z) = F(i)(x�z)
if and only if either f (i)(x�z) = 0 or

(
F(i) \ f (i)

)
(x�z) = 1. The latter event is

a disjunction of at most m events (because
(

F(i) \ f (i)
)

is a DNF of size at most
m− 1), each of which depends on the values of at most w bits in x�z. Thus, each

9If F′ was obtained by merging steps and clean-up steps, then F(1)(x�z) ≤ ... ≤ F(k+1)(x�z), whereas
if F′ was obtained by removal steps and clean-up steps, then F(1)(x�z) ≥ ... ≥ F(k+1)(x�z).
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of the (at most m) events depends on at most w bits in z, and can therefore be
decided by a DNF of width w. It follows that Tx,i is the disjunction of width-w
DNFs, which is a width-w DNF.

• If the ith refinement step in the transformation of F to F′ was a merging step,
denote the u ≥ 2 clauses that were removed from F(i) in the step by f (i)1 , ..., f (i)u ,
and the new clause that was added in their stead by h(i). Note that F(i+1)(x�z) =
F(i)(x�z) if and only if either h(i)(x�z) = 0 or F(i)(x�z) = 1. This is a disjunction
of at most m+ 1 events, each of which depends on at most w bits in x�z (and thus
on at most w bits in z). Thus, in this case too it holds that Tx,i can be computed
by a DNF of width w. �

For a fixed x̄ = x(1), ..., x(t) ∈ {0, 1}t·|I|, we can compute Tx̄ by taking a conjunction
of t circuits for the corresponding Tx’s (i.e., ∧i∈[t]Tx(i)), which is a depth-3 circuit with
bottom fan-in at most w and top fan-in at most t ·m. We are now ready to prove that
z is a hitting-set generator with density 1− δ/3 for every Tx̄ ∈ T′:

Claim 3.3.15.4. For every Tx̄ ∈ T′ it holds that Pr[T(z) = 1] ≥ 1− δ/3.

Proof. Fix Tx̄ ∈ T′, and recall that by the definition of T′ it holds that Tx̄ accepts at
least 1 − η of its inputs. Thus, each of the DNFs in the middle layer of the circuit
that we constructed for Tx̄ accepts 1− η of the inputs. It follows that when using the
distribution z, which is β-pseudorandom for such DNFs, each of these DNFs accepts
with probability at least 1− η − β. By a union-bound, it follows that

Pr
z∼z

[Tx̄(z) = 1] ≥ 1− (η + β) · (t ·m)

> 1− (2 · t ·m) · η

= 1−O
(
(log(1/δ)/α)3/2 ·m · β1/4

)
,

which is larger than 1− δ/3 by the hypothesis that β is sufficiently small. �

Invoking Corollary 3.2.3. We now conclude the argument by invoking Corollary 3.2.3.
Let E be as in Definition 3.3.15.1, and let G = {0, 1}n \ B; recall that for ε1 =

√
β it

holds that Prz∈{0,1}n [z ∈ E] ≥ 1− ε1. Denoting ε2 = t ·
√

β and ε3 = δ/3, according to
Fact 3.3.15.2, for any z ∈ E it holds that PrTx̄∼T[Tx̄(z) = 1] ≥ 1− ε2 and for any z /∈ G
it holds that PrTx̄∼T[Tx̄(z) = 0] ≥ 1− ε3.

Finally, for ε4 = η it holds that the set T′ is of density at least 1− ε4 in T, and for
every Tx̄ ∈ T′, by Claim 3.3.15.4 it holds that z fools Tx̄ with error at most ε5 = δ/3
(because Prz∈{0,1}n [Tx̄(z) = 1] ≥ 1− η ≥ 1− δ/3 and Prz∼z[Tx̄(z) = 1] ≥ 1− δ/3).
Relying on Corollary 3.2.3, the probability that z /∈ G is at most√

β + t ·
√

β + δ/3 + 2 · η + δ/3 = 2δ/3 + η2 + 2 · η < δ ,

where the inequality relied on the fact that β (and hence also η) is sufficiently small.
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We are now ready to prove Theorem 3.3.14.

Proof of Theorem 3.3.14. Let F : {0, 1}n → {0, 1} be a depth-2 formula of width w
and size m. Let Flow : {0, 1}n → {0, 1} and Fup : {0, 1}n → {0, 1} be the β-lower-
sandwiching and the β-upper-sandwiching formulas for F from Theorem 3.3.10, re-
spectively, where β = α6·(δ/4)4

m4·log6(1/δ)
. Note that the width of Flow and of Fup is at most w,

and that their size is at most 2Õ(w)·log log(m/αδ).
According to Fact 2.1.3, the distribution of strings r over {0, 1}O(log(w))·n, which

is obtained by combining y and z and represents the pseudorandom restriction ρ =
ρy,z, is (2 · δ′)-almost t′-wise independent. Hence, relying on Proposition 3.3.12, with
probability at least 1 − 2δ it holds both that Flow�ρ and Fup�ρ can be computed by
decision trees of depth D, and that ρ keeps at least Ω(n/w) variables alive.

According to Theorem 3.3.11, all DNFs of width w are β-fooled by the distribution
z. 10 Therefore, relying on Lemma 3.3.15, for any fixed choice of y ∼ y, with probability
at least 1− 2δ over z ∼ z it holds that both Flow�ρ and Fup�ρ are α-close to F�ρ. Thus,
the probability over choice of both y and z that Flow�ρ and Fup�ρ are α-close to F�ρ is
at least 1− 2δ.

3.3.4.3 Proofs of Theorems 3.3.2 and 3.3.3

We are now ready to prove Theorem 3.3.3. Recall that Theorem 3.3.3 asserts the exis-
tence of a hitting-set generator that is parametrized by a parameter t > 0.

Theorem 3.3.16 (Theorem 3.3.3, restated). Let d ≥ 2, let m : N → N such that m(n) ≤
poly(n), and let t : N → N such that c0 ≤ t(n) ≤ 2 · log(m(n)), where c0 is a sufficiently
large constant. For every n ∈ N, let Cn be the class of circuits C : {0, 1}n → {0, 1} of size
m = m(n) and of depth at most d that accept all but at most B(n) of their inputs, where
log(B(n)) = Ω

(
n1−1/Ω(t)/td−2

)
and t = t(n). Then, there exists a hitting-set generator for

C = ∪n∈NCn with seed length ` = `(n) = Õ
(
t2 · log(n)

)
.

Theorem 3.3.2 follows as a corollary of Theorem 3.3.16, by using the specific pa-

rameter value t = 2 · log(m), in which case B(n) = 2Ω(n/ logd−2(n)) and the seed length
is Õ

(
log3(n)

)
.

Proof. Given input 1n and a random seed in {0, 1}`, the hitting-set generator works in
two steps. In the �rst step, the generator outputs a restriction ρ̄ ∈ {0, 1, ?}n such that
for any circuit C over n input bits of depth d and size m = m(n), with high probability
it holds that there exists a depth-2 formula C′ of size poly(n) and width t that is both
(1/2)-close to C�ρ̄ and lower-sandwiching for C�ρ̄. Moreover, with high probability
the restriction ρ̄ keeps at least log(B(n)) + 2 variables alive.

10Theorem 3.3.11 requires that the distribution z will be δ′′-almost t′′-wise independent, where t′′ =
O(w2 · log(w) + w · log(1/β)) = Õ(w) · log(m/αδ) < t′ and log(1/δ′′) = O(w2 · log2(w) + w · log(w) ·
log(1/β)) = Õ(w) · log(m/αδ) < log(1/δ′).
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Since the subcube C(ρ̄) contains at least 4 · B(n) inputs, the acceptance probability
of C�ρ̄ is at least 3/4. Hence, the acceptance probability of C′ is at least 1/4 (because C′

is (1/2)-close to C�ρ̄), and every satisfying input for C′ is also satisfying for C (because
C′ is lower-sandwiching for C�ρ̄). Thus, in the second step, we use a pseudorandom
generator for depth-2 circuits to “fool” C′: The pseudorandom generator outputs a
satisfying input for C′ in C(ρ̄) with positive probability, and any such input yields a
satisfying input for C.

Parameter settings. Let ε > 0 be a sufficiently small constant, and let δ = (ε/m). Let

D = O(log(1/δ)) > 2 · log(2m/δ), and let m′ = m · 2D = poly(n). Let β =
(

δ
2dm

)102d

;
we will use β as the approximation parameter whenever using Theorem 3.3.10. Let
δ′ > 0 and t′ ∈N such that log(1/δ′) = O(t′) = Õ

(
t2 · log(n)

)
.

The pseudorandom choice of restrictions. The algorithm that we will describe below con-
structs a sequence of restrictions. We mention in advance that when describing the al-
gorithm, whenever we will say that we choose a restriction with a parameter p = 2−q,
the pseudorandom choice of restriction is the following:

• Let y be a distribution over {0, 1}log(1/p)·n that is δ′-almost t′-wise independent.

• Let z be a distribution over {0, 1}n that is δ′-almost t′-wise independent.

• The restriction ρ = ρy,z is chosen by sampling y ∼ y in order to determine which
variables are kept alive, and independently sampling z ∼ z in order to determine
values for the fixed variables.

Note that such a restriction keeps every variable alive with probability approxi-
mately p (i.e., with probability p± δ′). The above process yields a distribution r over
{0, 1}(log(1/p)+1)·n, which is obtained by combining y and z as detailed in the begin-
ning of Section 3.3.4.1; according to Fact 2.1.3, the distribution r is (2 · δ′)-almost t′-wise
independent.

The first step. The generator constructs the restriction ρ̄ as the composition of 2d− 2
retrictions ρ̄ = ρ(2d−3) ◦ ρ(2d−4) ◦ ... ◦ ρ(1) ◦ ρ(0). The initial restriction ρ(0) is chosen with
parameter p = 1/O(1), and with probability 1− ε it reduces the bottom fan-in of the
circuit to D = O(log(1/δ)). 11 The next 2 · (d − 2) restrictions are applied in d − 2
iterations. Loosely speaking, in each iteration, we apply a restriction that reduces the
bottom fan-in to t, then define an approximating circuit (by replacing the formulas

11To see that such a restriction indeed reduces the bottom fan-in, fix a gate in the bottom layer of fan-in
more than 2 · log(2m/ε). The probability under a uniformly-chosen restriction with p = 1/4 that none
of the lexicographically-first 2 · log(2m/ε) variables feeding into the gate is fixed to a satisfying value

is
(

1+p
2

)2·log(2m/ε)
< ε/2m. Since this event depends only on the values that the restriction assigns

to 2 · log(2m/ε) variables, and the value for each variable depends on log(1/p) = O(1) bits, the event
depends on at most O(log(m/ε)) bits of the restriction. Thus, the event happens with probability at most
ε/m when the restriction is chosen from a 1/poly(m/ε)-biased set.
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in the next-to-bottom layer, which have small width at this point, with small lower-
sandwiching refinements, using Theorem 3.3.10), and finally apply a second restriction
in order to “switch” the formulas in the next-to-bottom layer of the approximating
circuit, and reduce the depth of the circuit.

Let C(0) = C�ρ(0) be the circuit in the beginning of the first iteration, and note that

C(0) is of depth d, size at most m < m′, and bottom fan-in at most D. For i ∈ [d− 2], let
us describe the ith iteration. Assuming all previous iterations were successful, in the
beginning of the ith iteration we start with a circuit C(i−1) of depth at most d− (i− 1),
bottom fan-in at most D, and with at most m′ = m · 2D gates in its bottom layer. We
will produce two restrictions, denoted ρ(2i−1) and ρ(2i), and define a circuit C(i) whose
domain is C(ρ(2i) ◦ ρ(2i−1) ◦ ... ◦ ρ(0)) such that with probability 1−O(ε) it holds that
C(i) is of depth at most d− i, bottom fan-in D, and the number of gates in its bottom
layer is at most m′. (After we finish the description of a single iteration, we will also
prove that for any i ∈ [d− 2] it holds that C(i)�ρ̄ is close to C(i−1)�ρ̄; see Claim 3.3.16.2
below.)

The first restriction in iteration i, denoted ρ(2i−1), is chosen with the parameter p =(
ε/
(
m · 22D+1))1/t

= n−1/Ω(t). We now show that with probability at least 1−O(ε)

the bottom fan-in of the circuit C(i−1)�ρ(2i−1) is less than t. To do so, first note the
following:

Claim 3.3.16.1. Let S be a fixed set of at most D variables. Then, with probability at least
1− ε/m′ it holds that less than t variables in S are kept alive by ρ(2i−1).

Proof. Recall that the restriction ρ(2i−1) is chosen such that the distribution y over
{0, 1}log(1/p)·n, which determines which variables will be kept alive, is δ′-almost t′-wise
independent. We will only need the fact that the blocks of size dlog(1/p)e in y are
(pt)-almost t-wise independent; this holds because t · dlog(1/p)e < O(log(m/ε)) < t′,
and δ′ < pt = 1/poly(n).

For any fixed set of t variables in S, the probability that all variables in the set
remain alive after applying a uniformly-chosen restriction with the parameter p is pt.
Since the blocks of size dlog(1/p)e in y are (pt)-almost t-wise independent, the prob-
ability that ρ(2i−1) keeps all t variables alive is at most 2 · (pt). Thus, the probability
that ρ(2i−1) keeps t variables in S alive is at most (|S|t ) · 2 · pt < 2D+1 · pt < ε/m′. �

Recall that the number of gates in the bottom layer of C(i−1) is at most m′, and that
each of them is of fan-in at most D. Using Claim 3.3.16.1 and a union-bound, with
probability at least 1− ε it holds that the bottom fan-in of C(i−1)�ρ(2i−1) is less than t.

Assuming that the bottom fan-in of C(i−1)�ρ(2i−1) is indeed less than t, we now use

Theorem 3.3.10 to replace each formula F in the next-to-bottom layer of C(i−1)�ρ(2i−1)

with a β-lower-sandwiching refinement Flow such that the size of Flow is at most

2Õ(t)·log log(1/β). Let ˜C(i−1)�ρ(2i−1) be the circuit that is obtained by replacing all the

formulas in the next-to-bottom layer of C(i−1)�ρ(2i−1) in this manner.
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The final step in the ith iteration is to apply a restriction ρ(2i) with parameter p =
1/O(t) that is intended to simplify each formula Flow in the next-to-bottom layer of

˜C(i−1)�ρ(2i−1) to a decision tree of depth at most D. Let C(i) =

(
˜C(i−1)�ρ(2i−1)

)
�ρ(2i) .

Relying on Proposition 3.3.12, the restriction ρ(2i) is successful with probability at least
1−O(ε), and in this case the circuit C(i) is of depth at most d− i, and the bottom layer
of C(i) has at most m′ = m · 2D gates, each of fan-in at most D. 12

We now apply one final restriction ρ(2d−3), with parameter p =
(
ε/
(
m · 22D+1))1/t,

in order to reduce the bottom fan-in of C(d−2) to t. Using Claim 3.3.16.1 and a union-
bound, with probability at least 1−O(ε) it holds that the width of C(d−2)�ρ(2d−3) is at
most t. For convenience, in Table 3.1 we summarize the restrictions that were applied
in the first step.

Value of p Goal of the restriction

ρ(0) 1/O(1) Reduce the bottom fan-in to D

i = 1, ..., d− 2 :

ρ(2i−1) n−1/Ω(t) Reduce the bottom fan-in to t

ρ(2i) 1/O(t) “Switch” the width-t formulas

at the next-to-bottom-layer

ρ(2d−3) n−1/Ω(t) Reduce the bottom fan-in to t

Table 3.1: Summary of the restrictions that are applied in the first step.

Let C(d−1) = C(d−2)�ρ(2d−3) , and recall that ρ̄ = ρ(2d−3) ◦ ρ(2d−2) ◦ ... ◦ ρ(0). The above

shows that if all the iterations are successful, then C(d−1) is a formula of depth 2,
size at most m′, and width t. Also note that if all the iterations are successful, then
C(d−1) is lower-sandwiching for C�ρ̄. This is because for every i ∈ [d − 2] it holds

that ˜C(i−1)�ρ(2i−1) is lower-sandwiching for C(i−1)�ρ(2i−1) (since ˜C(i−1)�ρ(2i−1) is obtained

by replacing every formula F in the next-to-bottom-layer of C(i−1)�ρ(2i−1) with a lower-

sandwiching refinement Flow), which implies that C(i)�ρ̄ =

(
˜C(i−1)�ρ(2i−1)

)
�ρ̄ is lower-

sandwiching for C(i−1)�ρ̄.
The main thing that is left to prove in the analysis of the first step is that with

probability at least 1−O(ε) it holds that C(d−1) is (1/2)-close C�ρ̄. To do so, we will

12Specifically, we rely on Proposition 3.3.12 with width parameter t, error parameter δ, size pa-
rameter 2Õ(t)·log log(1/β), and depth bound D for the decision trees. Proposition 3.3.12 requires that
the distribution r of restrictions will be δ′′-almost t′′-wise independent, where log(1/δ′′) = O(t′′) =
Õ(t2) · log(1/δ) · log log(1/β) = Õ(t2 · log(n)). The latter holds by our choice of δ′ and t′.
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show that with probability at least 1−O(ε), for every i ∈ [d− 2] it holds that C(i−1)�ρ̄ is
(1/2d)-close to C(i)�ρ̄. Assuming that the latter holds, we can deduce that C�ρ̄ = C(0)�ρ̄
is 1/2-close to C(d−1) = C(d−2)�ρ̄. Thus, it suffices to prove the following claim:

Claim 3.3.16.2. For any i ∈ [d− 2], with probability at least 1−O(ε) it holds that C(i)�ρ̄ is
(1/2d)-close to C(i−1)�ρ̄.

Proof. Let i ∈ [d − 2], let F be a formula in the next-to-bottom layer of C(i−1)�ρ(2i−1) ,
and let Flow be a β-refinement of F. We will prove that with probability 1−O(δ) it
holds that Flow�ρ̄ is (1/2dm)-close to F�ρ̄. This suffices to prove Claim 3.3.16.2, since
by a union-bound over m formulas it follows that with probability at least 1−O(ε) it

holds that the circuit
(

˜C(i−1)�ρ(2i−1)

)
�ρ̄ = C(i)�ρ̄ is (1/2d)-close to

(
C(i−1)�ρ(2i−1)

)
�ρ̄ =

C(i−1)�ρ̄.
For every j ∈ {2i, ..., 2d − 3}, let ρ(2i,...,j) be the composed restriction ρ(2i,...,j) =

ρ(j) ◦ ... ◦ ρ(2i), and let β j = (δ/2dm)102d−3−j
. We will prove the following statement: For

every j ∈ {2i, ..., 2d− 3}, with probability at least 1−O(δ) it holds that Flow�ρ(2i,...,j) is
a β j-refinement of a depth-2 formula of size m′ and width t for F�ρ(2i,...,j) . Invoking this
statement with j = 2d − 3, we can deduce that with probability at least 1−O(δ) it
holds that Flow�ρ̄ is β2d−3-close to F�ρ̄, where β2d−3 < 1/2dm.

We prove the aforementioned statement by induction on j. For the base case j = 2i,
we start with a formula F of size m′ and width t, and a β-refinement Flow of F, where
β < β0 ≤ β j−1. Now, ρ(j) is chosen according to a distribution such that for every fixed
choice of variables to keep alive (i.e., every fixed y ∼ y), the choice of values for the
fixed variables (i.e., z ∼ z) is δ′-almost t′-wise independent. Relying on Theorem 3.3.11
and on our choice of δ′ and t′, the distribution distribution z β-fools all DNFs of width
w. We can therefore rely on Lemma 3.3.15 to deduce that with probability at least
1−O(δ) it holds that Flow�ρ(j) is a β j-refinement of F�ρ(j) . 13

The induction step, for j ≥ 2i + 1, is very similar to the base case. By the induction
hypothesis, with probability at least 1 − O(δ) it holds that Flow�ρ(2i,...,j−1) is a (β j−1)-
refinement of a size m′ and width w′ depth-2 formula for F�ρ(2i,...,j−1) . We can then use
Theorem 3.3.11 and Lemma 3.3.15 similarly to the base case. �

To conclude the analysis of the first step, note that with probability at least 1−O(ε)

it holds that at least log(B(n)) + 2 = Ω
(

n1−1/Ω(t)/td−2
)

variables remain alive. To
see that this is the case, recall that ρ̄ is comprised of one restriction with parame-
ter p0 = 1/O(1), and d − 1 restrictions with parameter p1 = n−1/Ω(t), and d − 2

13We invoke Lemma 3.3.15 with width parameter t, size bound m′, and error parameter δ. We know
that Flow is a β j−1-refinement of F, and we want to deduce that with probability at least 1−O(δ) it holds
that Flow�ρ(j) is an α-refinement of F�ρ(j) , where α = βj. The lemma requires that the distribution z will

(β j−1)-fool all DNFs of width t, and that β j−1 ≤
β6

j ·(δ/4)4

m4·log6(1/δ)
, both of which indeed hold.
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restrictions with parameter p2 = 1/O(t). Let p̄ = p0 · pd−1
1 · pd−2

2 · n, and note that

p̄ = Ω
(

n1−1/Ω(t)/td−2
)

.

The expected number of living variables under ρ̄ is Θ( p̄) (because in each re-
striction with parameter p, every variable is kept alive with probability p ±O(δ′) ∈
p ± (p/2)). Since all the choices of variables to keep alive are according to distri-
butions that are δ′-almost t′-wise independent, we can use Fact 2.1.2 to deduce that
with probability at least 1−O(ε) it holds that at least Ω ( p̄) = Ω

(
n1−1/Ω(t)/td−2

)
>

log(B(n)) + 2 variables remain alive after the first step. (When using Fact 2.1.2, we
relied on the fact that t is larger than a sufficiently large constant c0 to deduce that
n1−1/Ω(t)/td−2 > nΩ(1)).

The second step. We now invoke the pseudorandom generator from Theorem 3.3.11
for depth-2 circuits of width t, instantiated with error parameter 1/8, and output the
string that the generator outputs, completed to a string of length n according to ρ̄. The
generator requires a seed of length O(t2 · log2(t)) = Õ(t2).

Let us now prove this yields a satisfying input for C, with positive probability. If
the first step was successful, then ρ̄ kept more than log(B(n)) + 2 live variables, and
hence the acceptance probability of C�ρ̄ is at least 3/4. Since C(d−1) is 1/2-close to C�ρ̄,
it follows that Prx∈C(ρ̄)[C(d−1)(x) = 1] ≥ 1/4. Thus, the generator outputs a satisfying
input for C(d−1), with positive probability, and this input (when completed to a string
of length n according to ρ̄) is satisfying for C, because C(d−1) is lower-sandwiching for
C�ρ̄.

3.3.5 Appendices for Section 3.3

3.3.5.1 Known width-dependent derandomizations of the switching lemma

We prove two claims from Section 3.3.4.2 (i.e., Lemma 3.3.13 and a generalization of
the switching lemma of [GW14]). Lemma 3.3.13 is an adaptation of the main lemma of
Trevisan and Xue [TX13]. Let us now recall the statement of Lemma 3.3.13, and prove
the lemma.

Lemma 3.3.17. (Lemma 3.3.13, restated). Let F be a CNF over n inputs with m clauses, each
clause of width at most w. For a positive parameter p = 2−q, where q ∈ N, let ρ ∈ {0, 1, ?}n

be a restriction that is chosen according to a distribution over {0, 1}(q+1)·n that δ0-fools all
CNFs of width w′ = w · (q + 1). Then, the probability that F�ρ cannot be computed by a
decision tree of depth D is at most 2D+w+1 · (5pw)D + δ0 · 2(D+1)·(2·w+log(m)).

Proof sketch. We rely on the proof of Lemma 7 in [TX13], and in particular use the
same definitions of canonical decision tree, path, and segment. The proof in [TX13]
reduces the task of finding a restriction ρ such that F�ρ can be computed by a shallow
decision tree to the task of “fooling” less than 2(D+1)·(2w+log(m)) tests: For each path
of length D + 1 (i.e., a sequence of D + 1 segments), there is a corresponding test
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TP : {0, 1}(q+1)·n → {0, 1} that gets as input a restriction ρ ∈ {0, 1}(q+1)·n, and accepts
ρ if and only if the canonical decision tree for F�ρ contains the path P. Indeed, if all
the tests reject ρ, it means that no path of length D + 1 exists in the canonical decision
tree for F�ρ, which implies that the canonical decision tree for F�ρ is of depth D.

The key claim in the proof is Claim 8, which asserts that for each path P, the test
TP can be computed by a CNF. The goal in [TX13] is to show that the CNF for TP
has few clauses; we focus on showing that the CNF for TP has small width. To see
that this holds, note that TP is constructed as a conjunction of conditions, where each
condition depends only on the assignment that ρ gives to the variables of a single
clause of F (either a clause that belongs to a segment in the path, or a clause whose
index is between the indices of clauses that belong to segments in the path). Thus,
each condition depends only on the assignment that ρ gives to w variables, which
means that each condition depends only on w′ = w · (q + 1) bits of ρ. Hence, each
condition can be decided by a CNF of width w′, and TP (which is their conjunction)
can also be decided by a CNF of width w′.

Let us now formally state the generalization of the switching lemma of Goldreich
and Wigderson [GW14] and prove it.

Proposition 3.3.18. (a generalization of the derandomized switching lemma of [GW14]). Let
m : N → N, let w : N → N, and let δ : N → [0, 1). Let z be a distribution over
{0, 1}O(log(w))·n that is δ′-almost t′-wise independent, where log(1/δ′) = O(t′) = Õ(w) ·
2w · log(1/δ).

Then, for any depth-2 formula F : {0, 1}n → {0, 1} of width w = w(n) with m = m(n)
clauses, with probability at least 1− 4δ (where δ = δ(n)) over choice of ρ ∼ z it holds that the
restricted formula F�ρ can be computed by a decision tree of depth D = O(log(1/δ)).

Proof. Let δ0 = δ · 2−D = poly(δ), and fix a depth-2 formula F : {0, 1}n → {0, 1};
without loss of generality, assume that F is a CNF.14 Consider a uniformly-chosen
restriction ρ that keeps each variable alive with probability p = 1/O(w); Hastad’s
switching lemma asserts that with probability at least 1− 2−O(D) ≥ 1− δ0, the canonical
decision tree of F�ρ is of depth D = O(log(1/δ)) (the canonical decision tree is the
decision tree that is constructed by the algorithm in Hastad’s original proof; for a
definition see, e.g., [TX13, Def. 4]).

Given a restriction ρ, we consider the following way to decide whether the canoni-
cal decision tree of F�ρ is of depth D. Associate each string P ∈ {0, 1}D with a potential
positional path of depth D in the canonical decision tree of F; that is, the string P in-
duces a path from the root to a specific node of depth D in a full binary tree of depth
D or more. For each P ∈ {0, 1}D, we consider a corresponding test TP that gets ρ as
input, and tests whether or not one of the nodes in the path induced by P along the
canonical decision tree of F�ρ is a leaf node (i.e., whether or not the path ends at depth
at most D); if there is indeed a leaf then TP accepts ρ, and otherwise (i.e., if the path

14This is without loss of generality since if F is a DNF, then F�ρ can be computed by a depth-D decision
tree if and only if (¬F)�ρ can be computed by such a tree.
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continues to depth D + 1) then TP rejects ρ. We will describe TP in detail in a moment,
but for now observe that the canonical decision tree of F�ρ is of depth D if and only if
for each P ∈ {0, 1}D it holds that TP(ρ) = 1.

To describe how each TP works, fix P ∈ {0, 1}D, and let TP be the following recur-
sive algorithm. The algorithm gets as input a CNF F′, a restriction ρ′ and a string P′

(in the first recursive call F′ = F, ρ′ = ρ, and P′ = P). If the CNF is empty (i.e., has
no clauses), then the algorithm accepts; otherwise, the algorithm examines the values
that ρ′ assigns to the variables in the first clause of F′:

• If the first clause is unsatisfied by ρ′ (i.e., all variables are fixed to unsatisfying
values) then the algorithm accepts and halts.

• If the first clause is satisfied by ρ′ (i.e., one or more variables are assigned to
satisfying values), then the algorithm simplifies F′ by omitting the first clause,
and by simplifying the other clauses according to the values that ρ′ assigned
to the variables in the first clause. Then, the algorithm recurses with with the
simplified CNF and with the same restriction ρ′ and string P′.

• Otherwise, the first clause is undetermined by ρ′. If the number of living vari-
ables in the clause, denoted by k, is greater than the length of P′, then the al-
gorithm rejects.15 If k ≤ |P′|, let ρ′′ be the restriction that fixes the k variables
to values according to the k-prefix of P′. The algorithm simplifies F′ accord-
ing to the composition ρ′′ ◦ ρ′, and recurses with the simplified CNF, with the
restriction ρ′′ ◦ ρ′, and with the string obtained from P′ by omitting its first k bits.

The main point to note in the above description is that in each recursive call, the
test TP needs to read at most w blocks of dlog(1/p)e = O(log(w)) bits in the restric-
tion, corresponding to the (at most w) variables in the clause that it examines. The
key observation in [GW14, Lemma 3.3], which we now state in a more general form,
is that for each P ∈ {0, 1}D, with high probability it holds that TP makes at most
D′ = O (2w · log (1/δ0))) recursive calls; that is, with high probability TP examines the
values that ρ assigns to variables of at most D′ clauses. This is the case because for
each recursive call, the probability that the clause that is examined is unsatisfied is at
least 2−w; thus, the probability that after D′ recursive calls the algorithm encountered
an unsatisfied clause, and thus stopped, is more than 1 − (1− 2−w)

D′ ≥ 1 − δ0. It
follows that for each P ∈ {0, 1}D, with probability at least 1− 2δ0 over a uniformly-
chosen restriction ρ it holds that TP accepts ρ without making more than D′ recursive
calls.

Now, consider “truncated” versions of these tests: For each P ∈ {0, 1}D, consider
a modified version T′P of TP that, in addition to the description above, rejects ρ if
the depth of the recursion exceeds D′. According to previous paragraph, the test T′P

15This event means that the path induced by P in the canonical decision tree of F�ρ is of depth more
than |P| = D. Recall that by the definition of the canonical decision tree, whenever the algorithm that
constructs the canonical decision tree encounters an undetermined clause, it adds the full sub-tree that
corresponds to all living variables in the clause to the canonical decision tree.
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accepts a uniformly-chosen restriction with probability at least 1− 2δ0. Since each T′P
reads at most D′′ = O (D′ · w · log(w)) = Õ (w) · (2w · log(1/δ)) bits in the restriction,
if instead of the uniform distribution we choose a restriction from the distribution z,
which is δ′-almost t′-wise independent, where δ′ <

(
δ0 · 2−D′′

)
and t′ ≥ D′′, then the

probability that T′P will accept is at least 1− 3δ0. 16 Thus, the probability that all the
tests accept (i.e., ∧P∈{0,1}D TP(ρ) = 1) is at least 1− 3δ.

3.3.5.2 Proof of a technical claim from Section 3.3.4.1

We now prove a technical claim from Section 3.3.4.1 (i.e., Claim 3.3.9). As mentioned
in Section 3.3.4.1, the proof is elementary and relies on a case-analysis.

Claim 3.3.19. (Claim 3.3.9, restated). Let F : {0, 1}n → {0, 1} be a depth-2 formula of width
w and size m, and let F′ : {0, 1}n → {0, 1} be a refinement of F. Then, for any restriction
ρ ∈ {0, 1, ?}n it holds that F�ρ can be computed by a depth-2 formula Φ of width w and size
m such that F′�ρ is a refinement of Φ.

Proof. We prove the claim for the case where F is a DNF; the proof for the case where
F is a CNF follows by reduction to the DNF ¬F, relying on Fact 3.3.7. Let Φ be the
DNF for F�ρ that is obtained by fixing the variables in each clause of F according to
ρ, without omitting any clause from the formula (even if a clause becomes a constant
function).

When F′ was obtained by a sequence of removal steps and clean-up steps, then
F′ is simply a sub-formula of F. In this case, we can apply the same sequence of
removal steps and clean-up steps to Φ, to obtain a corresponding sub-formula of Φ
that computes F′�ρ. 17 We thus focus on proving the claim when F′ was obtained by a
sequence of k ≤ m merging steps and clean-up steps.

For every i ∈ [k], let F(i) be the formula in the beginning of the ith refinement step
in the transformation of F to F′, and let F(k+1) = F′. We will show a sequence of k
merging steps and clean-up steps that, when applied to Φ, induce a corresponding
sequence of formulas Φ = Φ(1), ..., Φ(k+1), such that the following holds: For every
i ∈ [k] there exists a bijection between the clauses of Φ(i) and the clauses of F(i)�ρ such
that every clause ϕ of the former is mapped to a clause f of the latter such that ϕ
computes the function f �ρ. In particular, this claim implies that for every i ∈ [k] it
holds that Φ(i) ≡ F(i)�ρ, and therefore F′�ρ ≡ Φ(k+1) is a refinement of Φ = Φ(1).

16The reason that we use the error parameter δ0 · 2−D′′ instead of the more natural parameter δ0 is
that the tests that we are trying to “fool” are adaptive; that is, for each P ∈ {0, 1}D, the test TP does not
examine a fixed set of D′′ bits in ρ, but rather adaptively chooses which bits to read according to the

values of the bits that it read so far. We rely on the fact that any distribution that is
(

δ0 · 2−D′′
)

-almost

D′′-wise independent also δ0-fools adaptive tests that only read D′′ bits (see, e.g., [Gol17, Exer. 7.4]).
17That is, let F = ∨m

i=1 fi, and assume that F′ = ∨m
i=k+1 fi was obtained from F by removing the clauses

f1, ..., fk. Then it holds that Φ = ∨m
i=1( fi�ρ) and F′�ρ = ∨m

i=k+1( fi�ρ), which implies that we can apply k
removal steps to Φ in order to obtain F′�ρ.

59



3. QUANTIFIED DERANDOMIZATION

The claim is proved by induction on i. The base case i = 1 follows immediately
from the definition of Φ(1) = Φ. For the induction step, assume that there is a bijection
as above between the clauses of Φ(i) and the clauses of F(i)�ρ, and let us define the ith

refinement step that is applied to Φ(i). If the ith refinement step of F(i) was a clean-up
step, then we can apply an analogous clean-up step to Φ(i). 18 Otherwise, if the ith

refinement step of F(i) was a merging step, let f (i)1 , ..., f (i)u be the set of clauses that
were removed in this step, and let h(i) be the new clause that was added in their
stead. For every j ∈ [u], let ϕ

(i)
j be the clause in Φ(i) that computes f (i)j �ρ and exists

by the induction hypothesis. We show how apply a single refinement step to Φ(i)

that replaces the clauses ϕ
(i)
1 , ..., ϕ

(i)
u with a new clause ϕ(i) that computes the function

h(i)�ρ. This is proved by a case analysis:

1. If h(i)�ρ is not a constant function, then it follows that
⋂

j∈[u]( f (i)j �ρ) =
⋂

j∈[u] ϕ
(i)
j 6=

∅. In this case, we apply a merging step to the clauses ϕ
(i)
1 , ..., ϕ

(i)
u in Φ(i), and

they are replaced with the non-constant clause ϕ(i) =
⋂

j∈[u] ϕ
(i)
j =

⋂
j∈[u]( f (i)j �ρ) =

h(i)�ρ.

2. If h(i)�ρ ≡ 0, then for every j ∈ [u] it holds that f (i)j �ρ ≡ ϕ
(i)
j ≡ 0. This is the

case because
⋂

j∈[u] f (i)j 6= ∅ (otherwise h(i) ≡ 1 and also h(i)�ρ ≡ 1), whereas(⋂
j∈[u] f (i)j

)
�ρ ≡ 0, which implies that for every j ∈ [u] there exists a literal in

f (i)j that is fixed by ρ to an unsatisfying value. Therefore, in this case we can

apply a clean-up step to Φ(i) to remove all but a single constant zero clause
among the f (i)j ’s.

3. If h(i)�ρ ≡ 1, then it holds that
⋂

j∈[u] ϕ
(i)
j = ∅. To see that this is the case, note

that if
⋂

j∈[u] f (i)j = ∅ then the latter assertion holds immediately; and otherwise

(i.e.,
⋂

j∈[u] f (i)j 6= ∅), it follows by the assumption that h(i)�ρ ≡ 1 that ρ fixes all

the literals that are shared by all the u clauses f (i)1 , ..., f (i)u to satisfying values,
which indeed implies that

⋂
j∈[u] ϕ

(i)
j = ∅. Thus, we can apply a merging step to

ϕ
(i)
1 , ..., ϕ

(i)
u to obtain the constant one function.

18Specifically, denote by f (i)1 , ..., f (i)u the constant zero clauses that were removed from F(i) in the ith

step. For every j ∈ [u], let ϕ
(i)
j be the clause in Φ(i) that computes f (i)j �ρ ≡ 0 and exists by the induction

hypothesis. Then, the ith refinement step of Φ(i) is a clean-up step that removes the constant zero clauses

ϕ
(i)
1 , ..., ϕ

(i)
u .
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3.4 Constant-depth circuits with parity gates

3.4.1 The main results

We now study constant-depth circuits that also have gates computing the parity func-
tion or the negated parity function; that is, we study AC0[⊕]. Specifically, we consider
AC0[⊕] circuits that are layered, in the sense that all gates at a particular distance from
the input gates are of the same gate-type.

We first observe that the standard derandomization problem of CNFs can be re-
duced to the problem of derandomizing layered AC0[⊕] circuits of depth four with
B(n) = 2nc

exceptional inputs, which yields a “threshold” at depth four with such a
B(n). This improves on a similar result of [GW14] that refers to depth five.

Theorem 3.4.1 (a threshold for quantified derandomization of AC0[⊕] at depth four).
Assume that, for some c > 0, there exists a polynomial-time algorithm A such that, when
A is given as input a layered depth-four AC0[⊕] circuit C over n input bits that accepts all
but B(n) = 2nc

of its inputs, then A finds a satisfying input for C. Then, there exists a
polynomial-time algorithm A′ that, when given as input a polynomial-size CNF that accepts
at least a 1/poly(n) fraction of its inputs, then A′ finds a satisfying input for the CNF.

An appealing way to approach this “threshold” at depth four (with B(n) = 2nc
) is

to derandomize AC0[⊕] circuits of depth three with B(n) = 2nc
. Goldreich and Wigder-

son derandomized most types of layered depth-3 AC0[⊕] circuits with B(n) = 2nc
, for

any c < 1, with the exception of circuits of the form ⊕ ∧ ⊕ (i.e., top ⊕ gate, middle
layer of ∧ gates, and a bottom layer of ⊕ gates), which they left as an open problem.

Our main result in this section is an algorithm that makes significant progress on
this problem, by derandomizing ⊕ ∧ ⊕ circuits with B(n) = 2nc

under various sub-
quadratic upper bounds on the circuit size, where some of these bounds refer to each
layer separately.

Theorem 3.4.2 (hitting biased ⊕ ∧⊕ circuits). Let ε > 0 be an arbitrary constant. Let C
be the class of circuits of depth three with a top ⊕ gate, a middle layer of ∧ gates, and a bottom
layer of ⊕ gates, such that every C ∈ C over n input bits satsifies (at least) one of the following:

1. The size of C is O(n).

2. The number of ∧-gates is at most n2−ε, and the number of ⊕-gates is at most n + nε/2.

3. The number of ⊕-gates is at most n1+ε, and the number of ∧-gates is at most 1
5 · n1−ε.

Then, for some c = c(ε) > 0, there exists a polynomial-time algorithm that, when given a
circuit C ∈ C that accepts all but B(n) = 2nc

of its inputs, outputs a satisfying input for C.

We stress that the algorithm from Theorem 3.4.2 makes essential use of the specific
circuit C that is given to the algorithm as input.

Lastly, we affirm a conjecture of Goldreich and Wigderson by showing, loosely
speaking, that “hitting” ⊕ ∧ ⊕ circuits reduces to “hitting” polynomials that vanish
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rarely.19 The latter problem will be presented in detail in Section 3.6; for now, let
us confine our interest to degree-d polynomials Fn

2 → F2 that vanish on at most ε > 0
of their inputs, where d = d(n) might be large. If ε < 2−d then this problem is trivial
(because the only such polynomial is the constant one function), and solutions for the
case of ε = c · 2−d, where c ∈N is constant, are known (see Section 3.6 for details).

The following result asserts that to “hit” n-bit ⊕ ∧ ⊕ circuits of size m and with
B(n) = Ω (2n) exceptional inputs, it suffices to construct, for some d = d(n) (i.e., any
d would do), a sufficiently dense hitting-set generator for degree-d polynomials with
ε = m · 2−d. For example, for ⊕∧⊕ circuits of size m = m(n) = poly(n), it suffices to
construct a hitting-set generator for polynomials of degree d = O(log(n)) that vanish
on at most 1/p(n) of their inputs, where p(n) > 2d(n) is a sufficiently large polynomial.

Theorem 3.4.3 (reducing hitting⊕∧⊕ circuits to hitting biased polynomials of bounded
degree). Let C be the class of ⊕ ∧⊕ circuits over n input bits with m = m(n) ∧-gates that
accept all but B(n) = ε · 2n of their inputs, where m(n) = o(2n) and ε = ε(n) ≤ 1/8. Let P
be the class of polynomials Fn

2 → F2 of degree d = blog(m(n)) + log(1/ε)c that accept all
but a b(n) = (4 ·m(n)) · 2−d = 4 · ε fraction of their inputs. Then, any hitting-set generator
with density 1/2 + 2 · ε for P is also a hitting-set generator for C.

3.4.2 Proof overviews

Let us now describe the high-level strategy of the algorithms of Theorem 3.4.2. First
observe that any ⊕∧⊕ circuit C computes an n-variate polynomial over F2, and that
the total degree of this polynomial equals the maximal fan-in of ∧-gates in the circuit.
Our approach will be to find an affine subspace W of dimension more than log(B(n))
such that when C is restricted to the affine subspace, the fan-in of all ∧-gates becomes
constant. Thus, when restricted to W, the circuit C becomes a non-zero polynomial of
constant degree, which means that we can then hit it using a pseudorandom generator
for polynomials of constant degree (i.e., Viola’s [Vio09b]).

In order to find the affine subspace W, we use affine restrictions, which are obtained
by fixing values to some of the bottom ⊕-gates. These are analogous to standard “bit-
fixing” restrictions, but in contrast to the latter, we cannot consider any sequence of
fixed values to the bottom ⊕-gates: This is the case because the bottom ⊕-gates might
not be linearly independent (and thus the values of some ⊕-gates might depend on
the values of other ⊕-gates). In particular, this means that we cannot use random (or
pseudorandom) restrictions in which the value of each ⊕-gate is chosen obliviously of
the ⊕-gates of the circuit.

Our algorithm circumvents this problem by constructing a restriction that corre-
sponds to the specific ⊕ ∧ ⊕ circuit that is given to the algorithm as input. For con-
creteness, let us now describe the construction of Item (2) of Theorem 3.4.2, and let

19In [GW14, Sec. 6 (full version)] it is suggested to prove this result by modifying any ⊕∧⊕ circuit to
a bounded-degree polynomial, where the modification amounts to the removal of all ∧-gates with high
fan-in. However, as explained in Section 3.4.2, since the top gate is a ⊕-gate, we cannot simply remove
∧-gates with high fan-in (or remove some of the wires that feed into them).
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us also fix specific parameter values to work with: We assume, for simplicity, that the
number of bottom ⊕-gates is exactly n; and we assume that the number of ∧-gates is
n1.1, and that the circuit accepts all but Ω

(
2n1/3

)
of its inputs.

First assume, for a moment, that the fan-in of each ∧-gate in the middle layer
of the circuit is upper bounded by

√
n. In this case we can restrict the ⊕-gates as

follows. Consider a random restriction process in which each bottom ⊕-gate is fixed
independently with probability 1− p = 1− n−2/3, and the values for the fixed gates
are chosen afterwards, in an arbitrary consistent manner. With high probability, the
restriction will yield a subspace of dimension approximately p · n = n1/3 > log(B(n)).
Also, since each ∧-gate g has fan-in at most w =

√
n, and p = 1/w1+Ω(1), with high

probability, all but O(1) of the gates that feed into g are fixed by this process.20 In
fact, the above two statements hold even if we choose the restriction according to an
O(1)-independent distribution, rather than uniformly.

Needless to say, we cannot actually assume that the fan-in of ∧-gates is bounded
by
√

n. Thus, our strategy will be to first mildy reduce the fan-in of ∧-gates (from n to√
n), and then invoke the restriction process described above. A standard approach to

mildly reduce the fan-in of ∧-gates is to simply remove some of the incoming wires
to each ∧-gate. However, this approach does not work in our setting, since the top gate
is a ⊕-gate, which means that such a modification might turn unsatisfying inputs into
satisfying ones (and thus hitting the modified circuit might not yield a satisfying input
to the original circuit).

To reduce the fan-in of ∧-gates to
√

n, we follow Kopparty and Srinivasan [KS12]
in adapting the approach of Chaudhuri and Radhakrishnan [CR96] to the setting of
⊕ ∧⊕ circuits.21 Specifically, we first iteratively fix each ⊕-gate that has fan-out more
than n1/4 to a non-accepting value; note that such an action also fixes n1/4 ∧-gates in
the middle layer, and hence in this step we fix values for at most n1.1/n1/4 = o(n)
bottom ⊕-gates (because afterwards there are no more living ∧-gates). At this point,
the number of wires feeding the middle layer is at most n · n1/4 = n1.25. Now, for each
∧-gate g with fan-in more than

√
n, we fix a ⊕-gate that feeds into g to a non-accepting

value, thereby also fixing g; each such action eliminates
√

n wires that feed into the
middle layer, and therefore in this step we fix at most n1.25/

√
n = o(n) bottom ⊕-

gates. Overall, the fan-in of each ∧-gate has been reduced to
√

n, and we imposed at
most o(n) affine conditions.

To see that the final subspace W is of dimension more than log(B(n)), note that
the dimension of W equals the number of living ⊕-gates (because we assumed that
the initial number of ⊕-gates is exactly n). After the first step of the algorithm (i.e.,
reducing the fan-in of ∧-gates to

√
n), we are left with (1− o(1)) · n living ⊕-gates,

20For any ∧-gate g with initial fan-in d∧, the probability that there exists a set of size c of ⊕-gates that
feed into g that are all unfixed is at most (d∧

c ) · pc = 1/poly(n), for a sufficiently large c = O(1).
21Originally, [CR96] applied their approach to AC0 circuits, and [KS12] later adapted this approach to
AC0[⊕] circuits. Our adaptation is slightly different technically than in [KS12], to suit the specific circuit
structure ⊕∧⊕; but more importantly, while both [CR96; KS12] use the approach as part of the analysis
(to prove lower bounds), we use this approach as a (non-black-box) algorithm for derandomization.
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3. QUANTIFIED DERANDOMIZATION

and the second step (i.e., the pseudorandom restriction) leaves a fraction of p = n−2/3

of them alive. Thus, the expected dimension of W is Ω(p · n) = Ω
(
n1/3) > log(B(n)).

The approach above actually works for a broader range of parameters, and in
particular when the number of ∧-gates is n2−ε, for any constant ε > 0, and when the
number of ⊕-gates is n + nc, for any c < ε (see details in Section 3.4.4.3). In Items (1)
and (3), we consider circuits in which the number of ⊕-gates is significantly larger
than n, namely O(n) and O

(
n1+ε

)
, respectively. The proofs of both these items use

algorithms that are variations of the first step of the algorithm described above, and
these proofs are detailed in Sections 3.4.4.2 and 3.4.4.4, respectively.

3.4.3 Proof of Theorem 3.4.1

The proof is similar to the proof of Theorem 3.3.1, and is a variation on [GW14, Thm
4.2 and Remark 4.4]. Starting from a CNF C that accepts 1/poly(n) of its inputs,
we will employ error-reduction within AC0[⊕], by first sampling inputs for C using
Trevisan’s extractor [Tre01], and then taking the disjunction of the evaluation of C on
these inputs (rather than an approximate majority, as in [GW14]). This will yield a
layered circuit of the form ∨∧∨⊕ that accepts all but 2nc

of its inputs, for any desired
c > 0. Details follow.

Let C : {0, 1}n → {0, 1} be a CNF that accepts an ε = 1/poly(n) fraction of its
inputs. For n′ = n(1/c)+1 and s = O(log(n)), let E : {0, 1}n′ × {0, 1}s → {0, 1}n

be Trevisan’s extractor instantiated for min-entropy (n′)c = n1+Ω(1) and error pa-
rameter ε/2 = 1/poly(n). We construct a circuit C′ : {0, 1}n′ → {0, 1} that first
computes the values E(x, z), for each possible seed z ∈ {0, 1}s, then evaluates C
on each value E(x, z), and finally takes an OR of these evaluations; that is, C′(x) =
∨z∈{0,1}s C (E(x, z)).

Note that C′ is a layered depth-4 circuit of the form ∨ ∧ ∨⊕, since for each seed
z ∈ {0, 1}s, the residual function Ez(x) = E(x, z) is just a linear transformation of x.
Also note that the number of inputs x ∈ {0, 1}n′ for which Prz[C(E(x, z))] < ε/2 is
at most 2(n

′)c
. In particular, C′ accepts all but at most 2(n

′)c
of its inputs, and for each

satisfying input x for C′, we can find a corresponding satisfying input for C among
{E(x, z)}z∈{0,1}s .

3.4.4 Proof of Theorem 3.4.2

The current section is organized as follows. In Section 3.4.4.1 we present two algorith-
mic tools that will be used in the proof: An adaptation of the approach of Chaudhuri
and Radhakrishnan [CR96] to the setting of ⊕ ∧ ⊕ circuits, and an adaptation of Vi-
ola’s pseudorandom generator [Vio09b] to polynomials that are defined over an affine
subspace. Then, in the next three sections, we prove the corresponding three items of
Theorem 3.4.2.

We rely on the notion of affine restrictions. A restriction of a circuit C : {0, 1}n →
{0, 1} to an affine subspace W ⊆ {0, 1}n will be constructed by accumulating a list of
(independent) affine conditions that defines W. That is, each of the various algorithms
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3.4 Constant-depth circuits with parity gates

will construct a full-rank matrix A and a vector b such that W = {x : Ax = b}. For
an affine function g, when we say that an algorithm “adds g = 0 to the list of affine
conditions”, we mean that it extends A by adding the linear part of g as an additional
row to A, and extends b by adding the constant term of g as an additional bit to b (i.e.,
if g(x) = ∑n

i=1 cixi + c0 then the row c = (c1, ..., cn) is added to A and c0 is added to
b). After each addition of a condition, we will say that the algorithm “simplifies the
circuit accordingly”; by this we mean that for any ⊕-gate g′ in the bottom layer whose
linear function is dependent on the rows of A, the algorithm fixes g′ to the appropriate
value determined by A and b, and, if g′ was fixed to zero, then the algorithm removes
all the ∧-gates that g′ feeds into.

3.4.4.1 Two algorithmic tools

Let us first adapt the approach of Chaudhuri and Radhakrishnan [CR96], which was
originally used to construct “bit-fixing” restrictions for AC0 circuits, to the setting of
⊕∧⊕ circuits and affine restrictions.

Proposition 3.4.4 (whitebox affine restrictions for ⊕ ∧⊕ circuits). For two integers m∧
and m⊕, let C be the class of ⊕ ∧ ⊕ circuits over n input bits with m∧ gates in the middle
layer and m⊕ gates in the bottom layer. Then, for any two integers d⊕ and d∧, there exists
a polynomial-time algorithm that, when given as input a circuit C ∈ C, outputs an affine
subspace W ⊆ {0, 1}n such that:

1. In the restriction of C to W, each ∧-gate in the middle layer has fan-in at most d∧.

2. The subspace W is of co-dimension at most m∧
d⊕ + d⊕·m⊕

d∧ .

Proof. The algorithm operates in two steps. In the first step, as long as there exists a
⊕-gate g in the bottom layer with fan-out at least d⊕, the algorithm adds the condition
g = 0 to the list of affine conditions, and simplifies the circuit accordingly. Note that
each addition of a condition as above fixes at least d⊕ of the ∧-gates in the middle layer,
and thus at most m∧/d⊕ conditions are added (or else the entire circuit simplifies to
a constant). Hence, after the first step concludes, the fan-out of each ⊕-gate in the
bottom layer is d⊕, and at most m∧/d⊕ affine conditions have been accumulated.

In the second step, as long as there exists an ∧-gate g in the middle layer with fan-in
at least d∧, the algorithm (arbitrarily) chooses one ⊕-gate g′ that feeds into g, adds the
condition g′ = 0 to the list of affine conditions, and simplifies the circuit accordingly.
Note that, in the beginning of the second step, the number of wires feeding the middle
layer is at most d⊕ ·m⊕ (since there are at most m⊕ gates in the bottom layer, each of
them with fan-out at most d⊕). Now, note that each addition of an affine condition in
the second step eliminates at least d∧ wires; thus, the algorithm adds at most d⊕

d∧ ·m⊕
conditions in the second step. After the second step is complete, each ∧-gate in the
middle layer has fan-in at most d∧, and the list of affine conditions contains at most
m∧/d⊕ + d⊕

d∧ ·m⊕ conditions.
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We now verify that we can use Viola’s pseudorandom generator [Vio09b] in order
to “fool” ⊕ ∧ ⊕ circuits that, when restricted to an affine subspace, have a constant
maximal fan-in of the ∧-gates.

Proposition 3.4.5 (invoking Viola’s PRG in an affine subspace). There exists an algorithm
G that, for every n ∈ N, when G is given as input an integer D, a seed of ` = O(log(n))
bits, and a basis for an affine subspace W ⊆ {0, 1}n, then G runs in time poly(n) and satisfies
the following: For every ⊕ ∧ ⊕ circuit C over n input bits such that C simplifies under the
restriction W to a ⊕ ∧ ⊕ circuit in which the maximal fan-in of ∧-gates is D and such that
C�W 6≡ 0, it holds that Pr[C(G(u`)) = 1] > 0.

Proof. Denote the dimension of W by m = dim(W). The algorithm G first finds a full-
rank n×m matrix B and s ∈ {0, 1}n such that x 7→ Bx + s maps {0, 1}m to W. Then,
the algorithm G uses its random seed to invoke Viola’s pseudorandom generator for
polynomials Fm

2 → F2 of degree D, with error parameter 2−(D+1), thus obtaining a
string x ∈ {0, 1}m. Finally, the algorithm G outputs the string Bx + s.

Now, let C be ⊕ ∧ ⊕ circuit as in the hypothesis, and consider the polynomial
p : Fm

2 → F2 such that p(x) = C(Bx + s). Note that p is of degree D, because C
computes an sum of monomials of degree D over F2, and the affine transformation
does not increase the degree. Also, using our hypothesis that p is non-zero, it follows
that the acceptance probability of p is at least 2−D. Thus, the probability that Viola’s
generator will output x such that p(x) = 1 is at least 2−(D+1) > 0, and each such x
yields a string y = Bx + s such that C(y) = 1.

3.4.4.2 Linear-sized circuits with B(n) = 2−Ω(n)

We prove the first item of Theorem 3.4.2 by invoking the whitebox algorithm from
Proposition 3.4.4 with appropriate parameters d∧, d⊕ = O(1), and then using the gen-
erator from Proposition 3.4.5.

Proposition 3.4.6 (Theorem 3.4.2, Item (1): hitting biased linear-sized ⊕ ∧⊕ circuits).
Let ε > 0 be an arbitrarily small constant, and let c > 0 be an arbitrarily large constant. Let
C be the class of ⊕∧⊕ circuits such that any circuit C ∈ C over n input bits has at most c · n
gates and accepts all but at most 2(1−ε)·n of its inputs. Then, there exists a polynomial-time
algorithm that, when given any circuit C ∈ C, finds a satisfying input for C.

Proof. The algorithm first invokes the algorithm from Proposition 3.4.4 with parame-
ters d⊕ = 4·c

ε and d∧ = d2
⊕, to obtain an affine subspace W of co-dimension at most

m∧
d⊕

+
d⊕ ·m⊕

d∧
< 2 · c · n

(4 · c)/ε
=

ε

2
· n

such that in the restriction of C to W, every ∧-gate in the middle layer has fan-in at
most d∧ = O(1). Since the circuit C has at most 2(1−ε)·n unsatisfying inputs, it follows
that Prw∈W [C(w) = 1] ≥ 1− 2−(ε/2)·n. Thus, the algorithm concludes by invoking the
algorithm from Proposition 3.4.5.
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3.4 Constant-depth circuits with parity gates

3.4.4.3 Sub-quadratic circuits with (1 + o(1)) · n bottom ⊕-gates and B(n) = 2nc

We now prove the second item of Theorem 3.4.2.

Proposition 3.4.7 (Theorem 3.4.2, Item (2): hitting biased sub-quadratic⊕∧⊕ circuits).
Let ε > 0 and let 0 < c < ε. Let C be the class of ⊕∧⊕ circuits such that any C ∈ C over n
input bits has at most n + nc bottom ⊕-gates, and at most n2−ε middle ∧-gates, and accepts
all but B(n) = 2nc

of its inputs. Then, there exists a polynomial-time algorithm that, when
given any circuit C ∈ C, finds a satisfying input for C.

Proof. Recall that a high-level overview of the proof, which used the parameter values
m∧ = n1.1 and m⊕ = n, appeared in Section 3.4.2. Let us first explain, in high-level,
how to handle the setting of m∧ ≤ n2−ε; for the moment, we are still assuming that
m⊕ = n. As in the overview in Section 3.4.2, the algorithm works in two steps. In
the first step, we use Proposition 3.4.4 to fix o(m⊕) of the ⊕-gates such that after the
restriction, the fan-in of the ∧-gates is bounded by w = n1−α·ε, where α < 1 is a
constant slightly smaller than 1; this is possible because m∧ ≤ n2−ε (see the proof
details below). In the second step, we restrict the ⊕-gates using an O(1)-independent
distribution, keeping each ⊕-gate alive with probability p = n−(1−β·ε), where β < α
(and recall that we choose arbitrary consistent values for the gates that are fixed). The
crucial point is the following: On the one hand, since p ≤ 1/w1+Ω(1), after the second
step the fan-in of the ∧-gates is upper-bounded by a constant (as explained in Sec-
tion 3.4.2); and on the other hand, the number of living ⊕-gates after the second step
is approximately p · (1− o(1)) · n = Ω

(
nβ·ε) > nc = log(B(n)), where the inequality

holds if we choose β > c/ε (which is possible if we initially choose α ∈ (c/ε, 1)).
To see how we handle the setting of m⊕ ≤ n + nc (rather than m⊕ = n), note that

the overall number of affine conditions that the algorithm imposes is m⊕ −Ω(p ·m⊕).
Since m⊕ ≤ n + o(p · n), the number of affine conditions is at most n−Ω(p · n), which
means that the affine subspace W is of dimension Ω(p · n) > log(B(n)).

Let us now provide the full details for the proof. Assume, without loss of gen-
erality, that m⊕ ≥ n (we can add dummy gates if necessary). We first invoke the
algorithm from Proposition 3.4.4 with parameters d∧ = n1−α·ε, where α = (c/ε)+1

2 , and
d⊕ = n1−α′·ε, where α′ = (c/ε) + (2/3) · (1− c/ε) > α. The algorithm outputs an
affine subspace of co-dimension at most

m∧
d⊕

+
d⊕ ·m⊕

d∧
≤ n2−ε−(1−α′·ε) + n1−α′·ε−(1−α·ε) ·m⊕

= n1−(1−α′)·ε + n−(α
′−α)·ε ·m⊕ ,

which is o(m⊕), such that in the restriction of C to the subspace, every ∧-gate in the
middle layer has fan-in at most d∧ = n1−α·ε.

Denote the number of ⊕-gates that were not fixed in the previous step by m′, and
consider the following pseudorandom restriction process. For a sufficiently large con-
stant γ > 1 (which will be determined later), we use a γ-wise independent distribution
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over [1/p]n
′
, where p = n−(1−β·ε) and β = (c/ε) + (1/3) · (1− c/ε) < α. 22 Denote

the random variable that is the output string of this distribution by ρ ∈ [1/p]n
′
. For

every ⊕-gate that has not been restricted by the algorithm from Proposition 3.4.4, the
algorithm now marks the gate as “alive” if and only if the corresponding element in
the string ρ equals zero; otherwise, it marks the gate as “fixed”.

For any ∧-gate g in the middle-layer, the probability that at least γ gates that feed
into g are marked “alive” is at most(

d∧
γ

)
· pγ < n(1−α·ε)·γ · n−(1−β·ε)·γ = n−(α−β)·ε·γ ,

which can be made less than 1/m∧ = n−(2−ε) by an appropriate choice of γ (i.e.,
γ > 2−ε

(α−β)·ε ). After union-bounding over all ∧-gates, we have that with probability
at least 0.99, each ∧-gate is fed by less than γ of the “alive” ⊕-gates. Also note that
with probability at least 0.99, the number of ⊕-gates that were marked as “alive” is
at least (p ·m′) /2; this is because the distribution is γ-wise independent (so we can
use Fact 2.1.1). The algorithm and finds a choice of ρ, denoted by ρ0, that meets both
these conditions (by enumerating the outputs of the γ-wise independent distribution).
Then, the algorithm iteratively fixes values for the ⊕-gates that are marked as “fixed”
by ρ0. Specifically, as long as there is a ⊕-gate g that is marked as “fixed” by ρ0, the
algorithm adds the condition g = 0 to the list of affine conditions that defines W, and
simplifies the circuit accordingly.

Let us now count the number of affine conditions that the algorithm imposed (i.e.,
the co-dimension of W). After all the restrictions, the number of living variables is at
least (p/2) ·m′ ≥ (p/2) · (1− o(1)) ·m⊕ ≥ (p/3) ·m⊕, which implies that the number
of affine conditions is at most m⊕ − (p/3) ·m⊕. Since m⊕ ≤ n + nc, we have that

m⊕ − (p/3) ·m⊕ < n + nc − (p/3) · n

= n + nc − 1
3
· nβ·ε ,

which is less than n− nc, because nc = o(nβ·ε) (since β · ε = c + Ω(1)).
Thus, the algorithm is left with a subspace W of dimension more than nc =

log(B(n)) such that when the circuit C is restricted to the subspace W, the fan-in
of every ∧-gate in the middle layer is at most γ = O(1). Hence, at this point the
algorithm can invoke the algorithm from Proposition 3.4.5, and find a satisfying input
for C in W.

3.4.4.4 Circuits with a slightly super-linear number of bottom ⊕-gates and slightly
sub-linear number of ∧-gates

We now prove the third item of Theorem 3.4.2. The crucial observation here is that
after invoking the algorithm from Proposition 3.4.4, the number of ⊕-gates is at most

22We will actually use the value p = 2−d(1−β·ε)·log(n)e, such that 1/p is a power of 2, but the difference
between this value and n−(1−β·ε) is insignificant in what follows.
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m∧ · d∧, since this is the number of wires that feed into the middle layer.

Proposition 3.4.8 (Theorem 3.4.2, Item (3): hitting biased ⊕∧⊕ circuits with a super–
linear number of ⊕-gates). For any constant ε > 0, let C be the class of ⊕∧⊕ circuits such
that any circuit C ∈ C over n input bits has at most n1+ε gates in the bottom layer and at
most (1/5) · n1−ε gates in the middle layer, and accepts all but at most B(n) = 2n/15 of its
inputs. Then, there exists a polynomial-time algorithm that, when given any circuit C ∈ C,
finds a satisfying input for C.

Proof. We first invoke the algorithm from Proposition 3.4.4 with parameters d⊕ = 1
and d∧ = (5/2) · nε. The algorithm outputs an affine subspace W ′ of co-dimension at
most

m∧
d⊕

+
d⊕ ·m⊕

d∧
≤ (1/5) · n1−ε + (2/5) · n

such that in the restriction of C to W ′, every ∧-gate in the middle layer has fan-in at
most d∧ = (5/2) · nε. Since there are at most m∧ = (1/5) · n1−ε gates in the middle
layer, it follows that there are at most m∧ · d∧ = n/2 bottom ⊕-gates that influence the
output of C�W ′ . By fixing values for these gates, we obtain a subspace W of dimension
at least (1/2− (2/5)− o(1)) · n > n/15 such that C�W is constant. Since B(n) = 2n/15,
it follows that C�W ≡ 1, and thus we can output any w ∈W.

3.4.5 Proof of Theorem 3.4.3

We now prove a more general version of Theorem 3.4.3, which depends on additional
parameters; after stating this general version, we will spell out the parameter choices
that yield Theorem 3.4.3. The proof relies on Lemma 3.2.5.

Proposition 3.4.9 (Theorem 3.4.3, parametrized version). For m : N→N and b : N→
[0, 1

2 ], let C be the class of ⊕∧⊕ circuits over n input bits with m = m(n) ∧-gates that accept
all but a b(n) fraction of their inputs. For any d ≥ 2 and c′ ≤ 2d/m, let P c′

d be the class of
polynomials Fn

2 → F2 of degree d that accept all but a c′ ·
(
m · 2−d) fraction of their inputs.

Let d be an integer such that log(m) < d ≤ min {log(m) + log (1/b(n)) , n}, and let
2 < c′ ≤ 2d/m be a real number. Assume that there exists a hitting-set generator G with
density more than (2/c′) + m · 2−d for P c′

d . Then, G is a hitting-set generator for C.

To obtain parameters as in Theorem 3.4.3, let ε = ε(n) such that 2−n/2 ≤ ε ≤ 1/8,
and let m = m(n) ≤ 2n/2. For d = blog(m) + log(1/ε)c ≤ n and c′ = 4 ≤ 2d/m,
assume that there exists a hitting-set generator G for the class P c′

d with density 1/2 +
2 · ε ≥ (2/c′) + m · 2−d. Then, Proposition 3.4.9 asserts that G is a hitting-set generator
for the class of ⊕∧⊕ circuits with m ∧-gates that accept all but ε · 2n of their inputs.

Proof. Let C : {0, 1}n → {0, 1} be a ⊕ ∧ ⊕ circuit with m ∧-gates that accepts all
but a b(n) fraction of its inputs. We will show how to randomly compute C by a
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distribution that is typically in the class P c′
d , and then rely on Lemma 3.2.5 to deduce

that any sufficiently dense hitting-set generator for P c′
d also hits C.

The distribution over polynomials is obtained using Razborov’s approximating
polynomials method [Raz87]. Our goal is to randomly replace each ∧-gate g that has
fan-in more than d with a polynomial g′ : {0, 1}n → {0, 1} of degree d such that for
every fixed input x ∈ {0, 1}n it holds that g(x) = g′(x) with probability at least 1− 2−d.
To this purpose, given g(x) = ∧k

j=1Lj(x), where k > d and the Lj’s are linear functions,
we randomly choose d subsets S1, ..., Sd ⊆ [k], and replace g with the F2-polynomial
g′(x) = Πd

i=1

(
1 + ∑j∈Si

(Li(x) + 1)
)

. 23

The above yields a random polynomial p : Fn
2 → F2 of degree at most d such that

for every fixed x ∈ {0, 1}n it holds that Pr[p(x) = C(x)] ≥ 1−m · 2−d. The expected
fraction of unsatisfying inputs for p is at most 2m · 2−d; this is because

Ep

[
Pr
x
[p(x) = 0]

]
= Ex

[
Pr
p
[p(x) = 0]

]
≤ Pr

x
[C(x) = 0] + Pr

x
[C(x) = 1] ·max

x

{
Pr
p
[p(x) 6= C(x)]

}
≤ b(n) + m · 2−d ,

and since d ≤ log(m) + log(1/b(n)) we have that m · 2−d ≥ b(n). Thus, the probability
that the fraction of unsatisfying inputs for p is more than c′ ·

(
m · 2−d) is at most 2/c′.

Thus, there exists a distribution that is (1− 2/c′)-typically in P c′
d and that rejects

every x /∈ C−1(1) with probability at least 1 − m · 2−d. Now, let w be the output

distribution of a hitting-set generator with density more than δ
def
== (2/c′) + m · 2−d

for P c′
d . Relying on Lemma 3.2.5 with G = C−1(1) and ε1 = m · 2−d and ε2 = 2/c′ and

ε3 = δ, we deduce that

Pr[C(w) = 1] > δ−m · 2−d − (2/c′) = 0 ,

which concludes the proof.

3.5 Linear threshold circuits and ACC0

3.5.1 The main results

In this section we focus on the circuit classes T C0 and ACC0. Recall that ACC0 is the
class of constant-depth circuit families with polynomially-many gates that can com-
pute the AND,OR,NOT functions as well as the MODm function, for any fixed integer
m ∈ N (i.e., the Boolean function that evaluates to one if and only if the sum of

23Using the standard analysis, if g(x) = 1, then Lj(x) = 1 for all j ∈ [k], which implies that g′(x) = 1
with probability one; and if g(x) = 0, then for every i ∈ [d], with probability 1/2 over choice of Si it
holds that ∑j∈Si

(Li(x) + 1) = 1, which implies that g′(x) = 0 with probability 1− 2−d.
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its inputs is zero modulo m). Also recall that T C0 is the class of constant-depth cir-
cuit families with polynomially-many gates that can compute the majority function,24

which extends ACC0. (The fact that ACC0 ⊆ T C0 follows since T C0 can compute any
symmetric function, because majority can be used to compute the indicator function
for any particular Hamming weight of its input.)

A conjecture of Barrington [Bar89, Sec. 7] asserts that ACC0 6= T C0; that is, the
conjecture asserts that MAJ requires ACC0 circuits of super-polynomial size. Never-
theless, as far as we are aware of, there are currently no known super-linear lower
bounds for computing MAJ by ACC0 circuits. The best known lower bounds for ACC0

circuits are against functions in non-deterministic quasipolynomial time (see [Wil11;
MW18; Che19; CR20]). Inspired by the latter lower bounds, one of the prominent cur-
rent challenges in complexity theory is the attempt to prove similar lower bounds for
T C0. Even after extensive efforts during the last few decades (and with renewed vigor
recently), the best known lower bounds for T C0 assert the existence of functions in P
that require T C0 circuits with a slightly super-linear number of wires, or with a linear
number of gates.

Since derandomization algorithms imply lower bounds in general, an appeal-
ing approach to prove lower bounds for T C0 is to construct derandomization algo-
rithms for this class. Accordingly, an intensive recent effort has been devoted to con-
structing deterministic algorithms either for satisfiability of T C0 or for derandomiza-
tion of T C0.25 Satisfiability algorithms with non-trivial running time have been con-
structed for T C0 circuits of depth two, and for certain “structured subclasses” of T C0

(see [IPS13; Wil14b; AS15; SST+16; Tam16]). In addition, following an intensive effort
to construct pseudorandom generators for a single linear threshold function [DGJ+10;
RS10; GOW+10; KRS12; MZ13; Kan11; Kan14; KM15; GKM15] (i.e., a single “gate”), a
first step towards derandomizing T C0 circuits was very recently undertaken by Serve-
dio and Tan [ST17b], who considered the problem of derandomizing T C0 circuits of
depth two.26

3.5.1.1 The main results for T C0

Loosely speaking, we show two complementary results: The first is a quantified de-
randomization algorithm for T C0 circuits of depth d with n1+c−d

wires and a subexpo-
nential B(n), where c > 1 is some large constant; and the second results asserts that
such derandomization with a smaller value of the constant c > 1 (i.e., derandomization
of depth-d T C0 circuits with n1+(c′)−d

wires and a subexponential B(n), for some c′

24An alternative common definition for T C0 allows the gates to only compute any linear threshold
function; see Section 2.3.1.3 for details.

25To get lower bounds it suffices to construct algorithms for derandomization with one-sided error (see,
e.g., [Wil13]), which are weaker than satisfiability algorithms.

26Their manuscript is currently unpublished. For every ε > 0, they constructed a pseudorandom
generator that 1/poly(n)-fools any depth-2 linear threshold circuit with at most n2−ε wires, using a seed of
length n1−δ, where δ = δε > 0 is a small constant that depends on ε. This yields a derandomization of
depth-2 linear threshold circuits with n2−ε wires in time 2n1−Ω(1)

.

71



3. QUANTIFIED DERANDOMIZATION

that is smaller than the constant c in the first result) would suffice to solve CAPP for
T C0, and hence deduce that NEXP 6⊂ T C0. Thus, intuitively, the gap between what
we unconditionally know and what would suffice to solve CAPP for T C0 (and deduce
corresponding lower bounds) boils down to the precise constant c > 1 in the bound
n1+c−d

on the number of wires. Details follow.
Our first result is a quantified derandomization algorithm for T C0 circuits with a

slightly super-linear number of wires. In fact, our algorithm works not only for
T C0, but also for the class of linear threshold circuits: While in T C0 circuits each gate
computes the majority function, in linear threshold circuits each gate computes a lin-
ear threshold function (i.e., a function of the form g(x) = sgn

(
∑i∈[n] wi · xi − θ

)
, for

w ∈ Rn and θ ∈ R; see Section 2.3.1.3 for definitions). Towards stating this first result,
denote by Cn,d,w the class of linear threshold circuits over n input bits of depth d and
with at most w wires.

Theorem 3.5.1 (quantified derandomization of linear threshold circuits). There exists
a deterministic algorithm that, when given as input a circuit C ∈ Cn,d,n1+2−10d , runs in time

nO(log log(n))2
, and satisfies the following:

1. If C accepts all but at most B(n) = 2n1−1/5d
of its inputs, then the algorithm accepts C.

2. If C rejects all but at most B(n) = 2n1−1/5d
of its inputs, then the algorithm rejects C.

Observe that as d grows larger, the algorithm in Theorem 3.5.1 solves a more dif-
ficult derandomization task (since B(n) is larger), but only has to handle circuits with
fewer wires (i.e., n1+exp(−d)). Also note that the algorithm in Theorem 3.5.1 is “white-
box”: That is, the algorithm gets as input an explicit description of a specific linear thresh-
old circuit C, and uses this description when estimating the acceptance probability of
C. 27 The actual algorithm that we construct works for a more general parameter
regime, which exhibits a trade-off between the number B(n) = 2n1−δ

of exceptional
inputs for C and the number n1+δ·exp(−d) of wires of C (see Theorem 3.5.7 for a precise
statement).

The limitation on the number of wires of C in Theorem 3.5.1 (i.e., n1+exp(−d)) essen-
tially matches the best-known lower bounds for linear threshold circuits, which were proved
by Impagliazzo, Paturi, and Saks [IPS97]. This is no coincidence: Our algorithm con-
struction follows a common theme in the design of circuit-analysis algorithms (e.g.,
derandomization algorithms or algorithms for satisfiability), which is the conversion
of techniques that underlie lower bound proofs into algorithmic techniques. Specifi-
cally, we observe that certain proof techniques for average-case lower bounds for a circuit
class C can be used to obtain algorithmic techniques for quantified derandomization of
C. To construct the algorithm in Theorem 3.5.1, we leverage the techniques under-
lying the recent proof of Chen, Santhanam, and Srinivasan [CSS16] of average-case

27The algorithm in Theorem 3.5.1 works in any reasonable model of explicitly representing linear
threshold circuits; see Section 2.3.1.3 for a brief discussion.
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lower bounds for linear threshold circuits. A high-level description of our algorithm
appears in Section 3.5.2.1.

Loosely speaking, our second main result is that a quantified derandomization
algorithm for T C0 circuits of depth d and size n1+c−d

with a sub-exponential B(n)
would yield a corresponding algorithm for standard derandomization of all T C0, and
hence imply that NEXP 6⊆ T C0. Moreover, the hypothesis in the foregoing statement
refers to a fixed constant c ≈ 1.61; that is, the hypothesis refers to T C0 circuits of a
specific size but nevertheless implies lower bounds for all of T C0.

Being more specific, the size of the circuits that the hypothesis refers to is “just be-
yond” the size required to compute the parity function, against which our best known
T C0 lower bounds hold. Specifically, let φ ≥ 1+

√
5

2 such that for any d ≥ 2, parity can
be computed by T C0 circuits of depth d and size n1+O(φ−d) (the bound on φ is due to
the construction of Paturi and Saks [PS94], following [BBL92]). Then, the hypothesis
in the following theorem refers to T C0 circuits of depth d and n1+c−d

wires, where
c > 1 can be any fixed constant smaller than φ.

Theorem 3.5.2 (a bootstrapping result for derandomization of T C0). Let c > 1 be any
fixed constant smaller than φ (e.g., c = 1.61). Assume that for every sufficiently large d ∈ N

there exists an algorithm for quantified derandomization of T C0 circuits with n1+c−d
wires and

with B(n) = 2n1−c−d
that runs in time 2no(1)

. Then, there exists an algorithm for standard
derandomization of T C0 that runs in time 2no(1)

.

Using known results that show that standard derandomization of T C0 implies
lower bounds for T C0 (i.e., Williams’ “algorithmic method”, applied to the special
case of T C0; see [Wil13; SW13; BSV14]), we deduce that quantified derandomization
as in the hypothesis of Theorem 3.5.2 implies lower bounds for T C0.

Corollary 3.5.3 (quantified derandomization of sparse T C0 implies lower bounds for
T C0). Assume that there exists an algorithm as in the hypothesis of Theorem 3.5.2. Then,
NEXP 6⊆ T C0.

The algorithm for quantified derandomization from Theorem 3.5.1 works when
both the size of the circuit and the number of exceptional inputs are slightly smaller
than in the hypothesis in Theorem 3.5.2 and Corollary 3.5.3. Nevertheless, the running
time of the algorithm is npoly log log(n), whereas the running time of the algorithm in
the hypothesis in Corollary 3.5.3 may be much larger (i.e., 2no(1)

). Moreover, we can
further relax the requirements from the algorithm in the hypothesis in Corollary 3.5.3,
relying on known relaxations of Williams’ algorithmic method (see Corollary 3.5.34
for details).

A main technical result that underlies Theorem 3.5.2 is a construction of uniform
T C0 circuits of depth d ≥ 7 and size n1+exp(−d) that compute all the outputs of a
seeded extractor on a given input. Specifically, we prove that there exists an extractor
Ext : {0, 1}n × {0, 1}t → {0, 1}m for min-entropy k = n1−exp(−d) with m = nexp(−d)

output bits and seed length t = (1 + exp(−d)) · log(n) such that the mapping of
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x ∈ {0, 1}n to {Ext(x, z)}z∈{0,1}t is computable by a uniform depth-d circuit of size
n1+exp(−d) (see Theorem 3.5.4). Note that the latter circuit has 2t ·m = n1+exp(−d) output
bits and only n1+exp(−d) wires; thus, the circuit essentially performs an efficient “batch
computation” of all the outputs of the extractor (i.e., the outputs corresponding to all
seeds) on a given input x ∈ {0, 1}n. This construction relies, in turn, on a construction
of uniform T C0 circuits of depth d and size n1+exp(−d) that compute a code with
constant relative distance and a slightly sub-constant rate (see Theorem 3.5.6).

The special case of depth-2 T C0 circuits We also construct an alternative quantified
derandomization algorithm for the special case of linear threshold circuits of depth two.
Specifically, we construct a pseudorandom generator with seed length Õ(log(n)) for
the class of depth-2 linear threshold circuits with n3/2−Ω(1) wires that either accept all
but B(n) = 2nΩ(1)

of their inputs or reject all but B(n) of their inputs. This result is not
a corollary of Theorem 3.5.1, and is incomparable to the pseudorandom generator of
Servedio and Tan [ST17b].

The precise result statement and proof appear in Section 3.5.5. The generator
construction is obtained by leveraging the techniques of Kane and Williams [KW16]
for average-case lower bounds for linear threshold circuits of depth two.

3.5.1.2 The main results for ACC0

We consider the problem of derandomization of ACC0 with “one-sided error”; that is,
the problem of deterministically distinguishing ACC0 circuits with acceptance prob-
ability one from ACC0 circuits with acceptance probability at most half. The best
currently-known algorithm for this problem is the satisfiability algorithm of Williams [Wil11],
which runs in time 2n−nΩ(1)

(and distinguishes circuits with acceptance probability one
from circuits with acceptance probability less than one).

Nevertheless, we do have much faster algorithms for quantified derandomization of
limited subclasses of ACC0. Specifically, we currently have polynomial-time algorithms
for quantified derandomization of “structured subclasses” of AC0[⊕] of depth three
and small super-linear size (e.g., size O(n) or n + nΩ(1)) with a subexponential B(n);
for precise details see [GW13, Sec. 6] and Section 3.4. We show that improving these
results to quantified derandomization of ACC0 circuits of depth d ≥ 5 and size n1+γd

with a subexponential B(n) ≈ 2n1−γd/8
, where γd > 0 can be any sufficiently small

constant, would imply corresponding algorithms for standard derandomization of
ACC0 with “one-sided error”. See Section 3.5.4.4 for further details.

3.5.2 Proof overviews

3.5.2.1 Proof overview for Theorem 3.5.1

The high-level strategy of the quantified derandomization algorithm follows the strat-
egy suggested by Goldreich and Wigderson [GW14]. Specifically, given a circuit
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C : {−1, 1}n → {−1, 1}, the algorithm deterministically finds a set S ⊆ {−1, 1}n

of size |S| � B(n) on which the circuit C simplifies; that is, C agrees with a function
from some “simple” class of functions on almost all points in S. If C accepts all but
B(n) of its inputs, then the acceptance probability of C�S will be very high, and simi-
larly, if C rejects all but B(n) of its inputs, then the acceptance probability of C�S will
be very low. The algorithm then distinguishes between the two cases, by enumerating
the seeds of a pseudorandom generator for the “simple” class of functions.28

Our starting point in order to construct a deterministic algorithm that finds a suit-
able set S is the recent proof of average-case lower bounds for sparse linear threshold
circuits by Chen, Santhanam, and Srinivasan [CSS16]. Their proof is based on a ran-
domized “whitebox” algorithm that gets as input a linear threshold circuit with depth
d and n1+ε wires, and restricts all but n1−ε·exp(d) of the variables such that the re-
stricted circuit can be approximated by a single linear threshold function. Thus, if
we are able to modify their algorithm to a deterministic one, we will obtain a quanti-
fied derandomization algorithm with the parameters asserted in Theorem 3.5.1 (i.e., if
ε = exp(−d), then B(n) ≈ |S|/10 > 2n1−1/5d

). 29

Converting the randomized restriction algorithm into a deterministic algorithm
poses several challenges, which will be our focus in this overview. Let us first describe
the original algorithm, in high-level. The algorithm iteratively reduces the depth of the
circuit. In each iteration it applies a random restriction that keeps every variable alive
with probability p = n−Ω(1), and otherwise assigns a random value to the variable.
The main structural lemma of [CSS16] asserts that such a random restriction turns any
LTF to be very biased (i.e., exp(−nΩ(1))-close to a constant function), with probability
1− n−Ω(1). Hence, after applying the restriction, most gates in the bottom layer of the
circuit become very biased, and the fan-in of the rest of the gates in the bottom layer
significantly decreases (i.e., we expect it to reduce by a factor of p = n−Ω(1)). The
algorithm replaces the very biased gates with the corresponding constants, thereby
obtaining a circuit that approximates the original circuit (i.e., the two circuits agree
on all but 2−nΩ(1)

of the inputs); and in [CSS16] it is shown that the algorithm can
afterwards fix relatively few variables such that the fan-in of each gate that did not
become very biased decreases to be at most one (such a gate can be replaced by a
variable or a constant). Thus, if the circuit Ci in the beginning of the iteration was of
depth i, we obtain a circuit Ci−1 of depth i− 1 that approximates Ci.

One obvious challenge in converting the randomized restriction algorithm into a
deterministic algorithm is “derandomizing” the main structural lemma; that is, we
need to construct a pseudorandom distribution of restrictions that turns any LTF to
be very biased, with high probability. The second challenge is more subtle, and arises

28The actual algorithm that we construct finds a collection of sets S such that most sets in the collection
are both large and “simplify” C (i.e., C�S is “simple”); for simplicity, in the overview we ignore this point.

29This approach follows the well-known theme of “leveraging" techniques from lower bound proofs to
algorithmic techniques, and in particular to techniques for constructing circuit-analysis algorithms; see,
e.g., [LMN93; San10; Bra10; IMZ12; ST12; IMP12; BIS12; GMR13; TX13; CKK+15; ST17b; ST17a]. We also
mention that in [CSS16, Sec. 5] their randomized restriction algorithm is used to construct a randomized
algorithm for satisfiability of sparse linear threshold circuits.
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when applying pseudorandom restrictions several times, sequentially, while replacing
biased gates by constants each time. In the following two subsections we describe
these two challenges are our solutions, respectively.

Derandomizing the main structural lemma of [CSS16]. Let Φ = (w, θ) be an LTF
over n input bits, and consider a random restriction ρ that keeps each variable alive
with probability p = n−Ω(1). Peres’ theorem implies that the expected distance of Φ�ρ
from a constant function is approximately

√
p (see, e.g., [O’D14, Sec. 5.5]).30 A natural

question is whether we can prove a concentration of measure for this distribution. As
an illustrative example, consider the majority function MAJ(x) = sgn(∑i∈[n] xi); for
any t ≥ 1, with probability roughly 1− t · √p it holds that MAJ�ρ is exp(−t2)-close
to a constant function (see Fact 3.5.9). The main structural lemma in [CSS16] asserts
that a similar statement indeed holds for any LTF Φ; specifically, they showed that
with probability at least 1− pΩ(1) it holds that Φ�ρ is exp(−p−Ω(1))-close to a constant
function.

We construct a distribution over restrictions that can be efficiently sampled using
Õ(log(n)) random bits such that for any LTF Φ and any t ≥ p−1/8, with probability
at least 1− Õ(t2) · √p it holds that Φ�ρ is exp(−t2)-close to a constant function. (The
actual statement that we prove is more general; see Proposition 3.5.14 for precise de-
tails.) Indeed, this is both an “almost-full derandomization” of the lemma of [CSS16]
as well as a refinement of the quantitative bound in the lemma.

The original proof of [CSS16] relies on a technical case analysis that is reminiscent
of other proofs that concern LTFs, and is based on the notion of a critical index of a
vector w ∈ Rn (they refer to the ideas underlying such analyses as “the structural
theory of linear threshold functions”; see, e.g., [Ser07; DGJ+10], and Definitions 2.3.1
and 2.3.2). In each case, the main technical tools that are used are concentration and
anti-concentration theorems for random weighted sums (i.e., Hoeffding’s inequality
and the Berry-Esséen theorem, respectively), which are used to bound the probability
that several specific random weighted sums that are related to the restricted function
Φ�ρ fall in certain intervals.

To derandomize the original proof, an initial useful observation is the follow-
ing. We say that a distribution z over {−1, 1}n is ε-pseudorandomly concentrated if
for any w ∈ Rn and any interval J ⊆ R, the probability that 〈w, z〉 falls in J is ε-
close to the probability that 〈w, un〉 falls in J (where un is the uniform distribution
over {−1, 1}n). In particular, the Berry-Esséen theorem and Hoeffding’s inequality
approximately hold for pseudorandom sums 〈w, z〉 when z is pseudorandomly con-
centrated. The observation is that being ε-pseudorandomly concentrated is essentially
equivalent to being ε-pseudorandom for LTFs (see Claim 2.4.19).31 In particular, if a
distribution z over {−1, 1}n is chosen using the pseudorandom generator of Gopalan,

30Peres’ theorem is usually phrased in terms of the noise sensitivity of Φ, but the latter is proportional
to its expected bias under a random restriction; for further details see [CSS16, Prop. 8].

31This observation was communicated to us by Rocco Servedio, and is attributed to Li-Yang Tan.
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Kane, and Meka [GKM15] for LTFs, which has seed length Õ(log(n/ε)), then z is
ε-pseudorandomly concentrated.

The main part in the proof of the derandomized lemma is a (non-trivial) modifi-
cation of the original case analysis, in order to obtain an analysis in which all claims
hold under a suitably-chosen pseudorandom distribution of restrictions. Since this
part of the proof is quite technical and low-level, we defer its detailed description to
Section 3.5.3.1. However, let us mention that our pseudorandom distribution itself is
relatively simple: We first choose the variables to keep alive such that each variable is
kept alive with probability approximately p = n−Ω(1), and the choices are O(1)-wise
independent; and then we independently choose values for the fixed variables, using
the generator of [GKM15] with error parameter ε = 1/poly(n). We also note that it
is suprising that in our setting the case analysis can be modified in order to obtain an
“almost-full derandomization” (i.e., seed length Õ(log(n))), since previous derandom-
izations of similar case analyses regarding LTFs for different settings required much
larger seed for error ε = n−Ω(1) (see [DGJ+10]).

Preserving the closeness of the circuit to its approximations. Recall that in order to
simplify a linear threshold circuit into a single LTF we will iteratively apply the pseu-
dorandom restrictions that were described in the previous section, in order to reduce
the depth of the circuit. Specifically, in each iteration we will replace the “current”
circuit Ci by a circuit Ci−1 that agrees with Ci on almost all inputs in the subcube of
the n living variables (i.e., the circuits disagree on at most 2n−nΩ(1)

inputs). The main
“approximation” step in constructing Ci−1 from Ci is replacing very biased gates by
corresponding constants.

The potential problem that is our current focus arises from the fact that in subse-
quent iterations we will fix almost all of these n living variables, such that only n1−Ω(1)

variables will remain alive. Thus, we have no guarantee that Ci and Ci−1 will remain
close after additional restrictions in subsequent iterations; in particular, Ci and Ci−1
might disagree on all of the inputs in the subcube of living variables in the end of
the entire process. Of course, this is very unlikely to happen when values for fixed
variables are chosen uniformly, but we need to construct a pseudorandom distribution
of restrictions such that the approximation of each Ci by Ci−1 is likely to be maintained
throughout the process.

We will in fact choose each restriction ρ such that the following holds: For each
gate Φ that was replaced by a constant σ ∈ {−1, 1}, with probability 1− 1

poly(n) over

choice of restriction ρ it holds that Φ�ρ is still 1
poly(n) -close to σ (i.e., Prx[Φ�ρ(x) 6= σ] ≤

1
poly(n) ). Specifically, we prove that if an LTF Φ is, say, n−20-close to a constant σ, and
a restriction ρ is chosen such that the distribution of values for the fixed variables is
n−10-pseudorandom for LTFs, then with probability 1− n−10 it holds that Φ�ρ is n−10-
close to σ (see Lemma 3.5.16).32

32Since each gate is initially exp(−nΩ(1))-close to a constant, we can afford a constant number of
losses in the polynomial power in the “closeness” parameter throughout the execution of the restriction
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Accordingly, whenever we fix variables in our algorithm, we will choose the values
for the fixed variables according to a distribution that is (1/poly(n))-pseudorandom
for LTFs. By the statement above, after each such fixing, every gate that was close to
a constant (and was replaced, at some point, by that constant) remains close to the
corresponding constant even in the subcube of living variables, with high probability.
By union-bounding over all gates (in all the O(1) circuits obtained in each of the
iterations), with high probability the final circuit is close to the initial circuit in the
final subcube of living variables.

In Section 3.5.3.2 we include a simple proof of the fact that biased LTFs remain
biased when variables are fixed according to a distribution that is pseudorandom for
LTFs. This simple proof was suggested by an anonymous reviewer, and follows an
approach of Ajtai and Wigderson [AW85]. Our original proof of this fact was more
complicated, but uses techniques that may be of independent interest; we therefore
include the original proof in Appendix 3.5.6.1.

3.5.2.2 Proof overview for Theorem 3.5.2

Towards presenting the proof of our second main result, we say that a circuit family
{Cn : {0, 1}n → {0, 1}}n∈N of constant depth d is extremely sparse if for any sufficiently
large n ∈N, the number of wires in Cn is at most n1+c−d

, for some constant c > 1.
We prove Theorem 3.5.2 by showing an efficient reduction of standard derandom-

ization of all of T C0 to quantified derandomization of extremely sparse T C0. Specifically,
we construct an algorithm that is given a T C0 circuit C of depth d0 over m input bits,
and outputs an extremely sparse T C0 circuit C′ of depth d > d0 over n = poly(m)
input bits such that if C accepts (resp., rejects) at least 2/3 of its inputs then C′ accepts
(resp., rejects) all but B(n) = 2n1−exp(−d)

of its inputs. The circuit C′ will use its input
in order to sample inputs for C by a seeded extractor (equivalently, by an averaging
sampler), and output the majority of the evaluations of C on these inputs.

The main technical challenge that underlies this approach is constructing an ex-
tractor Ext : {0, 1}n × {0, 1}t → {0, 1}m such that the mapping of input x ∈ {0, 1}n to
the 2t m-bit outputs of the extractor on all seeds can be computed by uniform extremely
sparse T C0 circuits. This is indeed the technical result that underlies Theorem 3.5.2, and
it improves a previous construction from [tell18], in which the circuit had n1+O(1/d)

wires. As mentioned in the introduction, our circuit has 2t ·m = n1+exp(−d) output bits
but it uses only n1+exp(−d) wires, and so to construct it we need to perform an efficient
“batch computation” of the extractor on all seeds.

Theorem 3.5.4 (an extractor in extremely sparse T C0). There exists a polynomial-time
algorithm that gets as input 1n and a constant d ≥ 7, and outputs a T C0 circuit C : {0, 1}n →
({0, 1}m)s of depth d and size n1+exp(−d) that satisfies the following: The function Ext(x, i) =
C(x)i is a (k, ε)-extractor for min-entropy k = n1−exp(−d), with output length m = nexp(−d),
seed length t = log(s) = (1 + exp(−d)) · log(n) and error ε = 1/m.

algorithm.
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Recall that Theorem 3.5.2 asserts that standard derandomization reduces to quanti-
fied derandomization of circuits with n1+c−d

wires, for any c < φ = 1+
√

5
2 . By carefully

accounting for the parameters in our construction, the number of wires in the circuit
from Theorem 3.5.4 is indeed n1+c−d

, for any c < φ (see Proposition 3.5.32). However,
in the current high-level overview we will not care about the specific constant c.

As a first step, let us describe a non-uniform construction of T C0 circuits as in
Theorem 3.5.4; that is, we will first show that such circuits exist, and later show that
they can be constructed uniformly. The underlying extractor will be Trevisan’s ex-
tractor [Tre01]. In order to compute the mapping x 7→ {Ext(x, z)}z∈{0,1}t when Ext is
Trevisan’s extractor, we first need to encode x to a codeword x̄ of a balanced code (i.e.,
every codeword has relative Hamming weight close to 1/2), and then determine the
s = 2t outputs of the extractor as projections of the bits of x̄, according to appropriate
combinatorial designs (in the sense of Nisan and Wigderson [NW94]). Note that, cru-
cially, to compute all the outputs of the extractor on a given input x ∈ {0, 1}n, we only
need to encode x 7→ x̄ once, and all the outputs are projections of bits of x̄.

Our non-uniform circuit first encodes x ∈ {0, 1}n to a codeword x̂ ∈ {0, 1}O(n) of a
code with constant rate and constant relative distance. Gál et al. [GHK+13] showed that
there exist depth-two circuits with only parity gates that can compute such a code using
only n · poly log(n) wires. To convert such a “parity-gates” circuit into a T C0 circuit,
we replace each parity gate g with fan-in ng in by a T C0 circuit computing parity with

depth d and n1+exp(−d)
g wires, using the constructions of [BBL92; PS94]. The resulting

T C0 circuit has depth 2d, and its number of wires is at most ∑g gate

(
n1+exp(−d)

g

)
<(

∑g ng

)1+exp(−d)
≤ (n · poly log(n))1+exp(−d) = n1+exp(−d).

We now amplify the distance of the code from Ω(1) to approximately 1/2, using
the strategy of Naor and Naor [NN93]. Specifically, we map x̂ to a new codeword
x̄ such that every bit of x̄ corresponds to a walk of an appropriate length ` on an
expander on [|x̂|] = [O(n)], and the bit in x̄ is the parity of the bits of x̂ encountered
during this walk. Trevisan’s extractor requires the distance to be 1/2− δ, where δ ≈
1/m2 = 1/nexp(−d); to get such a distance, it suffices for the walk to be of length
O(log(1/δ)), and thus the length of x̄ is O(n · poly(1/δ)) = n1+exp(−d) (assuming that
n = poly(m) is sufficiently large). Since each bit in x̄ is the parity of O(log(n)) bits in
x̂, we can compute each bit in x̄ by a depth-two circuit with O(log2(n)) wires, and the
resulting circuit will be of depth 2d + 2 and n1+exp(−d) wires.

Finally, the circuit outputs projections of x̄ according to predetermined combi-
natorial designs. We will use weak designs, introduced by Raz, Reingold, and Vad-
han [RRV02], which suffice for Trevisan’s extractor. Using a specific construction of
weak designs suitable for our parameter setting, in which the required min-entropy
is n1−exp(−d), there exist weak designs in a universe of size t = (1 + exp(−d)) · log(n)
(see Lemma 3.5.30). Thus we have that s = 2t = n1+exp(−d) as we wanted.

The remaining challenge is to turn the construction above into a uniform construc-
tion. Most parts of the construction are already uniform: The circuits for the distance
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amplification step, the T C0 circuits for computing parity, and the weak designs, can all
be constructed in polynomial time. Thus, the only “non-uniform” part is the sparse
“parity-gates” circuit that computes a code with constant relative distance. Indeed,
Gál et al. [GHK+13] posed the construction of a uniform “parity gate” circuit with pa-
rameters matching the ones of their non-uniform construction as an important open
problem, noting that this problem is closely related to the long-standing open prob-
lems of explicitly constructing superconductors and unbalanced lossless expanders.

Fortunately, for our purposes we can afford a mild degradation in the parameters
of the code construction. Specifically, our code does not need to have constant rate,
since rate 1/no(1) also suffices for our purposes (because we map x̂ to x̄ of length
|x̂|1+exp(−d) in the distance amplification step anyway). Also, the “parity gates” circuit
that we start from does not need to have n · poly log(n) wires, and a circuit with
n1+o(1) wires also suffices for our purposes (because we convert each gate g into a T C0

circuit with n1+exp(−d)
g wires anyway). Indeed, we construct a uniform “parity gates”

circuit of depth two with n · exp(poly log log(n)) wires that computes a code with rate
1/nexp(poly log log(n)) and constant relative distance (see Proposition 3.5.20).

The construction of this code (and circuit) appears in Section 3.5.4.1. Let us now
describe this construction, at a high level. Since we will only use parity gates, our
code will be linear; hence, to get constant relative distance, we only need to ensure
that on any non-zero input x ∈ {0, 1}n a constant fraction of the output gates will be
set to one. The basic building-blocks in our construction are range detectors, as defined
in [GHK+13]. Intuitively, these are functions that map any n-bit input with Hamming
weight between w/2 and w (for some w ∈ [n]) to an m-bit output with Hamming
weight between .01m and .99m, using only parity gates. More formally:

Definition 3.5.5 (range detectors). An (n, m, w, `, h)-range detector is a function D :
{0, 1}n → {0, 1}m such that every output bit of D is a parity of input bits, and for any
x ∈ {0, 1}n with Hamming weight in [w/2, w] it holds that the Hamming weight of D(x) is
in [`, h].

We are interested in constructing, for every w < n, an (n, m, w, .01m, .99m)-range
detector, for some m, that only uses few wires (i.e., it only uses n1+o(1) wires).33

In [GHK+13] it is shown that for every w < n, there exist (n, m, w, .01m, .99m)-range
detectors with m = O(w · log(n)) that can be computed by a layer of parity gates
with only O(n · log(n)) wires (see [GHK+13, Sec. 1.2 and Cor. 19]). For our uni-
form circuit, we need to explicitly construct range detectors; we do this relying on
the explicit construction of unbalanced lossless expanders by Capalbo et al. [CRV+02].
Specifically, in Section 3.5.4.1.1 we rely on the latter expanders to explicitly construct
(n, m, w, .01m, .99m)-range detectors with m = O(w · exp(poly log log(n))) that can be
computed by a layer of parity gates with n · exp(poly log log(n)) wires.

In the circuit that encodes our code, the layer above the input gates contains
log(n) range detectors: For each i = 1, ..., log(n) and wi = 2i, the layer contains an

33Indeed, for w = Ω(n) this is easy (e.g., for .02n ≤ w ≤ .99n, the identity mapping with n = m yields
a suitable range detector), and the main challenge is to handle smaller values of w.

80



3.5 Linear threshold circuits and ACC0

(n, mi, wi, .01mi, .99mi)-range detector with n · exp(poly log log(n)) wires and mi = wi ·
exp(poly log log(n)) outputs. Thus, this layer contributes overall n · exp(poly log log(n))
wires to the circuit. We add to this construction a top layer of n0 = maxi∈[log(n)]{mi} =
exp(poly log log(n)) gates with the following property: If a constant fraction of the
outputs of at least one range detector are set to one, then a constant fraction of the
top gates touch a gate in the middle layer that is set to one.34 To do so, for each range
detector, we split the n0 top gates into mi blocks of n0/mi gates, and connect each
output of the range detector to all top gates in the corresponding block.

Thus, for any non-zero x ∈ {0, 1}n, a constant fraction of the top gates touch a
gate in the middle layer that is set to one. Now, note that each of the top n0 gates
has degree exactly log(n). Using another idea from [GHK+13], we replace each such
gate g with O(log(n)) parity gates that compute a good error-correcting code on the
log(n) gates that fed to g. Hence, if g touched a middle gate that is set to one, then a
constant fraction of the O(log(n)) gates that replaced g are set to one. Thus, on any
non-zero input x ∈ {0, 1}n, a constant fraction of the top gates will be set to one, and
it follows that our linear code has constant relative distance. The number of gates in
the top layer is n̂ = n0 ·O(log(n)) = n · exp(poly log log(n)), and each of them has
degree log(n), yielding overall n · exp(poly log log(n)) wires between the middle layer
and the top layer. Finally, replacing parity gates by T C0 circuits, we get the following:

Proposition 3.5.6 (uniform extremely sparse T C0 circuit for encoding an “almost–
good” code; see Proposition 3.5.24). For every d ≥ 4 there exists a uniform family of T C0

circuits of depth d that, for every n ∈N, encode a linear code {0, 1}n → {0, 1}n̂ with constant
relative distance, where n̂ = n · exp(poly log log(n)), using at most n1+exp(−d) wires.

Note that the use of n1+exp(−d) wires in the circuit in Theorem 3.5.6 is unavoidable
if we want the code to be linear (since computing even a single parity of Ω(n) bits in
T C0 requires n1+exp(−d) wires).

3.5.3 Proof of Theorem 3.5.1

Let us now state a more general version of Theorem 3.5.1 and prove it.

Theorem 3.5.7 (Theorem 3.5.1, restated). Let d ≥ 1, let ε > 0, and let δ = d · 30d−1 · ε.
Then, there exists a deterministic algorithm that for every n ∈N, when given as input a circuit
C ∈ Cn,d,n1+ε , runs in time nO(log log(n))2

, and for the parameter B(n) = 1
10 · 2n1−δ

satisfies the
following:

1. If C accepts all but at most B(n) of its inputs, then the algorithm accepts C.

2. If C rejects all but at most B(n) of its inputs, then the algorithm rejects C.

34This does not yet suffice for the full construction, since a top gate might touch an even number of
gates in the middle layer that are set to one.
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To obtain the specific parameters of Theorem 3.5.1 from Theorem 3.5.7, for any
d ≥ 1 let ε = εd = 2−10d. Then, the algorithm from Theorem 3.5.7 works when the
number of exceptional inputs of C is at most B(n) = 1

10 · 2n1−δ
> 2n1−1/5d

.
The proof of Theorem 3.5.7 is based on the existence of the following pseudorandom

restriction algorithm. We will first prove Theorem 3.5.7 relying on the existence of the
latter algorithm, and then construct the pseudorandom restriction algorithm itself.

Proposition 3.5.8 (pseudorandom restriction algorithm). Let d ≥ 1, let ε > 0 be a
sufficiently small constant, and let δ = d · 30d−1 · ε. Then, there exists a polynomial-time
algorithm that for every n ∈N, when given as input a circuit C ∈ Cn,d,n1+ε and a random seed
of length O(log(n) · (log log(n))2), with probability at least 1− n−ε/2 satisfies the following:

1. The algorithm outputs a restriction ρ ∈ {−1, 1, ?}n that keeps at least n1−δ variables
alive.

2. The algorithm outputs an LTF Φ : {−1, 1}ρ−1(?) → {−1, 1} such that Φ is 1/10-close
to C�ρ (i.e., Prx∈{−1,1}ρ−1(?) [C(x) = Φ(x)] ≥ 9/10).

Let us now prove the main result (i.e., Theorem 3.5.7) relying on Proposition 3.5.8.

Proof of Theorem 3.5.7. We iterate over all seeds for the algorithm from Proposi-
tion 3.5.8. For each seed that yields both a restriction ρ that keeps at least n1−δ

variables alive and an LTF Φ over {−1, 1}ρ−1(?), we estimate the acceptance proba-
bility of Φ up to an error of 1

5 ; this is done by iterating over the seeds of the pseu-
dorandom generator from Theorem 2.4.20 (instantiated with error parameter 1/5). If
for most of the seeds, our estimate of the acceptance probability of Φ is at least 3

5 ,
then we accept C; and otherwise we reject C. The running time of the algorithm is
2O(log(n)·(log log(n))2) = nO(log log(n))2

.
Recall that all but O(n−ε) of the seeds yield ρ and Φ such that ρ keep at least

n1−δ > log(10 · B(n)) variables alive and such that Φ is 1/10-close to C�ρ; we call
such seeds good seeds. Now, if C accepts all but at most B(n) inputs, then for every
good seed, the acceptance probability of C�ρ is at least 9/10, and thus the acceptance
probability of Φ is at least 4

5 , which implies that our estimate of the latter will be at
least 3/5. Thus, the algorithm will accept C. On the other hand, if C rejects all but
at most B(n) inputs, then by a similar argument for all good seeds it holds that the
estimate of the acceptance probability of Φ will be at most 2/5, and thus the algorithm
will reject C.

We now prove Proposition 3.5.8 in three steps. The first step, in Section 3.5.3.1, will
be to prove that a suitably-chosen pseudorandom restriction turns any single LTF to
be very biased, with high probability. The second step, in Section 3.5.3.2, will leverage
the first step to an algorithm that gets as input a linear threshold circuit, and applies
pseudorandom restrictions to reduce the depth of the circuit by one layer. And the
final step, in Section 3.5.3.3, will be to iterate the construction of the second step in
order to prove Proposition 3.5.8.
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3.5.3.1 Pseudorandom restrictions and a single LTF

As mentioned in the introduction, an illustrative example for the effects of restrictions
on LTFs is the majority function Φ(x) = sgn(∑i∈[n] xi). For p ∈ (0, 1), denote by Rp
the distribution of restrictions on n variables such that for every i ∈ [n] independently
it holds that the ith variable remains alive with probability p, and is otherwise assigned
a uniform random bit. Then, we have the following:

Fact 3.5.9 (a random restriction and the majority function). Let Φ(x) = sgn(∑i∈[n] xi),
and let p = n−Ω(1). Then, for every t ≥ 1, with probability at least 1 − O(t · √p) over
ρ ∼Rp it holds that Φ�ρ is t-imbalanced

Proof. Let I ⊆ [n] be the set of variables that ρ keeps alive. With probability 1 −
exp(−nΩ(1)) it holds that ‖wI‖2 ∈

√
pn±√pn/2. Conditioned on ‖wI‖2 ≤ 2 · √pn,

it also holds that
∥∥∥w[n]\I

∥∥∥
2
≥
√

n/2, which implies that for every i ∈ ([n] \ I) it holds

that |wi| = 1 ≤ (2/
√

n) ·
∥∥∥w[n]\I

∥∥∥
2
. In this case, by the Berry-Esséen theorem (i.e., by

Theorem 2.1.5), for any t ≥ 1, the probability that
〈

w[n]\I , z[n]\I

〉
falls in the interval

±4t · √p ·
∥∥∥w[n]\I

∥∥∥
2

(which contains the interval ±t · ‖wI‖2) is at most O(t · √p+ 2√
n ) =

O(t · √p).

Our goal in this section is to prove a statement that is similar to Fact 3.5.9, but
that holds for an arbitrary LTF Φ, and holds also when the restriction ρ is sampled
pseudorandomly, rather than uniformly. For simplicity, we only state the proposition
informally at the moment (for a formal statement see Proposition 3.5.14):

Proposition 3.5.10 (pseudorandom restriction lemma for a single LTF; informal). Let
n ∈N, let p = n−Ω(1), and let t = p−Ω(1). Let y be a distribution over {−1, 1}log(1/p)·n that
is p-almost O(log(1/p))-wise independent, and let z be a distribution over {−1, 1}n that is
pΩ(1)-pseudorandomly concentrated. Then, for any LTF Φ over n input bits, the probability
over choice of restriction ρ ∼ (y, z) that Φ�ρ is t-balanced is at most pΩ(1).

A high-level description of the proof. Let Φ = (w, θ) be an LTF over n input bits,
and without loss of generality assume that |w1| ≥ |w2| ≥ ... ≥ |wn|. Denote by I ⊆ [n]
the set of variables that ρ keeps alive, and by z[n]\I ∈ {−1, 1}[n]\I the values that ρ
assigns to the fixed variables. Then, the restricted function is of the form Φ�ρ =(

wI , θ −
〈

w[n]\I , z[n]\I

〉)
, and the restricted function is t-balanced if and only if the

sum
〈

w[n]\I , z[n]\I

〉
falls in the interval θ ± 2t · ‖wI‖2. Our goal will be to show that

this event is unlikely.
The proof is based on a modification of the case analysis that appears in [CSS16,

Lem. 34, Sec. 4.2, Apdx. C.]. Specifically, for the parameter values µ = Ω(1/t) and
k = Õ(t2), we will consider two separate cases.
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Case 1: The µ-critical index of Φ is at most k. Let h ≤ k be the µ-critical index of Φ,
and denote T = [n] \ [h]. We first claim that with probability 1− pΩ(1) over choice of
y ∼ y it holds that ‖wI‖2 ≤ pΩ(1) · ‖wT‖2. This is the case since with probability at
least 1− h · p = 1− pΩ(1), all the first h variables are fixed by ρ, and since the expected
value of ‖wI∩T‖2 is

√
p · ‖wT‖2.

Condition on any fixed choice of y ∼ y such that ‖wI‖2 ≤ pΩ(1) · ‖wT‖2. We will
prove that with probability 1 − pΩ(1) over a uniform choice of z ∈ {−1, 1}n it holds
that

〈
w[n]\I , z[n]\I

〉
does not fall in the interval θ± t · pΩ(1) · ‖wT‖2 (which contains the

interval θ ± t · ‖wI‖2, due to our fixed choice of y). Since z is pΩ(1)-pseudorandomly
concentrated, it will follow that this event also holds with probability 1− pΩ(1) under
a choice of z ∼ z.

To prove the claim about a uniform choice of z ∈ {−1, 1}n, condition any arbi-
trary fixed values z[h] ∈ {−1, 1}h for the first h variables. Then, the probability that〈

w[n]\I , z[n]\I

〉
falls in the interval θ ± t · pΩ(1) · ‖wT‖2 (which is what we want to

bound) equals the probability that
〈
wT\I , zT\I

〉
2

falls in the interval θ′± t · pΩ(1) · ‖wT‖2,

where θ′ = θ −
〈

w[h], z[h]
〉

. Since h is the µ-critical index of w we have that wT is µ-

regular; also, since ‖wI‖2 ≤ pΩ(1) · ‖wT‖2 (due to our choice of y), it follows that wT\I
is also (2µ)-regular and that ‖wT‖2 ≈

∥∥wT\I
∥∥

2
. By the Berry-Esséen theorem, the

probability that
〈
wT\I , zT\I

〉
falls in an interval of length t · pΩ(1) ·

∥∥wT\I
∥∥

2
is at most

O(t · pΩ(1) + µ) = pΩ(1) (see Lemma 3.5.11).

Case 2: The µ-critical index of Φ is larger than k. Similarly to the previous case, with
probability at least 1− pΩ(1) it holds that all the first k variables are fixed by ρ. Con-
dition on any fixed y ∼ y that fixes all the first k variables. What we will show is
that with high probability over z ∼ z, the sum

〈
w[n]\I , z[n]\I

〉
falls outside the interval

θ ± (1/4µ) ‖w>k‖2, which contains the interval θ ± t · ‖wI‖2 (since I ⊆ ([n] \ [k]) and
µ = Ω(1/t)).

As before, we first analyze the case in which z is chosen uniformly in {−1, 1}n.
To do so we rely on a lemma of Servedio [Ser07], which asserts that the weights in
w decrease exponentially up to the critical index. Intuitively, since the critical index
is large (i.e., more than k), the exponential decay of the weights implies that ‖w>k‖2

is small. Thus, when uniformly choosing z ∈ {−1, 1}n, the sum
〈

w[n]\I , z[n]\I

〉
is

unlikely to fall in the small interval θ ± (1/4µ) · ‖w>k‖2; specifically, this happens
with probability at most µ = pΩ(1) (see Claim 3.5.13.1 for a precise statement).

Since the event
〈

w[n]\I , z[n]\I

〉
∈ θ± (1/4µ) · ‖w>k‖2 happens with probability pΩ(1)

when z ∈ {−1, 1}n is chosen uniformly, and the distribution z is pΩ(1)-pseudorandomly
concentrated, the event also happens with probability at most pΩ(1) over a choice of
z ∼ z.
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The full proof. We will first prove an auxiliary lemma, which analyzes the effect of
uniformly-chosen restrictions on regular LTFs (see Lemma 3.5.11). Then, we will prove
a version of Proposition 3.5.10 that only holds for LTFs with bounded critical index (see
Lemma 3.5.12), and a version of Proposition 3.5.10 that only holds for LTFs with large
critical index (see Lemma 3.5.13). Finally, we will formally state a more general version
of Proposition 3.5.10 and prove it (see Proposition 3.5.14).

The following auxiliary lemma considers a regular vector w ∈ Rm, a fixed set
of variables I ⊆ [m] that will be kept alive, and a uniformly-chosen assignment z ∈
{−1, 1}m for the fixed variables. The lemma will be used in the proof of Lemma 3.5.12.

Lemma 3.5.11 (pseudorandom restriction lemma for regular LTFs). Let m ∈ N, let
µ ∈ (0, 1), and let λ ≤ 3/4. Let w′ ∈ Rm be a µ-regular vector, and let I ⊆ [m] such that
‖w′I‖2 < λ · ‖w′‖2. Then, for any θ′ ∈ R and t > 0, the probability over uniform choice of

z ∈ {−1, 1}m that
〈

w′[m]\I , z[m]\I

〉
∈ θ′ ± t · λ · ‖w′‖2 is at most O(t · λ + µ).

Proof. Note that
∥∥∥w′[m]\I

∥∥∥2

2
> ‖w′‖2

2 /4; this is the case because ‖w′I‖
2
2 < λ · ‖w′‖2

2 ≤
3
4 · ‖w′‖

2
2. It follows that w′[m]\I is 2µ-regular, since for every i ∈ [m] we have that∣∣∣w′i∣∣∣ ≤ µ · ‖w′‖2 ≤ 2µ ·

∥∥∥w′[m]\I

∥∥∥
2
. It also follows that the interval θ ± t · λ · ‖w′‖2 is

contained in the interval θ ± 2t · λ ·
∥∥∥w′[m]\I

∥∥∥
2
. By the Berry-Esséen theorem (i.e., by

Theorem 2.1.5), the probability over a uniform choice of z ∈ {−1, 1}m that the sum〈
w[m]\I , z[m]\I

〉
falls in a fixed interval of length 2t · λ ·

∥∥∥w[m]\I

∥∥∥ is at most O(t · λ + µ).

The following lemma asserts that a suitably-chosen pseudorandom restriction turns
every LTF with bounded critical index to be very biased, with high probability. The spe-
cific parameters that are chosen for the lemma will be useful for us when proving the
general case (i.e., Proposition 3.5.14, which holds for arbitrary LTFs).

Lemma 3.5.12 (pseudorandom restriction lemma for LTFs with small critical index).
Let n ∈N, let p ∈ [0, 1] be a power of two, let c ∈N be a constant, and let t ≤ p−1/(3c−2) and
µ = 1/4tc. Let y be a distribution over {−1, 1}log(1/p)·n that is p-almost O(log(1/p))-wise
independent, and let z be a distribution over {−1, 1}n that is µ-pseudorandomly concentrated.
Then, for any LTF Φ over n input bits with µ-critical index at most k = 103 · µ−2 · log2(1/µ),
the probability over choice of ρ ∼ (y, z) that Φ�ρ is t-balanced is at most Õ(t1+c/2) · √p +

O(t−c).

Proof. Let Φ = (w, θ) be an LTF gate over n input bits with critical index h ≤ k, and
without loss of generality assume that |w1| ≥ |w2| ≥ ... ≥ |wn|. Let I ⊆ [n] be the
random variable that is the set of live variables under y; then, it holds that:

Claim 3.5.12.1. With probability at least 1 − O(µ + p · k) over y ∼ y it holds that I ⊆
([n] \ [h]) and that ‖wI‖2 ≤

√
p/µ ·

∥∥∥w[n]\[h]

∥∥∥
2
.
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Proof. Since y is p-almost O(log(1/p))-wise independent, each variable is kept alive
with probability at most 2p. Thus, the probability over y ∼ y that the first h variables

are all fixed is at least 1− 2p · h. Also, the expected value of
∥∥∥wI∩([n]\[h])

∥∥∥2

2
is at most

2p ·
∥∥∥w[n]\[h]

∥∥∥2

2
, and hence with probability at least 1− 2µ it holds that

∥∥∥wI∩([n]\[h])

∥∥∥
2
≤√

p/µ ·
∥∥∥w[n]\[h]

∥∥∥
2
. By a union-bound, with probability at least 1 − O(µ + p · h) >

1−O(µ + p · k) it holds that I ⊆ ([n] \ [h]) and that ‖wI‖2 =
∥∥∥wI∩([n]\[h])

∥∥∥
2
≤
√

p/µ ·∥∥∥w[n]\[h]

∥∥∥
2
. �

Fix any y ∼ y such that the first h variables are all fixed, and such that ‖wI‖2 ≤√
p/µ ·

∥∥∥w[n]\[h]

∥∥∥
2
. Our goal will be to prove that with high probability over z ∼ z it

holds that
〈

w[n]\I , z[n]\I

〉
/∈ θ ± t ·

√
p/µ ·

∥∥∥w[n]\[h]

∥∥∥
2
; this suffices to prove the lemma,

since t ·
√

p/µ ·
∥∥∥w[n]\[h]

∥∥∥ ≥ t · ‖wI‖2. To do so, we first analyze the setting in which
z ∈ {−1, 1}n is chosen uniformly, rather than from the distribution z:

Claim 3.5.12.2. The probability over a uniform choice of z ∈ {−1, 1}n that
〈

w[n]\I , z[n]\I

〉
∈

θ ± t ·
√

p/µ ·
∥∥∥w[n]\[h]

∥∥∥
2

is at most O(t ·
√

p/µ + µ).

Proof. The claim is trivial for µ ≤ 2p, so it suffices to prove the claim under the
assumption that µ > 2p. Condition on any arbitrary assignment z[h] ∈ {−1, 1}h for
the first h variables, and note that the vector w>h ∈ {−1, 1}n−h is µ-regular (since h is
the µ-critical index of Φ).

Let T = [n] \ [h]. Observe that when conditioning on z[h], the event
〈

w[n]\I , z[n]\I

〉
∈

θ± t ·
√

p/µ ·
∥∥∥w[n]\[h]

∥∥∥
2

happens if and only if the event
〈
wT\I , zT\I

〉
∈ θ′ ± t ·

√
p/µ ·

‖wT‖2 happens, where θ′ = θ −
〈

w[h], z[h]
〉

. Since wT is µ-regular, we can invoke

Lemma 3.5.11 with w′ = wT and with λ =
√

p/µ ≤ 3/4 (the inequality is since
µ > 2p), and deduce the probability of the event

〈
wT\I , zT\I

〉
∈ θ′ ± t ·

√
p/µ · ‖wT‖2

is at most O(t ·
√

p/µ + µ). �

Since z is µ-pseudorandomly concentrated, it follows from Claim 3.5.12.2 that the
probability over z ∼ z that

〈
w[n]\I , z[n]\I

〉
∈ θ ± t ·

√
p/µ ·

∥∥∥w[n]\[h]

∥∥∥
2

is at most O(t ·√
p/µ + µ). Thus, the probability over choice of ρ ∼ (y, z) that Φ�ρ is t-balanced is at

most O(t ·
√

p/µ + µ + p · k) = Õ(t1+c/2) · √p +O(t−c), where the last equality relied
on the hypothesis that t ≤ p−1/(3c−2).

The following lemma is similar to Lemma 3.5.12, but holds for LTFs with large
critical index.
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Lemma 3.5.13 (pseudorandom restriction lemma for LTFs with large critical index).
Let n ∈ N, let p ∈ [0, 1] be a power of two, and let µ > 0. Let y be a distribution over
{−1, 1}log(1/p)·n that is p-almost O(log(1/p))-wise independent, and let z be a distribution
over {−1, 1}n that is µ-pseudorandomly concentrated. Then, for any LTF Φ over n input
bits with µ-critical index larger than k = 103 · µ−2 · log2(1/µ), the probability over choice of
ρ ∼ (y, z) that Φ�ρ is (1/4µ)-balanced is Õ(µ−2) · p + O(µ).

Proof. Let Φ = (w, θ) be an LTF gate over n input bits with µ-critical index larger
than k, and without loss of generality assume that |w1| ≥ |w2| ≥ ... ≥ |wn|. Also, let
I ⊆ [n] be the random variable that is the set of live variables under y. Note that the
probability over y ∼ y that I ∩ [k] 6= ∅ is at most 2p · k = Õ(µ−2) · p (since y keeps
each variable alive with probability at most 2p).

Condition on any arbitrary y ∼ y such that [k] ∩ I = ∅. Our goal now is to show
that the probability over z ∼ z that Φ�ρ is (1/4µ)-balanced is O(µ). We will actually
prove a stronger claim: We will show that with probability at least 1−O(µ) it holds
that

〈
w[n]\I , z[n]\I

〉
/∈ θ ± (1/4µ) · ‖w>k‖2 (this claim is stronger, since I ⊆ ([n] \ [k]),

which implies that ‖w>k‖2 ≥ ‖wI‖2). To prove this assertion we will rely on the
following claim, which is essentially from [CSS16, Prop. 45] and generalizes [DGJ+10,
Lem. 5.8]. (Since the proof is sketched in [CSS16], we include a full proof.)

Claim 3.5.13.1. Let µ > 0, let r ∈ N, and let kr,µ = 4r·ln(3/µ2)
µ2 . Let Φ = (w, θ) be an LTF

over n input bits with µ-critical index larger than kr,µ such that |w1| ≥ ... ≥ |wn|, and let
J ⊆ [n] such that J ⊇ [kr,µ]. Then, the probability under uniform choice of z ∈ {0, 1}n that

〈wJ , zJ〉 ∈ θ ± (1/4µ) ·
∥∥∥w>kr,µ

∥∥∥
2

is at most 2−r.

Proof. Since the critical index of Φ is larger than kr,µ, a lemma of Servedio [Ser07, Lem.
3] asserts that for any 1 ≤ i < j ≤ kr,µ it holds that

|wj| ≤
∥∥w≥j

∥∥
2 ≤

(
1− µ2)(j−i)/2 · ‖w≥i‖2 ≤

(
1− µ2)(j−i)/2 · |wi|/µ . (3.5.1)

(For an equivalent statement of the lemma see [DGJ+10, Lem. 5.5].) In particular,
fixing γ = 2 ln(3/µ2)

µ2 , for any i ∈N such that i · γ < kr,µ it holds that |wi·γ| < |w1|/3i.
Let R = 1, γ, ..., r · γ < kr,µ, and consider any arbitrary fixed value of zJ\R. Then, by

a claim of Diakonikolas et al. [DGJ+10, p. Clm. 5.7], there exists at most a single value
zR ∈ {−1, 1}r such that 〈wR, zR〉 ∈

(
θ −

〈
wJ\R, zJ\R

〉)
± |wr·γ|/4. Thus, the probability

under a uniform choice of z ∈ {0, 1}n that 〈wJ , zJ〉 ∈ θ ± |wr·γ|/4 is at most 2−r.

The claim follows since
∥∥∥w>kr,µ

∥∥∥
2
≤
∥∥∥w≥(r+1)·γ

∥∥∥
2
≤ µ · |wr·γ|, where the first in-

equality is since kr,µ > (r + 1) · γ and the second inequality is due to Eq. (3.5.1). �

We invoke Claim 3.5.13.1 with the value r = log(1/µ) and with the set J = [n] \ I,
while noting that the critical index of Φ is indeed larger than k ≥ kr,µ. Since the interval

θ± (1/4µ) · ‖w>k‖2 is contained in the interval θ± (1/4µ) ·
∥∥∥w>kr,µ

∥∥∥
2

(because k ≥ kr,µ),
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we deduce that the event
〈

w[n]\I , z[n]\I

〉
∈ θ ± (1/4µ) · ‖w>k‖2 happens with proba-

bility at most µ under a uniform choice of z ∈ {0, 1}n. Since z is µ-pseudorandomly
concentrated, this event happens with probability at most O(µ) also under a choice of
z ∼ z.

Finally, we are ready to state a more general version of Proposition 3.5.10 and to
prove it. The proof will rely on Lemmas 3.5.12 and 3.5.13.

Proposition 3.5.14 (pseudorandom restriction lemma for an arbitrary LTF). Let n ∈N,
let p ∈ [0, 1] be a power of two, let c ∈ N be a constant, and let t ≤ p−1/(3c−2). Let y be a
distribution over {−1, 1}log(1/p)·n that is p-almost O(log(1/p))-wise independent, and let z
be a distribution over {−1, 1}n that is (1/4tc)-pseudorandomly concentrated. Then, for any
LTF Φ over n input bits, the probability over choice of ρ ∼ (y, z) that Φ�ρ is t-balanced is at
most Õ(t1+c/2) · √p + O(t−c).

To obtain the parameters that were stated in Section 3.5.2.1, invoke Proposition 3.5.14
with c = 2. (When c = 2, the hypothesis that t ≤ p−1/(3c−2) = p−1/4 is not required,
since for t > p−1/4 the probability bound in the lemma’s statement is trivial.)

Proof of Proposition 3.5.14. Let Φ = (w, θ) be an LTF gate over n input bits, let µ =
1/4tc, and let k = 103 · µ−2 · log2(1/µ). If the µ-critical index of Φ is at most k, the
asserted probability bound follows immediately from Lemma 3.5.12. On the other
hand, if the µ-critical index of Φ is larger than k, we can rely on Lemma 3.5.13. The
lemma asserts that the probability that Φ�ρ is (1/4µ)-balanced is at most Õ(µ−2) ·
p + O(µ) < Õ(t1+c/2) · √p + O(t−c), where the inequality relies on the hypothesis
that t ≤ p−1/(3c−2). Since (1/4µ) ≥ t, whenever Φ�ρ is (1/4µ)-imbalanced it is also
t-imbalanced.

3.5.3.2 Pseudorandom restriction algorithm for a “layer” of LTFs

The next step is to construct a pseudorandom restriction algorithm that transforms a
depth-d linear threshold circuit into a depth-(d− 1) linear threshold circuit. The key
part in this step is an application of Proposition 3.5.14.

Proposition 3.5.15 (pseudorandom restriction algorithm for a “layer” of LTFs). For
every three constants d ≥ 2 and ε > 0 and c > 0, there exists a polynomial-time algorithm that
gets as input a circuit C ∈ Cn,d,n1+ε and a random seed of length O(log(n) · (log log(n))2),
and with probability at least 1− n−ε outputs the following:

1. A restriction ρ ∈ {−1, 1, ?}n that keeps at least n′ = Ω(n1−24·ε) variables alive.

2. A circuit C̃ ∈ Cn′,d−1,(n′)1+30ε that agrees with C on at least 1− n−c of the inputs in the
subcube that corresponds to ρ (i.e., Prx∈{−1,1}|ρ−1(?)| [C�ρ(x) = C̃(x)] > 1− n−c).
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High-level overview of the proof. The key step of the algorithm is to apply Propo-
sition 3.5.14 with parameters p = n−β and c = 1 and t = p−1/5, where β = O(ε).
The lemma asserts that, in expectation, all but approximately n−β/5 of the gates will
become t-imbalanced (for simplicity, ignore polylogarithmic factors for now). Such
imbalanced gates are extremely close to a constant function, so we can replace the
gates by the corresponding constants and get a circuit that agrees with the original
circuit on almost all inputs.

As for the other n−β/5-fraction of the gates, we expect that the number of wires
feeding into them will decrease by a factor of p after the restriction. Specifically,
assume that indeed the fan-in of each gate decreased by a factor of at least p; then,
the expected number of wires feeding into the balanced gates after the restriction is at
most

∑
Φ gate

Pr[Φ balanced] · p · (# wires incoming to Φ) ≤ n−β/5 · p · n1+ε . (3.5.2)

Thus, with probability at least 1− n−β/10, the number of wires feeding into balanced
gates is at most (nε−β/10) · p · n, which is much smaller than the expected number of
living variables (i.e., than p · n) if β > 10ε. When this happens, we can afford to simply
fix all the variables that feed into balanced gates, making those gates constant too.

The argument above relied on the assumption that the fan-in of each gate Φ de-
creased by a factor of at least p. We can argue that this indeed holds with high proba-
bility for all gates with fan-in at least nα, where α > β, but we will need to separately
handle gates with fan-in at most nα. This will be done in two steps: The first is an
initial preprocessing step (before applying Proposition 3.5.14), in which we fix every
variable with fan-out more than 2 · nε; since there are at most n1+ε wires, this step fixes
at most n/2 variables. Then, after applying Proposition 3.5.14 and fixing the variables
that feed into balanced gates with fan-in at least nα, we show that there exists a set
I of variables of size approximately n−(α+ε) · (p · n) such that after fixing all variables
outside I, each gate with fan-in at most nα has fan-in at most one (see Claim 3.5.16.1).
Thus, we can fix the variables outside I, and then replace each gate with fan-in at most
nα with the corresponding variable (or with its negation). At this point all the gates in
the bottom layer have been replaced by constants or by variables.

Proof of Proposition 3.5.15. Let G = {Φ1, ..., Φr} be the set of gates in the bottom
layer of C. For α = 12ε, let S ⊆ G be the set of gates with fan-in at most nα, and let
L = G \ S be the set of gates with fan-in more than nα.

The restriction ρ will be composed of four restrictions ρ1, ..., ρ4. When describing
the construction of each restriction, we will always assume that all previous restrictions
were successful (we will describe exactly what “successful” means for each restriction).
Also, after each restriction, we fix additional variables if necessary, in order to obtain
an exact number of living variables in the end of the step.

Let z be a distribution over {−1, 1}n that is (1/q(n))-pseudorandom for LTFs,
where q is a sufficiently large polynomial. We mention in advance that for each i ∈ [4],
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3. QUANTIFIED DERANDOMIZATION

the values for variables that are fixed by ρi will always be decided by sampling from
z.

The first restriction ρ1: Reduce the fan-out of input gates. We sample z ∼ z, and fix
all variables with fan-out more than 2 · nε to values according to z. Since the number
of wires between the bottom-layer gates and the input variables is at most n1+ε, and
each fixing of a variable eliminates 2 · nε wires, we will fix no more than n/2 variables
in this step. Let n1 = n/2 be the number of living variables after the first step.

The second restriction ρ2: Applying Proposition 3.5.14. We use Proposition 3.5.14
with the values p = n−β, where β = 11ε, and c = 1, and t = p−1/5. 35 The distributions
that we use are a (1/poly(n))-almost O(log(1/p))-wise independent distribution y
over {−1, 1}log(1/p)·n and the aforementioned distribution z over {−1, 1}n.

Let E be the event in which ρ2 keeps at least (p · n1)/2 variables alive, and for every
gate Φ ∈ L it holds that fan-in(Φ�ρ2

) ≤ 2p · fan-in(Φ). We claim that E happens with
probability at least 1− 1/poly(n). To see that this is the case, note that the expected
number of living variables is p · n1 = nΩ(1), and that for each gate Φ ∈ G, the expected
fan-in of Φ�ρ2

is nα−β = nΩ(1). Since the choice of variables to keep alive is 1
poly(n) -

almost O(1)-independent, we can use Fact 2.1.1 to deduce that Pr[E ] ≥ 1− 1
poly(n) .

Now, assume without loss of generality that L = {Φ1, ..., Φr′}, for some r′ ≤ r. For
any i ∈ [r′], denote by Bi the event that Φi is t-balanced. Note that when conditioning
on E , the probability of each Bi is at most Õ(n−β/5). Therefore, conditioned on E , the
expected number of wires feeding into t-balanced gates in L after the restriction is

E

[
∑

i∈[r′]
1Bi · fan-in(Φi�ρ2

)
∣∣∣E] = ∑

i∈[r′]
Pr[Bi|E ] ·E[fan-in(Φi�ρ2

)|E ,Bi]

≤ ∑
i∈[r′]

Õ(n−β/5) · (2p · fan-in(Φi))

= Õ(n−β/5) · p · n1+ε .

Hence, conditioned on E , the probability that the number of wires feeding into t-
balanced gates in L after the restriction is more than Õ(n−β/10) · p · n1+ε = Õ(nε−β/10) ·
n1−β is at most O(n−β/10). We consider the restriction ρ2 successful if E happens
and if the number of wires between t-balanced gates in L and input gates is at most
Õ(nε−β/10) · n1−β. In this case, the number of currently-living variables is n2 = p ·
n1/2 = 1

4 · n1−β.
After applying ρ2, we replace any t-imbalanced gate Φi ∈ L with its most prob-

able value σi ∈ {−1, 1}. Note that by Theorem 2.1.4, each t-imbalanced gate Φi is
(exp(−nΩ(1)))-close to σi in the subcube that corresponds to the currently-living vari-
ables.

35For simplicity, we assume that p = n−11ε is a power of two. Otherwise, we can choose β to be a value
very close to 11ε such that p will be a power of two, with no meaningful change to the rest of the proof
(the proof only relies on the fact that 10ε < β < α).

90



3.5 Linear threshold circuits and ACC0

The third restriction ρ3: Eliminate L-gates that remained unbiased. In this step we
sample z ∼ z again, and fix all the variables that feed into t-balanced gates accord-
ing to z. Assuming that ρ2 was successful, the number of such variables is at most
Õ(nε−β/10) · n1−β = o(n2), where we used the fact that β > 10ε. Denote the restriction
applied in this step by ρ3, and note that the number of living variables after applying
ρ3 is n3 = Ω(n2) = Ω(n1−11ε).

Our goal now is to claim that for each gate Φi that was replaced by a constant
σ ∈ {−1, 1} prior to applying ρ3, it still holds that Φi is close to σ in the subcube
{−1, 1}ρ−1

3 (?). To do so we will rely on the following lemma:

Lemma 3.5.16 (bias preservation lemma). Let n ∈ N, let I ⊆ [n], and let δ > 0. Let
Φ = (w, θ) be an LTF over n input bits that is δ-close to a constant function σ ∈ {−1, 1},
and let z be a distribution over {−1, 1}[n]\I that is δ-pseudorandom for LTFs. Then, with
probability at least 1−

√
2δ over choice of z ∼ z it holds that Φ�(I,z) is

√
2δ-close to σ.

Proof. Let k = |I|, and for simplicity of notation assume that I = {1, 2, ..., k} ⊆ [n] and
that σ = 1. By our hypothesis it holds that

Ex∈{0,1}k

[
Pr

z∈{0,1}n−k
[Φ(x ◦ z) = 1]

]
≥ 1− δ .

Now, for every fixed x ∈ {0, 1}k, let Φx : {0, 1}n−k → {0, 1} be defined by
Φx(z) = Φ(x ◦ z) = sgn (〈w>k, z〉 − (θ − 〈x, w≤k〉)), and note that Φx is a linear thresh-
old function of its input z. Since z is δ-pseudorandom for LTFs, we have that

Ex∈{0,1}k

[
Pr
z∼z

[Φ(x ◦ z) = 1]
]
≥ Ex∈{0,1}k

[
Pr

z∈{0,1}n−k
[Φ(x ◦ z) = 1]− δ

]
,

which implies that

Ez∼z

[
Pr

x∈{0,1}k
[Φ(x ◦ z) = 1]

]
≥ 1− 2δ .

Finally, by Markov’s inequality, the probability over z ∼ z that Prx∈{0,1}k [Φ(x ◦ z) =
1] < 1−

√
2δ is less than

√
2δ. �

We invoke Lemma 3.5.16 with I being the set of variables that are kept alive by ρ3,
and with δ = 1/poly(n) for a sufficiently large polynomial (recall that each gate Φi
that was replaced by a constant was in fact exp(−nΩ(1))-close to the constant). After
union-bounding over at most r ≤ n1+ε gates that were replaced by constants, with
probability 1− 1/poly(n) it holds that all these gates are

√
2δ-close to constants in the

subcube {−1, 1}ρ−1
3 (?).
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The fourth restriction ρ4: Eliminate gates with small fan-in. We will rely on the
following claim, which is an algorithmic version of [CSS16, Prop. 36]:

Claim 3.5.16.1. For k′ = 2 · nα+ε, we can deterministically find in poly(n) time a set I of at
least n3/k′ living variables such that when fixing all variables not in I to any arbitrary values,
the fan-in of each gate in S is at most one.

Proof. Consider the graph in which the vertices are the input gates x1, ..., xn3 , and two
vertices xi and xj are connected (in the graph) if and only if there exists a gate Φi ∈ S
that is connected (in the circuit) to both xi and xj. Note that this graph has degree at
most k′, since every living variable has fan-out at most 2 · nε, and every gate in S has
fan-in at most nα. Therefore, we can greedily construct an independent set I in the
graph of size at least n3/k′, which is indeed the set of variables that we wanted. �

The algorithm finds a set I using Claim 3.5.16.1, samples z ∼ z, and fixes all the
variables outside I according to z. This yields a restriction that reduces the fan-in of
each gate in S to one. Thus, each gate Φ ∈ S now simply takes the value of an input
gate (or its negation), which implies that the gates that are connected to Φ (in the layer
above it) can be connected immediately to the corresponding input gate, and we can
remove Φ from the circuit. The number of living variables is n4 = n3/k′ = Ω(n1−24ε).

To conclude, we claim that the gates that were previously replaced by constants are
still close to constants in the new subcube. This is done by invoking Lemma 3.5.16 with
I being the aforementioned set of size n4, and with the parameter value

√
2δ. After

union-bounding over the gates that were replaced by constants, with probability at
least 1− n−2ε it holds that all these gates are δ′-close to constants in the final subcube,
where δ′ = n−(c+1+ε) ≥

√
2
√

2δ. It follows that the original circuit is δ′′-close to the
new circuit in the final subcube, where δ′′ ≤ δ′ · n1+ε ≤ n−c.

Accounting for the parameters. We obtained a circuit in C̃ ∈ Cn4,d−1,n1+ε . Since

n1+ε = O(n
1+ε

1−24ε

4 ) < n(1+ε)(1+25ε)
4 ≤ n1+30ε

4 , we have that C̃ ∈ Cn4,d−1,n1+30ε
4

. To sam-
ple the restriction ρ = ρ4 ◦ ... ◦ ρ1, we sampled from the distribution z four times, and
from the distribution y a single time. A sample from y can obtained with seed length
O(log(n)), and relying on Theorem 2.4.20, each sample from z can be obtained with
seed length O(log(n) · (log log(n))2).

Finally, let us account for the error probability. The first step is deterministic and
always succeeds. In the second step, the algorithm is unable to simplify the circuit if
the event E does not happen, or if the number of wires between t-balanced gates in L
and input gates is too large. Denoting the latter event by E ′, the probability of error
is at most Pr[¬E ] + Pr[E ′|E ] ≤ O(n−β/10). The last type of error to account for is the
probability that C̃ is not n−c-close to C in {−1, 1}ρ−1(?); as detailed above, this happens
with probability at most n−2ε. The overall error is thus O(n−β/10 + n−2ε) < n−ε.
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3.5.3.3 Pseudorandom restriction algorithm for linear threshold circuits

We are now ready to construct the pseudorandom restriction algorithm that simplifies
any linear threshold circuit to a single LTF gate (i.e., Proposition 3.5.8). The proof
will consist of d − 1 applications of Proposition 3.5.15. In each application, we will
use Lemma 3.5.16 to claim that all the approximations in previous applications of
Proposition 3.5.15 still hold.

Proposition 3.5.17 (Proposition 3.5.8, restated). Let d ≥ 1, let ε > 0 be a sufficiently
small constant, and let δ = d · 30d−1 · ε. Then, there exists a polynomial-time algorithm that
for every n ∈ N, when given as input a circuit C ∈ Cn,d,n1+ε and a random seed of length
O(log(n) · (log log(n))2), with probability at least 1− n−ε/2 satisfies the following:

1. The algorithm outputs a restriction ρ ∈ {−1, 1, ?}n that keeps at least n1−δ variables
alive.

2. The algorithm outputs an LTF Φ : {−1, 1}ρ−1(?) → {−1, 1} such that Φ is 1/10-close
to C�ρ (i.e., Prx∈{−1,1}ρ−1(?) [C(x) = Φ(x)] ≥ 9/10).

Proof. We repeatedly invoke Proposition 3.5.15, for d − 1 times. For i ∈ [d − 1], let
ρ(i) be the restriction that is obtained in the ith invocation of Proposition 3.5.15, and let
ρ = ρ(d−1) ◦ ... ◦ ρ(1) be the final restriction. Let C0 = C, and for i ∈ [d− 1], let Ci be
the circuit that is obtained after the ith invocation of Proposition 3.5.15. Also let ε0 = ε
and εi = 30 · εi−1 = 30i · ε, and let n0 = n and ni = Ω

(
(ni−1)

1−24εi−1
)
.

We say that an invocation of Proposition 3.5.15 is successful if the two items in the
proposition’s statement are satisfied (i.e., the algorithm outputs a restriction that keeps
sufficiently many live variables, and a circuit of smaller depth that agrees with the
original circuit on almost all inputs). Assuming all invocations of Proposition 3.5.15
are successful, for each i ∈ [d− 1] it holds that Ci ∈ Cni ,d−i,n

1+εi
i

, and in particular Cd−1

is a single LTF Φ. Also, in this case, the number of living variables after all invocations
is

nd−1 = nΠd−2
i=0 (1−24εi) > n1−24·∑d−2

i=0 εi > n1−24·d·εd−2 > n1−δ . (3.5.3)

The required seed length for the d− 1 invocations of Proposition 3.5.15 is Õ(log(n)).
To bound the probability of error, for each i ∈ [d− 1], assume that all previous i− 1
invocations were successful, and note that the probability that the ith invocation of
Proposition 3.5.15 fails is at most n−εi−1

i−1 < (n1−δ)−ε (the inequality is since we assumed
that the previous invocations of Proposition 3.5.15 were successful, which implies that
ni−1 ≥ n1−δ, by a calculation similar to Eq. (3.5.3)). Thus, the accumulated probability
of error is at most d · (n1−δ)−ε < n−ε/2, where the inequality relied on the fact that ε
is sufficiently small.

Condition on all the d− 1 invocations of Proposition 3.5.15 being successful. Recall
that in this case, for every i ∈ [d− 1] it holds that Ci is n−c-close to Ci−1�ρ(i) ; we now
claim that, with high probability, this approximation continues to hold even in the
subcube that corresponds to the final restriction ρ.
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Claim 3.5.17.1. For every i ∈ [d− 1], with probability 1− 1/poly(n) it holds that (Ci−1) �ρ
is 1/10d-close to (Ci) �ρ.

Proof. For each j ∈ {i, ..., d− 1}, recall that ρ(j) is the composition of four restrictions,
denoted by ρ

(j)
1 , ..., ρ

(j)
4 . Fix i ∈ [d− 1], condition on any fixed choice for ρ

(i)
1 and ρ

(i)
2 ,

and let C′ = (Ci−1)�ρ(i)1 ,ρ(i)2
. Recall that immediately after applying ρ

(i)
2 , the algorithm

from Proposition 3.5.15 replaces a set of m ≤ n1+εd−(i−1) LTF gates, denoted Φ1, ..., Φm,
with a corresponding set of constants σ1, ..., σm ∈ {−1, 1}. Let C̃′ be the circuit that
is obtained from C′ by the aforementioned replacement. Finally, note that for every
choice of final restriction ρ it holds that (Ci−1) �ρ = C′�ρ and (Ci) �ρ = C̃′�ρ.

Our goal now will be to show that for every fixed k ∈ [m], with probability 1−
1/poly(n) over choice of ρ it holds that (Φk)�ρ is 1/(10dm)-close to σk. This suffices
to conclude the proof, since it follows (by a union-bound over the m gates) that with
probability 1− 1/poly(n), for every k ∈ [m] it holds that (Φk)�ρ is 1/(10dm)-close to
σk; and whenever the latter event happens we have that C′�ρ is 1/(10d)-close to C̃′�ρ.

Towards the aforementioned goal, fix k ∈ [m], and recall that Φk is δ0-close to some
constant function σk ∈ {−1, 1}, where δ0 = exp

(
n−Ω(1)

i−1

)
= exp

(
n−Ω(1)

)
, where

the inequality is since ni−1 = nΩ(1) (recall that we conditioned on all invocations of
Proposition 3.5.15 being successful). Observe that the final restriction ρ is composed

of t def
== 4 · (d− i− 1) + 2 additional restrictions on the domain of Φk: Two additional

restrictions ρ
(i)
3 and ρ

(i)
4 in the ith invocation of Proposition 3.5.15, and for each j ∈

{i + 1, ..., d− 1}, four restrictions ρ
(j)
1 , ..., ρ

(j)
4 in the jth invocation of Proposition 3.5.15.

Recall that each of the t restrictions is chosen by first choosing (deterministically or
pseudorandomly) a set of variables to keep alive, and then independently choosing
values for the fixed variables. Therefore, we will now repeatedly use Lemma 3.5.16, to
claim that each restriction preserves the closeness of Φk to σk.

For convenience, rename the t restrictions ρ
(i)
3 , ρ

(i)
4 , ρ

(i+1)
1 , ..., ρ

(i+1)
4 , ..., ρ

(d−1)
1 , ..., ρ

(d−1)
4 ,

and denote them by ρ′(1), ..., ρ′(t). Note that δ0 < 2−t · n−2t·c, and for every r ∈ [t] let
δr = 2(δr−1)

1/2 ≥
√

2δr−1. Repeatedly invoking Lemma 3.5.16, with probability at least
1−O(

√
δt−1) it holds that (Φk)�ρ′(1)◦...◦ρ′(r) is δr-close to σk. 36 Hence, with probability

at least 1−O(n−c) it holds that (Φk) �ρ is δt-close to σk, where δt = n−c < 1/(10dm).
�

Thus, with probability 1− 1/poly(n), for every i ∈ [d− 1] it holds that (Ci−1)�ρ is
1/10d-close to (Ci)�ρ. Whenever this holds, by a union-bound it follows that C�ρ =
(C0)�ρ is 1/10-close to (Cd−1)�ρ = Cd−1 = Φ.

36Formally, we prove by induction on r ∈ [t] that with probability at least 1−O(n−c) it holds that
(Φk)�ρ′(1)◦...◦ρ′(r) is δr-close to σk. For the base case r = 1 we rely on the hypothesis that Φk is δ0-close to

σk, and use Lemma 3.5.16 with the parameter value δ = 2−r · n−2r ·c; and for the induction step r > 1,
we condition on (Φk)�ρ′(1)◦...◦ρ′(r−1) being δr−1-close to σk, and use Lemma 3.5.16 with the parameter value
δ = δr−1.
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3.5.4 Proof of Theorem 3.5.2

In this section we prove Theorem 3.5.2, and the corresponding result for derandom-
ization of ACC0 (which was mentioned in the end of Section 3.5.1.2). In Section 3.5.4.1
we construct uniform sparse CC0[2] circuits and T C0 circuits that encode balanced
codes. In Section 3.5.4.2 we construct uniform sparse CC0[2] circuits and T C0 circuits
that compute averaging samplers. Finally, in we use the averaging samplers to prove
Theorem 3.5.2 (in Section 3.5.4.3) and the bootstrapping result for derandomization of
ACC0 (in Section 3.5.4.4).

3.5.4.1 A balanced code in uniform sparse CC0[2] and T C0

In Section 3.5.4.1.1 we construct uniform sparse CC0[2] circuits that compute range
detectors, which are basic building blocks that will be useful in constructing the en-
coding circuit. Then, in Section 3.5.4.1.2 we use the range detectors to construct
uniform sparse CC0[2] circuits that encode codes with constant relative distance. In
Section 3.5.4.1.3 we use the foregoing construction to construct uniform sparse CC0[2]
circuits that encode balanced codes. Finally, in Section 3.5.4.1.4 we show how to con-
vert the latter circuits into uniform extremely sparse T C0 circuits that encode balanced
codes.

3.5.4.1.1 Range detectors in uniform sparse CC0[2] from lossless expanders As
pointed out in [GHK+13], the task of constructing range detectors reduces to the task
of constructing unbalanced lossless expanders: The latter are bipartite graphs with n
“input” vertices and m “output” vertices such that each input vertex has degree d,
and each set S of input vertices of size at most w has at least (1− ε) · d · |S| distinct
neighbors among the output vertices. In particular, for each set S of size at most w, at
least (1− 2ε) · d · |S| of its neighbors are connected to a single vertex in S. 37

The reason that lossless expanders are useful for constructing range detectors is the
following. Assume that we construct a depth-one circuit C : {0, 1}n → {0, 1}m of parity
gates by wiring according to a lossless expander. Then, for every input x ∈ {0, 1}n with
Hamming weight between w/2 and w, we have that Sx = {i ∈ [n] : xi = 1} satisfies
|Sx| ≤ w. Since the graph is an expander, at least (1− 2ε) · d · |Sx| output gates are
connected to a single coordinate i ∈ [n] such that xi = 1; hence, the Hamming weight
of the output C(x) is at least (1− 2ε) · d · |Sx| = Ω(d · w). Also, since |Sx| ≤ w, the
Hamming weight of C(x) is at most d · w. Thus, if we use a lossless expander with
m = O(d · w), we obtain an (n, m, w, Ω(m), m/2) range detector.

For our purposes we need a lossless expander with small input-degree d (to get
a sparse circuit) and m = O(d · w). We will use the explicit construction of lossless
expanders by Capalbo et al. [CRV+02]. To be consistent with their notation, we use
uppercase letters instead of lowercase ones (i.e., the number of inputs is N, the number

37This is because (1− ε) · d · |S| edges are needed to obtain (1− ε) · d · |S| distinct neighbors of S, which
leaves only ε · d · |S| edges that can “donate” a second edge to a neighbor of S.
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3. QUANTIFIED DERANDOMIZATION

of outputs is M, and the weight is W). The input-degree that is obtained using their
construction is D = exp(poly log log(N)), which is sufficiently small for our purposes.

Proposition 3.5.18 (constructing sparse range detectors using [CRV+02]). There exist
two constants η, µ > 0 such that the following holds. There exists a deterministic polynomial-
time algorithm that gets as input 1N , where N is a power of two, and W ≤ η · N, and outputs
the following depth-one circuit that consists of parity gates. The circuit has N input bits and
M = O (W · exp(poly log log(N))) output gates, and N · exp(poly log log(N)) wires, and
the circuit computes an (N, M, W, µ ·M, M/2)-range detector.

Proof. We use the lossless expander construction of [CRV+02, Thm 7.3], instantiated
with the following parameters: n = log(N), and ε = 0.01, and t ∈ N such that
t + α · log3(t/ε) = n − log(W) − β, where α, β ≥ 1 are positive constants that will
be specified later.38 Their construction yields a lossless expander with the following
parameters:

1. The number of input vertices is N.

2. The number of output vertices is M = 2n−t = 2β ·W · 2α·log3(t/ε).

3. The degree of input vertices is D = 2d = 2γ·log3(t/ε) < exp(poly log log(N))
(where γ > 1 is a universal constant from [CRV+02]).

4. All sets S ⊆ [N] of size at most K = 2kmax have at least 0.99 · D · |S| neighbors,
where K = 2n−t−d−log(1/ε)−δ ≥W (in the calculation, δ > 1 is a universal constant
from [CRV+02], and we choose α = γ and β ≥ log(1/ε) + δ).

The neighbor function E : [N] × [D] → [M] is computable in time poly log(N),
which means that the circuit (with parity gates) corresponding to the expander can be
constructed in time poly(N). By the preceding discussion, to prove that the circuit is
an (N, M, W, Ω(M), M/2)-range detector it remains to verify that M ≥ 2 · D ·W and
M = O(D ·W). The first inequality holds because β ≥ 1, and the second inequality
holds because β is bounded by a universal constant.

Proposition 3.5.18 gives range detectors for all weights w up to Ω(n). Constructing
range detectors for weight w = Ω(n) is much simpler: The identity mapping preserves
the constant relative weight, and so we just need to handle the edge case of w > n/2
(recall that we want the output weight to be at most (1−Ω(1)) ·m).39

38Specifically, in the proof α will be a specific universal constant, and β will be lower-bounded by
another universal constant. We will thus increase β (by a constant) such that n− log(W)− β will touch
the set {t + α · log3(t/ε)}t∈N. The fact n− log(W)− β ≥ 1 + α · log3(1/ε) follows from the hypothesis
that W ≤ η · N (where η is sufficiently small and depends on α and on the lower bound for β).

39We will not use the fact that the output weight is at most (1−Ω(1)) ·m, but we nevertheless present
this construction for completeness.
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Proposition 3.5.19 (constructing a layer of range detectors). For some universal constant
ρ > 0, there exists a deterministic polynomial-time algorithm that gets as input 1n, where n
is a power of two, and outputs the following log(n) depth-one circuits that consist of parity
gates. For i = 1, ..., log(n), the ith circuit computes an (n, m, w, ρ · m, (1 − ρ) · m)-range
detector, where w = 2i and m = O(w · exp(poly log log(n)) and the circuit has at most
n · exp(poly log log(n)) wires.

Proof. Let η, µ > 0 be the two constants from Proposition 3.5.18. For every i ≤
log(n)− log(1/η), we use Proposition 3.5.18 to get an (n, m, w, η · m, m/2)-range de-
tector with m = O(n · exp(poly log log(n)) and n · exp(poly log log(n)) wires. For
log(n)− log(1/η) < i < log(n), we just use the identity mapping to get an (n, m =
n, w, η ·m, m/2)-range detector with n wires.

For i = log(n), we map n input bits to m = (3/2) · n output bits as follows: The
first n output bits are the identity mapping of the input bits, and each of the last n/2
output bits is connected to a consecutive pair of input bits (i.e., for i ∈ [n], the ith

input bit is connected to the ith output bit; and for i ∈ [n/2], the (n + i)th output bit is
connected to input bits 2i− 1 and 2i). Note that for any input x ∈ {0, 1}n of Hamming
weight at least n/2, the Hamming weight of the output is at least n/2 = m/3. Now,
if the Hamming weight of x is at most (3/4) · n, then the Hamming weight of the
output is at most n = (5/6) ·m; and on the other hand, if the Hamming weight of x is
more than (3/4) · n, then Pri∈[n/2][x2i−1 ⊕ x2i = 0] ≥ Pri∈[n/2][x2i−1 = x2i = 1] ≥ 1/2,
which implies that the Hamming weight of the output is at most m− n/4 = (5/6) ·m.
Thus, this yields an (n, m, w = n, m/2, (5/6) · m)-range detector with 2n wires. The
proposition follows by taking ρ = min{µ, η, 1/6}.

3.5.4.1.2 A code with constant relative distance in uniform sparse CC0[2] Our goal
now is to use the range detectors to construct an encoding circuit. To do so, we will
put the range detectors as a layer of gates above the inputs, and use an additional top
layer to combine the range detectors into a code. The construction of the top layer
follows the construction in [GHK+13, p. Clm. 34], with different parameters.

Proposition 3.5.20 (uniform extremely sparse CC0[2] circuits for encoding an “almost–
good” code). For some universal constant ρ > 0, there exists a deterministic polynomial-time
algorithm that gets as input 1n, where n is a power of two, and outputs a depth-two circuit of
that consists of parity gates, and satisfies the following:

1. The circuit computes the encoding function of a linear code {0, 1}n → {0, 1}n̂ with
constant relative distance ρ > 0, where n̂ = n · exp(poly log log(n)).

2. The circuit has n · exp(poly log log(n)) gates and n · exp(poly log log(n)) wires.

Proof. We first use Proposition 3.5.19 to obtain log(n) range detectors with parameters
as in the proposition; the middle layer of the circuit consists of these range detectors.
Note that for every non-zero x ∈ {0, 1}n it holds that for some i ∈ [log(n)], the ith
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range detector maps x to mi = O(2i · exp(poly log log(n))) outputs such that between
ρ ·mi and (1− ρ) ·mi of the outputs are set to one.

Towards constructing the top layer, we first construct a top layer of n0 gates, where
n0 = n · exp(poly log log(n)) ≥ maxi∈[log(n)]{mi}, that satisfies the following property:
For every non-zero x ∈ {0, 1}n, a constant fraction of the n0 top gates are connected
to a gate in the middle layer that is set to one. This property does not suffice for the
complete construction, since a top gate might touch an even number of gates in the
middle layer that are set to one (i.e., their parity will be zero); later on we will replace
the top n0 gates by n̂ parity gates in a manner that will solve this problem.

For now, imagine a top layer of n0 gates. For i ∈ [log(n)], we connect the ith range
detector to these top gates, while ensuring that if a constant fraction of the outputs
of the range detector are set to one, then a constant fraction of the top gates touch an
output gate of the range detector that is set to one. Specifically, we connect the layers
such that each top gate is connected to exactly one output of the range detector, and
the degree of the outputs of the range detector is at least bn0/mic. 40 Let S be the set of
output gates of the range detector that are set to one. If |S| ≥ ρ ·mi, then the number
of wires outgoing from S is at least ρ ·mi · bn0/mic, which implies that the number of
top gates connected to S is at least ρ ·mi · bn0/mic = Ω(ρ · n0).

After connecting all range detectors to the top layer of n0 gates in this manner, the
degree of each top gate is exactly log(n). To obtain the actual top layer (with n̂ parity
gates instead of n0 gates), we replace each of the n0 gates, denoted g, with O(log(n))
parity gates that compute a good code on the middle gates that feed into g. (This can
be any code with constant rate and constant relative distance, since we do not require
that these sub-circuits over log(n) bits will be sparse.) Thus, if a constant fraction of
the previous n0 top gates were connected to a gate in the middle layer that is set to
one, then a constant fraction of the actual n̂ top parity gates are set to one.

The number of wires between the top layer and the middle layer is at most n̂ ·
log(n) = n0 ·O(log(n)) · log(n) = n · exp(poly log log(n)), and the number of wires be-
tween the middle layer and the inputs layer is also bounded by n · exp(poly log log(n)).
Also, the top layer has more gates than the middle layer, and thus the circuit has
O(n · exp(poly log log(n))) gates.

3.5.4.1.3 A balanced code in uniform sparse CC0[2] In this section we use an addi-
tional sparse circuit to amplify the distance of the code in Proposition 3.5.20 from Ω(1)
to 1/2− ε. This is done relying on the well-known strategy of Naor and Naor [NN93],
which uses random walks on an expander on the vertex-set [n̂]. Specifically, we use
the following construction:

Proposition 3.5.21 (amplifying the distance of a code by a sparse circuit). For some
universal constant r0 > 1, there exists a polynomial-time algorithm that is given as input 1n̂,
a constant ρ > 0, and ε = ε(n̂) > 0, and outputs a circuit C such that:

40That is, we split the n0 top gates into mi blocks of size either dn0/mie or bn0/mic, and connect each
of the mi gates in the middle to all top gates in a corresponding block.
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1. The circuit C maps n̂ input bits to n̄ = n̂ · (1/ε)r0/ρ output bits.

2. For every x̂ ∈ {0, 1}n̂ with relative Hamming weight at least ρ, the relative Hamming
weight of x̄ = C(x̂) is between 1/2− ε and 1/2.

3. The circuit C has depth one, and each output bit of C is a linear function of O(log(1/ε)/ρ)
input bits.

Proof. The algorithm first constructs an expander graph G on n̂ vertices; that is, a
dG-regular graph over the vertex-set [n̂] with a constant spectral gap.41 Consider a
random walk that starts from a uniform i ∈ [n̂] and walks ` − 1 steps, where ` =
cG
ρ · log(1/ε) and cG > 1 is a constant that depends only on the spectral gap of G.

By the hitting property of expander random walks (see, e.g., [Gol08, Thm 8.28]), with
probability at least 1− ε such a walk hits i ∈ [n̂] such that xi 6= 0 (this is because the
set {i ∈ [n̂] : xi 6= 0} has density at least ρ). Thus, if we first take such a random walk,
and then output a random parity of the values of x̂ at the coordinates corresponding
to the vertices in the walk, the output will equal one with probability at least 1/2− ε
and at most 1/2.

The mapping of x̂ to x̄ = C(x̂) is obtained by considering all the possible outcomes
of the random process above. Specifically, for every random walk W =

(
i(W)
1 , ..., i(W)

`

)
of length `− 1 on G, and every subset S ⊆ [`], we have a corresponding coordinate
(W, S) in C(x̂). The value of C(x̂) at coordinate (W, S) is the parity of the bits of x̂ in
the locations corresponding to S in walk W; that is, C(x̂)(W,S) = ⊕j∈S x̂

i(W)
j

. Note that

the length of C(x̂) is n̂ · (dG)
`−1 · 2` = n̂ · (1/ε)c′G/ρ, where c′G is a large constant that

only depends on the degree and the spectral gap of the expander G. Also, the mapping
of x̂ to C(x̂) is linear, and every coordinate of C(x̂) is the parity of ` coordinates of x̂.

Combining Propositions 3.5.20 and 3.5.21, we get the following:

Theorem 3.5.22 (a balanced code in superlinear CC0). For some universal constant r1 > 1
there exists a polynomial-time algorithm that is given as input 1n and ε = ε(n), and outputs
a CC0[2] circuit C such that:

1. The circuit C computes a linear code that maps messages of length n to codewords of
length n̄ = n · exp(poly log log(n)) · (1/ε)r1 such that every codeword has relative
Hamming weight 1/2± ε.

2. The circuit C has depth two and at most n · exp(poly log log(n)) · (1/ε)r1 · log(1/ε)
wires.

41For a suitable construction see, e.g., [Gol08, Thm E.10]. This specific construction requires n̂ to be a
square, so we might need to pad the input x ∈ {0, 1}n̂ with zeroes such that it will be of length 4k = (2k)2,
for k ∈N. Since such a padding will not affect the rest of the argument, we ignore this issue.
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Proof. Let ρ > 0 be any sufficiently small constant. We first use the algorithm from
Proposition 3.5.20 to construct a depth-two CC0[2] circuit C0 : {0, 1}n → {0, 1}n̂, where
n̂ = n · exp(poly log log(n)), that computes a linear code with relative distance ρ using
n · exp(poly log log(n)) wires. Now, we use the algorithm from Proposition 3.5.21 to
construct a depth-one CC0[2] circuit C1 : {0, 1}n̂ → {0, 1}n̄, where n̄ = n̂ · (1/ε)r0/ρ,
that maps any x̂ ∈ {0, 1}n̂ of relative weight at least ρ to x̄ ∈ {0, 1}n̄ of relative weight
at least 1/2− ε, using O(n̄ · log(1/ε)) wires.

We now combine C0 and C1. Note that the naive combination has depth three,
but that the top layer has fan-in O(log(1/ε)) and that the middle layer has fan-in
O(log(n)). Thus, we can collapse the two layers, and obtain a depth-two circuit in
which the top layer has fan-in O(log(n) · log(1/ε)). Overall, we obtain a circuit with
at most n · exp(poly log log(n)) · (1/ε)r0/ρ · log(1/ε) wires.

Relying on the Johnson bound (see, e.g., [AB09, Thm. 19.23]), Theorem 3.5.22 also
yields a list-decodable code:

Corollary 3.5.23 (a list-decodable code in superlinear CC0). For some universal constant
r2 > 1, there exists a polynomial-time algorithm that is given as input 1n and δ = δ(n), and
outputs a CC0[2] circuit C such that:

1. The circuit C computes a linear code that maps messages of length n to codewords of
length n̄ = n · exp(poly log log(n)) · (1/δ)r2 such that in any Hamming ball of radius
1/2− δ in {0, 1}n̄ there exist at most O(1/δ2) codewords.

2. The circuit C has depth two and at most n · exp(poly log log(n)) · (1/δ)r2 · log(1/δ)
wires.

3.5.4.1.4 A balanced code in extremely sparse T C0 In this section we convert our
construction of uniform CC0[2] circuits into uniform extremely sparse T C0 circuits.
We do this by replacing each parity gate by a T C0 circuit, using the constructions of
uniform circuits by [BBL92; PS94], in each of the constructions in the previous sections.
We start with the construction of encoding circuits for a code with constant relative
distnce:

Proposition 3.5.24 (uniform extremely sparse T C0 circuits for encoding an “almost–
good” code). For some universal constants ρ > 0 and c0 > 1, there exists a deterministic
polynomial-time algorithm that gets as input 1n, where n is a sufficiently large power of two,
and a constant d ≥ 2, and outputs a T C0 circuit that satisfies the following:

1. The circuit computes the encoding function of a linear code {0, 1}n → {0, 1}n̂ with
constant relative distance ρ > 0, where n̂ = n · exp(poly log log(n)).

2. The circuit has depth d + 2 and at most n1+c0·φ−d+o(1) wires, where φ = 1+
√

5
2 .

Proof. Observe that in the construction in the proof of of Proposition 3.5.20, each of
the gates in the middle layer (i.e., the gates that compute the range detectors) may
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compute the parity of an arbitrary number of input bits, but each gate in the top layer
only computes the parity of log(n) gates in the middle layer.

We first replace each parity gate in the middle layer by a depth-d T C0 circuit for
parity, using the construction in [PS94, Thm. 1]. For every gate g, denote by ng

the fan-in of g; then, the T C0 circuit that computes g has n1+c0·φ−d

g wires, for some
c0 > 1. Thus, the overall number of wires that are contributed by the T C0 circuits that
compute the middle layer is at most

∑
g

n1+c0·φ−d

g ≤
(

∑
g

ng

)1+c0·φ−d

≤ (n · exp(poly log log(n)))1+c0·φ−d
,

which is n1+c0·φ−d+o(1).
Now, we replace each gate in the top layer, which computes the parity of log(n)

bits, by a T C0 circuit of depth two with O(log2(n)) wires (using the standard con-
struction with a quadratic number of wires; see, e.g., [BBL92, Sec. 1]). The number of
T C0 circuits that we use (i.e., the number of top gates) is n · exp(poly log log(n)), and
each of them contributes O(log2(n)) wires, so the overall contribution of this layer to
the number of wires is n1+o(1).

In Proposition 3.5.21, we amplify the distance of the code from Ω(1) to 1/2− ε
by a single layer of parity gates, each of which has fan-in at most O(log(1/ε)). By
converting each such parity gate to a depth-two T C0 circuit, we obtain the following:

Proposition 3.5.25 (amplifying the distance of a code by a sparse T C0 circuit). For some
universal constant r0 > 1, there exists a polynomial-time algorithm that is given as input 1n̂,
a constant ρ > 0, and ε = ε(n̂) > 0, and outputs a T C0 circuit C such that:

1. The circuit C maps n̂ input bits to n̄ = n̂ · (1/ε)r0/ρ output bits.

2. For every x̂ ∈ {0, 1}n̂ with relative Hamming weight at least ρ, the relative Hamming
weight of x̄ = C(x̂) is between 1/2− ε and 1/2.

3. Each output bit of C is a linear function of O(log(1/ε)/ρ) input bits.

4. The circuit C has depth two and O
(

n̂ · (1/ε)r0/ρ · log2(1/ε)
)

wires.

Now, by combining Propositions 3.5.24 and 3.5.25, we get the following:

Theorem 3.5.26 (a balanced code in extremely sparse T C0). For some universal constants
c0 > 1 and r1 > 1, there exists a polynomial-time algorithm that is given as input 1n and
ε = ε(n) and a constant d ≥ 2, and outputs a T C0 circuit C such that:

1. The circuit C computes a linear code that maps messages of length n to codewords of
length n̄ = n · exp(poly log log(n)) · (1/ε)r1 such that every codeword has relative
Hamming weight 1/2± ε.
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2. The circuit C has depth d + 4 and at most n1+c0·φ−d+o(1) + n · exp(poly log log(n)) ·
(1/ε)r1 · log2(1/ε) wires, where φ = 1+

√
5

2 .

Corollary 3.5.27 (a list-decodable code in sparse T C0). For some universal constants
c0 > 1 and r2 > 1, there exists a polynomial-time algorithm that is given as input 1n and
δ = δ(n) and a constant d ≥ 2, and outputs a T C0 circuit C such that:

1. The circuit C computes a linear code that maps messages of length n to codewords of
length n̄ = n · exp(poly log log(n)) · (1/δ)r2 such that in any Hamming ball of radius
1/2− δ in {0, 1}n̄ there exist at most O(1/δ2) codewords.

2. The circuit C has depth d + 4 and at most n1+c0·φ−d+o(1) + n · exp(poly log log(n)) ·
(1/δ)r2 · log2(1/δ) wires, where φ = 1+

√
5

2 .

3.5.4.2 An averaging sampler in uniform sparse CC0[2] and T C0

Let us recall the notion of weak combinatorial designs, which was introduced by Raz,
Reingold, and Vadhan [RRV02], and state their result that Trevisan’s extractor [Tre01]
can be instantiated with weak designs instead of standard combinatorial designs.

Definition 3.5.28 (weak designs). For positive integers m, `, t ∈ N and an integer ρ > 1,
an (m, `, t, ρ) weak design is a collection of sets S1, ..., Sm ⊆ [t] such that for every i ∈ [m] it
holds that |Si| = ` and ∑j<i 2|Si∩Sj| < (m− 1) · ρ.

Theorem 3.5.29 (extractors from weak designs [RRV02, Prop. 10]). Let m < k < n
be three integers, and let ε > 0. Let ECC : {0, 1}n → {0, 1}n̄ be a code such that in ev-
ery Hamming ball of radius 1/2− δ in {0, 1}n̄ there exist at most 1/δ2 codewords, where
δ = ε/4m. Let S1, ..., Sm ⊆ [t] be an (m, `, t, ρ) weak design with ` = log(n̄) and
ρ = k−3·log(m/ε)−t−3

m . Then, the function Ext : {0, 1}n × {0, 1}t → {0, 1}m that is defined by
Ext(x, z) = (ECC(x)zS1

, ..., ECC(x)zSm
) is a (k, ε)-extractor.

We will need a specific construction of weak designs, in which the intersection
parameter log(ρ) is large, but the universe size t is small (i.e., for sets of size |Si| = `
we will require that log(ρ) ≈ .99 · ` and t ≈ 1.01 · `).

Lemma 3.5.30 (constructing weak designs). There exists an algorithm that gets as input
m ∈ N and ` ∈ N and ρ ∈ N such that log(ρ) = (1− α) · `, where α ∈ (0, 1/4), and
satisfies the following. The algorithm runs in time poly(m, 2`) and outputs an (m, `, t, ρ)
weak design, where t = d(1 + 4α) · `e.

Proof. Let t = d(1 + 4α) · `e. The algorithm constructs the sets S1, ..., Sm ⊆ [t] in
iterations. In each iteration i ∈ [m] the algorithm finds Si such that ∑j<i 2|Si∩Sj| ≤
(i− 1) · ρ. To do so, the algorithm initially fixes a partition of [t] into ` blocks. The first
t− ` blocks, denoted B1, ..., Bt−`, are each comprised of two elements (i.e., for j ∈ [t− `]
it holds that Bj = {2j− 1, 2j}). The remaining 2`− t blocks, denoted Bt−`+1, ..., B`, each
consist of a single element (i.e., for j ∈ {t− `+ 1, ..., `} it holds that Bj = {t− `+ j}).
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3.5 Linear threshold circuits and ACC0

For i ∈ [m], let us describe the ith iteration, after S1, ..., Si−1 were already chosen in
previous iterations. Consider a set Si that is chosen by independently choosing one
random element from each of the ` blocks to include in Si. 42 For j ∈ [i − 1] and
k ∈ [`], let Yj,k be the indicator variable of whether the element from the kth block that
is included in Sj is also included in Si (i.e., Yj,k = 1 iff Bk ∩ Sj ∩ Si 6= ∅). Note that for
k 6= k′ ∈ [m] it holds that Yj,k and Yj,k′ are independent. Thus, the expected value of
∑j<i 2|Si∩Sj| is

E

[
∑
j<i

2|Si∩Sj|
]
= ∑

j<i
E
[
2∑k∈[`] Yj,k

]
= ∑

j<i
E

[
∏

k∈[`]
2Yj,k

]
= ∑

j<i
∏

k∈[`]
E
[
2Yj,k

]
= (i− 1) · (3/2)t−` · 22`−t , (3.5.4)

where the last equality is because for every k ∈ [t− `] it holds that Pr[Yj,k = 1] = 1/2
(since |Bk| = 2), and for every k ∈ {t− `+ 1, ..., `} it holds that Yj,k ≡ 1 (since Bk is a

singleton). Now, plugging-in t = d(1− 4α) · `e and ` = log(ρ)
1−α into Eq. (3.5.4), we can

upper-bound the expression by (i − 1) · ρ. 43 Hence, the algorithm can find a set Si

such that ∑j<i 2|Si∩Sj| ≤ (i− 1) · ρ by trying out all 2t−` < 2` possibilities.

We now instantiate Theorem 3.5.29 with the code from Corollary 3.5.23 and the
weak designs from Lemma 3.5.30 in order to construct uniform sparse CC0[2] circuits
that computes the following averaging sampler: The sampler gets an input of length
n, and two parameters 0 < γ � β < 1, and constructs a sampler that outputs m = nγ

bits and has accuracy 1/m and error 2nβ−n.

Theorem 3.5.31 (an averaging sampler in superlinear CC0). For any sufficiently large
constant r > 1, there exists a polynomial-time algorithm that gets as input 1n and two param-
eters β = β(n) > 3/4 and γ = γ(n) < β−3/4

r , and outputs a CC0[2] circuit C that satisfies
the following:

1. The circuit C gets input x ∈ {0, 1}n and outputs 2t < n5−4(β−rγ) · exp(poly log log(n))
strings of length m = nγ.

2. The function Samp : {0, 1}n × {0, 1}t → {0, 1}m such that Samp(x, i) = C(x)i is an
averaging sampler with accuracy ε = 1/m and error 2nβ−n.

42That is, for each k ∈ [`] let Xk be a random element from the block Bk, such that for k 6= k′ ∈ [`] it
holds that Xk and Xk′ are independent. Then, Si = ∪k∈[`]Xk.

43Denoting c = log(e)/2 and t = (1 + 4β) · `, where β ≥ α, we have that 22`−t · (3/2)t−` < 22`−t ·
e(t−`)/2 = 22`−t+c·(t−`) ≤ 2

1−4(1−c)·β
1−α ·log(ρ) < ρ.
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3. The depth of C is three and its number of wires is n5−4(β−rγ)+γ · exp(poly log log(n)).

In particular, if β ≥ 1− rγ, then the number of outputs of C is 2t ≤ n1+8r·γ · exp(poly log log(n)),
and its number of wires is at most n1+(8r+1)·γ · exp(poly log log(n)).

Proof. Let r2 > 1 be the constant from Corollary 3.5.23, let r3 = 3 · r2, and let r ≥
r3 + 2. We first use Corollary 3.5.23 with the parameter value δ = ε/4m to construct
a depth-two circuit C0 that encodes its input x ∈ {0, 1}n to a codeword x̄ of length
n̄ = n · exp(poly log log(n)) · (1/δ)r2 . Then, we use Lemma 3.5.30 to construct an
(m, `, t, ρ) weak design S1, ..., Sm ⊆ [t] with the following parameters: For α = 1− β +
r · γ < 1/4 (the inequality is since β > 3/4 and γ < (β − 3/4)/r), we construct a
design with ` = log(n̄) and ρ = 2(1−α)·` and t = d(1 + 4α) · `e. Now, define a function
Ext : {0, 1}n × {0, 1}t → {0, 1}m as in Theorem 3.5.29; that is, for x ∈ {0, 1}n and
z ∈ {0, 1}t, the m-bit string Ext(x, z) is the projection of x̄ to the coordinates zS1 , ..., zSm .
The circuit C outputs the 2t strings corresponding to {Ext(x, z)}z∈{0,1}t , where each
output string is a projections of m bits of x̄.

Let k = nβ. By our choice of α, we have that ρ = 2(1−α)·` < k/2m < k−3·log(m/ε)−t−3
m . 44

Thus, relying on Theorem 3.5.29, the function Ext is an (nβ, ε = 1/m)-extractor,
and also (by Proposition 2.5.6) a sampler with accuracy ε = 1/m and error 2nβ−n.
The number of wires in C0 is at most n · exp(poly log log(n)) · mr3 , and the number
of wires between x̄ and the outputs is 2t · m = 2d(1+4α)·log(n̄)e · nγ ≤ n5−4β+(4r+1)γ ·
exp(poly log log(n)). Hence, the total number of wires in the sampler is at most
n5−4β+(4r+1)γ · exp(poly log log(n)).

We now construct averaging samplers in uniform extremely sparse T C0. Similarly
to Theorem 3.5.31, we use Theorem 3.5.29 and Lemma 3.5.30, but this time with the
code construction in T C0 from Corollary 3.5.27. The sampler will get an input of
length n, and for two constants 0 < γ � β < 1, the sampler will output m = nγ bits
and have accuracy 1/m and error 2nβ−n.

Theorem 3.5.32 (an averaging sampler in extremely sparse T C0). For a universal con-
stant c0 > 1 and any sufficiently large constant r > 1, there exists a polynomial-time algorithm
that gets as input 1n and three constants d ≥ 2 and β > 3/4 and γ < β−3/4

r , and outputs a
T C0 circuit C that satisfies the following:

1. The circuit C gets input x ∈ {0, 1}n and outputs 2t < n(1+4r·γ)·(5−4β) strings of length
m = nγ.

2. The function Samp : {0, 1}n × {0, 1}t → {0, 1}m such that Samp(x, i) = C(x)i (i.e.,
Samp(x, i) ∈ {0, 1}m is the ith output string of C(x)) is an averaging sampler with
accuracy ε = 1/m and error 2nβ−n.

44To see that (1− α) · ` < log(k/2m), note the following. Since ` = log(n̄) < (1 + o(1)) · log(n) +
r3 · log(m), we have that (1− α) · ` ≤ (β− r · γ) · ((1 + o(1)) · log(n) + r3 · log(m)) < (β− r · γ + o(1)) ·
log(n) + r3 · log(m). On the other hand, we have that log(k/2m) = β · log(n)− log(2m). Thus, it suffices
to prove that (r · γ− o(1)) · log(n)− r3 · log(m) ≥ log(2m), which holds since n = m1/γ and r− r3 > 1.
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3.5 Linear threshold circuits and ACC0

3. The depth of C is d+ 5 and its number of wires is n1+c0·φ−d+o(1)+O
(

n(1+r·γ)·(5−4β)+8r·γ
)

,

where φ = 1+
√

5
2 .

In particular, if γ ≤ 1/(24r · φd) and β ≥ 1− φ−d/2, then both the number of outputs of C
(i.e., 2t) and the number of wires in C are bounded by n1+c0·φ−d+o(1).

Proof. The parametrization of the sampler in this proof is similar to that in the proof
of Theorem 3.5.31. Specifically, let r2 > 1 and c0 > 1 be the constants from Corol-
lary 3.5.27, let r3 = 3 · r2, and let r ≥ r3 + 2. We use Corollary 3.5.27 with δ = ε/4m to
construct a circuit C0 of depth d + 4 that encodes its input x ∈ {0, 1}n to a code-
word x̄ of length n̄ = n · exp(poly log log(n)) · (1/δ)r2 < n1+o(1) · mr3 . Then, for
α = 1− β + r · γ < 1/4, we use Lemma 3.5.30 to construct an (m, `, t, ρ) weak de-
sign S1, ..., Sm ⊆ [t] with ` = log(n̄) and ρ = 2(1−α)·` and t = d(1 + 4α) · `e. Let
Ext : {0, 1}n × {0, 1}t → {0, 1}m such that for x ∈ {0, 1}n and z ∈ {0, 1}t, the m-
bit string Ext(x, z) is the projection of x̄ to the coordinates zS1 , ..., zSm . The circuit C
outputs the 2t strings {Ext(x, z)}z∈{0,1}t .

Let k = nβ, and note that ρ = 2(1−α)·` < k/2m < k−3·log(m/ε)−t−3
m . Relying on Theo-

rem 3.5.29 and Proposition 2.5.6, the function Ext is a sampler with accuracy ε = 1/m
and error 2nβ−n. The depth of C is d + 5 (since the depth of C0 is d + 4, and the 2t out-
puts are projections of x̄). Finally, the number of wires in C0 is at most n1+c0·φ−d+o(1) +

n1+o(1) ·mr3 < n1+c0·φ−d+o(1) + n1+γ·r, and the number of wires between x̄ and the out-
puts is 2t · m = 2d(1+4α)·log(n̄)e · nγ < n(1+r·γ)·(5−4β+4r·γ) < n(1+r·γ)·(5−4β)+8r·γ. Hence,
the total number of wires in the sampler is n1+c0·φ−d+o(1) +O

(
n(1+r·γ)·(5−4β)+8r·γ

)
.

3.5.4.3 Using the averaging sampler to prove Theorem 3.5.2

Let us now formally state Theorem 3.5.2 and prove it using the averaging sampler
from Theorem 3.5.32.

Theorem 3.5.33 (Theorem 3.5.2, restated). For φ = 1+
√

5
2 , there exists a universal constant

c0 > 1 such that for any sufficiently large constant r > 1 the following holds.
Let d ∈ N. Assume that for some d′ ≥ d + 7 there exists an algorithm that gets as

input a T C0 circuit C′ : {0, 1}n → {0, 1} with depth d′ and n1+c1·φ−d′
wires, where c1 =

c0 · φd+5 + 1/r, runs in time T(n), and for β = 1− φ−d′ satisfies the following: If C′ rejects
all but at most 2nβ

of its inputs, then the algorithm rejects C′, and if C′ accepts all but at most
2nβ

of its inputs, then the algorithm accepts C′.
Then, there exists an algorithm that for every k ∈ N, when given as input a T C0 circuit

C : {0, 1}m → {0, 1} with depth d and mk wires, runs in time T(m24r·k·φd′
), and satisfies the

following: If C accepts at least 2/3 of its inputs then the algorithm accepts C, and if C rejects
at least 2/3 of its inputs then the algorithm rejects C.

Recall that in Theorem 3.5.2 the hypothesis is that for c < φ (e.g., c = 1.61) and
every d′, the quantified derandomization algorithm will be able to handle circuits
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with depth d′ and n1+c−d′
wires. This hypothesis is stronger than the hypothesis in

Theorem 3.5.33, since for any fixed d ∈N and sufficiently large d′ it holds that c−d′ >
c1 · φ−d′ .

Proof of Theorem 3.5.33. Let c0 > 1 be the universal constant from Theorem 3.5.32,
and assume that r > 1 is sufficiently large to satisfy the hypothesis of Theorem 3.5.32.
We construct an algorithm that gets as input a T C0 circuit C : {0, 1}m → {0, 1} with
depth d and mk wires, and acts as follows. For γ = 1/(24r · k · φd′) and n = m1/γ,
the algorithm constructs a circuit C′ : {0, 1}n → {0, 1} of depth d′ with n1+c1·φ−d′

wires
such that the following holds: If C rejects at least a 2/3 fraction of its inputs, then C′

rejects all but at most 2nβ
inputs; and if C accepts at least a 2/3 fraction of its inputs,

then C′ accepts all but 2nβ
of its inputs. Then, the algorithm invokes the quantified

derandomization algorithm for C′, which runs in time T(n) = T
(

m24r·k·φd′
)

, to decide
whether the acceptance probability of C is at least 2/3 or at most 1/3.

To construct C′, let dSamp = d′ − d− 5 ≥ 2; we first use Theorem 3.5.32 to construct
a T C0 circuit Samp : {0, 1}n × {0, 1}t → {0, 1}m that is an averaging sampler with the
following properties: The input length is n, the output length is m = nγ, the accuracy
is ε = nΩ(1) < 1/100, and the error is δ = 2nβ−n; the depth of Samp is dSamp + 5, and
by the “in particular” part of Theorem 3.5.32 (relying on the facts that β = 1− φ−d′ >
1 − φ−dSamp/2 and that γ = 1/(24r · k · φd′) < 1/(24r · φdSamp), the number of wires
in Samp is bounded by n1+c0·φ−dSamp+o(1). The circuit C′ first computes the sampler
Samp, then evaluates C in parallel on each of the 2t < n1+c0·φ−dSamp+o(1) outputs of
the sampler, and finally computes the majority of the 2t evaluations of C. That is,
C′(x) = MAJz∈{0,1}t [C(Samp(x, z))]. The circuit C′ is of depth (dSamp + 5) + d + 1, but
the gates in one of its layers (i.e., the output layer of the sampler) are just projections
of the gates in the layer beneath it; therefore, we can collapse one layer, and obtain an
equivalent circuit of depth d′ = dSamp + d + 5. The number of wires in C′ is at most

n1+c0·φ−dSamp+o(1) + 2t ·mk + 2t < n1+c0·φ−dSamp+o(1) + n1+c0·φ−dSamp+1/(24r·φd′ )+o(1)

< n1+(c0·φd+5+1/r)·φ−d′
,

where we relied on the facts that mk = n1/(24r·φd′ ) and that φ−dSamp = φd+5 · φ−d′ .
Finally, note that for any x ∈ {0, 1}n such that Prz∈{0,1}t [C(Samp(x, z)) = 1] ∈

Pr[C(un) = 1] ± ε, we have that C′(x) outputs the most frequent value of C. Since
the error of the sampler is δ = 2nβ−n, the number of inputs x ∈ {0, 1}n such that
Prz∈{0,1}t [C(Samp(x, z)) = 1] /∈ Pr[C(un) = 1]± ε is at most 2nβ

. Thus, the circuit C′

outputs the most frequent value of C on all but at most 2nβ
inputs x ∈ {0, 1}n.

Relying on known relaxations of Williams’ “algorithmic method” (see [Wil13; SW13;
BSV14; FS16; MW18]), we obtain the following corollary of Theorem 3.5.33:
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Corollary 3.5.34 (quantified derandomization of sparse T C0 implies lower bounds for
T C0). There exists a constant ε > 0 such that the following holds. Let c > 1 be any fixed
constant smaller than 1+

√
5

2 . Assume that ifNEXP ⊆ T C0, then for every d ∈N there exists
a non-deterministic machine that gets as input a T C0 circuit C : {0, 1}n → {0, 1} with depth
d and n1+c−d

wires, and also nε bits of non-uniform advice, runs in time 2no(1)
, and solves

the following problem: If C accepts all of its inputs, then there exist non-deterministic choices

that cause the machine to accept C; and if C rejects all but B(n) = 2n1−c−d
of its inputs, then

the machine rejects C regardless of the non-determinism. Then, NEXP 6⊆ T C0.

3.5.4.4 On quantified derandomization of ACC0

In this section we prove that a algorithm for quantified derandomization of ACC0

circuits with n1+Ω(1) wires and with a subexponential B(n) that runs in time 2no(1)

would yield a corresponding algorithm for standard derandomization of ACC0 with
“one-sided error” that runs in time 2no(1)

.
The proof strategy is similar to that of the proof of Theorem 3.5.2. Specifically, we

construct an algorithm that gets as input an ACC0 circuit C : {0, 1}m → {0, 1}, and
outputs an ACC0 circuit C′ : {0, 1}n → {0, 1} such that if C has acceptance probability
one then C′ has acceptance probability one, and if C has acceptance probability at most
half then C′ rejects all but B(n) of its inputs. To do so, the algorithm first constructs a
uniform sparse CC0[⊕] circuit that computes an averaging sampler; this is done relying
on the construction that was presented in Section 3.5.4.2. Then, for n = poly(m), the
algorithm constructs C′ : {0, 1}n → {0, 1} that first uses its input to sample inputs for
C using the foregoing averaging sampler, then evaluates C on the inputs in the sample,
and finally outputs the conjunction of the latter evaluations of C.45

Note that our transformation of C to C′ only involves adding ⊕ gates and a sin-
gle AND gate (at the top). Thus, our construction actually works not only for ACC0

circuits, but for essentially any circuit class whose gates can compute the AND and ⊕
functions (e.g., it also works for AC0[⊕]). Specifically:

Theorem 3.5.35 (a bootstrapping result for quantified derandomization of ACC0). Let
C be any typical circuit class whose gates can compute the AND and ⊕ functions. Let d ∈
N, and let γd < 1/4r, where r > 1 is a universal constant. Assume that there exists an
algorithm that gets as input a C-circuit C′ : {0, 1}n → {0, 1} with depth d′ = d + 3 and
O
(

n1+(8r+2)·γd

)
· exp(poly log log(n)) wires, runs in time T(n), and for β = 1− r · γd

satisfies the following: If C′ rejects all but at most 2nβ
of its inputs, then the algorithm rejects

C′, and if C′ accepts all of its inputs, then the algorithm accepts C′. Then, there exists an
algorithm that for every k ∈ N, when given as input a C-circuit C : {0, 1}m → {0, 1} with
depth d and mk wires, runs in time T(mk/γd), and satisfies the following: If C accepts all of

45The reason that we use a top AND gate, instead of a sub-circuit for approximate majority, is that the
known constructions for the latter circuit are of polynomial size (i.e., are not super-linear). Indeed, this
is the reason that our result is limited to derandomization with “one-sided error”.
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its inputs then the algorithm accepts C, and if C rejects at least half of its inputs then the
algorithm rejects C.

We comment that Theorem 3.5.35 holds also when γd is a sub-constant function
of n (rather than a constant that depends only on d), albeit with a more complicated
expression for the running time of the algorithm for standard derandomization in the
conclusion of the theorem. We defer the discussion of this point until after the proof.

Proof of Theorem 3.5.35. Assume that r > 1 is sufficiently large to satisfy the hypoth-
esis of Theorem 3.5.31. Our algorithm gets as input a C-circuit C : {0, 1}m → {0, 1}
with depth d and mk wires, and constructs a corresponding C-circuit C′, as follows.

Let n be the minimal integer such that nγd(n)/k ≥ m. The algorithm first uses
Theorem 3.5.31 to construct a depth-three CC0[2] circuit Samp : {0, 1}n × {0, 1}t →
{0, 1}m that is an averaging sampler with the following properties: For γ′ = γd(n) and
β′ = 1− r · γ′, the input length is n = mk/γ′ , the output length is m, the accuracy is ε =

nΩ(1) < 1/2, and the error is δ = 2nβ′−n; by the “in particular” part of Theorem 3.5.31,
the number of wires in Samp is bounded by n1+(8r+1)·γ′ . Now, the circuit C′ first
computes the sampler Samp, then evaluates C in parallel on each of the 2t < n1+8r·γ′

outputs of the sampler, and finally computes the conjunction of the 2t evaluations of
C. That is, C′(x) = ANDz∈{0,1}t [C(Samp(x, z))].

The circuit C′ is of depth d + 4, but the gates in one of its layers (i.e., the output
layer of Samp) just compute projections of the layer beneath it, so the algorithm can
collapse this layer to obtain an equivalent circuit of depth d′ = d + 3. The number of
wires in C′ is O

(
n1+(8r+2)·γ′

)
. Also, we only added gates that compute AND and ⊕

functions, and therefore C′ ∈ C. Lastly, if C accepts all of its inputs then C′ also accepts
all of its inputs, and if C rejects at least half of its inputs, then C′ accepts all but at
most 2nβ′

> 2nβ
of its inputs (the inequality is since 2nβ′

= 2n1−r·γ′
> 2n1−r·γd(n) , relying

again on the fact that γd(n) > γ′). The latter statement is since if C rejects at least half
of its inputs, then for all but δ · 2n = 2nβ′

of the inputs x ∈ {0, 1}n to Samp it holds that
Prz∈{0,1}t [C(Samp(x, z)) = 1] ≥ Pr[C(un) = 1]− ε > 0; and for every x ∈ {0, 1}n such
that the latter holds we have that C′(x) = 1.

Therefore, our algorithm can now invoke the quantified derandomization algo-
rithm for C′, which runs in time T(n), to decide whether the acceptance probability of
C is 1 or at most 1/2.

As mentioned after the statement of Theorem 3.5.35, the theorem holds also when
γd is a sub-constant function of n, where the only change is that the running time of
the algorithm for standard derandomization (in the conclusion of the theorem) will be
larger. Specifically, given a function γd(n) in the hypothesis, in the proof we set n to be
the minimal integer such that nγd(n)/k ≥ m; then, the running time of the algorithm for
standard derandomization will be T(n) (rather than T(mk/γd) as in Theorem 3.5.35).
Note that when γd(n) = o(1), the algorithm in the hypothesis of the theorem only
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needs to handle circuits with n1+o(1) wires; in particular, when γd(n) = poly log log(n)
log(n) ,

the algorithm only needs to handle circuits of size n · exp(poly log log(n)).

3.5.5 Depth-2 linear threshold circuits

In this section we construct a quantified derandomization algorithm for depth-2 linear
threshold circuits with n3/2−Ω(1) wires. In fact, we construct a pseudorandom generator
for the class of depth-2 linear threshold circuits with n3/2−Ω(1) wires that either accept
all but B(n) = 2nΩ(1)

of their inputs or reject all but B(n) of their inputs. That is, we
construct an algorithm G that gets as input a seed s of length Õ(log(n)), and outputs
an n-bit string such that for every C ∈ Cn,2,n3/2−Ω(1) the following holds: If C accepts all

but B(n) = 2nΩ(1)
of its inputs, then the probability that C(G(s)) = 1 is very high, and

if C rejects all but B(n) of its inputs, then the probability that C(G(s)) = 0 is very low.
The pseudorandom generator that we construct in this appendix is incompara-

ble to the pseudorandom generator of Servedio and Tan [ST17b]. On the one hand,
their generator is 1

poly(n) -pseudorandom for every sparse depth-two linear threshold
circuit, whereas our generator only “fools” sparse depth-two circuits with acceptance
probability that is either very high or very low. Moreover, their generator can han-
dle circuits with n2−Ω(1) wires, whereas our generator can only handle circuits with
n3/2−Ω(1) wires. But on the other hand, their generator requires a seed of length
n1−Ω(1), whereas our generator only requires a seed of length Õ(log(n)).

Recall that our main quantified derandomization algorithm (from Theorem 3.5.1)
leverages the techniques underlying the average-case lower bounds of Chen, San-
thanam, and Srinivasan [CSS16] for depth-d linear threshold circuits. The generator
in this section leverages the techniques underlying the average-case lower bounds of
Kane and Williams [KW16] for depth-2 linear threshold circuits.

Specifically, our first step is to prove a derandomized version of the restriction
lemma of Kane and Williams [KW16]. We actually state a slightly generalized version,
which is implicit in the original argument. We say that a distribution y over {0, 1}n

is p-bounded in pairs if for every i 6= j ∈ [n] it holds that Pr[yi = 1] ≤ p and Pr[yi =
1 ∧ yj = 1] ≤ p2. One example for a distribution that is p-bounded in pairs is the
distribution y in which each coordinate is independently set to 1 with probability p.
Another example, which is used in [KW16], is the following: Consider a equipartition
of [n] to p · n disjoint sets S1, ..., Sp·n; then, sampling y ∼ y is equivalent to uniformly
choosing a single coordinate in each set Si in the partition, fixing y in the chosen
coordinates to one, and fixing y in all other coordinates to zero (so that the Hamming
weight of y ∼ y is always p · n).

Proposition 3.5.36 (derandomized version of [KW16, Lem 3.1]). Let Φ = (w, θ) be an
LTF on m input bits. For p > 0, let y be a distribution over {0, 1}n that is p-bounded in pairs,
and let z be a distribution over {−1, 1}n that is 1

poly(m)
-pseudorandomly concentrated. Let ρ

be the distribution over restrictions obtained by sampling y ∼ y in order to determine which
variables are kept alive (the ith variable is kept alive if and only if yi = 1), and independently
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3. QUANTIFIED DERANDOMIZATION

sampling z ∼ z to determine values for the fixed variables. Then,

Pr
ρ∼ρ

[Φ�ρ depends on more than one input bit] = O(m · p3/2) .

Proof. For every choice of y ∼ y, let I = Iy ⊆ [n] be the set of live variables (i.e.,
I = {i ∈ [n] : yi = 1}). Then, the probability that Φ�ρ depends on more than one input
bit is at most

Pr
ρ∼ρ

[
|I| ≥ 2∧Φ�ρ is not constant

]
= Ey∼y

[
Pr
z∼z

[
|I| ≥ 2∧Φ�ρ is not constant

]]
= Ey∼y

[
1|I|≥2 · Pr

z∼z

[
Φ�ρ is not constant

]]
, (3.5.5)

where the first equality relied on the fact that y and z are sampled independently, and
the second equality is since the random variable I only depends on y (and not on z).

Fix an arbitrary choice of y, and let us upper-bound the probability over z ∼ z that
Φ�ρ is not constant. Note that Φ�ρ is a constant function if and only if∣∣∣θ − 〈w[m]\I , z[m]\I

〉 ∣∣∣ > ‖wI‖1 ⇐⇒
〈

w[m]\I , z[m]\I

〉
6∈ θ ± ‖wI‖1 . (3.5.6)

For each i ∈ [m], let ki be the index of the ith variable when the variables are
sorted according to the magnitudes |wi| in ascending order (breaking ties arbitrarily).
In [KW16, Proof of Lemma 1.1] it is shown that the probability over a uniform choice of
z that Eq. (3.5.6) holds is at most ∑i∈I

O(1)√
ki

. Since z is (1/poly(m))-pseudorandomly

concentrated, the probability under z ∼ z that Eq. (3.5.6) holds is at most ∑i∈I
O(1)√

ki
+

1
poly(m)

. Therefore, the expression in Eq. (3.5.5) is upper-bounded by

Ey∼y

[
1|I|≥2 ·∑

i∈I

O(1)√
ki

]
+

1
poly(m)

= Ey∼y

[
∑

i∈[m]

O(1)√
ki
· 1i∈I∧|I|≥2

]
+

1
poly(m)

= ∑
i∈[m]

O(1)√
ki
· Pr

y∼y
[i ∈ I ∧ |I| ≥ 2] +

1
poly(m)

. (3.5.7)

For any fixed i ∈ [m], we upper-bound the probability of the event i ∈ I ∧ |I| ≥ 2
in two ways: The first upper-bound is Pr[i ∈ I] ≤ p, and the second upper-bound is
Pr[∃j ∈ [m] \ {i}, j ∈ I ∧ i ∈ I] < m · p2 (since y is p-bounded in pairs). Hence,

Pr
y∼y

[i ∈ I ∧ |I| ≥ 2] ≤ min
{

p, m · p2} ≤ √m · p3 ,
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which implies that the expression in Eq. (3.5.7) is upper-bounded by√
m · p3 · ∑

i∈[m]

O(1)√
ki

+
1

poly(m)
= O

(
√

m · p3/2 · ∑
i∈[m]

1√
i

)
= O

(
m · p3/2

)
.

Our pseudorandom generator, which is contructed next, is based on an application
of Proposition 3.5.36 as well as on the pseudorandom generator of Gopalan, Kane, and
Meka (i.e., Theorem 2.4.20).

Theorem 3.5.37 (quantified derandomization of depth-2 linear threshold circuits with
n3/2−Ω(1) wires). There exists a polynomial-time algorithm G that is given as input a random
seed s of length Õ(log(n)) and a constant ε > 0, and outputs a string G(s, ε) ∈ {0, 1}n such
that for every C ∈ Cn,2,n3/2−ε the following holds:

1. If C accepts all but at most B(n) = 2nε/2
inputs, then Prs[C(G(s, ε)) = 1] = 1− o(1).

2. If C rejects all but at most B(n) inputs, then Prs[C(G(s, ε)) = 1] = o(1).

Proof. Let δ ∈ (ε/2, 2ε/3) such that p = n−(1−δ) is a power of two. The algorithm
first samples a restriction that meets the requirements of Proposition 3.5.36, as fol-
lows: The distribution y over {0, 1}n is obtained by sampling a string y′ from a dis-
tribution over {0, 1}log(1/p)·n that is 1

poly(n) -almost O(log(n))-wise independent, and

setting yi = 1 if and only if the ith block in y′ is all zeroes; and the distribution z
is 1

poly(n) -pseudorandomly concentrated. The required seed length to sample such a
restriction is dominated by the seed length required to sample z ∼ z, which (using
Theorem 2.4.20) is O(log(n) · (log log(n))2).

We say that a restriction ρ is successful if the circuit C�ρ can be computed by a
single LTF, and if at least 1

2 · (p · n) = 1
2 · nδ variables remain alive under ρ. We first

claim that the probability that ρ is successful is 1− o(1). According to Fact 2.1.1, with
probability 1− 1/poly(n) at least 1

2 · nδ variables remain alive under ρ. To see that
with high probability C�ρ can be computed by a single LTF, let G be the set of gates in
the bottom layer of C. We say that a gate Φ is non-trivial if Φ depends on more than a
single input bit; note that any trivial gate can be replaced by a constant or by an input
bit (or its negation). Then, the expected number of non-trivial gates in the bottom
layer of C�ρ is

Eρ

[
∑

Φ∈G
1Φ�ρ is non-trivial

]
= ∑

Φ∈G
Pr
ρ
[Φ�ρ is non-trivial]

= O

(
∑

Φ∈G
fan-in(Φ) · p3/2

)
= O

(
n3/2−ε · n3δ/2−3/2

)
,

which is o(1), since δ < 2ε/3. Therefore, the probability that there are no non-trivial
gates in the bottom layer of C�ρ is 1− o(1).
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3. QUANTIFIED DERANDOMIZATION

After sampling the restriction ρ, the algorithm samples a string x ∈ {0, 1}|ρ−1(?)|

using the pseudorandom generator G′ for LTFs from Theorem 2.4.20, instantiated with
error parameter 1/poly(n), and outputs the n-bit string that is obtained by completing
x to an n-bit string according to ρ.

To see that the algorithm is correct, assume that C accepts all but 2nε/2
of its inputs.

Then, for every successful restriction ρ, the acceptance probability of C�ρ is 1− o(1)
(since ρ keeps at least 1

2 · nδ = ω(nε/2) variables alive). Thus,

Pr
s
[C(G(s, ε)) = 0] ≤ Pr

ρ
[ρ not successful] + Pr

s
[C(G(s, ε)) = 0|ρ successful]

≤ o(1) + max
ρ successful

Pr
s′
[C�ρ(G

′(s′)) = 0] ,

which is o(1) since G′ is 1
poly(n) -pseudorandom for LTFs. Similarly, if C rejects all but

2nε/2
of its inputs, then Pr[C(G(s)) = 1] = o(1).

3.5.6 Appendices for Section 3.5

3.5.6.1 An alternative proof of Lemma 3.5.16

In this section we provide an alternative proof of Lemma 3.5.16, which asserts that
biased LTFs remain biased when variables are fixed according to a distribution that
is pseudorandom for LTFs. Loosely speaking, the following (alternative) formal state-
ment of the lemma asserts the following: If an LTF Φi is δ-close to a constant function,
then with probability 1−γ over choice of z ∼ z it holds that Φi�ρ is δ′-close to the same
constant function, as long as δ ≤ poly(δ′, γ) and that z is poly(γ)-pseudorandom for
LTFs. More specifically:

Lemma 3.5.38 (Lemma 3.5.16, restated). Let n ∈ N, and let δ, δ′, γ > 0 such that δ ≤
(γ · δ′)10. Let Φ = (w, θ) be an LTF over n input bits that is δ-close to a constant function
σ ∈ {−1, 1}, let I ⊆ [n], and let z be a distribution over {−1, 1}[n]\I that is (δ′ · γ2)-
pseudorandom for LTFs. Then, with probability 1−O(γ) over choice of z ∼ z it holds that
Φ�(I,z) is δ′-close to σ.

A natural approach to prove Lemma 3.5.38 is the following. For any fixed choice
of a set I ⊆ [n] of variables to keep alive, we want to choose the values for the fixed
variables from a distribution that “fools” a test that checks whether or not Φ�ρ is close
to σ. That is, consider a test T : {−1, 1}[n]\I → {−1, 1} that gets as input values
z ∈ {−1, 1}[n]\I for the fixed variables [n] \ I, and decides whether or not Φ remains
close to σ in the subcube corresponding to ρ = ρI,z. When z is chosen uniformly, with
high probability Φ�ρ remains close to σ, and hence the acceptance probability of T is
high; thus, any distribution over {−1, 1}[n]\I that is pseudorandom for T also yields,
with high probability, values z ∈ {−1, 1}[n]\I such that Φ�ρI,z

remains close to σ. The
problem with this approach is that a test T for such a task above might be very inefficient,
since it needs to evaluate Φ on all points in the subcube corresponding to ρ = ρI,z;
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thus, we might not be able to construct a pseudorandom generator with short seed to
“fool” such a “complicated” test.

To solve this problem we use the randomized tests technique, and specifically Corol-
lary 3.2.3. For convenience, let us restate the lemma now, while “translating” the {0, 1}
notation into {−1, 1} notation, which is more consistent with the current context:

Lemma 3.5.39 (randomized tests; Corollary 3.2.3, restated). Let n ∈N, and let ε > 0 be
an error parameter.

• Let G ⊆ {−1, 1}n, and let E ⊆ G such that Prz∈{−1,1}n [z ∈ E] ≥ 1− ε.

• Let T be a distribution over functions T : {−1, 1}n → {−1, 1} such that for every
z ∈ E it holds that PrT∼T[T(z) = −1] ≥ 1− ε, and for every z /∈ G it holds that
PrT∼T[T(z) = 1] ≥ 1− ε.

• Let z be a distribution that is ε-pseudorandom for all but an ε-fraction of the tests in T;
that is, the probability over T ∼ T that

∣∣∣Pr[T(un) = −1]− Pr[T(z) = −1]
∣∣∣ > ε is at

most ε.

Then, the probability that z ∈ G is at least 1− 6ε.

Loosely speaking, Lemma 3.5.39 implies the following: Assume that there exists
a distribution T over tests {−1, 1}[n]\I → {−1, 1} such that for every fixed input z for
which Φ�ρI,z

is n−100-close to σ it holds that T(z) = −1, with high probability, and
for every fixed input z for which Φ�ρI,z

is not n−10-close to σ it holds that T(z) = 1,
with high probability. That is, the distribution T constitutes a “randomized test” that
distinguishes, with high probability, between “excellent” z’s (such that Φ�ρI,z

is very
close to σ) and “bad” z’s (such that Φ�ρI,z

is relatively far from σ). Also assume that
almost all tests T : {−1, 1}[n]\I → {−1, 1} in the support of T are “fooled” by a
pseudorandom generator G. Then, with high probability over choice of seed for the
pseudorandom generator G, the generator outputs z such that Φ�ρI,z

is n−10-close to σ.
The main point when using the technique above is that the distribution T, which may
have very high entropy, is only part of the analysis; the actual algorithm that generates
z is simply the pseudorandom generator G.

In our specific setting, the distribution T that we will use is equivalent to the
following random process: Given z ∈ {−1, 1}[n]\I , uniformly sample poly(n) points
in the subcube corresponding to ρI,z, and accept z if Φ evaluates to the constant σ
on all the sample points. We show how to construct such a distribution T such
that almost all of the residual deterministic tests T ∈ support(T) are conjunctions
of p(n) = poly(n) LTFs, and have very high acceptance probability (at least 1 −
1/poly(p(n))). Thus, any distribution that is (1/poly(n))-pseudorandom for LTFs
is also (1/poly(n))-pseudorandom for almost all tests in the support of T. Let us now
turn to a formal proof of Lemma 3.5.38.

Proof of Lemma 3.5.38. Without loss of generality, assume that Φ is δ-close to the con-
stant σ = −1. For any Boolean function f over a domain D, let acc( f ) = Prx∼D[ f (x) =
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−1]. Also, denote J = [n] \ I and n′ = |J|, and for any z ∈ {0, 1}n′ , denote by ρz the
restriction ρz = (I, z) (i.e., we suppress I in the notation ρz, since I is fixed).

Let G =
{

z ∈ {0, 1}n′ : acc(Φ�ρz
) ≥ 1− δ′

}
. Our goal is to show that Prz∼z[z ∈

G] ≥ 1−O(γ). Let E =
{

z ∈ {0, 1}n′ : acc(Φ�ρz
) ≥ 1−

√
δ
}

. Note that when z ∈

{−1, 1}n′ is chosen uniformly it holds that Ez∈{−1,1}n′

[
acc(Φ�ρz

)
]
= Prx∈{−1,1}n [Φ(x) =

−1] ≥ 1− δ. Therefore, Prz∈{−1,1}n′ [z ∈ E] ≥ 1−
√

δ.

We now construct a distribution T over tests {−1, 1}n′ → {−1, 1} that distin-
guishes, with high probability, between z ∈ E and z /∈ G. For x ∈ {0, 1}|I|, let Tx
be the function that gets as input z ∈ {0, 1}n′ , and outputs the value Φ(y), where
yJ = z and yI = x. Note that for any fixed z ∈ {−1, 1}n′ , when uniformly choosing
x ∈ {−1, 1}|I| it holds that Pr [Tx(z) = −1] = acc(Φ�ρz

). Also, Tx is an LTF of its input
z, because

Tx(z) = sgn (〈y, w〉 − θ) = sgn (〈z, wJ〉 − (θ − 〈x, wI〉)) . (3.5.8)

For t = O
(

log(1/γ)
δ′

)
and x̄ = (x(1), ..., x(t)) ∈ {0, 1}t·|I|, let Tx̄ : {−1, 1}n′ → {−1, 1}

be the function such that Tx̄(z) = −1 if and only if for every i ∈ [t] it holds that
Tx(i)(z) = −1 (i.e., Tx̄ is the conjunction ∧i∈[t]Tx(i)). Our distribution T is the uniform

distribution over the set
{

Tx̄ : x̄ ∈ {0, 1}t·|I|
}

. Observe that:

• For any fixed z ∈ E it holds that PrTx̄∼T [Tx̄(z) = −1] ≥ 1− t ·
√

δ.

• For any fixed z /∈ G it holds that PrTx̄∼T [Tx̄(z) = −1] ≤ γ.

We want to show that almost all of the tests {Tx̄}x̄∈{0,1}t·|I| in the support of T accept
almost all of their inputs. To see that this is the case, observe that

Ex̄ [acc(Tx̄)] = Pr
x̄,z
[Tx̄(z) = −1] ≥ Pr

z
[z ∈ E] ·min

z∈E

{
Pr̄
x
[Tx̄(z) = −1]

}
,

which is lower-bounded by 1− ξ2, where ξ2 = (t + 1) ·
√

δ. Therefore, the fraction of
tests Tx̄ that reject more than ξ of their inputs is at most ξ.

Now, let Tx̄ be a test such that acc(Tx̄) ≥ 1 − ξ. Since Tx̄ is a conjunction of
Tx(1) , ..., Tx(t) , for each i ∈ [t] it holds that acc(Tx(i)) ≥ 1− ξ. Also, for each i ∈ [t] it holds
that z is η-pseudorandom for Tx(i) , where η ≤ (γ2 · δ′), and therefore Prz∼z[Tx(i)(z) =
−1] ≥ 1− ξ − η. It follows that Prz∼z[Tx̄(z) = −1] ≥ 1− t · (ξ + η).

We invoke Lemma 3.5.39 with the parameters ε1 =
√

δ, ε2 = t ·
√

δ, ε3 = γ, ε4 = ξ,
and ε5 = t · (ξ + η), and deduce that

Pr
z∼z

[z /∈ G] ≤ (t + 1) ·
√

δ + γ + 2 ·
√

t + 1 · δ1/4 + t · (
√

t + 1 · δ1/4 + η)

= O
(

γ + t3/2 · δ1/4 + t · η
)

= O
(

γ + (γ · δ′)−3/2 · δ1/4 + η/(γ · δ′)
)

,

which is O(γ) since η ≤ (γ2 · δ′) and by our hypotheses regarding γ, δ, and δ′.
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3.6 Polynomials that vanish rarely

3.6.1 Introduction and the main results

Let Pn,q,d denote the set of all polynomials Fn → F of total degree d over the field of
size q = |F|. We think of n as sufficiently large, and of the degree d and the field size
q as functions of n. For simplicity, throughout the section we assume that d < n.46

A fundamental problem in complexity theory is that of constructing hitting-set
generators for low-degree polynomials. Recall that a Hitting-Set Generator (HSG) for Pn,q,d

is a function H : {0, 1}` → Fn such that for every non-zero polynomial p ∈ Pn,q,d

there exists s ∈ {0, 1}` satisfying p(H(s)) 6= 0 (see Definition 2.4.9); in other words,
every non-zero polynomial p ∈ Pn,q,d does not vanish on at least one element in the
hitting-set S =

{
H(s) : s ∈ {0, 1}`

}
. The two main measures of efficiency for HSGs

are the seed length ` (equivalently, the size of the hitting-set S as a multiset) and the
computational complexity of H as a function (i.e., the computational complexity of
generating an element of the hitting-set S given its index s).

A standard linear-algebraic argument yields a lower bound of Ω (d · log (n/d)) on
the seed length of any HSG for Pn,q,d, and a standard probabilistic argument shows
that there exists a HSG for Pn,q,d with matching seed length O (d · log(n/d) + log log(q))
(see Facts 2.4.12 and 2.4.13). Naturally, the probabilistic upper-bound does not guar-
antee that the function H is efficiently-computable. Thus, the main open problem con-
cerning HSGs for Pn,q,d is to construct efficiently-computable HSGs with seed length
that matches the known lower bound. This well-known problem (as well as a variant
that refers to pseudorandom generators as in Definition 2.4.11) has attracted a significant
amount of attention over the years; see, e.g., [NN93; LVW93; LV98; KS01; Bog05; BV10;
BHS08; Lov09; Vio09b; Lu12; CTS13; ST18], and the related survey by Viola [Vio09a].

Several years ago, Goldreich and Wigderson [GW14, Section 5] considered a relaxed
version of the foregoing problem. In general terms, what they asked is the following:

Does the HSG problem become easier if we are guaranteed that the poly-
nomial vanishes rarely (i.e., has very few roots)?

Note that, intuitively, we expect that the relaxed problem will indeed be easier:
This is both since there are less polynomials that vanish rarely (than arbitrary polyno-
mials), and since for any such polynomial p, almost all inputs will “hit” p.

In their original paper, Goldreich and Wigderson considered a specific instance of
this problem, geared for a particular application (see Section 3.6.1.2 for details). Our
goal here is to study the relaxed problem in and of itself, in a systematic and general way. Our
motivation for doing so is three-fold. First, this is a special (and potentially-easy) case
of the classical HSG problem, and thus constitutes a potential path to make progress
on the classical problem. Secondly, the relaxed question is of independent interest
as part of the broad study of quantified derandomization, which was initiated in the

46Most of our results also carry on to the setting of d > n, albeit with less “clean” parametrizations.
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original work of Goldreich and Wigderson [GW14]. And thirdly, as polynomial-based
constructions are ubiquitous in complexity theory, any progress in our understanding
of structured classes of polynomials or in related HSG constructions may be valuable
for other explicit constructions.

To be more formal, denote by Pn,q,d,ε the set of polynomials p ∈ Pn,q,d such that
Prx∈Fn [p(x) = 0] ≤ ε; that is, Pn,q,d,ε is the set of degree-d polynomials that vanish
rarely, where the notion of “rarely” is parametrized by the parameter ε. The two main
questions we consider in this context are:

• The combinatorial question: What is the minimal size of a hitting-set for Pn,q,d,ε?
Equivalently, we ask what is the minimal seed length of any HSG for Pn,q,d,ε. This
question is combinatorial since it refers to the existence of a HSG, regardless of
its computational complexity.

• The computational question: For which values of ε > 0 can we construct a HSG
for Pn,q,d,ε with small seed length that will be efficiently-computable? In other
words, can we simultaneously optimize not only the seed length but also the
computational complexity of HSGs for Pn,q,d,ε?

3.6.1.1 Context and previous work

Let us first delineate some trivial values for ε. To do so, first recall that we expect
a random polynomial to vanish on q−1 of its inputs. Now, by the Schwartz-Zippel
lemma, any non-zero p ∈ Pn,q,d has at most an ε = d/q fraction of roots; this bound is
quite good when q is large compared to d, and in general, for abitrary d and q, any non-
zero polynomial vanishes on at most 1− δ of its inputs, where δ ≥ q−d/(q−1) denotes
the relative distance of the Reed-Muller code of degree d over Fq. Therefore, the value
ε = 1− δ represents the general case (i.e., the case of hitting any non-zero polynomial).
Remarkably, we also have a minimal non-zero value that ε can have: By a theorem of
Warning [War35], every polynomial in Fn

q → Fq of degree d that vanishes somewhere
vanishes on at least a q−d fraction of its inputs. Therefore, hitting polynomials that
vanish on ε < q−d fraction of their inputs is trivial, since such polynomials have no
zeroes. It will be useful to denote ε = q−t from now on.

q−d q−1 1− δ

Figure 3.1: The two extremal values of ε (i.e., ε = q−d and ε = 1− δ) and the expected
ε = q−1 for a random polynomial. (The parameter δ denotes the relative distance of
the corresponding q-ary Reed-Muller code RM(n, d).)

Referring to the combinatorial question, the standard probabilistic argument men-
tioned before shows there exists a HSG for Pn,q,d,ε with seed length O(log log(|Pn,q,d,ε|)).
Thus, the combinatorial question is intimately connected to the long-standing open
problem of determining the weight distribution of the Reed-Muller code, i.e., counting the
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number of polynomials in Pn,q,d that vanish on precisely ε > 0 of their inputs, for every
ε > 0. The latter problem has been studied since the late 60’s (see, e.g., [BS69; KT70]),
but is currently settled only for d = 2 (see [SB70; McE69]). Only recently have general
results been obtained for d > 2, and the bounds in these results are asymptotic (rather
than precise bounds) and hold only over F2 (see [KLP12; ASW15]). More generally,
this problem is a special case of the well-known problem of studying weight distribu-
tions of (classes of) linear codes, which is typically tackled using weight enumerator
polynomials (for relevant background see, e.g., [MS77, Chapter 5]). Note, however,
that the weight distribution problem is more general, since it refers to all non-trivial
values of ε > 0, whereas in our setting we focus only on tiny values of ε.

Another related line of works focuses on structural properties of biased polynomials.
Fixing a polynomial p : Fn → F and looking at the distribution over F that is obtained
by evaluating p at a random point, we can ask whether this distribution is close to
uniform, or whether it is far from uniform, in which case we call the polynomial
biased. A sequence of works showed that biased polynomials are very “structured”,
in the sense that they can be determined by a relatively-small number of polynomials
of lower degree (see [GT09; KL08; HS10; Bha14; BHT15; BBG16]). Our setting is
much more specific than the setting in these works, since their assumption is only that
the polynomial is biased, whereas our assumption is that the polynomial is biased in a
very specific manner (i.e., one output-value has tiny weight ε > 0). Thus, the results in
these works typically do not seem sufficiently strong to be useful in our more specific
setting.47

Goldreich and Wigderson [GW14, Section 5], who were motivated by a specific ap-
plication in circuit complexity (derandomization ofAC0[⊕]), constructed a polynomial-
time computable HSG for the setting of q = 2 and ε = 2−(d−O(1)) = O(2−d) (for
details see Section 3.6.1.2). Thus, they gave an upper-bound for the computational
question, which holds only for F2 polynomials with extremely few roots. In a subse-
quent work [Tel19a], two combinatorial lower bounds were proved for the setting of
q = poly(n) and ε = q−O(1) (again, for details see Section 3.6.1.2).48 Thus, the subse-
quent work showed lower bounds for the combinatorial question, which hold only for
polynomials over Fpoly(n) with a relatively-large number of roots (i.e., only mildly less
roots than the expected value of ε = q−1). In both these works, ad-hoc arguments
were used to obtain the corresponding results.

3.6.1.2 Our main results

Our first main result is a general lower bound for the combinatorial problem. For
context, in [Tel19a] it was shown that when q = poly(n), any HSG for Pn,d,q,q−O(1)

47One exception is the field F2, in which the notions of bias and of “vanish rarely” converge. Indeed,
the proofs of our results for F2 use insights developed in this sequence of works.

48We do not include proofs of these results from [Tel19a] in the current thesis. This is done both for
simplicity, and since these results are almost completely superseded by the results included here.
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requires a seed of length Ω(dΩ(1) · log(n/dΩ(1))); and any HSG with constant density49

for Pn,d,q,q−1 requires a seed of length Ω(d · log(n/d)). Thus, both previous lower
bounds referred to the setting of q = poly(n) and of ε = q−O(1) (i.e., t = O(1)).

The following result shows a lower bound that is both significantly stronger, and
– more importantly – applies to a far broader parameter setting. In particular, the
following result applies to a general q ≤ poly(n) and to values of ε = q−t almost up
to the extreme value of ε = q−d, and gives a lower bound of Ω((d/t) · log(n)):

Theorem 3.6.1 (lower bound over general fields). For every constant c > 1 there exists a
constant γ > 0 such that the following holds. For every n, q, d, t ∈ N such that 2 ≤ q ≤ nc

is a prime power, d ≤ n.49, and t ≤ γ · d, any HSG for Pn,q,d,q−t requires a seed of length
Ω ((d/t) · log(n)).

Let us parse the meaning of the lower bound in Theorem 3.6.1. For comparison,
recall that there exists a HSG for all polynomials of degree d ≤ n.49 with seed length
O(d · log(n)). Theorem 3.6.1 tells us that the relaxation of only requiring to “hit”
polynomials that vanish with probability q−t can “buy” a factor of at most 1/t in the
seed length. In particular, there does not exist a significantly smaller hitting-set for
polynomials that vanish with probability q−O(1). Perhaps surprisingly, this is also true
for polynomials that vanish with probability q−do(1)

(since the lower bound remains
almost linear in d · log(n)). Only for polynomials that vanish with probability q−dΩ(1)

does our lower bound imply that a significantly smaller hitting-set might exist; and at
an “extreme” value of q−Ω(d), our lower bound does not rule out a polynomial-sized
hitting-set.

For technical statements that include various extensions and improvements of
Theorem 3.6.1 (and in particular also hold for polynomials of higher degree n.49 <
d ≤ γ · n), see the beginning of Section 3.6.4, and specifically Theorems 3.6.14, 3.6.19,
and 3.6.20.50

Now, still referring to the combinatorial question, we observe that a result of Kauf-
mann, Lovett, and Porat [KLP12], which upper-bounds the number of biased F2 poly-
nomials (i.e., analyzes the weight distribution of the Reed-Muller code over F2), yields
a corresponding existential upper-bound. Specifically:

Theorem 3.6.2 (upper-bound over F2, following [KLP12]). Let n, d, t ∈ N where d > t.
Then, there exists a (non-explicit) hitting-set for Pn,2,d,2−t with seed length O

(
(d− t) · log( n

d−t )
)
.

Note that while the lower bound in Theorem 3.6.1 holds for any finite field, the
upper bound in Theorem 3.6.2 holds only over F2. Nevertheless, comparing Theo-
rems 3.6.1 and 3.6.2 (for F = F2 and d ≤ n.49) reveals that there is still a significant
gap between the upper-bound and the lower-bound: The lower bound is of the form
(d/t) · log(n), whereas the existential upper bound is of the form (d − t) · log(n).

49A hitting-set S for a class P has density ε > 0 if for every p ∈ P it holds that Prs∈S[p(s) 6= 0] ≥ ε.
50In these technical results, the log(n) term in the lower bound in Theorem 3.6.1 is replaced by a more

complicated term that depends on d and on t, for example log(n.99 · (t/d)).
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3.6 Polynomials that vanish rarely

For example, the lower bound indicates that there might exist a significantly smaller
hitting-set for the relaxed problem when t = dΩ(1), whereas the existential upper
bound is significantly better than the one for the original problem only for t =
d− dΩ(1).

Our last main result is computational and shows an explicit construction of a HSG.
As mentioned above, Goldreich and Wigderson [GW14] constructed a polynomial-
time computable HSG with seed length O(log(n)) that “hits” polynomials Fn

2 → F2 of
degree d that vanish on O(2−d) of their inputs (for any d ∈N). We prove a significantly
more general result, by constructing an explicit HSG for Pn,2,d,2−t for any t < d−O(1):

Theorem 3.6.3 (explicit upper-bound over F2). Let n ∈ N be sufficiently large, and let
d > t + 4 be integers. Then, there exists a polynomial-time computable HSG for Pn,2,d,2−t with
seed length O

(
(d− t) ·

(
2d−t + log( n

d−t )
))

.

Note that the original result from [GW14] is the special case of Theorem 3.6.3 when
t = d−O(1). Also note that the seed length of the explicit HSG from Theorem 3.6.3
depends exponentially on d− t, whereas the seed length of the non-explicit HSG from
Theorem 3.6.2 depends linearly on d− t. We also comment that the result is actually
slightly stronger, and asserts that for any r ∈ N there exists a polynomial-time com-
putable HSG for

⋃
d Pn,2,d,qd−r with seed length O(r · (2r + log(n/r))); that is, for every

r there is a single HSG that works for all degrees d with t = d− r.
Below, in Table 3.2, we present an informal summary of the main results mentioned

above, and compare them to previously-known results.

Seed length Field Size ε

Lower bounds

[Tel19a] Ω(dΩ(1) · log(n/dΩ(1))) q = poly(n) q−O(1)

Thm 3.6.1 Ω((d/t) · log n) (d ≤ n.49) 2 ≤ q ≤ poly(n) q−t

Thm 3.6.14 Ω((d/t) · log(n.99 · t/d)) (d/t / q · n.01) 2 ≤ q ≤ poly(n) q−t

Upper bounds

[GW14] O(log n) (explicit) q = 2 2−d+O(1)

Thm 3.6.2 O((d− t) log( n
d−t ) (non-explicit) q = 2 2−t

Thm 3.6.3 O((d− t) · (2d−t + log( n
d−t )) (explicit) q = 2 2−t

Table 3.2: An informal summary of our results and comparison to previous results.
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3.6.1.3 The connection to small sets with large degree-d closures

In addition to our lower-bounds and upper-bounds for the problem of HSGs for poly-
nomials that vanish rarely, we also tie this problem to the study of a clean and elegant
algebraic question; namely, to the study of the degree-d closure of a set S ⊆ Fn, which
was recently initiated by Nie and Wang [NW15].

Using terminology from algebraic geometry, the degree-d closure of a set S ⊆ Fn

is a finite-degree analogue of the Zariski closure of S, and is defined as the variety
induced by the set of degree-d polynomials Fn → F that vanish on S. In more detail,
let us first define the degree-d ideal of S to be I (d)(S) = {p ∈ Pd : ∀s ∈ S, p(s) = 0},
where Pd is the set of degree-d polynomials Fn → F.51 Then, the degree-d closure of S
is defined by:

Cl(d)(S) = {x ∈ Fn : ∀p ∈ I (d)(S), p(x) = 0} .

As an example, observe that the degree-d closure of any d + 1 points on a fixed
line in Fn contains the entire line. As another example, recall that the closure of
any Kakeya set in Fn

q with respect to homogeneous degree-(q− 1) polynomials is the
entire domain Fn

q (this was proved by Dvir [Dvi09, Section 3] towards showing that
any Kakeya set is necessarily of size at least (q+n−1

n )).
Following the latter example, it is natural to ask whether there exists a very small set

S ⊆ Fn whose degree-d closure is very large. An initial observation towards answering
this question is that a set S ⊆ Fn has maximal degree-d closure (i.e., Cl(d)(S) = Fn) if
and only if S is a hitting-set for degree-d polynomials. (This is since in both cases, the
only degree-d polynomial that vanishes on S is the zero polynomial.)

Observation 3.6.4 (maximal closure ⇐⇒ hitting-set). A set S ⊆ Fn is a hitting-set for

(all) degree-d polynomials if and only if
∣∣∣Cl(d)(S)∣∣∣ = qn.

Loosely speaking, the main result of Nie and Wang [NW15] extends Observa-

tion 3.6.4 by showing that that for any S ⊆ Fn it holds that
∣∣∣Cl(d)(S)∣∣∣ ≤ |S|

(n+d
d )
· |F|n.

The meaning of this result is that, while there exist sets of size |S| = (n+d
d ) whose

degree-d closure is Fn, the degree-d closure of smaller sets decreases by a factor of at
least |S|

(n+d
d )

.52

We take another approach to extending Observation 3.6.4, by by establishing a con-
nection between the study of small sets with large closures and the study of HSGs for
polynomials that vanish rarely. Specifically, we show two-way implications between
the statement that S is a hitting-set generator for polynomials that vanish rarely, and the

51Note that I (d)(S) is not an actual ideal in the ring of n-variate polynomials over F, since multiplying
p ∈ I (d)(S) by another polynomial does not necessarily preserve the degree of p.

52Another result along these lines was recently proved by Beelen and Datta [BD18], who showed a
tight upper-bound on the size of the variety induced by any subspace of degree-d polynomials (rather
than only for varieties induced by a subspace of the form I (d)(S) for some S ⊆ Fn).
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3.6 Polynomials that vanish rarely

statement that S has large closure. In more detail, we relate hitting-sets for polynomials
that vanish with probability q−t to sets with closure of size qn−t:

Theorem 3.6.5 (small sets with large closures versus hitting-sets for polynomials that
vanish rarely). Let F be a field of size q, let n ∈N and t < d < n, and let S ⊆ Fn. Then,

1. If
∣∣∣Cl(d)(S)∣∣∣ > qn−t, then S is a hitting-set for Pn,q,d,q−t .

2. If S is a hitting-set for Pn,q,d,q−t , then
∣∣∣Cl(d/2(t+1))(S)

∣∣∣ > 1
2 · qn−t.

Notice that Theorem 3.6.5 does not show a complete equivalence between the two
notions, since in the second item the closure refers to degree d/2t rather than to degree
d. Thus, intuitively, Theorem 3.6.5 asserts that constructing a small set with a large
degree-d closure is at least as hard as constructing a hitting-set for polynomials that
vanish rarely; and while it also gives a converse reduction (in the second item), it is
nevertheless possible that constructing a hitting-set for polynomials that vanish rarely
is an easier problem. We also remark that the first item in Theorem 3.6.5 is almost
immediate, whereas the second item requires more work (see Section 3.6.5 for details).

Lastly, we comment that one can obtain an upper-bound on the size of Cl(d)(S) for
small sets S ⊆ Fn by combining the first item in Theorem 3.6.5 with our lower bound
from Theorem 3.6.1. (This is since the former asserts that sets with closure of size qn−t

are hitting-sets for Pn,q,d,q−t , whereas the latter asserts that any such hitting-set must
be large.) However, the bounds obtained in this way are not stronger than the known
bounds proved in [NW15]. For more details see Section 3.6.5.

3.6.2 Proof overviews

3.6.2.1 Combinatorial lower bounds from low-degree dispersers

The proofs of our lower bounds on HSGs for polynomials that vanish rarely rely on
a complexity-theoretic approach, rather than on a direct algebraic analysis. Specifically,
we reduce the problem of constructing HSGs for arbitrary polynomials to the problem
of constructing HSGs for polynomials that vanish rarely; since we already know lower
bounds for the former, we obtain lower bounds for the latter.

Specifically, given an arbitrary non-zero polynomial p0 : Fm → F, we will use a
form of “error-reduction” for polynomials (akin to error-reduction for probabilistic
algorithms; see below) to obtain another polynomial p : Fn → F such that:

1. The polynomial p vanishes rarely.

2. Any non-zero input for p can be mapped into a small list of inputs for p0 that
contains a non-zero input for p0.

To define p, fix a (k, δ)-disperser Disp : Fn × {0, 1}` → Fm, for appropriate parame-
ters k and δ that we will determine in a moment.53 Then, p is the result of the following

53A (k, δ)-disperser Disp : Fn × {0, 1}` → Fm is a function such that for every T ⊆ Fm satisfying
|T|/|F|m ≥ δ, for all but at most 2k of the inputs z ∈ Fn there exists i ∈ {0, 1}` such that Disp(z, i) ∈ T.
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procedure: Given z ∈ Fn, compute the 2` inputs {Disp(z, i)}i∈{0,1}` , evaluate p0 at each
of these inputs, and output the disjunction of these evaluations; that is:

p(z) =
∨

i∈{0,1}`
p0 (Disp(z, i)) .

The disperser Disp has the property that for every set T ⊆ Fm of density at least δ it
holds that Prz∈Fn [∀i Disp(z, i) /∈ T] ≤ ε = 2k/qn. We take T to be the set of elements in
Fn on which p0 does not vanish, and take δ to be the density of T (i.e., δ is the distance
of the corresponding Reed-Muller code); we also let k = (n − t) · log(q). Then, the
polynomial p vanishes on at most an ε = 2k/qn = q−t fraction of its inputs. Also, any
non-zero input z ∈ Fn for p can be mapped to a list of 2` inputs {xi = Disp(z, i)}i∈{0,1}`

for p0 such that for some i ∈ {0, 1}` it holds that p0(xi) 6= 0, as we wanted.
The reduction above shows that if there exists a HSG with seed length s for poly-

nomials Fn → F of degree d = deg(p) that vanish with probability ε, then there exists
a corresponding HSG with seed length s + ` for all non-zero polynomials Fm → F

of degree d0 = deg(p0). The known lower bound on the latter, which asserts that
s + ` = Ω(d0 · log(m/d0)), yields a corresponding lower bound on the former.

While this is indeed our main idea, it unfortunately does not quite work as-is. The
main challenge is that the reduction above incurs significant overheads that crucially
deteriorate the lower bound. Most importantly, the degree of the polynomial increases
(from d0 = deg(p0) to d = deg(p)), and the number of variables also increases (from
m to n); this affects us since we are interested in a lower bound as a function of n and
d, whereas our lower bound is a function of m and d0. Moreover, the lower bound
deteriorates by an additive factor of `, since each non-zero input z ∈ Fn for p yields 2`

inputs for p0, one of which is guaranteed to be non-zero. Thus, we want to modify the
reduction above, in order to minimize the blowup in the degree and in the number of
variables, and also minimize the seed length ` of the disperser.

A coding-theoretic perspective. One can view the procedure described above as am-
plifying the weight (i.e., the fraction of non-zero coordinates) of a codeword in the
Reed-Muller code. At first glance, this task seems similar to the task of amplifying the
distance of linear error-correcting codes; in particular, the disperser-based technique
described above is technically reminiscent of the well-known distance amplification
technique of Alon et al. [ABN+92].54 However, the crucial difference is that we are
interested in amplifying the weight to be much larger than 1− 1/q, and indeed our
resulting subcode (of polynomials that vanish rarely) is a small and non-linear sub-
code of the Reed-Muller code. Moreover, as explained above, we will be particularly
interested in the degree blow-up, which is a parameter specific to polynomial-based
codes.

54The main differences are that we will use a specific disperser that is different from theirs, to minimize
the degree blow-up; and that we handle alphabet reduction differently (using an OR function instead of
code concatenation), since our target weight is much larger than 1− 1/q.
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Warm-up: The setting of d � q. For simplicity, let us assume that q = poly(n) and
that d ≤ n.99. In this case the fraction δ of non-zeroes of p0 is very close to one and we
only need Disp to be a (k, .99)-disperser for k = (n− t) · log(q).

Note that to compute p at an input z ∈ Fn, we wish to compute Dispi(z) = Disp(z, i)
as a function of z for each fixed value i of the seed. Since we want p to have degree
as low as possible, we are interested in objects that we call low-degree dispersers: In-
formally, a disperser Disp : Fn × {0, 1}` → Fm has low degree if for any i ∈ {0, 1}`
and j ∈ [m], the polynomial qi,j(z) = Disp(z, i)j (i.e., qi,j(z) is the jth output element of
Disp(z, i) as a function of z) has low degree (see Definitions 2.5.1 and 2.5.3). Note that
in our argument we only need the existence of a low-degree disperser (i.e., we do not
need the low-degree disperser to be efficiently computable); however, the dispersers
that are obtained via naive probabilistic arguments do not have low degree.

Fortunately, in the current “warm-up” setting we can get a good (albeit non-
optimal) lower bound even using the “naive disperser” that just performs uniform
sampling: That is, the disperser that treats its input z ∈ Fn as n/m substrings of
length m, and treats its seed as an index i ∈ [n/m], and outputs the ith substring of
length m in z. Note that this disperser is linear (i.e., has degree one), since for a fixed
seed, each output element is a projection of a corresponding input element.

We do encounter one other problem in implementing our idea in this setting, which
is the degree blow-up that comes from the fact that p computes the OR function on the
outputs of the disperser (recall that the OR function of 2` inputs has maximal degree
(q− 1) · 2`). To circumvent this problem, we replace the OR function with a multivalued

OR function. Specifically, observe that in the reduction above it suffices that on any non-
zero input y ∈ F2` , the OR function will output some non-zero element (rather than map
any non-zero y to 1 ∈ F). In contrast to the OR function, there exists a multivalued
OR function of 2` elements with degree roughly 2` (see Proposition 2.3.8).

Working out the precise parameters, this approach transforms any p0 of degree
d0 into a corresponding p of degree d = d0 · 2` = d0 · t · log(q), and for every t ≤
d/O(log(q)) implies a lower bound of Ω(d0 · log(m/d0)) − ` = Ω(d/t) on the seed
length of HSGs for polynomials that vanish with probability q−t. To improve this
lower bound to match the bound stated in Theorem 3.6.1, we use a disperser that
is better than the naive one, and utilize the techniques that are outlined below (see
Section 3.6.4).

The more challenging setting of d � q. Observe that in the argument above we
“paid” for the seed length ` of the disperser twice: One loss was a blow-up of 2` in
the degree (since the multivalued OR function has degree 2`), and the other loss was
that the lower bound on the seed length of the HSG decayed additively in ` (because
our reduction maps any non-zero input for p to a list of 2` inputs for p0). Also note
that the first loss decreases the lower bound itself, whereas the second loss limits the
values of t to which the lower bound applies (to ones for which `� d0 · log(m/d0)).

When d� q these two losses may deteriorate our lower bound much more severely
than in the “warm-up” setting. This is because when q was large we instantiated the

123



3. QUANTIFIED DERANDOMIZATION

disperser with the parameter δ = Ω(1), and hence its seed length was relatively small,
whereas in our current setting the value of δ = q−d0/(q−1) may be much smaller.55

Over prime fields this problem can be overcome by starting not from a lower bound
for hitting all degree-d0 polynomials, but rather from a lower bound for hitting a large
subcode of the corresponding Reed-Muller code (i.e., a subcode with dimension linear
in (m+d0

d0
)) that still has distance Ω(1); see Appendix 3.6.6.2 for an explanation. To

overcome the problem also over non-prime fields, we show a general method that,
regardless of the disperser, allows us to “pay” only an O(t) factor in the degree blow-up,
instead of the 2` factor. This method does not prevent the additive loss of ` in the seed
length, and we will explain how this additive loss affects us in the end of the current
section.

To explain this method, fix a disperser, and recall that our goal is to “hit” the set
G ⊆ Fn of inputs z such that for some i ∈ {0, 1}` it holds that p0(Disp(z, i)) 6= 0 (since
any z ∈ G maps to 2` inputs, one of which “hits” the original polynomial p0). We think
of the polynomial p above as a test of its input z ∈ Fn that distinguishes between G
and Fn \G (i.e., p vanishes precisely on Fn \G). Our initial approach to hit G was to
construct a HSG for the test p, which would output some z ∈ G.

The key observation is that constructing a HSG for p is an “overkill”. Specifically,
to hit G, we can replace the test p by a distribution p over tests that distinguishes between
G and Fn \G, with high probability, and still deduce that any HSG for the tests in the
support of p outputs some z ∈ G. That is, we replace the test p for G by a randomized

test p for G such that the polynomials in the support of p have lower degree than p,
and show that “hitting” the polynomials in the support of p still allows us to “hit”
G. Moreover, since p “tests” a dense set G with small error, by an averaging argument
almost all of the polynomials in the support of p vanish rarely; thus, it suffices to “hit”
only the polynomials in the support of p that vanish rarely.

More accurately, let us instantiate our disperser with k = (n− 2t) · log(q), instead
of k = (n− t) · log(q), such that the density of G is 1− q−2t (this is to allow for some
slackness in the parameters). Then, the following holds:

Lemma 3.6.6 (informal; see Section 3.2). Assume there exists a distribution p over polyno-
mials Fn → F such that for every z ∈ G it holds that Pr[p(z) 6= 0] ≥ 1− q−2t and for every
z /∈ G it holds that Pr[p(z) = 0] = 1. Further assume that every polynomial in the support of
p has degree O(d · t). Then, any hitting-set for polynomials of degree O(d · t) that vanish on
at most 2q−t of their inputs contains some z ∈ G.

Our construction of the specific distribution p that we use is simple: Starting from
the construction of p above, instead of taking an OR of the evaluations of p0 on the
entire output-set of the disperser (i.e., on all seeds), we sample from the seeds of the
disperser. More accurately, to sample a polynomial f ∼ p, we uniformly sample 2t

55To demonstrate the problem, note that over fields of constant size, even a disperser with optimal
parameters would yield a quadratic degree blow-up, regardless of t; that is, d ≥ 2` · d0 ≥ 2log(t·log(q)/δ) ·
d0 = Ωq((d0)

2 · t), compared to the previous blow-up of d = Ωq(d0 · t) when we had δ = Ω(1).
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vectors a(1), ..., a(2t) ∈ F2` , and output the polynomial

f (z) = ORj∈[2t]

(
∑
i∈2`

a(j)
i · p0(Disp(z, i))

)
.

To see why this distribution works, observe that if z ∈ G then a random F-linear
sum of the elements {Disp(x, i)}i∈{0,1}` will be non-zero with probability 1 − 1/q,
whereas if z /∈ G then such a sum will be zero, with probability one. Thus, a ran-
dom polynomial in p computes the disjunction of 2t such random sums, and it is
straightforward to see that its “error probability” is q−2t and its degree is O(d0 · t)
(assuming that the disperser is linear). Using Lemma 3.6.6, any HSG for polynomials
of degree O(d0 · t) that vanish on at most q−2t of their inputs outputs some z ∈ G. We
therefore reduced the problem of constructing a HSG for p0 to the problem of con-
structing a HSG for polynomials of degree d = O(d0 · t) that vanish on at most q−2t of
their inputs.

The last missing piece is that we need a concrete disperser to instantiate the argu-
ment with, and the parameters of the disperser will determine the lower bound that
we get. Furthermore, recall that we are losing an additive factor of ` in the lower
bound, and thus any lower bound that we get using this approach applies only to
values of t such that ` � d0 · log(m/d0). Specifically, the approach above gives the
following lemma (for simplicity, we state it only for linear dispersers):

Lemma 3.6.7 (linear dispersers yield lower bounds on HSGs for polynomials that van-
ish rarely; informal, see Corollary 3.6.12). Let d0 < m be integers, let F be a field of size q,
and let t ∈N. Assume that for k = (n− 2t) · log(q) and δ = q−d0/(q−1) there exists a linear
(k, δ)-disperser Disp : Fn × {0, 1}` → Fm. Then, for d = 4d0 · t, if ` ≤ d

8t · log(mt/d), then
the seed length for any HSG for Pn,q,d,2q−t is Ω ((d/t) · log (mt/d)).

Note that to get a good lower bound using Lemma 3.6.7 we want a linear disperser
Fn

q × {0, 1}` → Fm
q for large min-entropy k = (n − 2t) · log(q) that has small seed

length ` and large output length m.56 In particular, if there exists a linear disperser
with optimal parameters, then a lower bound of Ω((d/t) · log(nt/d)) would follow for
essentially all settings of the parameters (see Corollary 3.6.13).

Our lower bounds (i.e., Theorem 3.6.1 and its extensions) will be proved by instan-
tiating Lemma 3.6.7 with specific useful dispersers. To prove Theorem 3.6.1 and some
of its extensions (i.e., Theorems 3.6.14 and 3.6.19), we use a linear disperser that we
obtain by modifying the extractor by Shaltiel and Umans [SU05]; the original extrac-
tor works over the binary alphabet, and we modify it to a linear disperser over an
arbitrary field Fq (see Section 3.6.4 for details). We prove another lower bound, which
applies only to fields of constant size (see Theorem 3.6.20), using a linear disperser that
is based on the recent construction of “linear 1-local expanders” by Goldreich [Gol16],
following Viola and Wigderson [VW17] (see Section 3.6.4.3). More details are given in
Section 3.6.4.

56Moreover, since our error δ = q−d0/(q−1) might be large, we want good dependency of the parameters
` and m on the error δ.
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3.6.2.2 Explicit upper bound over F2

To construct the explicit HSG for polynomials Fn
2 → F2 that vanish rarely in Theo-

rem 3.6.3 we generalize a construction of [GW14]. In high-level, we reduce the prob-
lem of constructing a HSG for polynomials that vanish rarely to the problem of con-
structing a PRG for arbitrary low-degree polynomials, and then use the explicit PRG of
Viola [Vio09b] for low-degree polynomials.

In more detail, we say that a polynomial p : Fn
2 → F2 is approximated by a distri-

bution h over polynomials h : Fn
2 → F2 if for every x ∈ Fn

2 it holds that Prh[h(x) =
p(x)] ≥ .99. Our first step is to show that any polynomial p ∈ Pn,2,d,q−t can be ap-
proximated by a distribution h over polynomials of degree d− t. To do so, let ∆a(p)
be the directional derivative of p in direction a ∈ Fn

2 (i.e., the function ∆a p(x) =
p(x + a) + p(x)). We sample h ∼ h by uniformly sampling ~a = a(1), ..., a(k) ∈ Fn

2 ,
where k = t−O(1), and outputting the polynomial h~a = ∆a(k)∆a(k−1) ...∆a(1)(p) + 1; that
is, we derive p in k random directions, and “negate” the output.

Note that indeed deg(h~a) = d − t + O(1). Now, for any fixed x ∈ Fn
2 and non-

empty S ⊆ [k], the probability over~a that p
(

x + ∑i∈S a(i)
)
= 1 is at least 1− 2−t (since

p vanishes with probability at most 2−t, and x + ∑i∈S a(i) is uniform in Fn
2 ). Thus,

by a union bound, with probability at least .99 over the choice of ~a, for every non-
empty S ⊆ [k] it holds that p

(
x + ∑i∈S a(i)

)
= 1. In this case, we have that h~a(x) =

∑S⊆[k] p
(

x + ∑i∈S a(i)
)
+ 1 = p(x) + (2k − 1) + 1 = p(x). Hence, the distribution h

also has the property that for every x ∈ Fn
2 it holds that Pr[h(x) = p(x)] ≥ .99.

Our next observation is similar to the “randomized tests” technique mentioned
in Section 3.6.2.1: We show that if a distribution h over low-degree polynomials ap-
proximates p, then a pseudorandom generator for the polynomials in the support of
h (with sufficiently small constant error) also “hits” p (for a proof see Section 3.2).
Combining the two claims, we get a reduction from the problem of constructing a
HSG for Pn,2,d,q−t to the problem of constructing a PRG (with small constant error) for
arbitrary polynomials of degree d− t+O(1). Thus, the PRG of Viola [Vio09b] for such
polynomials, which uses a seed of length O((d− t) · (2d−t + log(n))), is also a HSG
for Pn,2,d,2−t .

On the tightness of the reduction above. Recall that there is a gap between the seed
length of the explicit HSG above and the seed length of the non-explicit HSG from
Theorem 3.6.2, which is O

(
(d− t) · log( n

d−t )
)
. We note that to close this gap, one does

not need to improve the reduction detailed above, but only the explicit PRG for arbitrary
polynomials (i.e., Viola’s construction). Specifically, if there exists an explicit PRG for all
polynomials of degree d′ = d− t + O(1) with seed length O(d′ · log(n/d′)) (matching
the non-explicit upper-bound for such PRGs), then the reduction above yields a HSG
for Pn,2,d,2−t with seed length O((d− t) · log(n/(d− t))).
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3.6 Polynomials that vanish rarely

3.6.3 Upper bounds over F2

In this section we prove Theorems 3.6.2 and 3.6.3; that is, we construct explicit and
non-explicit hitting-set generators for polynomials Fn

2 → F2 that vanish rarely.
We define the weight of a polynomial p : Fn → F to be wt(p) = Prx∈Fn [p(x) 6= 0].

Indeed, we are interested in polynomials with very high weight. Kaufman, Lovett, and
Porat [KLP12] proved a near-tight upper-bound on the number of polynomials with
very low weight when F = F2; as a consequence, we get the following non-explicit
hitting-set generator on polynomials Fn

2 → F2 that vanish rarely:

Theorem 3.6.8 (non-explicit HSGs for F2 polynomials that vanish rarely, following [KLP12]).
Let n, d, t ∈ N where t < d ≤ n. Then, the number of polynomials in Fn

2 → F2 that vanish
with probability at most 2t−d is at most 2O(d2·t/(d−t+1)!·nd−t+1). In particular, there exists a
hitting-set generator for this set of polynomials with seed length O

(
(d− t) · log

( n
d−t

))
.

Proof. We define an injective mapping Φ : {Fn
2 → F2} → {Fn

2 → F2} that maps every
degree-d polynomial p that vanishes on at most 2−t of its inputs to a degree-d polyno-
mial Φ(p) whose weight is at most 2−t. Indeed, the mapping is simply Φ(p) = p + 1
(i.e., for every x ∈ Fn

2 it holds that Φ(p)(x) = p(x)+ 1). By [KLP12, Thm 14] (using the
parameter values k = d− t+ 1 and ε = 2−t), the number of polynomials with weight at
most 2−t is at most 2O(d2·t/(d−t+1)!·nd−t+1). Since Φ is injective, the number of polynomi-
als that vanish on at most 2−t of their inputs is also at most N = 2O(d2·t/(d−t+1)!·nd−t+1).

Thus, a set of O(log(N)) = O(d2 · t/(d − t + 1)! · nd−t+1) uniformly-chosen ele-
ments in Fn

2 “hits”, with high probability, every polynomial that vanishes on at most
2−t of its inputs. The seed length required to sample from such a set is

O
(
(d− t + 1) · log(n) + log(d · t)− (d− t) · log(d− t)

)
= O

(
(d− t + 1) · log(n)− (d− t) · log(d− t)

)
(d · t ≤ n2)

= O
(
(d− t) · log(n/(d− t))

)
.

We mention that Abbe, Shpilka, and Wigderson [ASW15] proved a tighter upper-
bound on the number of polynomials with low weight, which replaces the d2 term
in the result in [KLP12, Thm 14] by a smaller term. It is still an open problem to
replace this term by some universal constant (such a result would match a lower bound
from [KLP12, Lem 15]). However, even a solution to this open problem would not
improve the result in Theorem 3.6.8.57

To construct an explicit (i.e., polynomial-time computable) hitting-set generator for
polynomials Fn

2 → F2 that vanish rarely, we generalize a construction from [GW14].

57This is because in our application we refer to the seed length, in which case the term d2 only “con-
tributes” the term log(d · t) < 2 · log(n), which is dominated by the term O((d− t) · log(n)).
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3. QUANTIFIED DERANDOMIZATION

For the construction we will need the pseudorandom generator of Viola [Vio09b] for
low-degree polynomials.

Theorem 3.6.9 (Viola’s PRG for low-degree polynomials [Vio09b]). For n, d′ ∈ N and
ε > 0, there exists a polynomial-time computable pseudorandom generator for polynomials
Fn

2 → F2 of degree d′ with seed length d′ · log(n) + O(d′ · 2d′ · log(1/ε)).

Theorem 3.6.10 (explicit hitting-set generator for F2 polynomials that vanish rarely).
For every n, d, t ∈N such that d > t+ 4 there exists a polynomial-time computable hitting-set
generator with seed length O

(
(d− t) ·

(
2d−t + log(n)

))
for the set of polynomials Fn

2 → F2
of degree d that vanish on at most 2−t of their inputs.

Proof. We show that for every polynomial p : Fn
2 → F2 of degree d that vanishes on at

most 2−t of its inputs there exists a distribution h over polynomials Fn
2 → F2 of de-

gree (d − t) + 4 such that for every x ∈ Fn
2 it holds that Pr[p(x) = h(x)] ≥ 15/16.

Then, we use Lemma 3.2.4 to deduce that any pseudorandom generator with er-
ror 1/16 for polynomials of degree (d − t) + 4 is also a pseudorandom generator
for p with error less than 1/2 (and is thus a hitting-set generator for p, which van-
ishes on at most half of its inputs). In particular, we use the pseudorandom gener-
ator from Theorem 3.6.9 for polynomials of degree d− t + 4, which has seed length
O
(
(d− t) ·

(
2d−t + log(n)

))
.

To define the distribution h, recall that the discrete directional derivative operator
on polynomials p : Fn

2 → F2 for direction a ∈ Fn
2 is defined by ∆a(p) = p(x+ a)+ p(x).

The iterated operator for ~a = a(1), ..., a(k) ∈ Fn·t
2 is defined in the natural way, and

∆~a(p) = ∑S⊆[k] p
(

x + ∑i∈S a(i)
)

. For k = t− 4, sampling h ∼ h is done by uniformly

and independently choosing~a = a(1), ..., a(k) ∈ Fn
2 , and outputting the polynomial

h = h~a = ∆~a(p) + 1.

Note that h is of degree d− k = (d− t) + 4, and that for every x ∈ Fn
2 , the probability

that h(x) = p(x) is at least 15/16. This is the case since for every fixed x ∈ Fn
2 , if for

every non-empty S ⊆ [k] it holds that p(x + ∑i∈S a(i)) = 1 then h(x) = p(x) + (2k −
1) + 1 = p(x); and for every non-empty S ⊆ [k], the probability over the choice of h
that p(x + ∑i∈S a(i)) = 1 is at least 1− 2−t.

3.6.4 Lower bounds over general finite fields

In this section we prove our lower bounds on the seed length of HSGs for polynomials
that vanish rarely. First, in Section 3.6.4.1 we give the general framework for deriving
lower bounds from low-degree dispersers, corresponding to the high-level description
in Section 3.6.2.1 (i.e., we prove Lemma 3.6.7). Then, we prove three incomparable
lower bounds, by instantiating this framework with specific dispersers that are suitable
for the corresponding parameter settings.

Our first and main lower bound, which is presented in Section 3.6.4.2, is a general-
ization of Theorem 3.6.1. This lower bound is of the form Ω((d/t) · log(n1−Ω(1)t/d)),

128



3.6 Polynomials that vanish rarely

and holds under complicated conditions on the degree d and on t; in particular, for
d ≤ n.49 as in Theorem 3.6.1, it holds for all values of t up to Ω(d). (See Theo-
rem 3.6.14.)

Then, in Section 3.6.4.3 we prove two additional lower bounds, which hold in two
more specific settings but have advantages over the foregoing bound. The first lower
bound holds only when d ≤ q (i.e., when the corresponding Reed-Muller code has
distance Ω(1)); this lower bound is of the same form as in Theorem 3.6.14, but holds
for higher degrees up to d ≤ n1−Ω(1) without complicated conditions on d and t (see
Theorem 3.6.19). The second lower bound holds only over fields of constant size; this
lower bound is of the stronger form Ω((d/t) · log(nt/d)),58 and holds for degrees d
up to Ω(n), but only for value of t /

√
d (see Theorem 3.6.20).

3.6.4.1 Sampling from the seeds of a disperser

In this section we prove general results that use low-degree dispersers to reduce hit-
ting arbitrary polynomials to hitting polynomials that vanish rarely (and thus deduce
lower bounds for the latter); this follows the high-level explanations that were pre-
sented in Section 3.6.2.1. The following proposition specifies the reduction itself, and
the subsequent corollary specifies the lower bounds that we can obtain using the re-
duction.

Proposition 3.6.11 (reducing hitting polynomials to hitting polynomials that vanish
rarely by sampling from the seeds of a disperser). Let m, d0 ∈ N, let F be a field of
size q, and let δ = δRM(d0, q). For k < log(qn), let ε = 2k/qn, let ρ < 1 − ε, and let
r = logq(1/ρ). Assume that:

1. There exists a (k, δ)-disperser Disp : Fn × {0, 1}` → Fm of degree dDisp ∈N.

2. There exists a hitting-set W ⊆ Fn for polynomials Fn → F of degree d = 2d0 · r · dDisp

that vanish on at most
√

ρ + ε of their inputs.

Then, there exists a hitting-set W0 ⊆ Fm for polynomials Fm → F of degree d0 such that
|W0| ≤ |W| · 2`.

Proof. For L = 2`, let W0 = {Disp(z, i) : z ∈ W, i ∈ [L]}. We will prove that W0 is a
hitting-set for polynomials Fm → F of degree d0.

To do so, fix any non-zero polynomial f : Fm → F of degree d0. Let V = {x ∈
Fm : f (x) = 0} be the set of points on which f vanishes, and let G = {z ∈ Fn : ∃i ∈
[L],Disp(z, i) /∈ V} be the set of inputs z ∈ Fn for Disp such that for some i ∈ [L] it
holds that f does not vanish on Disp(z, i). Note that G has density at least 1− ε; this
is the case since |V|/qm ≤ 1− δ (and recall that δ is the distance of the corresponding
Reed-Muller code and f is non-zero), and since Disp is a (k, δ)-disperser.

58Recall, from Corollary 3.6.13, that this is the lower is that would be obtained if there exists a linear
disperser with optimal parameters.

129



3. QUANTIFIED DERANDOMIZATION

Note that W0 is a hitting-set for f if and only if Prz∈W [z ∈ G] > 0. We will prove
that Prz∈W [z ∈ G] > 0 using Corollary 3.2.6. To construct the distribution p over
polynomials in Fn → F needed for the hypothesis of the lemma, fix a multivalued
OR polynomial mvOR : Fr → F of degree less than 2r as in Proposition 2.3.8. Then,
sampling p ∼ p is equivalent to the following random process:

Uniformly and independently choose α(1), ..., α(r) ∈ FL, and output the
polynomial p(z) = mvOR

(
∑i∈[L] α

(1)
i · f (Disp(z, i)), ..., ∑i∈[L] α

(r)
i · f (Disp(z, i))

)
.

Note that each p ∼ p has degree less than d = dDisp · d0 · 2r. Also note that for
any z /∈ G we have that Pr[p(z) = 0] = 1, whereas for any z ∈ G we have that
Pr[p(z) 6= 0] ≥ 1− q−r = 1− ρ. Using Corollary 3.2.6 with parameters ε and ρ as in
our hypothesis and with γ = µ = 0, relying on the hypotheses that W is a hitting-set
for polynomials that vanish on at most

√
ρ + ε of their inputs and that ρ < 1− ε, we

deduce that Prz∈W [z ∈ G] > 0, as we wanted.

Using the reduction from Proposition 3.6.11, and relying on the unconditional
lower bound from Fact 2.4.12, we obtain the following result, which uses low-degree
dispersers to deduce lower bounds on HSGs for polynomials that vanish rarely:

Corollary 3.6.12 (a lower bound by sampling from the seeds of a disperser). Let m, d0 ∈
N such that d0 < m, let F be a field of size q, and let δ = δRM(d0, q). For t ∈ N and k =
(n− 2t) · log(q), assume that there exists a linear (k, δ)-disperser Disp : Fn × {0, 1}` → Fm.
Then, any hitting-set W ⊆ Fn for polynomials in Fn → F of degree d = 4d0 · t that vanish
on at most

√
2 · q−t of their inputs has size at least (m+d0

d0
) · 2−`. In particular, the seed length

for any such hitting-set is at least

Ω
(

d
t
· log

(
m · t

d

))
,

provided that t ≤ log(mt/d)
8` · d.

Proof. We use Proposition 3.6.11 with the parameter values ε = ρ = q−2t ≤ 1/4 (such
that r = 2t) and dDisp = 1, and rely on the fact that any hitting-set W0 ⊆ Fm for all
polynomials Fm → F of degree d0 has size at least (m+d0

d0
) (i.e., on Fact 2.4.12). The seed

length (in bits) for sampling from the hitting-set is thus at least d0 · log(m/d0)− ` =
d
4t · log(4mt/d) − ` ≥ Ω((d/t) · log(mt/d), where the last inequality is due to the
hypothesis that d

4t · log(mt/d) ≥ 2`.

Finally, note that if there exists a linear (k, δ)-disperser Fn
q × {0, 1}` → Fm

q with
optimal parameters, then we get a lower bound of Ω((d/t) · log(nt/d)) for essentially
all settings of the parameters. That is:
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3.6 Polynomials that vanish rarely

Corollary 3.6.13 (lower bounds assuming an optimal linear disperser). Assume that for
every n, q, k ∈ N and δ > 0 there exists a linear (k, δ)-disperser Disp : Fn

q × {0, 1}` → Fm
q

where ` = log(n · log(q)− k) + log(1/δ) +O(1) and m · log(q) = k + `− log log(1/δ)−
O(1). Then, for every constant c > 1 there exists a constant γ > 0 such that the following
holds.

Let n, q, d, t ∈N such that q ≤ 2nc
, and d < n/2, and t ≤ γ · n, and q−1

log(q) · log(nt/d) ≥

1/γ. Then, the seed length of any HSG for Pn,q,d,
√

2·q−t is at least Ω
(

d
t · log

( n·t
d

))
.

Proof. Let d0 = d/4t, and let a = d0/(q− 1) such that δ = δRM(d0, q) ≥ q−a. When
instantiating the hypothesized linear disperser with parameters n and k = (n− 2t) ·
log(q) and δ = q−a, it has seed length ` = O(log(t · log(q)) + (d/4t) · (log(q)/(q− 1)))
and output length m = Ω(n). Relying on Corollary 3.6.12, we get a lower bound of
Ω ((d/t) · log(n · (t/d))), assuming that d0 < m (which holds since we assumed that
d < n/2) and that t ≤ log(nt/d)

8` · d. Thus, we just need to verify the latter condition.
We verify the condition by a case analysis. The first case is when t ≥

√
d/4(q− 1),

which implies that the seed length is ` = O(log(t · log(q))). The condition in this case
holds since log(nt/d) = Ω(log(n)) and q ≤ 2poly(n), which implies that log(nt/d)

8` =

Ω(1). The second case is when t <
√

d/4(q− 1), which implies that the seed length
is ` = O((d/t) · log(q)/(q− 1)). The condition in this case holds if and only if q−1

log(q) ·
log(nt/d) is larger than a sufficiently large constant, which is our hypothesis.

3.6.4.2 The main lower bound: Proof of Theorem 3.6.1

In this section we prove lower bounds that hold also when the degree is much larger
than the field size (i.e., d� q). Specifically, we will prove the following, more general
version of Theorem 3.6.1:

Theorem 3.6.14 (a lower bound using the Shaltiel-Umans linear disperser; a more
general version of Theorem 3.6.1). For any two constants γ > 0 and γ′ > 0 there exists
a constant γ′′ > 0 such that the following holds. Let n, d, t, q ∈ N such that q ≤ n1/γ′ is a
prime power, d ≤ n/4, and:

• (essentially all values of ε = q−t) t ≤ γ′′ · log(nt/d)
log(n) · d.

• (auxiliary condition that holds for typical settings) q−1
log(q) · log(nt/d) ≥ 1/γ′′.

• (main condition: d/t is upper-bounded) d/t ≤ γ′′ ·min
{

q−1
log(q) · n

γ, n1−(γ+γ′)
}

.

Then, the seed length of any HSG for Pn,q,d,
√

2·q−t is at least Ω
(

d
t · log

(
n1−(γ+γ′)·t

d

))
.

To deduce Theorem 3.6.1 from Theorem 3.6.14, note that if we are willing to assume
that d ≤ n.49, then we can choose γ = .499 and γ′ > 0 that is sufficiently small, and
the three conditions in Theorem 3.6.14 hold for every q ≤ n1/γ′ and t ≤ γ′′ · d.
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To prove Theorem 3.6.14 we will instantiate Corollary 3.6.12 with a linear disperser
that we will construct relying on the extractor of Shaltiel and Umans [SU05]. Recall
that [SU05] constructed an extractor Ext : {0, 1}n×{0, 1}` → {0, 1}m by first construct-
ing what they called a q-ary extractor, whose output lies in a field of size poly(n) and
only satisfies a relatively-weak unpredictability requirement, and then transforming
the q-ary extractor to a standard extractor over the binary alphabet (the transforma-
tion follows an idea of Ta-Shma, Zuckerman, and Safra [TSZS06]).

We want to construct a low-degree disperser Disp : Fn
q × {0, 1}` → Fq where the

field Fq is of size much smaller than poly(n) (i.e., q ≤ nγ′ for some small constant
γ′ > 0). To do so, we take as a starting-point their construction of a q0-ary extractor
from [SU05], where q0 = poly(n), and then generalize their transformation of q0-ary
extractors to standard extractors (and in particular dispersers) such that the resulting
extractor is both over the field Fq, rather than over a binary alphabet, and linear.

Towards presenting the construction, let us first recall the definition of q0-ary ex-
tractors and the main construction of such objects from [SU05].

Definition 3.6.15 (q0-ary extractor). For n, k, m, ` ∈ N and ρ > 0, and a prime power
q0 ∈ N, we say that Ext0 : Fn

q0
× {0, 1}` → Fm

q0
is a (k, ρ) q0-ary extractor if for every

random variable x over Fn
q0

with min-entropy at least k, and every i ∈ [m], and every function

P : Fi−1
q0
→ F

ρ−2

q0 , it holds that Prx∼x,u∼u`
[P(Ext0(x, u)1, ..., Ext0(x, u)i−1) 3 Ext0(x, u)i] ≤

ρ.

Theorem 3.6.16 ([SU05, Thm 4.5, Item 1]). There exists a universal constant c > 1 such
that the following holds. Let n0, q0, k, m, r, h ∈ N and ρ > 0 such that q0 is a prime power,
and the following inequalities hold:

1. (Sufficiently large auxiliary parameters h and r) n0 ≤ (h+r−1
r ).

2. (Sufficiently large field) q0 ≥ c · (h·r)
2

ρ4 .

3. (Sufficiently small output length) m ≤ k−log(1/ρ)
c·h·r·log(q0)

.

Then, there exists an r × r matrix A over Fq0 such that the following holds. Let Ext0 :
F

n0
q0 × {0, 1}r·log(q0) → Fm

q0
be defined by Ext0(x, v) = px(A1 · v) ◦ px(A2 · v) ◦ ... ◦ px(Am ·

v), where v is interpreted as an element in Fr
q0

, and px : Fr
q0
→ Fq0 is the r-variate polynomial

of total degree h− 1 whose coefficients are specified by x. Then, Ext0 is a (k, ρ) q0-ary extractor.

Note that in [SU05] the input of the extractor is represented in binary and inter-
preted as n0 elements in Fq, whereas in Theorem 3.6.16 we considered the input as n0
elements in Fq. The two formulations are equivalent, since a random variable over F

n0
q0

has min-entropy k if and only if the corresponding random variable over {0, 1}n0·log(q0)

has min-entropy k. Also note that [SU05, Lem 4.4] showed that A can be constructed in
time qO(r)

0 (by an exhaustive search over the field F(q0)r ), and deduced that the extractor
is efficiently computable; however, we will not use this property of the extractor.
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We now present the transformation of q0-ary extractors to standard extractors
whose inputs and outputs are vectors over Fq, where q � q0; as mentioned above,
the proof generalizes an idea from [TSZS06]. The intuition for this transformation
is the following. Consider the output distribution of a q0-ary extractor as consisting
of blocks of elements from Fq, where each block represents a single element from
Fq0 ; by definition, the output distribution of a q0-ary extractor is “next-element un-
predicatable”, and hence the distribution of elements from Fq is a block source (see,
e.g., [Vad12, Section 6.3.1]). Following Nisan and Zuckerman [NZ96], we compose
the q0-ary extractor with a strong extractor over Fq that outputs a single element (and
maps each block to a single element) and obtain an extractor over Fq. We will specifi-
cally use a single-output extractor that is obtained from a linear list-decodable code (see,
e.g., [TSZ04, Claim 4.1]), relying on well-known constructions of such codes.59

Proposition 3.6.17 (transforming a q0-ary extractor into a standard extractor over Fq).
Let ρ > 0, let q be a prime power, let q0 = q∆ for some ∆ ∈ N, and let C : F∆

q → F∆̄
q be a

(1− 1/q− ρ, ρ−2)-list-decodable code. Assume that Ext0 : F
n0
q0 × {0, 1}`0 → Fm

q0
is a (k, ρ)

q0-ary extractor. Let Ext : Fn
q × {0, 1}` → Fm

q , where n = n0 · ∆ and ` = `0 + log(∆̄), be
defined by

Ext(x, (y, j)) = C(Ext0(x̂, y)1)j ◦ ... ◦ C(Ext0(x̂, y)m)j ,

where x̂ ∈ F
n0
q0 is the vector that is represented by x ∈ F

n0·∆
q . Then, Ext is a (k, 2qm · ρ)-

extractor.

Proof. Assuming towards a contradiction that Ext is not a (k, 2qm · ρ)-extractor, we will
show that Ext0 is not a (k, ρ) q0-ary extractor. For simplicity, throughout the argument
we do not distinguish between x ∈ F

n0·∆
q and x̂ ∈ F

n0
q0 .

Since Ext is not a (k, 2qm · ρ)-extractor, there exists a random variable x over Fn
q

with min-entropy at least k such that Ext(x, u`) is (2qm · ρ)-far from the uniform distri-
bution over Fm

q . By a standard argument showing that next-element unpredictability
of a distribution implies that the distribution is close to uniform (see Appendix 3.6.6.1),
there exists an index i ∈ [m] and a function f : Fi−1

q → Fq such that

Pr
x∼x,(y,j)∼u`

[ f (Ext(x, (y, j))1, ..., Ext(x, (y, j))i−1) = Ext(x, (y, j))i] > 1/q + 2ρ . (3.6.1)

For any fixed (x, y) ∈ Fn
q × {0, 1}`0 , let cx,y be the string that is obtained by

encoding each of the first i − 1 output elements of Ext0(x, y) by the code C; that
is, cx,y = C(Ext0(x, y)1), ...,C(Ext0(x, y)i−1) ∈ (F∆̄

q )
i−1. Also, for any j ∈ [∆̄], let

c(j)
x,y ∈ Fi−1

q be the string that is obtained by projecting each of the i − 1 symbols of

cx,y into its jth coordinate; that is, c(j)
x,y = C(Ext0(x, y)1)j, ...,C(Ext0(x, y)i−1)j. Note that

c(j)
x,y = Ext(x, (y, j))1, ..., Ext(x, (y, j))i−1.

59In fact, since in our case the output of the q0-ary extractor is not only unpredictable but also unpre-
dictable by predictors that output a list of elements, we use a simpler proof that does not go through the
notion of strong extractors.
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It follows from Equation (3.6.1) by an averaging argument that for at least a ρ-
fraction of the pairs (x, y) ∈ Fn

q × {0, 1}` it holds that

1/q + ρ < Pr
j∈[∆̄]

[ f (Ext(x, (y, j))1, ..., Ext(x, (y, j))i−1) = Ext(x, (y, j))i]

= Pr
j∈[∆̄]

[ f (c(j)
x,y) = C(Ext0(x, y)i)j] ;

in other words, with probability at least ρ over choice of (x, y), for more than a 1/q +
ρ fraction of the coordinates j ∈ [∆̄] it holds that f (c(j)

x,y) correctly outputs the jth

coordinate of C(Ext0(x, y)i).

Let us now construct a predictor P : Fi−1
q0
→ F

ρ−2

q0 for Ext0 that succeeds with prob-
ability more than ρ. The predictor P gets i− 1 inputs Ext0(x, y)1, ..., Ext0(x, y)i−1, and
computes r = f

(
c(1)x,y

)
, ..., f

(
c(∆̄)x,y

)
∈ F∆̄

q . We think of r as a possibly-corrupt codeword

in the code C. Since C is (1− 1/q− ρ, ρ−2)-list-decodable, there are at most ρ−2 mes-
sages whose encoding is of distance at most 1− 1/q− ρ from r; the predictor outputs
this list. By the argument above, with probability at least ρ over choice of (x, y) it
holds that r will be of distance less than 1− 1/q − ρ from C(Ext0(x, y)i). For every
such (x, y), the list that P outputs will contain Ext0(x, y)i.

We now combine Theorem 3.6.16 and Proposition 3.6.17 to obtain a linear (k, δ)-
disperser Fn

q × {0, 1}` → Fm
q with output length m = k/nΩ(1) and seed length ` =

O(log(n/δ)).

Theorem 3.6.18 (an adaptation of the Shaltiel-Umans extractor to a linear disperser
over general finite fields). For any two constants γ, γ′ > 0 the following holds. Let n, k, q ∈
N such that k ≥ nγ+γ′ and q ≤ n1/γ′ , and let δ ≥ 2−nγ+log(2qn). Then, there exists a
linear (k, δ)-disperser Disp : Fn

q × {0, 1}` → Fm
q , where ` = Oγ′(log(n/δ)) and m =

Ωγ′

(
k/nγ+γ′

)
.

Proof. For a sufficiently large universal constant c ∈ N, we choose q0 to be a power
of q in the interval [(nq/δ)c, (nq/δ)2c], denote ∆ = logq(q0) = O(log(n/δ)), and let

n0 = n/∆. We also let h =
⌈

nγ′
⌉

, let r = O(1) be a sufficiently large constant, let

m = cγ′ · k/nγ+γ′ , where cγ′ > 0 is a sufficiently small constant that depends on γ′,
and let ρ = δ/2qm. We instantiate Theorem 3.6.16 with the foregoing parameters, to
obtain a q0-ary (k, ρ)-extractor Ext0 : F

n0
q0 × {0, 1}O(log(n)) → Fm

q0
. (The conditions of

Theorem 3.6.16 hold due to our hypothesized lower bounds for k and for δ.)
We now want to use Proposition 3.6.17 to transform Ext0 into a standard extractor.

As a list-decodable code we use the concatenation of the Reed-Solomon code with the
Hadamard code over Fq, which yields a linear code F∆

q → F∆̄
q with relative distance

1 − 1/q − ρ2 such that ∆̄ = O(∆/ρ2)2.60 By an appropriate version of the Johnson

60We use this specific code merely for simplicity, and since its sub-optimal parameters do not signifi-
cantly affect the final parameters of the construction.
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bound (see, e.g., [GS01, Thm 1]), the code is (1− 1/q− ρ, ρ−2)-list-decodable. Using
Proposition 3.6.17 with this code, we obtain a (k, δ)-extractor Ext : Fn

q × {0, 1}` → Fm
q ,

where ` = O(log(n)) + log(∆̄) = O(log(n/δ)).
Finally, let us verify that Ext is linear. Recall that for any fixed seed (y, j) ∈

{0, 1}r·log(q0)+log(∆̄) and output location i ∈ [m], we want to show that the function
that outputs the ith output element of Ext(x, (y, j)) is linear. To see this, note that the
ith output element of Ext(x, (y, j)) can be computed from x ∈ Fn

q by first computing
a predetermined output element of Ext0(x, y), which we denote by zy,i(x) ∈ F∆

q , and
then computing the jth output element of C(zy,i(x)), where C : F∆

q → F∆̄
q is a linear

code. Thus, it suffices to show that the mapping of x ∈ Fn
q to zy,i ∈ F∆

q is Fq-linear; this
is indeed the case since zy,i(x) is the evaluation of the multivariate polynomial px over
Fq0 whose coefficients are described in x (i.e., each block of ∆ elements in x describes
a coefficient of px) at the fixed point in Fr

q0
described by y.

Finally, we deduce our lower bound from Theorem 3.6.14 using Corollary 3.6.12
with the linear disperser from Theorem 3.6.18.

of Theorem 3.6.14. Let d0 = d/4t, and let a = d0/(q− 1) such that δ = δRM(d0, q) ≥
q−a. We instantiate the linear disperser from Theorem 3.6.18 with parameters n and
k = (n− 2t) · log(q) and δ = q−a ≥ 2−nγ+log(2qn), and with the parameters γ > 0 and
γ′ > 0. The conditions of Theorem 3.6.18 hold due to our hypotheses that d/t ≤ γ′′ ·

q−1
log(q) · n

γ (which implies that δ ≥ 2−nγ+log(2qn)) and that d ≤ n/4 (which implies that
k = Ω(n)). For these parameters, the disperser has seed length ` = O(log(n/δ)) =
O(log(n) + (d/4t) · (log(q)/(q− 1))) and output length m = Ω(n1−(γ+γ′)).

Relying on Corollary 3.6.12, we get a lower bound of Ω
(
(d/t) · log(n1−(γ+γ′) · (t/d))

)
,

assuming that d0 < m (which holds since d/4t < γ′′ · n1−(γ+γ′)) and that t ≤ log(nt/d)
8` ·

d. Thus, we just need to verify the latter condition.
We verify the condition by a case analysis. The first case is when log(n) > d log(q)

4t(q−1) ,
which implies that the seed length is ` = O(log(n)); then, the condition that we
want holds due to our hypothesis t ≤ γ′′ · log(nt/d)

log(n) · d. In the second case we have

that d log(q)
4t(q−1) ≥ log(n), which implies that the seed length is ` = O

(
d log(q)
t(q−1)

)
; then, the

condition holds since we assumed that q−1
log(q) · log(nt/d) ≥ 1/γ′′.

3.6.4.3 Improved lower bounds in two special cases

In this section we extend Theorem 3.6.14 by proving the two additional lower bounds
that were described in the beginning of Section 3.6.4. Recall that these lower bounds
have advantages over the lower bound in Theorem 3.6.14 but hold only in two specific
settings.

The first lower bound is for the setting of d ≤ q. Recall, from Section 3.6.2, that
this setting is relatively easier to handle, since the corresponding Reed-Muller code
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has constant relative distance. To prove the lower bound we will instantiate Corol-
lary 3.6.12 with the disperser from Theorem 3.6.16 used with the error parameter
δ = Ω(1).61

Theorem 3.6.19 (a lower bound when d ≤ q). For any constant η > 0 there exists a
constant η′ > 0 such that following holds. Let n, q, d, t ∈N such that q is a prime power, and
d/t ≤ min{3q, η′ · n1−2η}, and t ≤ η′ · d. Then, the seed length of any HSG for Pn,q,d,

√
2·q−t

is at least Ω
(

d
t · log

(
n1−η ·t

d

))
.

Proof. Let d0 = d/4t, and note that d0 ≤ (3/4) · q, which implies that δ = δRM(d0, q) ≥
1/4. We instantiate the disperser from Theorem 3.6.16 with parameters n and k =
(n− 2t) · log(q) and δ = 1/4, and with γ = γ′ = η/2. For such parameters, this dis-
perser has seed length ` = O(log(n)) and output length m = Ω(n1−η). The statement
follows using Corollary 3.6.12 with the parameters m, q, d0, t and with this disperser;
the requirement that d0 < m is satisfied since d/t ≤ η′ · n1−2η < m, and the require-
ment that t ≤ log(mt/d)

8` · d is satisfied since log(mt/d) = Ω(log(n)), relying on the
hypothesis that t/d ≤ n1−2η .

The second lower bound holds only over fields of constant size. Recall that this
lower bound is of the stronger form Ω((d/t) · log(nt/d)) (as in Corollary 3.6.13), and
holds even for high degrees up to Ω(n), and for every t /

√
d. More accurately:

Theorem 3.6.20 (a lower bound using the local-expander disperser). For every constant
prime power q there exists a constant αq > 0 such that the following holds. Let n, d, t ∈ N

such that 2 · (q− 1) ≤ d ≤ n/22(q−1) and t ≤ αq ·
√

log(nt/d) ·
√

d. Then, the seed length

of any HSG for Pn,q,d,
√

2·q−t is at least Ω
(

d
t · log

( n·t
d

))
.

To prove Theorem 3.6.20, we will instantiate Corollary 3.6.12 with linear dispersers
that can be obtained from the recent construction of linear 1-local expanders over a
constant-sized alphabet by Goldreich [Gol16], following Viola and Wigderson [VW17].
Let us first recall the definition of linear 1-local functions and Goldreich’s result:

Definition 3.6.21 (linear local functions). We say that a function f : Fn
q → Fm

q is linear

1-local if each output bit of f is an Fq-linear function of a single input bit of f .

Note that the composition of linear 1-local functions is linear 1-local. Then, Gol-
dreich [Gol16], proved that there exist expanders over Fn

q whose neighbor functions
are 1-local Fq-linear functions. Specifically:

Theorem 3.6.22 (local expanders [Gol16]). Let Fq be a field of constant size. Then, for any
sufficiently large n ∈ N there exists an expander (i.e., a graph with a constant spectral gap)
G = ([qn], E) of degree ∆ = Oq(1) that satisfies the following. For each i ∈ [∆], the ith

neighbor function fi : [qn]→ [qn] of the graph is a linear 1-local function.
61Additional lower bounds for this setting, which admit different trade-offs between the lower bound

itself and the requirements on d/t, can be proved by instantiating Corollary 3.6.12 with other dispersers
(e.g., with the naive disperser or with the subspace sampler). For simplicity, we omit these statements.
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3.6 Polynomials that vanish rarely

We now use a standard transformation of expanders to extractors: The input to the
extractor is a name of a vertex, the seed specifies the directions in a walk of suitable
length, and the output is the final vertex in the corresponding walk (that starts from
the input vertex and proceeds according to the seed). The crucial point is that for every
fixed seed, the output of the extractor is obtained by applying fixed neighbor functions
(which correspond to the walk specified in the seed) to the input; in particular, since
the neighbor functions are linear, the resulting disperser is also linear.

Theorem 3.6.23 (expanders yield good extractors; see, e.g., Theorem 6.22 in [Vad12]).
For any q, n ∈ N, let G = ([qn], E) be an expander (i.e., a graph with a constant spectral
gap) of degree ∆ = O(1). For k < n · log(q) and δ > 0, let Disp : Fn

q × {0, 1}` → Fn
q ,

where ` = r · log(∆) and r = O(n · log(q)− k + log(1/δ)), be defined as follows. For every
x ∈ Fm

q and w ∈ {0, 1}`, consider the r-long walk on G that starts from x, and let Disp(x, w)
be the final vertex in this walk. Then, Disp is a (k, δ)-disperser.

Theorem 3.6.24 (a linear disperser from a local expander). Let Fq be a field of constant
size, let n ∈ N be sufficiently large, and for a, t ∈ N let k = (n− 2t) · log(q) and δ = q−a.
Then, there exists a linear (k, δ)-disperser Disp : Fn

q × {0, 1}` → Fn
q , where ` = Oq(t + a).

Moreover, the function that maps x to {Disp(x, w)}w∈{0,1}` is linear 1-local.

Proof. We use the disperser from Theorem 3.6.23, instantiated with the expander from
Theorem 3.6.22, and with error parameter δ = q−a and with k = (n− 2t) · log(q).

To show that the mapping x 7→ {Disp(x, w)}w∈{0,1}` is linear 1-local, fix any w ∈
[2`], and let us focus on the wth output element of Disp. Recall that the wth output
element is the final vertex in a walk of length r that starts at the input x ∈ Fn

q to
Disp and whose steps are described by w. In particular, let f1, ..., f∆ be the neighbor
functions of G, and let (i1, ..., ir) ∈ [∆]r be the r steps taken in the fixed walk w; then,
Disp(x)w = fir( fir−1(...( fi1(x))...)). Since each of the neighbor functions is a linear 1-
local function, their composition is also linear 1-local. Hence, for every w ∈ {0, 1}` it
holds that Disp(·)w is a linear 1-local function.

We now prove Theorem 3.6.20 by instantiating Corollary 3.6.12 with the linear
disperser from Theorem 3.6.24:

of Theorem 3.6.20. Let d0 = d/4t, and let a = d0/(q− 1) such that δ = δRM(d0, q) ≥
q−a. When instantiating the disperser from Theorem 3.6.24 with parameters n and
k = (n − 2t) · log(q) and δ = q−a, it has seed length ` = Oq(t + a). Relying on
Corollary 3.6.12, we get a lower bound of Ω ((d/t) · log(nt/d)), assuming that t ≤
log(nt/d)

8` · d. Thus, we just need to verify the latter condition.

Note that t ≤ log(nt/d)
8` · d if and only if t · (t + a) ≤ cq · log(nt/d) · d, where cq is a

constant that depends only on q. Since t · (t + a) = t2 + d/4(q− 1), it suffices to prove
that

t2 + d/4(q− 1) ≤ cq · log(nt/d) · d ⇐⇒

t ≤ √cq ·
√
(log(nt/d)− 1/4(q− 1)) ·

√
d .
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Finally, since d ≤ n/22(q−1) we have that log(nt/d) − 1/4(q − 1) ≥ 1
2 · log(nt/d).

Hence, it suffices that t ≤ (
√

cq/2) ·
√

log(nt/d) ·
√

d, which holds due to our hypoth-
esis (using αq =

√
cq/2).

3.6.5 Small sets with a large degree-d closure

In this section we establish a connection between the study of HSGs for polynomials
that vanish rarely, and the study of small sets with large degree-d closures, which was
recently initiated by Nie and Wang [NW15]. To do so let us first define the degree-d
closure of a set S ⊆ Fn:

Definition 3.6.25 (degree-d closure). Let F be a finite field, and let n, d ∈N. Then, for any
S ⊆ Fn, we define the degree-d closure of S, denoted Cl(d)(S), by Cl(d) = {x ∈ Fn : ∀p ∈
I(S), p(x) = 0}, where I(S) = {p : Fn → F : deg(p) = d ∧ ∀s ∈ S, p(s) = 0}.

We now prove Theorem 3.6.5, which shows two reductions. Loosely speaking, we
show that any set with degree-d closure of size qn−t is a hitting-set for polynomials that
vanish with probability at most q−t; and we show that any hitting-set for polynomials
that vanish with probability at most q−t has degree-d′ closure of size qn−t/2, for d′ that
is not much smaller than d.

Theorem 3.6.26 (small sets with large closures are equivalent to hitting-sets for poly-
nomials that vanish rarely; Theorem 3.6.5, restated). Let F be a field of size q, let n ∈ N

and t < d < n, and let S ⊆ Fn. Then,

1. If
∣∣∣Cl(d)(S)∣∣∣ > qn−t, then S is a hitting-set for Pn,q,d,q−t .

2. If S is a hitting-set for Pn,q,d,q−t , then
∣∣∣Cl(d/2(t+1))(S)

∣∣∣ > 1
2 · qn−t.

Proof. For the first statement, let S ⊆ Fn be such that
∣∣∣Cl(d)(S)∣∣∣ > qn−t. Then, every

degree-d polynomial that vanishes on S also vanishes on more than qn−t of the inputs.
It follows that S is a hitting-set for Pn,q,d,q−t .

For the second statement, for d′ = d/2(t + 1), assuming that
∣∣∣Cl(d′)(S)∣∣∣ ≤ 1

2 · qn−t,
we construct a degree-d polynomial that vanishes on S and that vanishes on at most
qn−t inputs in Fn (and it follows that S is not a hitting-set for Pn,q,d,q−t ).

To construct the polynomial, let T1 = Fn \ Cl(d′)(S). Note that for every x ∈ T1
there exists a degree-d′ polynomial px that vanishes on S, but does not vanish at x.
We can thus construct a collection P1 of degree-d′ polynomials such that for every
x ∈ T1 there exists a corresponding px ∈ P1 satisfying px(x) 6= 0. (Indeed, a single
polynomial might “cover” two distinct inputs, i.e. px = py for x 6= y.)

Now, consider the distribution p1 over polynomials Fn → F that is defined by

p1(z) = ∑
x∈T1

cx · px(z) ,
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where the coefficients cx are uniformly and independently chosen in F. Note that p1
is supported by polynomials of degree d′ that vanish on S. Also note that for any fixed
z ∈ T1 we have that

Pr[p1(z) = 0] = Pr

[
∑

x∈T1

cx · px(z) = 0

]

= E{cx}x∈T1\{z}

[
Pr

[
cz · pz(z) = − ∑

x∈T1\{z}
cx · px(z)

]]
,

which equals 1/q since pz(z) 6= 0. Therefore, there exists a fixed polynomial p of
degree d′ that vanishes on S and on at most 1/q of the inputs in T1.

We now repeat this step t additional times, while maintaining the invariant that
for every x ∈ Ti there exists a polynomial px ∈ Pi such that px(x) 6= 0. Specifically, for
i = 2, ..., t + 1, we let Ti = Ti−1 ∩ {x ∈ Ti : pi−1(x) = 0} and Pi = Pi−1 \ {pi−1}. Note
that |Ti| ≤ |Ti−1|/q, and that for every x ∈ Ti there exists px ∈ Pi such that px(x) 6= 0.
We again define a distribution pi(z) = ∑x∈Ti

cx · px(z), and using the same argument
as above, we deduce that there exists a fixed polynomial pi of degree d′ that vanishes
on S and on at most 1/q of the inputs in Ti.

After t + 1 steps we obtain t + 1 polynomials p1, ..., pt+1 of degree d′ that vanish

on S such that
∣∣∣{x /∈ Cl(d)(S) : ∀i ∈ [t], pi(x) = 0}

∣∣∣ ≤ |T1|/qt+1 ≤ 1
2 · q−t. Let p :

Fn → F be the multivalued OR of p1, ..., pt+1, defined by p(x) = mvOR(p1(x), ..., pt(x)).
Note that deg(p) < 2(t + 1) · d′ = d, and that p vanishes on S. Thus, denoting

δ =
∣∣∣Cl(d′)(S)∣∣∣/qn ≤ 1

2 · q−t, we have that

Pr
x∈Fn

[p(x) = 0] = δ + (1− δ) · q−(t+1) < q−t ,

which implies that p ∈ Pn,q,d,q−t . Hence, S is not a hitting-set for Pn,q,d,q−t .

As mentioned in Section 3.6.1.3, we can obtain an upper-bound on the size of
Cl(d)(S) for any sufficiently-small set S, by combining Theorem 3.6.14 and the first
item of Theorem 3.6.26. Specifically, we can deduce that for every 2 ≤ q ≤ poly(n)
and d ≤ n.49 and t ≤ γ · d (where γ > 0 is a sufficiently small constant), any set S of

size |S| ≤ nγ·(d/t) satisfies
∣∣∣Cl(d)(S)∣∣∣ ≤ qn−t. However, this corollary is superseded by

the upper-bound of [NW15], who showed that for any S ⊆ Fn it holds that
∣∣∣Cl(d)(S)∣∣∣ ≤

|S|
(n+d

d )
· qn.

Indeed, since the problem of constructing small sets with large degree-d closures
is at least as hard as the problem of constructing HSGs for polynomials that vanish
rarely (due to the first item of Theorem 3.6.26), it might be inherent that a direct lower
bound on the former problem is stronger than a lower bound that is obtained via a
reduction from the latter problem.
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3.6.6 Appendices for Section 3.6

3.6.6.1 Next-element unpredictability over large alphabets

Recall that, as proved by Yao [Yao82], if a distribution w over {0, 1}m is next-bit un-
predictable, then w is close to the uniform distribution. In this appendix we prove a
generalized version of this claim that applies also to distributions over Σm where Σ is
an alphabet of arbitrary size.

Proposition 3.6.27 (next-element unpredictability implies closeness to uniform, over
arbitrary alphabets). Let Σ be a set of size q = |Σ|, let w be a distribution over Σm, and
assume that the statistical distance between w and the uniform distribution on Σm, denoted
um, is at least ρ > 0. Then, there exists i ∈ [m] and a function P : Σi−1 → Σ such that
Pr[wi = P(w1, ..., wi−1)] > 1/q + ρ/qm,.

Proof. Let h(0) = un, and for i ∈ [m] let h(i) be the distribution over Σm such that its
first i elements are sampled from w and its last m− i elements are sampled uniformly
and independently. By a standard hybrid argument, for some i ∈ [m] it holds that
the statistical distance between h(i−1) and h(i) is at least ρ/m. Hence, there exists
T : Σi → {0, 1} such that

Pr[T(h(i)
1,...i) = 1]− Pr[T(h(i−1)

1,...,i ) = 1] > ρ/m .

Now, for any w1, ..., wi−1 ∈ Σi−1, let

P(w1, ..., wi−1) = argmaxz∈Σ {Pr [wi = z|w1,...,i−1 = w1,...,i−1]} .

Denote Prw∼w[wi = P(w1,...,i−1)]
def
== (1/q + δ), where δ ∈ [0, 1]. Our goal is to

prove that δ > ρ/qm. By the definition of P, for every z ∈ Σ and w1,...,i−1 ∈ Σi−1 we
have that

Ew∼w [Pr[wi = z|w1,...,i−1 = w1,...,i−1]] ≤ 1/q + δ .

Thus, we have that

Pr[T(h(i)
1,...i) = 1]− Pr[T(h(i−1)

1,...,i ) = 1]

= Eui+1,...,n∼un,w1,...,i−1∼w

[
∑
z∈Σ

Pr[wi = z|w1,...,i−1 = w1,...,i−1] · T(w1, ..., wi−1, z, ui+1, ..., un)

− 1
q
· ∑

z∈Σ
T(w1, ..., wi−1, z, ui+1, ..., un)

]
≤ Eui+1,...,n∼un,w1,...,i−1∼w

[
∑
z∈Σ

(1/q + δ) · T(w1, ..., wi−1, z, ui+1, ..., un)

− 1
q
· T(w1, ..., wi−1, z, ui+1, ..., un)

]
≤ q · δ ,

which implies that δ > ρ/qm.
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3.6.6.2 An alternative argument for lower bounds

In this appendix we describe an alternative argument for proving a lower bound on
the size of hitting-sets for polynomials that vanish rarely; this argument was suggested
to us by an anonymous reviewer. We note in advance that this argument is known to
work only for prime fields (for reasons that will be explained below), and that our
main reason for presenting it is since it is simple and elegant. For simplicity, we first
present the argument only for the field F2.

Recall, from the “warm-up” in Section 3.6.2.1, that a lower bound on the seed
length of any hitting-set generator for Pn,q,d,t can be proved quite easily (i.e., with
the naive disperser and without “randomized tests”) when the corresponding Reed-
Muller code has constant relative distance. The main technical ingredient underlying
the alternative argument is the existence of a large subcode of the Reed-Muller code that
has constant relative distance; the existence of such a subcode can be deduced using
the following lemma by Ben-Eliezer, Hod, and Lovett [BHL12]. Towards stating the
lemma, we define the bias of a function f : Fn

2 → F2 to be bias( f ) = Prx∈Fn
2
[ f (x) =

0]− Prx∈Fn
2
[ f (x) = 1] = 2 Prx[ f (x) = 0]− 1. The following is showed in [BHL12]:

Lemma 3.6.28 (a random F2-polynomial is unbiased [BHL12, Lemma 2]). For every
constant ε > 0 there exist constants α, β > 0 such that the following holds. For n ∈ N and
d ≤ (1− ε) · n, let p be a uniformly-chosen degree-d polynomial in Fn

2 → F2. Then, it holds
that

Pr
[∣∣∣ bias(p)

∣∣∣ > 2−α·(n/d)
]
≤ 2−β·(n+d

d ).

Loosely speaking, the fact that a random degree-d polynomial is unbiased im-
plies that the difference between two random degree-d polynomials is unbiased, or in
other words that two random degree-d polynomials disagree on ≈ 1/2 of their inputs.
Hence, when independently choosing many random degree-d polynomials, with high
probability the subcode spanned by them has distance close to 1/2; that is, there exists
a large subcode of the Reed-Muller code with relative distance close to 1/2. In more
detail:

Corollary 3.6.29 (a large subcode of the Reed-Muller code with constant relative dis-
tance). For every ε > 0 there exists γ > 0 such that the following holds. For every sufficiently
large n ∈ N and d ≤ n.99 there exists a linear subcode of the [n, d] Reed-Muller code over F2

that has dimension at least γ · (n+d
d ) and relative distance at least 1/2− ε.

Proof. Fix ε > 0, and let γ > 0 be sufficiently small. For two polynomials f1, f2 : Fn
2 →

F2, let agr( f1, f2) = Prx∈Fn
2
[ f1(x) = f2(x)] = Prx[ f1(x)− f2(x) = 0] = 1

2 + bias[ f1 −
f2]/2. Denoting a uniformly-chosen degree-d polynomial Fn

2 → F2 by p, we choose
D′ = γ · (n+d

d ) polynomials b1, ..., bD′ ∼ p, and denote the subcode of the Reed-Muller
code spanned by these polynomials by C ′ = {f1, ..., fT}, for T ≤ 2D′ .

First note that with high probability T = 2D′ , or in other words the bi-s are linearly
independent. This is the case since if we choose the bi-s sequentially, then at each
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iteration i ∈ [D′], the probability that bi lies in the subspace spanned by the i − 1
previously-chosen polynomials is at most 2(i−1)−(n+d

d ) < 2D′−(n+d
d ) = o(1/D′).

Now, conditioned on the event that T = 2D′ , note that for every fixed i ∈ [2D′ ] it
holds that fi is uniformly distributed (i.e., its marginal distribution is p). Thus, for
every fixed i ∈ [2D′ ] we have that

Pr[∃j 6= i : agr(fi, fj) > 1/2 + ε] = Pr[∃j 6= i : bias(fi − fj) > 2ε]

= ∑
p∈supp(p)

Pr[fi = p] · Pr[∃j 6= i : bias(p− fj) > 2ε]

< 2D′ · Pr[bias(p) > 2ε] · ∑
p∈supp(p)

Pr[fi = p]

≤ 2(γ−β)·(n+d
d ) , (Lemma 3.6.28)

where β = β(ε) and we used the fact that 2−α·(n/d) ≤ 2ε′ for every constant α = α(ε)
and large enough n. Taking γ < β to be a sufficiently small constnat, the above is o(1).
Therefore, with high probability over choice of b1, ..., bD′ , the linear subcode induced
by our choice has dimension D′ and relative distance at least 1/2− ε′.

We now prove the lower bound. Loosely speaking, using the simple reduction that
was described in the “warm-up” in Section 3.6.2.1, we show that if there exists a small
hitting-set for degree-d polynomials Fn

2 → F2 that vanish rarely then there exists a
small hitting-set for the large subcode from Corollary 3.6.29.

Theorem 3.6.30 (a lower bound using subcodes of the Reed-Muller code). There exists
a universal constant α > 0 such that the following holds. For any sufficiently large n ∈ N,
d ≤ n.99, and t ∈ N such that t < α · d, the seed length of any hitting-set generator for
Pn,2,d,2−t is at least Ω((d/t) · log(n)).

Proof. Let δ > 0 be a sufficiently small constant, let n ∈ N be sufficiently large, let
d ≤ (1 − ε) · n, and let t < d. Assume towards a contradiction that there exists a
hitting-set S ⊆ Fn

2 for Pn,2,d,2−t of size δ · (n+d/t
d/t ).

Now, let d0 = bd/4tc, let t′ = 2t, and let m = bn/t′c. Let C ′ ⊆ Fm
2 be a linear

subcode of the Reed-Muller code Fm
2 → F2 of degree d0 that has dimension γ · (m+d0

d0
)

and relative distance at least .49, whose existence is guaranteed by Corollary 3.6.29.
We construct a hitting-set for C ′ as follows. For every polynomial p ∈ C ′, consider

the polynomial p′ : Fm·t′
2 → F2 such that p′(z) = mvOR(p(z(1)), ..., p(z(t

′))), where we
think of z = z(1), ..., z(t

′) such that for each i it holds that z(i) is an m-bit string. Note that
the degree of p′ is less than 4d0 · t ≤ d, and that Prz∈Ft′ ·m

2
[p′(z) = 0] = Prx∈Fm

2
[p(x) =

0]t
′ ≤ 2−t. By our assumption that S is a hitting-set for Pn,2,d,2−t , there exists z ∈ S

such that p′(z) 6= 0, which implies that for some i ∈ [t′] it holds that p(z(i)) 6= 0.
Thus, the set S0 = {z(i) : z ∈ S, i ∈ [t′]} is a hitting-set for C ′ of size at most 2t · |S|.

Now, relying on Fact 2.4.12, any hitting-set for C ′ is of size at least dim(C ′) = γ · (m+d0
d0

),
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and hence |S| ≥ γ · (m+d0
d0

)/t. The seed length for sampling from S is thus at least

Ω (d0 · log((m + d0)/d0)− log(t)) = Ω ((d/t) · log(n/d)− log(t)) ,

which simplifies to Ω((d/t) · log(n)) relying on the hypotheses that d ≤ n.99 and
t ≤ α · d, for a sufficiently small universal constant α > 0.

To generalize the foregoing argument to fields other than F2, note that the only
place where we used the fact that the field is F2 is when deducing the existence of
a large subcode of the Reed-Muller code (i.e., in Corollary 3.6.29, which relied on
Lemma 3.6.28). The argument can be generalized to any prime field, relying on a
generalization of Lemma 3.6.28 to arbitrary prime fields that was recently proved by
Beame, Gharan, and Yang [BGY18]. However, we are not aware of an analogous result
for non-prime fields.

3.7 Limitations of two “black-box” techniques

3.7.1 The main results

A main goal in the study of quantified derandomization is to use this framework in
order to solve the standard derandomization problem (i.e., CAPP). Specifically, fix a
circuit class C, and assume that we constructed an algorithm that reduces the stan-
dard derandomization problem of C to quantified derandomization of C with Bred

exceptional inputs (e.g., such an algorithm can get as input a circuit C ∈ C over m bits
with at most 2m/3 exceptional inputs, and construct a circuit C′ ∈ C over n = poly(m)
bits with at most Bred(n) exceptional inputs, such that the most frequent output of C′

equals the most frequent output of C). Also assume that we constructed an algorithm
for quantified derandomization of C that can handle Balg exceptional inputs. Then,
if Balg(n) ≥ Bred(n), we can combine both algorithms in the straightforward way to
obtain an algorithm for standard derandomization of C.

In this section we show a limitation of two specific natural techniques in quantified de-
randomization. One technique is used to reduce standard derandomization to quanti-
fied derandomization, and is based on error-reduction using seeded extractors that are
computable by circuits in C. The other technique is used to construct quantified de-
randomization algorithms, and is based on pseudorandom distributions of restrictions
that simplify every circuit C ∈ C, with high probability. The two foregoing techniques,
which are described in detail in Section 3.7.2, only rely on “black-box” access to the
input circuit C; that is, the algorithm (either for the reduction or for quantified de-
randomization) does not use the explicit description of C, beyond the guarantee that
C ∈ C and the ability to evaluate C at arbitrarily-chosen inputs.

Informally, our main theorem asserts that the straightforward combination of the
two foregoing techniques cannot suffice to yield a standard derandomization algo-
rithm. This is the case since the function Bred for quantified derandomization to which
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standard derandomization is reduced is necessarily larger than the function Balg that
the quantified derandomization algorithm can handle. That is,

Theorem 3.7.1 (a limitation of two “black-box” techniques in quantified derandomiza-
tion; informal). Assume that there exists a reduction of standard derandomization of a class
C to quantified derandomization of C with Bred exceptional inputs that is based on seeded ex-
tractors that are computable in C. Also assume that there exists a quantified derandomization
algorithm for C with Balg exceptional inputs that is based on a distribution over restrictions
that simplifies every C ∈ C to a constant, with high probability. Then, Balg(n) < Bred(n).

This result is particularly meaningful for derandomization of AC0. Recall, from
Section 3.3, that n this setting, we know of a reduction to quantified derandomization
with Bred exceptional inputs and of a quantified derandomization algorithm with Balg

inputs such that Bred and Balg are very close (i.e., both are of the form 2n/poly log(n)).
However, the algorithms for both these results rely on the aforementioned “black-
box” techniques, and therefore Theorem 3.7.1 implies that one cannot hope to obtain
a standard derandomization algorithm for AC0 by merely improving the parameters
of the underlying technical results. Nevertheless, for other circuit classes, results in
quantified derandomization were obtained using different techniques, which are not
“black-box”; in particular, such results were obtained for various subclasses of AC0[⊕]
and for sparse T C0 circuits (see Section 3.7.2 for more details).

Organization. In Section 3.7.2 we describe the two “black-box” techniques that are
the focus of the current text. In Section 3.7.3 we prove the main theorem (i.e., The-
orem 3.7.1). In Section 3.7.4 we discuss several relaxations of the hypotheses of the
main theorem (i.e., several natural modifications of the two “black-box” techniques)
that do not seem sufficient to bypass the conclusion of the theorem.

3.7.2 Two black-box techniques for quantified derandomization

Throughout the text, whenever we refer to a class C of circuits, we will always think
of C as a set of circuits, rather than a collection of such sets. That is, we consider
C =

⋃
n∈N Cn, where Cn is some fixed set of circuits over n input bits. This is done

merely for simplicity of presentation, and all results extend to the standard setting
(i.e., when considering circuit families) in a natural way.

3.7.2.1 Error-reduction using a C-computable sampler

The first technique that we discuss is used to reduce standard derandomization of
a circuit class C to quantified derandomization of C. This technique is based on
randomness-efficient error reduction, using seeded extractors (equivalently, averaging
samplers; see, e.g., [Vad12, Cor. 6.24], [Gol08, Apdx. D.4.1.2]) that are computable
by C-circuits. Let us now properly define this notion, while slightly diverging from
Definition 2.5.5 (specifically, we fix the accuracy parameter of the sampler to be 1/10,
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we measure the number of “bad” inputs for the sampler rather than the fraction, and
we account for the circuit class in which the sampler is computable).

Definition 3.7.2 (C-computable sampler). For Bred : N → N, we say that a function
Samp : {0, 1}n × {0, 1}s → {0, 1}m is a Boolean sampler with Bred bad inputs if it satisfies
the following: For every T ⊆ {0, 1}m, for all but at most Bred of the inputs x ∈ {0, 1}n

it holds that Pri∈{0,1}s [Samp(x, i) ∈ T] ∈ |T|/2m ± 1/10. For a circuit class C, we say
that Samp is computable in C if for every fixed i ∈ {0, 1}s, each output bit of the function
Samp(i)(x) = Samp(x, i) is computable by a circuit in C.

Samplers that are computable in a circuit class C can be used for error-reduction
of C-circuits. Specifically, assume that for every m ∈ N we can efficiently construct
circuits for the output bits of a C-computable sampler Samp : {0, 1}n × {0, 1}s →
{0, 1}m with Bred bad inputs. Then, given a circuit C ∈ C over m input bits, we
can efficiently construct a circuit C′ : {0, 1}n → {0, 1} that gets input x ∈ {0, 1}n,
computes the 2s outputs of the sampler on x (each output is an m-bit string), evaluates
C on each of these outputs, and outputs the majority of the evaluations of C; that is,
C′(x) = MAJ

(
{C(Samp(x, i))}i∈{0,1}s

)
. If C accepts (resp., rejects) all but at most 2m/3

of its inputs, then C′ accepts (resp., rejects) all but at most Bred(n) of its inputs.
We typically want to minimize the overhead of C′ with respect to the original cir-

cuit C, since we reduce the standard derandomization problem of C to quantified
derandomization of C′. Hence, typical settings of the parameters are n = poly(m) and
s = O(log(n)), such that the size of C′ is polynomial in the size of C. Also observe
that the majority function in the definition of C′ can be replaced by an “approximate
majority” (i.e., a function that distinguishes between strings with relative Hamming
weight ≤ 0.49 and strings with relative Hamming weight ≥ 0.51, as in [Ajt83; Vio09a]).
For further discussion of the effect of the “overhead” when constructing C′, see Sec-
tion 3.7.3.

Observe that the algorithm above (that constructs the circuit C′) uses the same
sampler Samp, regardless of the input circuit C ∈ C. Thus, in order to evaluate C′ at
any point, the algorithm does not need the explicit description of C, but rather only
“black-box” access to C (i.e., the ability to evaluate C at arbitrarily-chosen points).

This approach has been used to reduce standard derandomization to quantified
derandomization in the contexts of AC0 circuits (see Section 3.3, which uses the ex-
tractor of [CL16]), of AC0[⊕] circuits (see [GW14, Thm 1.4] and Section 3.4), and of
T C0 circuits (see Section 3.5). A somewhat different approach for error-reduction was
taken in [GW14, Thm 3.4 in the full version]; their approach is also insufficient to by-
pass the limitation in our main theorem, but is interesting in its own right (see further
discussion in Section 3.7.4.2).

3.7.2.2 A quantified derandomization algorithm that uses pseudorandom restric-
tions

The second technique that we discuss can be used to construct a quantified deran-
domization algorithm. This technique relies on the existence of a distribution Sn over
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subsets of {0, 1}n (i.e., over “restrictions”) such that for any C ∈ C over n input bits,
with high probability over S ∼ Sn it holds that C�S is constant. That is,

Definition 3.7.3 (simplifier sets). For Balg : N → N, we say that a distribution Sn over
subsets of {0, 1}n is a distribution of simpli�er sets of size more than Balg for C if the following
conditions hold:

1. Every subset S in the support of Sn is of size |S| > Balg(n).

2. For every C ∈ C over n input bits, PrS∼Sn [C�S is constant] > 1/2.

To see why simplifier sets are useful for quantified derandomization, let C ∈ C
be a circuit over n bits with Balg(n) exceptional inputs. Then, with probability more
than 1/2 over S ∼ Sn it holds that C�S is a constant function; and since Balg(n) < |S|,
whenever C�S is a constant function, this constant equals the most frequent output
of C. Now, assume that we can efficiently sample a succint representation of a set
S ∼ Sn using only a few (say, O(log(n))) random bits, and that this representation
allows to efficiently find some input x ∈ S. In this case, we can solve the quantified
derandomization problem as follows: We enumerate the choices of S ∼ Sn, evaluate
C on an (arbitrary) input in each choice of S, and output the majority value among
the evaluations of C. Note that the only information about C that the algorithm in
this approach uses, other than the fact that C ∈ C, is the ability to evaluate C on
arbitrarily-chosen inputs.

This (“black-box”) approach has been used to construct quantified derandomiza-
tion algorithms for AC0 (see [GW14, Thm 1.3] and Section 3.3) and for T C0 circuits
of depth two (see Section 3.5.5). Nevertheless, for other circuit classes, pseudoran-
dom restriction algorithms that are “non-black-box” have been constructed and used for
quantified derandomization; these classes include various subclasses of AC0[⊕] (see
Section 3.4) and sparse T C0 circuits (see Section 3.5).

3.7.3 Proof of the main theorem

Towards formally stating and proving Theorem 3.7.1, let us now carefully track how
the combination of the two techniques from Section 3.7.2 works. We are interested in
standard derandomization of a circuit class C. That is, we are given a circuit C ∈ C
over m input bits, and want to distinguish between the case that C accepts all but at
most 2m/3 of its inputs and the case that C rejects all but at most 2m/3 of its inputs.

To do so, we fix some sampler Samp : {0, 1}n × {0, 1}s → {0, 1}m with Bred bad
inputs, and consider the “error-reduced” circuit C′ : {0, 1}n → {0, 1} such that C′(x) =
MAJ

(
{C(Samp(x, i))}i∈{0,1}s

)
. 62 We think of the circuit C′ as belonging to some new

circuit class, which we denote by Ĉ; for example, we can define Ĉ to be the class of
circuits of the form C′′(x) = Φ

(
{C0(Samp(x, i)}i∈{0,1}s

)
, where C0 ∈ C and Φ is one

of several “simple composition” functions (the majority function being one of them).

62Recall that the majority function can also be replaced by “approximate majority”.
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Indeed, it might be the case that Ĉ ⊆ C, if C is closed to the overhead involved in
constructing circuits such as C′, but we do not assume so. However, we assume that
Samp is computable in Ĉ, which holds under reasonable definitions of Ĉ. 63

Now we are interested in quantified derandomization of the class Ĉ with Bred

bad inputs, using simplifier sets. However, the following lemma asserts that in any
distribution of simplifier sets of size more than Balg for a class that can compute
Samp (and in particular for Ĉ), the size of the sets satisfies Balg(n) < Bred(n). When
reading the lemma’s statement, we encourage the reader to think of a sampler Samp :
{0, 1}n × {0, 1}s → {0, 1}m such that s = O(log(n)) and m = nΩ(1).

Lemma 3.7.4 (simplifier sets and samplers). Let Ĉ be a circuit class, and let Bred : N→N

and Balg : N→ N. For n ∈ N and s, m ∈ N such that 2s+3m/4 ≤ 2m/5, assume that there
exists a Boolean sampler Samp : {0, 1}n × {0, 1}s → {0, 1}m with Bred bad inputs that is
computable in Ĉ. Also assume that there exists a distribution Sn of simplifier sets of size more
than Balg for Ĉ. Then Balg(n) < Bred(n).

Proof. Assuming that a distribution Sn as in the hypothesis exists, we will construct
a set T ⊆ {0, 1}m such that for more than Balg(n) inputs x ∈ {0, 1}n, the set T is
“over-sampled” by the sampler Samp with input x; that is, for every such x it holds
that Pri∈{0,1}s [Samp(x, i) ∈ T] > |T|/2m + 1/10. Thus, the number Bred(n) of “bad”
inputs for the sampler is larger than Balg(n).

In order to construct T ⊆ {0, 1}m, we will first fix a single set S ⊆ {0, 1}n of size
|S| > Balg(n) of inputs for the sampler; these inputs will later on be the ones that will
cause the sampler to “over-sample” T. To do so, for any fixed choice of S ∼ Sn, let us
call an index i ∈ {0, 1}s bad under S if at least a quarter of the output bits of Samp(i)�S
are constant functions (i.e., when restricting the function Samp(i)(x) = Samp(x, i) to
the set S, at least m/4 of the m output bits of Samp(i)�S become constant functions). For
any i ∈ {0, 1}s, recall that each output bit of Samp(i) can be computed by a Ĉ-circuit,
and therefore (since Sn simplifies Ĉ) the expected number of output bits of Samp(i) that
become constant under S ∼ Sn is more than half. Thus, there exists some set S ∼ Sn
such that at least one third of the indices i ∈ {0, 1}s are bad under S. 64 We now fix
any such set S, and note that |S| > Balg(n) (since Sn is of size more than Balg).

Let us now construct T ⊆ {0, 1}m that is “over-sampled” by the sampler when
given any input x ∈ S. To do so, let B ⊆ {0, 1}s be the set of bad indices under S. For
any i ∈ B, let Φi ⊆ [m] be the set of output bits of Samp(i)�S that are constant; that is,
Φi =

{
j ∈ [m] : ∃σj ∈ {0, 1}, (Samp(i)�S)j ≡ σj

}
and |Φi| ≥ m/4 (since i is bad under

S). Also, let Qi be the subcube of {0, 1}m corresponding to the non-constant output

63For example, if Ĉ is indeed defined as all circuits of the form Φ
(
{C0(Samp(x, i)}i∈{0,1}s

)
, where in

particular C0 and Φ can be any pair of dictator functions, then Samp is computable in Ĉ.
64For any i ∈ {0, 1}s, denote by αi(S) the random variable that is the number of output bits of Samp(i)�S

that are constant functions. Then, we have that PrS∼Sn [αi(S) ≥ m/4] ≥ 1/3 (otherwise ES∼Sn [αi(S)] <
1
3 ·m + 2

3 · (m/4) = m/2). Thus, the expected number of bad indices under S ∼ Sn is at least 2s/3.
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bits of Samp(i)�S; that is, Qi =
{

z ∈ {0, 1}m : ∀j ∈ Φi, zj = (Samp(i)�S)j

}
. We define T

to be the union of the subcubes Qi for all i ∈ B; that is, T =
⋃

i∈B Qi.
Note that |T| < 2m/5, since for every i ∈ B it holds that |Qi| ≤ 23m/4 (and since we

assumed that 2s · 23m/4 < 2m/5). On the other hand, for every x ∈ S, the probability
over i ∈ {0, 1}s that Samp(x, i) ∈ T is lower bounded by the probability that i ∈ B,
which is at least 1/3. Therefore, for any x ∈ S it holds that Pri∈{0,1}s [Samp(x, i) ∈ T] ≥
1/3 > |T|/2m + 1/10.

We mention that lemmas similar to Lemma 3.7.4 were proved for the specific set-
ting of AC0 circuits (i.e., when C = AC0) in [Vio05, Thm 6.4] and [GVW15, Thm 5.4],
using a different proof strategy.65 Relying on Lemma 3.7.4 and on the discussion that
preceded the lemma’s statement, we can now formally state our main theorem:

Theorem 3.7.5 (a limitation of two “black-box” techniques in quantified derandomiza-
tion; Theorem 3.7.1, restated). Let Bred : N → N and Balg : N → N. For n, s, m ∈ N

such that 2s+3m/4 ≤ 2m/5, let C : {0, 1}m → {0, 1}, and let Samp : {0, 1}n × {0, 1}s →
{0, 1}m be a Boolean sampler with Bred bad inputs. Let Ĉ be any circuit class that can compute
the function C′(x) = MAJ

(
{C(Samp(x, i))}i∈{0,1}s

)
and such that Samp is computable in

Ĉ. Then, for any distribution Sn of simplifier sets of size more than Balg for Ĉ it holds that
Balg(n) < Bred(n).

We stress that Theorem 3.7.5 holds regardless of the class C for which we wanted to
solve the standard derandomization problem. This is the case since the limitation in
Theorem 3.7.5 only relies on the hypothesis that Samp is computable in Ĉ, and not on
the fact that the circuit C′ (which depends on C) is computable in Ĉ.

Indeed, we did not use the fact that Ĉ contains a circuit (i.e., C′) that computes
a function that is “more complicated” than (the output bits of) Samp. Intuitively, we
expect that “complicated” circuits will require simplifier sets that are smaller than
simplifier sets for “simpler” circuits (e.g., Håstad’s switching lemma [Hås87] yields
simplifier sets of size 2Ω(n/ logd−1(n)) for circuits of depth d). In particular, in typical sit-
uations we expect that simplifier sets for Ĉ will need to be even smaller than simplifier
sets for Samp. In such situations, the upper bound on Balg(n) in Theorem 3.7.5 is not
tight; that is, in such situations Bred and Balg are far apart by significantly more than
just a single bit (as is asserted in the theorem).

65Instead of relying directly on the existence of simplifier sets, they relied on the low average sensitivity
of AC0 circuits; this property follows from a stronger notion of simplifier sets, which in particular are
subcubes (i.e., it follows from Håstad’s switching lemma; see [LMN93; Bop97; Tal17]). In comparison,
our proof is simpler, and also applies to classes of functions with high sensitivity that have distributions
of simplifier sets (recall that the simplifier sets in Definition 3.7.3 are not necessarily subcubes).
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3.7.4 Strengthenings of the main theorem: Natural relaxations that do not
suffice to bypass the limitation in Theorem 3.7.5

Following Theorem 3.7.5, the main question we are faced with is which relaxations of
the hypotheses are sufficient to avoid the conclusion of the theorem, and thus to bypass
the limitation arising from it. We now mention a few natural relaxations that do not
seem sufficient to bypass this limitation.

3.7.4.1 Simplifier sets that simplify C-circuits to non-constant functions

In Definition 3.7.3 we assumed that for every C ∈ C, with high probability over S ∼ Sn
it holds that C�S is constant. We now note that if we assume that C�S simplifies to a
“simple” (non-constant) function, then we can still obtain a corresponding quantified
derandomization algorithm (with a mild loss in the parameters); but that in some natu-
ral settings, this relaxation does not suffice to bypass the limitations in Theorem 3.7.5.

Let us first see why this relaxation still suffices for quantified derandomization.
Fix a circuit C : {0, 1}n → {0, 1} with at most Balg(n) exceptional inputs. Assume that
there exists a distribution Sn over subsets S ⊆ {0, 1}n of size at least 3 · Balg(n) such
that PrS∼Sn [C�S ∈ CSimple] > 1/2, where CSimple is some class of “simple” functions.
Further assume that an algorithm can efficiently sample a succint representation of S ∼
Sn using few random bits, and that given a representation of S such that C�S ∈ CSimple,
the algorithm can efficiently approximate the acceptance probability of C�S, up to error
1/10. Note that for a strict majority of the choices of S ∼ Sn, the acceptance probability
of C�S is either at most 1/3 or at least 2/3 (since |S| > 3 · Balg(n) for any S ∼ Sn), and
we can distinguish between the two cases by estimating the acceptance probability
of C�S ∈ CSimple. Thus, a quantified derandomization algorithm can enumerate the
choices of S ∼ Sn, decide for each choice whether the acceptance probability of C�S is
at most 1/3 or at least 2/3, and rule according to a majority vote.66

Nevertheless, in some cases, this relaxation does not seem sufficient to bypass the
limitation in Theorem 3.7.5. This is since for some natural classes CSimple of “very sim-
ple” functions, a random restriction simplifies every C ∈ CSimple to a constant function,
with high probability; for example, this holds for constant-depth circuits [Hås87] and
for linear threshold functions [KW16]. In these cases, the existence of Sn as above im-
plies the existence of S′n that meets the stronger definition (i.e., Definition 3.7.3), with a
quantitative loss in the parameter Balg that depends on CSimple (i.e., the loss is induced
by the random restriction that turns functions in CSimple to constant functions).

3.7.4.2 A sampler that only samples C-events

Our requirement from the sampler in Definition 3.7.2 was information-theoretic: For
any set T ⊆ {0, 1}m, we required that for all but Bred inputs, the sampler will hit T

66The algorithm may not be able to correctly decide whether the acceptance probability of C�S is at
most 1/3 or at least 2/3 when C�S 6∈ CSimple, but the latter event only happens in the minority of the
choices S ∼ Sn.
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with an approximately correct probability (i.e., Pri∈{0,1}s [Samp(x, i) ∈ T] ∈ |T|/2m ±
1/10). However, since we only want to use the sampler to approximate the acceptance
probability of a circuit C ∈ C, one may consider a relaxation in wish we only require
that the sampler “appropriately samples” sets T that are decidable by C circuits. That
is,

Definition 3.7.6 (sampler for C-events). We say that a function SampC : {0, 1}n×{0, 1}s →
{0, 1}m is a Boolean sampler for C-events with Bred bad inputs if it satisfies the following:
For every T ⊆ {0, 1}m such that T = C−1(1) for some C ∈ C, for all but at most Bred of the
inputs x ∈ {0, 1}n it holds that Pri∈{0,1}s [Samp(x, i) ∈ T] ∈ |T|/2m ± 1/10.

The point that we wish to make is that in many natural settings, the relaxation in
Definition 3.7.6 does not suffice to bypass the limitation in Theorem 3.7.5. This is the
case because the “over-sampled” set T ⊆ {0, 1}m that was constructed in the proof of
Theorem 3.7.5 can be decided by a circuit that is a DNF of size at most 2s. 67 (Using
the notation of the proof, T is the union of |B| ≤ 2s subcubes Q1, ..., Q|B| ⊆ {0, 1}m.)
In particular, if the initial circuit C belongs to a class C that contains DNFs of size
2s, then the relaxation in Definition 3.7.6 does not suffice to bypass the limitation in
Theorem 3.7.5.

Detour. The notion of a sampler for C-events might be of independent interest. The
main point is that potentially, in some settings, the relaxation embodied in the def-
inition of samplers for C-events might allow to construct such samplers with better
parameters than the parameters of information-theoretic samplers (i.e., as in Defini-
tion 3.7.2). For an example of a construction of a sampler for AC0-events, see [GW14,
Thm 3.4 in the full version]: They constructed an AC0-computable sampler for AC0-
events with 2n/poly log(n) bad inputs and m = nΩ(1).

We note, however, that this construction from [GW14] was later superseded by a
construction of an AC0-computable sampler in the information-theoretic sense (i.e., as in
Definition 3.7.2) that also has 2n/poly log(n) bad inputs, and that has m = n/poly log(n);
see [CL16, Thms. 1.5 & 1.7]. Moreover, this construction, coupled with Lemma 3.7.4
and with Håstad’s switching lemma [Hås87], implies that AC0-computable samplers
for AC0-events cannot have significantly better parameters than AC0-computable sam-
plers in the information-theoretic sense (i.e., as in Definition 3.7.2). This is the case
since Håstad’s switching lemma yields a distribution of simplifier sets of size 2Ω(n/ logd−2(n))

for depth-d circuits, and thus Lemma 3.7.4 implies that any sampler computable
by depth-d circuits (even if it is a sampler only for DNF-events) must have at least
2Ω(n/ logd−2(n)) bad inputs;68 and the number of bad inputs in the information-theoretic

67Recall that a typical setting of the parameters is s = O(log(n)), and therefore the size of such a DNF
is 2s = poly(n).

68The lower bound on the number of bad inputs for AC0-computable samplers for AC0-events can
also be derived using the proofs of [Vio05; GVW15]: In their proofs, the “over-sampled” set can also be
decided by a DNF of size that is at most exponential in the seed length of the extractor.
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constructions in [CL16] is already 2Ω(n/ logd−10(n)) (or 2n/ logΩ(d)(n), if one wishes to max-
imize the output length m), which nearly matches this lower-bound.

3.7.4.3 Samplers that are not efficiently computable

To combine the two techniques from Section 3.7.2 into a single algorithm, we need
an efficient uniform algorithm that can compute Samp(x, i) for arbitrarily-chosen x ∈
{0, 1}n and i ∈ {0, 1}s; that is, we need the sampler not only to be computable in the
class C, but also to be efficiently computable by a uniform algorithm.

We note, however, that the limitation in Theorem 3.7.5 holds even if we use a
sampler that is not necessarily efficiently computable by a uniform algorithm. This
is the case since the argument in Theorem 3.7.5 did not rely on such a hypothesis
regarding the sampler, and thus holds also for “non-uniform” samplers.
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Chapter 4

Derandomization and Lower
Bounds

4.1 Introduction

Connections between the prBPP = prP conjecture and lower bounds for algorithms
and for circuits have been gradually developing for decades. Following the classi-
cal “hardness-to-randomness” paradigm [Yao82; BM84], a line-of-works initiated by
Nisan and Wigderson [Nis91; NW94] proved that lower bounds for non-uniform cir-
cuits yield derandomization algorithms for prBPP . Moreover, this statement “scales
smoothly”, in the sense that stronger lower bounds yield quicker derandomization
algorithms (see [Uma03] for an essentially optimal trade-off). At the extreme, if there
is a function in E that cannot be computed by circuits of size 2ε·n (for some constant
ε > 0) even infinitely-often, then prBPP = prP (this was proved in [IW99]).

The other direction of the implication above has been gradually developing in the
last two decades, in works showing that any derandomization of prBPP (and even
of MA) implies circuit lower bounds that are currently unknown. The first work to
imply such a result is [BFT98], and this was observed by Impagliazzo, Kabanets, and
Wigderson [IKW02]. A subsequent line-of-works (including [IKW02] and following it)
showed that even very weak derandomizations of prBPP suffice to prove circuit lower
bounds that are currently unknown (for the state-of-the-art results, following Murray
and Williams [MW18], see Section 4.2). Nevertheless, the circuit lower bounds that
we currently know to be implied by derandomizations of prBPP are weaker than the
lower bounds that would suffice (using the “hardness-to-randomness” results above)
to deduce a deterministic derandomization of prBPP .

Alongside these works, a different line-of-works referred to as uniform “hardness-
to-randomness” relates lower bounds for uniform probabilistic algorithms to average-case
derandomization of prBPP (for a precise definition of the latter term, see Section 4.3).
This study was initiated by Impagliazzo and Wigderson [IW98], and for the state-
of-the-art results, see Section 4.3. In comparison with the line-of-works described
above (i.e., to non-uniform “hardness-to-randomness”), the known results that de-
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duce derandomization from lower bounds incur significantly more overheads, and it
is widely-believed that these results can be further improved.

In this thesis we include three contributions to the study of the connections be-
tween the prBPP conjecture and lower bounds. The first contribution, described in
Section 4.2, asserts that if prBPP = prP then there exists a function that is computable
in NT IME [nω(1)] (for essentially any super-constant function ω(1), e.g. log∗(n))
that cannot be computed by polynomial-sized circuits. This result follows a recent
breakthrough of Murray and Williams [MW18], and significantly improves on the
previously-known lower bound (that referred toNEXP rather than toNT IME [nω(1)]);
see Section 4.2 for details. This contribution is based on the work [Tel19b].

The second contribution, described in Section 4.3, significantly strengthens the
average-case derandomization of BPP that is known to follow from lower bounds for
uniform probabilistic algorithm (i.e., for BPT IME ). We establish for the first time
that average-case derandomization of BPP in nearly-polynomial-time (i.e., in time
npolyloglog(n) = 2Õ(log(n))) follows from uniform hardness assumptions for BPT IME .
Specifically, under the hypothesis that the Totally Quanti�ed Boolean Formula (TQBF)

problem cannot be solved by probabilistic algorithms that run in time 2n/polylog(n),
we construct a pseudorandom generator for uniform circuits with almost-exponential
stretch (i.e., with seed length Õ(log(n))); see Section 4.3 for precise details. This
contribution is based on a joint work with Lijie Chen, Ron Rothblum, and Eylon Yo-
gev [CRT+19].

The third contribution, described in Section 4.4, refers to the question of whether
any deterministic (worst-case) derandomization of prBPP is equivalent to correspond-
ing circuit lower bounds. A particular consequence of such an equivalence would be
that derandomization of prBPP necessitates constructing pseudorandom generators.
Loosely speaking, we show that to answer this question in the affirmative, it suffices
to prove a very weak version of the non-deterministic exponential-time hypothesis; and we
also show that this very weak version is necessary to prove a slightly stronger conclu-
sion that we deduce from it. Specifically, this very weak version asserts that there is
a problem in E that cannot be solved by NT IME [T]-uniform circuits of size S, for
relatively-small values of S � T � 2n; see Section 4.4 for precise details. This contri-
bution is also based on the aforementioned joint work with Lijie Chen, Ron Rothblum,
and Eylon Yogev [CRT+19].

4.2 If prBPP = prP then “almost NP” is not contained in
P/poly

4.2.1 The main results

It has been known for at least two decades that the prBPP = prP conjecture is
intimately related to circuit lower bounds; that is, to lower bounds for non-uniform
models of computation. Specifically:
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• On the one hand, any proof of sufficiently strong circuit lower bounds would also
prove that prBPP = prP . Specifically, if there is a function in E that requires
exponential-sized circuits, then prBPP = prP (see [IW99], which relies on the
classical hardness-randomness paradigm [Yao82; BM84; NW94]).

• On the other hand, any proof that prP = prBPP implies long-sought circuit lower
bounds. As a prominent example, if prBPP = prP then there exists a func-
tion in NEXP that cannot be computed by any polynomial-sized circuit fam-
ily [BFT98].1 In fact, the latter circuit lower bound follows even from much
weaker hypotheses, such asMA 6= NEXP (see, e.g., [IKW02; Wil13]).

Informally, following a recent breakthrough by Murray and Williams [MW18], the
main result in this section considerably strengthens the known connection between
the conjecture that prBPP = prP and circuit lower bounds.

The starting point for this result is the observation that an immediate corollary of
a result from the recent work of Murray and Williams [MW18, Thm 1.2] is the fol-
lowing: If prBPP = prP , then there exists a function in NT IME [npoly log(n)] (rather
than NEXP) that cannot be computed by any polynomial-sized circuit family. This is a dra-
matic (almost exponential) strengthening of previously-known results (i.e., of [BFT98;
IKW02]), and we believe that it is a fundamental result that is worth spelling out and
highlighting. Furthermore, this result can even be further strengthened. In particular,
by using the proof approach of [MW18] while instantiating their technical tools with
different parameters, we get the following:

Theorem 4.2.1 (main theorem; informal). If prBPP = prP , then, for essentially any
super-constant function f (n) = ω(1), there exists a set in NT IME [n f (n)] \ P/poly.

One might a-priori hope to strengthen the conclusion of Theorem 4.2.1 by improv-
ing the time bound in the non-deterministic class; that is, to prove that “if prBPP =
prP , then NP 6⊆ P/poly (and P 6= NP)”. However, such a result cannot be proved
without unconditionally proving that P 6= NP , since any proof of the conditional state-
ment “prBPP = prP =⇒ P 6= NP” would unconditionally imply that P 6= NP (see
Proposition 4.2.5). Therefore, the conclusion of Theorem 4.2.1 is optimal in this sense.

Theorem 4.2.1 is a special case of a more general “derandomization implies lower
bounds” result that follows using the technical tools of Murray and Williams [MW18],
and in particular their new “easy witness lemma” (see Section 4.2.2.1 for details on the
latter). In this general result, the lower bound in the conclusion can be parameterized:

Theorem 4.2.2 (a generalized version of Theorem 4.2.1; informal, see Corollary 4.2.11).
There exists ε > 0 such that for any time-computable s : N→ N satisfying n < s(n) < 2ε·n

it holds that

prBPP = prP =⇒ NT IME [s′ ◦ s′ ◦ s′] 6⊆ SIZE [s] ,

where s′ = poly(s(O(n))).
1In [BFT98] it is shown, unconditionally, that MAEXP 6⊆ P/poly. Thus, under the hypothesis

prBPP ⊆ prNP we have thatMAEXP = NEXP 6⊆ P/poly (see [IKW02, Rmk. 26]).
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Indeed, Theorem 4.2.1 follows as a special case of Theorem 4.2.2 by using s(n) =
nω(1) (in which case s′ ◦ s′ ◦ s′ = nω(1) and SIZE [s] ⊃ P/poly; see Corollary 4.2.13).
The hypothesis of Theorem 4.2.2 can also be significantly relaxed, since its proof re-
lies on Williams’ [Wil13] celebrated proof strategy, which is well-known to support
such relaxations. Recall that, loosely speaking, Williams’ proof strategy shows that
certain “non-trivial” circuit-analysis algorithms imply circuit lower bounds. In our
case, Theorem 4.2.2 holds, for example, under the hypothesis that there exists a “non-
trivial” algorithm for the Circuit Acceptance Probability Problem (CAPP) (i.e., an algo-
rithm that approximates the acceptance probability of a circuit of size m with v vari-
ables in time 2.99·v · poly(m)); Theorem 4.2.2 also holds under the hypothesis that
pr-coRP ⊆ prNP . See the end of Section 4.2.3.1 for details of possible relaxations.

Theorem 4.2.2 may be compared to the following result of Kinne, van Melkebeek,
and Shaltiel [KMS12, Thm. 9], which builds on the well-known result of Kabanets and
Impagliazzo [KI04]: If BPP = P (i.e., the “non-promise” version of the BPP = P
conjecture holds), then either the permanent function of {0, 1}-matrices over Z does not
have polynomial-sized arithmetic circuits, or for essentially any s : N → N it holds
that NT IME [sO(1)] 6⊆ SIZE [s]. Indeed, in this result from [KMS12] the hypothesis
is weaker than in Theorem 4.2.2, since it only refers to the “non-promise” conjecture
BPP = P (rather than to prBPP = prP); whereas the conclusion is not a circuit
lower bound, but rather a disjunction of two circuit lower bounds.2 Nevertheless,
in the lower bound NT IME [sO(1)] 6⊆ SIZE [s], the time-complexity of the “hard”
function is just sO(1), rather than sO(1) ◦ sO(1) ◦ sO(1) as in Theorem 4.2.2.

4.2.1.1 A technical strengthening of Theorem 4.2.2

Observe that the lower bound in the conclusion of Theorem 4.2.2 becomes trivial when
s is half-exponential or larger (i.e., when s(s(n)) ≥ 2n), because there are three com-
positions of s in the time-bound for the “hard” function.3 The following improvement
removes this limitation: We prove that if prBPP = prP , then there exists a function
in NT IME [sO(1) ◦ sO(1)] that cannot be computed by circuits of size s.

Moreover, we also improve the concluded lower bound by showing that size-s
circuits fail to compute the “hard” function on a “dense” set of input lengths (the
conclusion in Theorem 4.2.2 only guarantees failure on infinitely-many input lengths).
Specifically, for sI(n) = poly(s(poly(n))), we conclude that size-s circuits fail to com-
pute the “hard” function on an input length in any interval of the form [n, sI(n)].

2Similarly to Theorem 4.2.2, the result in [KMS12] also follows from the weaker hypothesis coRP ⊆
NP . Also, Jansen and Santhanam [JS12] showed how to remove the disjunction in the conclusion, at
the cost of deducing a weaker lower bound: Loosely speaking, they showed that if BPP = P , then
polynomial-sized arithmetic circuits cannot compute the class of polynomials such that each bit in the
binary representation of the output of the polynomial can be computed in NEXP ∩ coNEXP (see [JS12]
for precise details).

3Specifically, when s(s(n)) ≥ 2n we have that NT IME [sO(1) ◦ sO(1) ◦ sO(1)] ⊇ NT IME [2poly(s(n))],
whereas DT IME [2poly(s(n))] 6⊆ SIZE [s] holds unconditionally (by a diagonalization argument).
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Similarly to Theorem 4.2.2, the foregoing (stronger) conclusions follow also from
the hypothesis pr-coRP ⊆ prNP (which is weaker than prBPP = prP):

Theorem 4.2.3 (strengthening the conclusion of Theorem 4.2.2; informal, see Theo-
rem 4.2.19). There exists ε > 0 such that for any time-computable s : N → N satisfying
n < s(n) < 2ε·n it holds that

pr-coRP ⊆ prNP =⇒ NT IME [s′ ◦ s′] 6⊆ i.o.[sI ]-SIZE [s] ,

where s′ = poly(s), and i.o.[sI ]-SIZE [s] is the class of problems such that there exists a size-s
circuit that, for infinitely-many intervals of length sI(n) = poly(s(n2)), solves the problem
on some input length in the interval.

The proof of Theorem 4.2.3 does not follow the proof approach of Murray and
Williams, and in particular does not use their new “easy witness lemma”. Neverthe-
less, the proof crucially relies on one of their technical results, namely their strengthen-
ing of Santhanam’s circuit lower bound [San09]. See Section 4.2.2.2 for further details.

In Appendix 4.2.5.1 we present an alternative and relatively simple proof of a
weaker form of Theorem 4.2.3, which does not include the guarantee of failure in
every “small” interval. This proof does not use the results of Murray and Williams,
but is based only on (a generalization of) the well-known circuit lower bound of San-
thanam [San09]. The proof strategy for this result was suggested to us by Igor Oliveira
after a preliminary version of the work [Tel19b] appeared online, and also serves as
the proof strategy for the improved results in Section 4.2.2.2.

4.2.1.2 The meaning of the results in this section

What is the meaning of the statement “prBPP = prP =⇒ NT IME [nω(1)] 6⊆ P/poly”?
Note that the lower bound NT IME [nω(1)] 6⊆ P/poly asserts that polynomial-sized
circuits cannot simulate both “slightly” super-polynomial running time and non-determinism.4

Thus, on the one hand, one may view the lower bound NT IME [nω(1)] 6⊆ P/poly
as a weaker form of NP 6⊆ P/poly. Hence, Theorem 4.2.1 can be interpreted as
saying that proving that prBPP = prP is as hard as proving a lower bound that is
essentially a precursor of NP ⊆ P/poly. From this perspective the conclusion of
the theorem is essentially optimal, since (as mentioned after the statement of Theo-
rem 4.2.1), we cannot strengthen the conclusion of the theorem to NP 6⊆ P/poly
without unconditionally proving that P 6= NP .

On the other hand, as pointed out by Ryan Williams, one can alternatively view the
statementNT IME [nω(1)] 6⊆ P/poly as a weaker form of the statementDT IME [nω(1)] 6⊆
P/poly. The latter statement asserts that polynomial-sized circuits cannot simulate al-
gorithms with superpolynomial running time. From this perspective, Theorem 4.2.1

4This lower bound can be viewed as a significant strengthening of the (unconditionally-known) lower
bound Σ3[nω(1)] 6⊆ P/poly, which asserts that polynomial-sized circuits cannot simulate both super-
polynomial running time and “several levels” of non-determinism/alterations. (The proof of the lower
bound is a diagonalization argument a-la Kannan’s theorem; see, e.g., [Juk12, Lem. 20.12].)
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implies that proving that prBPP = prP is as hard as proving a weak form of a
“strengthened time-hierarchy theorem” (in which we compare uniform algorithms to
non-uniform circuits).

Continuing the latter view, it seems instructive to compare the lower bounds im-
plied by prBPP = prP to the lower bounds that are known to imply prBPP = prP
(using the results of Impagliazzo and Wigderson [IW99]). Specifically, being slightly
informal,5 we have that:

∀s(n) < 2ε·n, DT IME [poly(s)] 6⊆ i.o.-SIZE [s] (4.2.1)
⇓ (by [IW99])
prBPP = prP
⇓ (by Thm 4.2.3)

∀s(n) < 2ε·n, NT IME [s′ ◦ s′] 6⊆ i.o.[sI ]-SIZE [s] (4.2.2)

where ε > 0, s′, and sI are defined as in Theorem 4.2.3. This comparative perspective
suggests the following interpretation of the results in this section:

The lower bounds implied by prBPP = prP are now significantly stronger
(compared to the lower bounds that were previously known to be implied
by this conjecture); but they are nevertheless still weaker than the lower
bounds that are known to imply that prBPP = prP .

Is prBPP = prP equivalent to a specific circuit lower bound? The circuit lower
bounds implied in Eq. (4.2.2) hold not only when prBPP = prP , but also under
the (intuitively) weaker hypothesis pr-coRP ⊆ prNP . Therefore, one might suspect
that the conclusion in Theorem 4.2.2 can be strengthened. Recall that the question of
whether specific derandomization results are equivalent to specific circuit lower bounds
has been raised several times in the past (see, e.g., [IKW02] and [TV07, Sec. 1.1]).
We thus propose the following natural conjecture (we have found no explicit prior
mentions of this conjecture in the literature):

Conjecture 4.2.4 (prBPP = prP is equivalent to the [IW99] lower bounds). The state-
ment that prBPP = prP is equivalent to the statement that for some ε > 0 and every
s(n) < 2ε·n it holds that DT IME [poly(s)] 6⊆ i.o.-SIZE [s].

The most important gap between Theorem 4.2.3 and Conjecture 4.2.4 is that in The-
orem 4.2.3, the lower bounds implied by prBPP = prP are against non-deterministic
classes. Note that even a modest first step towards proving Conjecture 4.2.4, namely
proving that prBPP = prP =⇒ EXP 6⊆ P/poly, already implies that any polynomial-
time derandomization of prBPP requires pseudorandom generators (see [BFN+93]).

5The informality is by ignoring time-computability constraints on s.
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4.2.1.3 Organization

In Section 4.2.2 we present high-level overviews of the proofs of our main theorems. In
Section 2 we present preliminary definitions. In Section 4.2.3 we prove Theorems 4.2.1
and 4.2.2, and in Section 4.2.4 we prove Theorem 4.2.3.

4.2.2 Overviews of the proofs

In Section 4.2.2.1 we present an overview of the proof of Theorem 4.2.2, and in Sec-
tion 4.2.2.2 we present an overview of the proof of Theorem 4.2.3. Since the proof
approaches for the two theorems are very different, one may read Section 4.2.2.2 with-
out first reading Section 4.2.2.1.

4.2.2.1 Proof overview for Theorem 4.2.2

The proof of Theorem 4.2.2 follows the approach used by Murray and Williams [MW18],
which is based on the celebrated proof strategy of Williams [Wil13]. The main new
component in [MW18] is a new “easy witness lemma”, which allows for flexible scal-
ing of the parameters in the original proof strategy of Williams (see below; this new
lemma improves the original easy witness lemma of [IKW02]). Murray and Williams
stated consequences with two specific parameter settings. We extend their result by
stating a general (parametrized) “derandomization implies lower bounds” result that
uses this proof approach with the new easy witness lemma (see Theorem 4.2.10), and
deduce Theorems 4.2.1 and 4.2.2 as special cases.

Let us now overview the proof of Theorem 4.2.2. The point of the overview is to
describe how the (well-known) proof strategy of Williams can be instantiated with the
new easy witness lemma for general parameters in order to deduce Theorem 4.2.2.
The starting point for the proof is the Circuit Acceptance Probability Problem (or CAPP,
in short): Given as input the description of a Boolean circuit C, the problem is to
distinguish between the case that the acceptance probability of C is at least 2/3 and
the case that the acceptance probability of C is at most 1/3. It is well-known that a
deterministic polynomial-time algorithm for CAPP exists if and only if prBPP = prP
(see Proposition 2.4.2). The current argument relies on the much weaker hypothesis
that CAPP for circuits of size m with v input variables can be solved in time 2.99·v ·
poly(m); for simplicity, let us assume that the CAPP algorithm runs in time 2.99·v ·m2.

Fix any time-computable function n < s(n) < 2ε·n, where ε > 0 is a universal
constant. Denoting t = sO(1) ◦ sO(1) ◦ sO(1), our goal is to prove that NT IME [t] 6⊂
SIZE [s]. (The definition of t in this high-level overview is slightly informal; see
Definition 4.2.8 and Corollary 4.2.11 for precise details.) To do so, assume towards
a contradiction that NT IME [t] ⊆ SIZE [s], and let t0(n) = t(n)δ, where δ > 0 is
sufficiently small. We will construct, for any L ∈ NT IME [t0], a non-deterministic
machine that decides L in time t1−Ω(1)

0 ; this will contradict the non-deterministic time
hierarchy [Coo72].
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The new easy witness lemma asserts that if NT IME [t] ⊆ SIZE [s] where t =

t1/δ
0 , then for every L′ ∈ NT IME [(t0)2], every (t0)2-time verifier V for L′ and ev-

ery x ∈ L′, there exists a circuit Px ∈ SIZE [t.001
0 ] that encodes a witness πx such

that V(x, πx) accepts.6 (Again, our parameters in the overview are informal; see
Lemma 4.2.9 for a statement that uses precise parameters.) The point is that wit-
nesses for the verifier V are a-priori of size (t0)2, but the lemma asserts that (under the
hypothesis) every x ∈ L′ has a witness that can be concisely represented by a circuit of
much smaller size t.001

0 . We note that the main “bottleneck” in the proof that requires
using t = sO(1) ◦ sO(1) ◦ sO(1) (rather than, say, t = poly(s)) is the new “easy witness
lemma”.

Let us now construct the non-deterministic machine for L ∈ NT IME [t0], relying
on the existence of the foregoing “compressible” witnesses. We first fix a PCP system
for L with a verifier V that runs in time tV = poly(n, log(t0)) and uses ` = log(t0) +
O(log log(t0)) random bits. (For concreteness, we use the PCP of Ben-Sasson and
Viola [BSV14], but previous ones such as [BGH+05] also suffice for the proof.) Using
the new easy witness lemma, for every x ∈ L there exists a circuit of size t0(|x|).001

that encodes a valid proof for x in this PCP system.7

Now, given input x ∈ {0, 1}n, the non-deterministic machine M first guesses a
circuit Px of size t0(n).001, in the hope that such a circuit encodes a valid proof for
x. Then, the machine constructs a circuit CPx

x that, when given r ∈ {0, 1}` as input,
simulates the execution of V on x using randomness r when V is given oracle access
to the witness Px (i.e., CPx

x (r) = VPx(x, r)). Finally, the machine M uses the CAPP

algorithm on the circuit CPx
x to determine whether the verifier is accepts x with high

probability over r or rejects x with high probability over r.
Note that if x ∈ L, then for some guess of Px it holds that CPx

x has acceptance
probability one, and thus the machine M will accept x. On the other hand, if x /∈ L,
then for any guess of Px it holds that CPx

x has low acceptance probability (corresponding
to the soundness of the PCP verifier), and thus the machine M will reject x.

The point is that all the operations of the machine happened in time much shorter
than t0(n). Specifically, the size of Px is t0(n).001, and the size of CPx

x is m < tV(n) ·
t0(n).001 < t0(n).002; thus, guessing Px and constructing CPx

x can be done in time
poly(m) �

√
t0(n). Now, note that CPx

x has ` = log(t0) + O(log log(t0)) variables;
thus, when the CAPP algorithm is given CPx

x it runs in time

2.99·` ·m2 < t0(n).995 ·
(
t0(n).002)2

= (t0(n))1−Ω(1) ,

and we get a contradiction.

6A circuit Px : {0, 1}log(|πx |) → {0, 1} encodes a string πx if for every i ∈ [|πx|] it holds that Px(i) is
the ith bit of πx (equivalently, πx is the truth-table of Px).

7To apply the easy witness lemma, consider the deterministic verifier V′ that, when given input and
a proof, enumerates the random coins of V and decides by a majority vote. This verifier runs in time
2` · tV < (t0)

2, so we can apply the lemma to L with this verifier.
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As mentioned in the introduction, the hypothesis in this proof strategy can be
further relaxed in various (known) ways. For details of these relaxations, see the
statement of Theorem 4.2.10 and the remark following the theorem’s proof.

4.2.2.2 Proof overview for Theorem 4.2.3

The proof of Theorem 4.2.3 is very different than the proof of Theorem 4.2.2, and
in particular does not rely on the proof strategy of Williams [Wil13] or on an “easy
witness lemma”. As a first step, let us prove a statement that is weaker than that of
Theorem 4.2.3: We prove that if pr-coRP ⊆ prNP , then for essentially any s : N→N

it holds that NT IME [s ◦ s] 6⊆ SIZE [s] (without claiming that failure happens in
every “small” interval).

Recall that a standard approach to prove “derandomization implies lower bounds”
theorems is to rely on unconditional lower bounds for MA protocols: Specifically, if
we start from a lower bound MAT IME [t] 6⊆ SIZE [s], for some t > s, and assume
a derandomization hypothesis MAT IME [t] ⊆ NT IME [t′], for some t′ ≥ t, then
under the derandomization hypothesis we have that NT IME [t′] 6⊆ SIZE [s]. In
our case, we can rely on a generalization of the lower bounds of Santhanam [San09]
for MA protocols with non-uniform advice: For t ≈ s ◦ s and a small function ` =
O(log(s)) it holds thatMAT IME [t]/` 6⊆ SIZE [s] (see Appendix 4.2.5.1 for a proof
of this statement).8 Now, our derandomization hypothesis implies thatMAT IME [t]/` ⊆
NT IME [t′]/`, where t′ = poly(t), and thus we can conclude that NT IME [t′]/` 6⊆
SIZE [s].

The second observation is that ifNT IME [poly(t)]/` 6⊆ SIZE [s], thenNT IME [poly(t)]
(without the advice) is not contained in SIZE [s′], for s′ that is moderately smaller
than s. To see this, assume towards a contradiction thatNT IME [poly(t)] ⊆ SIZE [s′].
For any S ∈ NT IME [poly(t)]/` we construct a family of size-s circuits that decides
S. Consider a non-deterministic machine M that decides S with advice {an}, and let
Sadv be the set of pairs (x, σ) such that |σ| = `(|x|) and M (non-deterministically)
accepts x when given advice σ. Note that Sadv can be decided by a non-determinstic
machine that simulates M (and requires no advice), and thus, by our hypothesis, Sadv

can be solved by a circuit family {Cn} of size s′. By hard-wiring the “good” advice an
into each Cn, we obtain a circuit family {C′n} of size s′ that decides S. Note that the
size of the circuit is still s′, but it is now a function of a smaller input length, since we
“hard-wired” the advice in place of input bits; however, since the advice is relatively
short (i.e., ` = O(log(s))), the new size function, denoted s, is not much larger than
s′ (see Proposition 4.2.18). The crucial point is that the foregoing “advice elimination”
argument only follows through after the derandomization step (i.e., for NT IME and
not for MAT IME ). This is because when dealing with probabilistic machines, it is
not clear how to define Sadv in a way that will allow a probabilistic machine without

8In fact, this lower bound can be improved by reducing the advice length ` from logarithmic to a
single bit. But since our proof of Theorem 4.2.3 (rather than the weaker version) will later use the lower
bound of [MW18], in which ` = O(log(s)), let us assume at this point already that ` is logarithmic.
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advice to decide it (since a probabilistic machine that is given a “wrong” advice might
not “distinctly” accept or reject some inputs).

This proves the weaker version of Theorem 4.2.3, which does not assert that ev-
ery circuit of size-s′ fails to compute the hard function in any “small” interval. To
prove the stronger version, our starting point is the strengthening by Murray and
Williams [MW18] of the lower bound from [San09] for MA protocols with advice:
They showed unconditionally that there exists S ∈ MAT IME [t]/` (where ` =
O(log(s)) as above) such that S /∈ i.o.[poly(s)]-SIZE [s] (see Theorem 4.2.15).

Going through the proof above, note that the first step (i.e., the derandomization
step) preserves the failure of small circuits in every “small” interval; and thus we need
to show that the second step (i.e., the “advice elimination” argument) also preserves
this property. The source of trouble is that now our “towards-a-contradiction” hypoth-
esis only implies that Sadv ∈ i.o.[poly(s)]-SIZE [s], which only guarantees the existence
of an infinite “dense” set I ⊆ N of input lengths for which Sadv has small circuits. In
particular, we have no guarantee that every n ∈ I is of the form m + `(m), which is
what we need to deduce that Sm = S ∩ {0, 1}m has small circuits. To overcome this
problem, we “embed” all pairs (x, σ) such that |σ| = `(|x|) and |x| + |σ| < n into
{0, 1}n, and define Sadv

n = Sadv ∩ {0, 1}n such that deciding Sadv
n allows to determine

the output of M on (x, σ) for all pairs satisfying |x|+ |σ| < n. Thus, for any n ∈ I, a
circuit of size s(n) that decides Sadv

n allows us to solve Sm where m + `(m) < n. And
similarly to above, since the advice is relatively small (i.e., `(m) = O(log(s(m))) < m),
both the size s(n) of the circuit and the interval length poly(s(n)) in which failure
is guaranteed are not too large as a function of m. For precise details see Proposi-
tion 4.2.18.

4.2.2.3 A barrier for proving “prBPP = prP =⇒ P 6= NP”

We note that it is impossible to prove the statement “if prP = prBPP then P 6= NP”
without unconditionally proving that P 6= NP .

Proposition 4.2.5 (a barrier for “derandomization implies lower bounds” statements).
If the conditional statement “prBPP = prP =⇒ P 6= NP” holds, then P 6= NP .

Proof. Assume towards a contradiction that P = NP . Then, the polynomial-time hi-
erarchy collapses to P , and similarly the promise-problem version of the polynomial-
time hierarchy collapses to prP .9 Now, since prBPP is contained in the promise-
problem version of the polynomial-time hierarchy (e.g., by adapting the well-known
argument of Lautemann [Lau83]), it follows that prBPP = prP . Finally, we can use

9 To see that this is the case, let Π = (Y, N) ⊆ {0, 1}∗ × {0, 1}∗ be a promise problem in prΣk, for
some k ∈ N. Then, there exists a polynomial-time algorithm A such that for every x ∈ Y it holds
that ∃y1, ∀y2, ..., yk : A(x, y1, ..., yk) = 1, and for every x ∈ N it does not hold that ∃y1, ∀y2, ..., yk :
A(x, y1, ..., yk) = 1. We define a set S = SA that consists of all strings x such that ∃y1, ∀y2, ..., yk :
A(x, y1, ..., yk) = 1. Note that S ⊇ Y, and that S ∩ N = ∅, and that S ∈ Σk (using the algorithm A). By
our assumption that the polynomial-time hierarchy collapses, there exists a polynomial-time algorithm
A′ that decides S. It follows that A′ solves the problem Π.
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the hypothesized conditional statement to deduce that P 6= NP , which is a contra-
diction.

4.2.3 Proof of Theorems 4.2.1 and 4.2.2

We will first prove a general and parametrized “derandomization implies lower bounds”
theorem. This theorem is obtained by using the proof strategy of Williams [Wil13]
with general parameters, while leveraging the new easy witness lemma of Murray
and Williams [MW18]. We then prove Theorems 4.2.1 and 4.2.2 as corollaries.

In the proofs we will use the new “easy witness lemma” of Murray and Williams [MW18].
Towards stating it, let us recall the definition of witness circuits for a proof system.

Definition 4.2.6 (verifiers and witnesses). Let t : N → N be a time-constructible, non-
decreasing function, and let L ⊆ {0, 1}∗. An algorithm V(x, y) is a t-time veri�er for L if V
runs in time at most t(|x|) and satisfies the following: For all strings x it holds that x ∈ L if
and only if there exists a witness y such that V(x, y) accepts.

Definition 4.2.7 (witness circuits). Let t : N → N be a time-constructible, non-decreasing
function, let w : N → N, and let L ⊆ {0, 1}∗. We say that a t-time verifier V has witness
circuits of size w if for every x ∈ L there exists a witness yx such that V(x, yx) accepts and
there exists a circuit Cyx : {0, 1}log(|yx |) → {0, 1} of size w(|x|) such that Cyx(i) is the ith bit
of yx. We say that NT IME [t] has witness circuits of size w if for every L ∈ NT IME [t],
every t-time verifier for L has witness circuits of size w.

Loosely speaking, the new easy witness lemma of [MW18] asserts that for any two
functions t(n) � s(n) with sufficient “gap” between them, if NT IME [poly(t)] ⊆
SIZE [s], then NT IME [t] has witness circuits of size ŝ, where ŝ(n) > s(n) is the
function s with some “overhead”. To more conveniently account for the exact param-
eters, we introduce some auxiliary technical notation:

Definition 4.2.8 (sufficiently gapped functions). Let γ, γ′, γ′′ ∈ N be universal con-
stants.10 For any function s : N → N, let s′ : N → N be the function s′(n) = (s(γ · n))γ,
and let ŝ : N → N be the function ŝ(n) = (s′(s′(s′(n))))γ′ . We say that two functions
s, t : N → N are su�ciently gapped if both functions are increasing and time-constructible,
and s′ is also time-constructible, and s(n) < 2n/γ/n, and t(n) ≥ (ŝ(n))γ′′ .

Lemma 4.2.9 (easy witnesses for small nondeterministic time [MW17, Lem 4.1]). Let
s, t : N → N be sufficiently gapped functions, and assume that NT IME [O(t(n))γ] ⊂
SIZE [s], where γ is the constant from Definition 4.2.8. Then, NT IME [t] has witness
circuits of size ŝ.

10Specifically, the values of these constants are γ = e and γ′ = 2g and γ′′ = d, where e, g, and d are
the universal constants from Lemma 4.1 in [MW17].
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4.2.3.1 A parametrized “derandomization implies lower bounds” theorem

Loosely speaking, in the following theorem statement we assume that CAPP can be
solved in non-deterministic time T(m, v), and deduce that for any two functions

t(n) � s(n) such that T
(

poly(n, ŝ(n), log(t(n))), log(t(n))
)
� t(n) it holds that

NT IME [poly(t(n))] does not have circuits of size s(n).

Theorem 4.2.10 (derandomization implies lower bounds, with general parameters).
There exist constants c, c′ ∈N and α < 1 such that the following holds. For T : N×N→N,
assume that (1, 1/3)-CAPP on circuits of size m with at most v input variables can be solved in
non-deterministic time T(m, v). Let s, t : N → N be sufficiently gapped functions such that
s(n) > n and for some constant ε > 0 and any constant α > 0 it holds that

T
(
(n · ŝ(n) · log(t(n)))c, α · log(t(n))

)
≤ t(n)(1−ε)·α ,

where ŝ is defined as in Definition 4.2.8. Then, NT IME [t(n)c′ ] 6⊆ SIZE [s(n)].

Proof. The starting point of the proof is the non-deterministic time hierarchy [Coo72]:
For an appropriate function t′ = t′(n) (that will be determined in a moment), there
exists a set L ∈ NT IME [t′] that cannot be decided by non-deterministic machines
running in time (t′)1−Ω(1). Specifically, for a sufficiently small constant α > 0, let
t′(n) = (t(n))(1−ε/2)·α, and let L ∈ NT IME [t′] \ NT IME

[
(t′)

1−ε
1−ε/2

]
.11 Now, for a

sufficiently large constant c′, assume towards a contradiction that NT IME [t(n)c′ ] ⊆
SIZE [s(n)]. Our goal is to construct a non-deterministic machine that decides L in
time (t′)

1−ε
1−ε/2 , which will yield a contradiction.

To do so, consider the PCP verifier of [BSV14] for L, denoted by V. On inputs
of length n, the verifier V runs in time poly(n, log(t′(n))), uses ` = log(t′(n)) +
O(log log(t′(n))) bits of randomness, and has perfect completeness and soundness
(much) lower than 1/3. 12 Furthermore, using the hypothesis that NT IME [t(n)c′ ] ⊆
SIZE [s(n)] and the “easy witness lemma” (i.e., Lemma 4.2.9), for every x ∈ L there
exists a circuit Px ∈ SIZE [ŝ(n)] such that Prr[VPx(x, r) accepts] = 1. (We actually
apply Lemma 4.2.9 to the deterministic verifier V ′ that enumerates the random coins
of V, which runs in time 2` · poly(n, log(t′)) = poly(t′) = poly(t). We can use the
lemma since we assumed that NT IME [t(n)c′ ] ⊆ SIZE [s(n)], for a sufficiently large
c′.)

Given input x ∈ {0, 1}n, the non-deterministic machine M acts as follows. The
machine non-deterministically guesses a (description of a) circuit Px of size ŝ(n), and
constructs a circuit CPx

x : {0, 1}` → {0, 1} such that CPx
x (r) = VPx(x, r). Then, the

machine feeds the description of CPx
x as input to the machine MCAPP that solves CAPP

11Such a function exists by standard non-deterministic time hierarchy theorems (e.g., [Coo72]), since
t′(n) > nΩ(1), which implies that the gap between t′ and (t′)1−Ω(1) is sufficiently large.

12Note that the only upper-bound that we need on the number of oracle queries issued by V is the
trivial bound given by the running time of V.
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in non-deterministic time T and exists by the hypothesis, and outputs the decision of
MCAPP. By the properties of the PCP verifier and of MCAPP, if x ∈ L then for some guess
of Px and for some non-deterministic choices of MCAPP, the machine M will accept x;
and if x /∈ L, then for any guess of Px and any non-deterministic choices of MCAPP, the
machine M will reject x.

To conclude let us upper-bound the running-time of the machine M. The circuit
CPx

x has ` = log(t′) + O(log log(t′)) < α · log(t) input bits, and its size is m(n) =
poly(n, log(t′)) · ŝ(n); thus, its representation size is poly(m(n)). Therefore, the cir-
cuit CPx

x can be constructed in time poly(m(n)), and the CAPP algorithm runs in time
T(m(n), `). The total running-time of the non-deterministic machine M is thus at most
T ((n · ŝ(n) · log(t(n)))c, α · log(t)), for some constant c. By our hypothesized upper-
bound on T, the running time of M is at most t(n)(1−ε)·α = (t′)

1−ε
1−ε/2 , which yields a

contradiction.

Additional relaxations of the hypothesis in Theorem 4.2.10. Since the proof of The-
orem 4.2.10 relies on the strategy of [Wil13], it is well-known that the hypothesis of
the theorem can be further relaxed. First, we do not have to unconditionally assume
that the non-deterministic machine for CAPP exists, and it suffices to assume that the
machine exists under the hypothesis that NT IME [t(n)c′ ] ⊆ SIZE [s(n)] (this is the
case since we are only using the existence of the machine to contradict the latter
hypothesis). And secondly, the non-deterministic machine that solves CAPP can use
(sub-linearly many) bits of non-uniform advice; this follows by using a strengthened
non-deterministic time hierarchy theorem, which was proved by Fortnow and San-
thanam [FS16] (see [MW18, Remark 1] for details).

4.2.3.2 Theorems 4.2.1 and 4.2.2 as corollaries

We now prove Theorem 4.2.2 as a corollary of Theorem 4.2.10. As detailed in Sec-
tion 4.2.2.1, we start from the hypothesis that (1, 1/3)-CAPP can be solved in non-
deterministic time T(m, v) = 2.99·v · poly(m) (which is weaker than the hypothesis
prBPP = prP). The proof amounts to verifying that, given such a CAPP algorithm,
the hypothesis of Theorem 4.2.10 holds for essentially any s and t ≈ sO(1) ◦ sO(1) ◦ sO(1).

Corollary 4.2.11 (Theorem 4.2.2, restated). Assume that (1, 1/3)-CAPP can be solved in
non-deterministic time T(m, v) ≤ 2(1−ε)·v · poly(m), for some constant ε > 0. Then, there
exists a constant k ∈ N such that for any two sufficiently gapped functions s : N → N and
t : N→N it holds that NT IME [t(n)k] 6⊆ SIZE [s].

Proof. Let k′ > 1 be such that T(m, v) ≤ 2(1−ε)·v ·mk′ . We invoke Theorem 4.2.10 with
the sufficiently gapped functions s and t1(n) = t(n)k′′ , where k′′ > 1 is a sufficiently
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large constant that depends on k′. Note that for any α > 0 it holds that

T
(
(n · ŝ(n)· log(t1(n)))c, α · log(t1(n))

)
≤ (n · log(t1(n)))c·k′ · (t1(n))ε/2 · t1(n)(1−ε)·α (ŝ(n)c·k′ < t1(n)ε/2)

≤ (t1(n))1−ε/3 , (nc·k′ < s(n)c·k′ < t1(n)ε/12)

where both inequalities relied on the hypothesis that k′′ is sufficiently large. Thus, we
conclude that NT IME [t2] 6⊆ SIZE [s], where t2(n) = t1(n)c′ = t(n)c′·k′′ .

Finally, we prove Theorem 4.2.1 as a corollary of Corollary 4.2.11. Recall that the
conclusion in Theorem 4.2.1 is that NT IME [n f (n)] 6⊆ P/poly for “essentially” any
super-constant function f . We now specify exactly what this means. Our goal is to
deduce that NT IME [n f (n)] 6⊆ SIZE [ng(n)], where g(n) � f (n) and g(n) = ω(1).
Therefore, the proof works for any f such that a suitable g exists. We note in advance
that this minor technical detail imposes no meaningful restrictions on f (see next).

Definition 4.2.12 (admissible functions). We say that a function f : N→N is admissible
if f is super-constant (i.e. f (n) = ω(1)), and if there exists another super-constant function
g : N → N that satisfies the following: The function g is super-constant, and t(n) = n f (n)

and s(n) = ng(n) are sufficiently gapped, and ŝ(n) = no( f (n)).

Essentially any increasing function f (n) = ω(1) such that f (n) ≤ n is admissible,
where the only additional constraints that the admissibility condition imposes are
time-constructibility of various auxiliary functions (we require t and s to be sufficiently
gapped, which enforces time-constructibility constraints); for a precise (and tedious)
discussion, see Appendix 4.2.5.2. We can now formally state Theorem 4.2.1 and prove
it:

Corollary 4.2.13 (Theorem 4.2.1, restated). Assume that (1, 1/3)-CAPP can be solved in
non-deterministic time T(m, v) ≤ 2(1−ε)·v · poly(m), for some constant ε > 0. Then, for
every admissible function f there exists a set in NT IME [nO( f (n))] \ P/poly.

Proof. Since f is admissible, there exists a function g that satisfies the requirements of
Definition 4.2.12. We thus invoke Corollary 4.2.11 with the functions t(n) = n f (n) and
s(n) = ng(n), and conclude that there exists a set in NT IME [nO( f (n))] \ SIZE [ng(n)].
Since g(n) = ω(1), the latter set does not belong to P/poly.

4.2.4 Proof of Theorem 4.2.3

In this section we prove Theorem 4.2.3. Throughout the section, for a set S ⊆ {0, 1}∗
and n ∈N, we denote Sn = S ∩ {0, 1}n.

Recall that the conclusion in Theorem 4.2.3 is that there exists a set S such that for
every polynomial-sized circuit family and sufficiently large n ∈ N, the family fails to
decide S on some input length in the interval [n, sI(n)]. Our actual conclusion will be
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slightly stronger: We will conclude that for every sufficiently large n ∈ N, the circuit
family fails to decide S on at least one of the “end-points” of the interval; that is, it
fails either on input length n, or on input length sI(n) (or on both).

This leads us to the following definition. Intuitively, the following definition asserts
that S ∈ i.o.[sI ]-SIZE [s] if there exists a circuit family of size s that, on infinitely-many
input lengths n ∈N, manages to decide S correctly both on inputs of length n and on
inputs of length sI(n). Indeed, it follows that if S /∈ i.o.[sI ]-SIZE [s], then every circuit
family {Cn} of size s that tries to decide S fails, for every sufficiently large n ∈ N,
either on inputs on size n or on inputs of size sI(n) (or on both).

Definition 4.2.14 (a stronger notion of infinitely-often computation). For s, sI : N→N

and S ⊆ {0, 1}∗, we say that S ∈ i.o.[sI ]-SIZE [s] if there exists an infinite set N ⊆ N and
a circuit family {Cn}n∈N of size at most s such that for every n ∈ N , it holds that:

1. The circuit Cn : {0, 1}n → {0, 1} computes Sn.

2. The circuit CsI(n) : {0, 1}sI(n) → {0, 1} computes SsI(n).

Definition 4.2.14 is reminiscent of the notion of robust simulations by Fortnow and
Santhanam [FS17], but the two definitions have significant differences. Recall that a
set S ⊆ {0, 1}∗ can be robustly simulated by a circuit family if for every polynomial
p there are infinitely-many integers n such that the family correctly decides S on all
input lengths in the interval [n, p(n)]. In contrast, in Definition 4.2.14 we consider a
fixed interval length sI (which may also be super-polynomial), but only require the
circuit to decide S on the end-points of the interval.

The starting point of the proof of Theorem 4.2.3 is Murray and Williams’ [MW17,
Thm 3.1] strengthening of Santhanam’s [San09] circuit lower bound. Following [MW18],
we say that a function s : N → N is a circuit-size function if s is increasing, time-
constructible, and for all sufficiently large n ∈N it holds that s(n) < 2n/(2n).

Theorem 4.2.15 (Murray and Williams’ [T]hm 3.1). mw17 strengthening of Santhanam’s [San09]
lower bound] Let s be a super-linear circuit-size function, and let t = poly(s(poly(s)))
(for sufficiently large polynomials that do not depend on s). Then, there exists a set S ∈
MAT IME0[t]/O(log(s)) such that S /∈ i.o.[poly(s)]-SIZE [s].

Note that in [MW18] the “hard” set S is stated to be in MAT IME [t]/O(log(s)),
rather than inMAT IME0[t]/O(log(s)) (i.e., the verifier in [MW18] has two-sided er-
ror). However, using Theorem 2.3.5, we can assume that S ∈ MAT IME0[t]/O(log(s)),
where t = poly(s(poly(s))).

As mentioned in Section 4.2.2.2, the first observation in the proof is that if pr-coRP ⊆
prNP then we can derandomizeMA verifiers that receive non-uniform advice.

Proposition 4.2.16 (derandomization ofMA with advice). If pr-coRP ⊆ prNP , then
for any t, ` : N → N such that t is time-constructible it holds that MAT IME [t]/` ⊆
NT IME [poly(t)]/`.
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Proof. Note that (1, 1/3)-CAPP is in pr-coRP . Thus, relying on the hypothesis that
pr-coRP ⊆ prNP , there exists a non-deterministic polynomial-time machine MCAPP

that gets as input a Boolean circuit C and satisfies the following: If the acceptance
probability of C is one, then for some non-deterministic choices MCAPP accepts; and
if the acceptance probability of C is at most 1/3 then MCAPP rejects, regardless of the
non-deterministic choices.

Now, let S be a set inMAT IME0[t]/`, let V be anMAT IME0[t]/` verifier for
S, and let {an}n∈N be a sequence of “good” advice that allows V to decide S. We want
to construct a non-deterministic machine M that runs in time poly(t) and decides S
with ` bits of non-uniform advice. Given input x ∈ {0, 1}n and advice an, the machine
M guesses a witness w ∈ {0, 1}t(n), and constructs a circuit C = CV,x,w,an : {0, 1}t(n) →
{0, 1} that gets as input r ∈ {0, 1}t(n) and computes V(x, w, r, an). Then, the machine
M feeds C to the machine MCAPP, and outputs the decision of MCAPP. The running
time of the machine M is dominated by the running time of MCAPP, which is at most
poly(t(n)). Now, since an is the “good” advice for V, if x ∈ S then there exists w
such that the acceptance probability of C is one, which means that there exist non-
deterministic choices for MCAPP such that MCAPP will accept C; on the other hand, if
x /∈ S then for any w the acceptance probability of C is at most 1/3, which means that
for any non-deterministic choices for MCAPP it holds that MCAPP rejects C.

The second observation in the proof is that if NT IME [t]/` is not contained in
a non-uniform class of circuits, then NT IME [O(t)] (i.e., without non-uniform ad-
vice) is also not contained in a (related) non-uniform class of circuits. Moreover, this
assertion still holds if the “separation” between the classes is in the sense of Defini-
tion 4.2.14.

We first prove a simpler form of this statement, which showcases the main idea
but is much less cumbersome. In the following statement, we only consider a single
bit of advice, and do not refer to separations in the sense of Definition 4.2.14.

Proposition 4.2.17 (eliminating the advice). Let s0, s, t : N→N such that t is increasing,
and for all sufficiently large n ∈ N it holds that s0(n) ≥ s(n + 1). If NT IME [t]/1 6⊆
SIZE [s0], then NT IME [O(t)] 6⊆ SIZE [s].
Proof. We prove the contrapositive statement: If NT IME [O(t)] ⊆ SIZE [s], then
NT IME [t]/1 ⊆ SIZE [s0]. To do so, fix any S ∈ NT IME [t]/1, and let us construct
a circuit family of size s0 that decides S.

To construct the circuit family we consider an auxiliary set Sadv, which is defined
as follows. Let M be a t-time non-deterministic machine and let {an} be a sequence of
advice bits such that M correctly decides S when given advice {an}. Let Sadv be the set
of pairs (x, σ), where x ∈ {0, 1}∗ and σ ∈ {0, 1}, such that M (non-deterministically)
accepts x when given advice σ. Note that Sadv ∈ NT IME [O(t)], because a non-
deterministic machine that gets input (x, σ) simulate the machine M on input x with
advice σ and decide according to the output of M.

Relying on the hypothesis that NT IME [O(t)] ⊆ SIZE [s], there exists a circuit
family {Cn} of size s such that each Cn decides Sadv

n . By hard-wiring the “correct”
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advice bit an in place of the last input bit into every Cn, we obtain a circuit family
{C′n} such that each C′n decides Sn, and its size is at most s(n + 1) ≤ s0(n).

The following proposition is a stronger form of Proposition 4.2.17, which considers
possibly long advice strings, and refers to separations in the sense of Definition 4.2.14.

Proposition 4.2.18 (eliminating the advice). Let s0, s, `, t, sI : N → N be functions such
that t is super-linear and increasing, and sI , s0 and s are increasing, and the mapping 1n 7→
1`(n) is computable in time O(n + `(n)). Assume that for every sufficiently large n ∈ N it
holds that `(n) < n/2 and s0(n) ≥ s(2n) and s0(sI(n)) ≥ s(2sI(2n)). Further assume that
NT IME [t]/` 6⊆ i.o.[sI ]-SIZE [s0]. Then, NT IME [O(t)] 6⊆ i.o.[2sI ]-SIZE [s].

We comment that a statement that is more general than the one in Proposition 4.2.18
can be proved, foregoing some of the requirements (e.g., on `) while allowing poten-
tial degradation in the parameters of the conclusion. Since the statement of Proposi-
tion 4.2.18 suffices for our parameter setting, and for simplicity, we avoid such gener-
alizations.

Proof of Proposition 4.2.18. Assuming that NT IME [O(t)] ⊆ i.o.[2sI ]-SIZE [s], we
prove that NT IME [t]/` ⊆ i.o.[sI ]-SIZE [s0]. Fixing any S ∈ NT IME [t]/`, let us
construct a circuit family of size s0 that decides S infinitely-often on inputs of length
n and sI(n).

We first define a set Sadv as follows. Let M be a t-time non-deterministic machine
and let {an} be a sequence of “good” advice strings of length |an| = `(n) such that M
correctly decides S when given advice {an}. For every n ∈N, the set Sadv

n will include
representations of all pairs (x, σ), where |σ| = `(|x|) and |x|+ 2|σ| < n, such that M
accepts x when given advice σ. Specifically, we define Sadv

n to be the set of all n-bit
strings of the form 1t0|σ|1xσ, where t = n − (|x| + 2|σ| + 1), such that M accepts x
when given advice σ.13

Note that Sadv ∈ NT IME [O(t)]. This is the case since a non-deterministic ma-
chine that gets input z ∈ {0, 1}n can first verify that z can be parsed as z = 1t0|σ|1xσ
such that |σ| = `(|x|) (and reject z if the parsing fails); and then simulate the machine
M on input x with advice σ, in time O(t(|x|)) = O(t(n)), and decide according to the
output of M. Now, since we assume that NT IME [O(t)] ⊆ i.o.[2sI ]-SIZE [s], there
exists an infinite set I ⊆N and a circuit family {Cn} of size s such that for every n ∈ I:

1. Cn : {0, 1}n → {0, 1} correctly computes Sadv
n ; and

2. C2sI(n) : {0, 1}2sI(n) → {0, 1} correctly computes Sadv
2sI(n)

.

We transform {Cn} into a circuit family of size s0 that decides S infinitely-often on
inputs of length both n and sI(n). To do so, we rely on the following simple claim:

Claim 4.2.18.1. Let n, m ∈ N such that m + 2`(m) < n. Assume that there exists a circuit
of size s(n) that decides Sadv

n . Then, there exists a circuit of size s(n) that decides Sm.
13The 0|σ| term facilitates the parsing of the suffix of the n-bit string as a pair xσ.
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Proof. Let Cn be the circuit of size s(n) for Sadv
n . The circuit Cm for Sm is obtained by

hard-wiring into Cn the “correct” advice am instead of the last `(m) input bits, and the
correct initial padding 1n−m−2`(m)−10`(m)1 instead of the first n−m− `(m) input bits.
�

For every n ∈ I, let m = m(n) be the largest integer such that m + 2`(m) + 1 ≤ n.
Let I′ = {m(n)}n∈N, and note that I′ is infinite. For every sufficiently large m ∈ I′,
relying on the fact that m = m(n) for some n ∈ I and on Claim 4.2.18.1, we have that:

1. There exists a circuit Cm : {0, 1}m → {0, 1} of size s(n) ≤ s0(dn/2e) ≤ s0(m) that
decides Sm. (We relied on the fact that m ≥ n/2, since `(m) < m/2.)

2. There exists a circuit CsI(m) : {0, 1}sI(m) → {0, 1} of size s0(sI(m)) that decides
SsI(m). To see this, recall that there exists a circuit C2sI(n) of size s(2sI(n)) that de-
cides Sadv

2sI(n)
. We can invoke Claim 4.2.18.1 because sI(m)+ 2`(sI(m)) < 2sI(m) <

2sI(n). Also, relying on the fact that m ≥ n/2 and on the hypotheses regarding
s0, s and sI , we have that s(2sI(n)) ≤ s(2sI(2m)) ≤ s0(sI(m)).

It follows that S ∈ i.o.[sI ]-SIZE [s0].

We now combine the foregoing ingredients into a proof of Theorem 4.2.3.

Theorem 4.2.19 (Theorem 4.2.3, restated). There exists a constant ε > 0 such that the
following holds.

• Let s : N→N be an increasing, super-linear and time-constructible function such that
for all sufficiently large n ∈N it holds that s(n) ≤ 2ε·n and that s(2n) ≤ s(n)2.

• Let t = poly(s(poly(s))), for sufficiently large polynomials (that do not depend on s).

• Let s0 : N → N be an increasing and time-constructible function such that for all
sufficiently large n ∈N it holds that s0(n) ≥ s(n2)2 and that s0(2n) ≤ s0(n)2.

Assume that prBPP ⊆ prNP . Then, NT IME [t] 6⊆ i.o.[poly(s0)]-SIZE [s].

Note that if the function s in Theorem 4.2.19 satisfies s(n2) < s(n)k, for a sufficiently
large constant k ∈ N, then we can use the function s0(n) = s(n)2k, and deduce that
NT IME [t] 6⊆ i.o.[poly(s)]-SIZE [s].

Proof of Theorem 4.2.19. Let t0 = poly(s0(poly(s0))), for sufficiently large polynomi-
als, and let ` = O(log(s0)) (the universal constant hidden in the O-notation is the
one from Theorem 4.2.15). By Theorem 4.2.15, there exists S ∈ MAT IME [t0]/` \
i.o.[(s0)c]-SIZE [s0], for a sufficiently large constant c ∈ N. By Proposition 4.2.16, and
relying on the hypothesis that prBPP ⊆ prNP , it holds that S ∈ NT IME [poly(t0)]/` \
i.o.[(s0)c]-SIZE [s0].

We now want to use Proposition 4.2.18 to deduce that NT IME [poly(t0)] is not
contained in i.o.[poly(s0)]-SIZE [s], and thus we need to verify that the functions `, s,
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s0, and (s0)c satisfy the hypothesis of Proposition 4.2.18. This is indeed the case since
for all sufficiently large n ∈N it holds that `(n) < n/2 (assuming that ε is sufficiently
small); and since s0(n) > s(n2)2 ≥ s(2n), and s(2s0(2n)c) ≤ s(s0(n)2c)2 ≤ s0(s0(n)c).

As mentioned before the statement of Theorem 4.2.19, the “gap” between the input
lengths n and sI(n) = poly(s0(n)) (on which any size-s circuit family is guaranteed to
fail) in Theorem 4.2.19 is larger than the function s that bounds the size of the circuits.
This is no coincidence: If the gap function sI would have been significantly smaller than
the bound s on the circuit size, then we would have obtained an “almost-everywhere”
lower bound (for circuits of size about s(s−1

I )).14

4.2.5 Appendices for Section 4.2

4.2.5.1 An alternative proof of Theorem 4.2.2

In this section we present an alternative proof of Theorem 4.2.1, which does not
rely on the work of Murray and Williams [MW18], but rather on the work of San-
thanam [San09]. The idea for this alternative proof was suggested to us by Igor
Oliveira.

The structure of this alternative proof is very similar to the proof of Theorem 4.2.3
(which was described in Section 4.2.2.2), but uses as a starting point a generalization
of the circuit lower bound proved by Santhanam [San09], instead of its subsequent
strengthening by Murray and Williams [MW18]. Specifically, the starting point of the
proof is the following:

Theorem 4.2.20 (a generalization of [San09, Thm. 1]). Let s : N → N be an increasing,
super-linear and time-computable function such that for all sufficiently large n ∈ N it holds
that s(3n) ≤ s(n)3. Then, for t : N → N such that t(n) = poly(s(poly(s(n)))) it holds
thatMAT IME [t]/1 6⊆ SIZE [s].

The proof of Theorem 4.2.20 imitates the original argument from [San09], but uses
more general parameters. We include the full proof for completeness, but since it re-
quires no new significant ideas, we defer its presentation to the end of the appendix.
The alternative proof of Theorem 4.2.1 follows by combining Theorem 4.2.20, Proposi-
tion 4.2.16 (instantiated with the value ` = 1), and Proposition 4.2.17.

Theorem 4.2.21 (Theorem 4.2.1, an alternative technical statement). Let s : N → N be
an increasing, super-linear and time-computable function such that for all sufficiently large n ∈

14To see this, assume that S /∈ i.o.[sI ]-SIZE [s], for sI � s. We define a set Semb by “embedding” all
strings in S of length n − 1 and s−1

I (n − 1) into {0, 1}n: For each n ∈ N, let Sembn consist of all n-bit
strings 0n−|x|1x such that x ∈ S. Since S /∈ i.o.[sI ]-SIZE [s], for every sufficiently large n ∈ N the
circuit complexity of Sembn is larger either than s(n − 1) or than s(s−1

I (n − 1)). In natural cases where
s(s−1

I (n − 1)) < s(n − 1), we obtain an “almost-everywhere” lower bound for circuits of size about
s(s−1

I ).
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N it holds that s(3n) ≤ s(n)3, and let t : N → N such that t(n) = poly(s(poly(s(n)))),
for sufficiently large polynomials. Assume that prBPP = prP . Then, NT IME [t] 6⊆
SIZE [s].
Proof. Let s0 = s3, and let t0 = poly(s0(poly(s0))), for sufficiently large polynomials.
According to Theorem 4.2.20, there exists a set S in MAT IME [t0]/1 such that S /∈
SIZE [s0]. By Proposition 4.2.16, and relying on the hypothesis that prBPP = prP ,
it holds that S ∈ NT IME [t1]/1 \ SIZE [s0], where t1 = poly(t0). Using Proposi-
tion 4.2.17, it holds thatNT IME [t] 6⊆ SIZE [s1], where t = O(t1) = poly(s(poly(s)))
and s1(n) = s0(n− 1). Finally, since s is increasing and s(n) ≤ s(dn/3e)3, we have that
s1(n) = s0(n− 1) ≥ s0(dn/3e) ≥ s(n), and hence NT IME [t] 6⊆ SIZE [s].

It is just left to detail the proof of Theorem 4.2.20. The first technical ingredient
in the proof is the PSPACE -complete set of Trevisan and Vadhan [TV07]. We use
this set, but instead of relying on the fact that the set is PSPACE -complete, we will
use padding to claim that the set is complete for DSPACE [nω(1)] under nω(1)-time
reductions.

Lemma 4.2.22 (scaling the PSPACE -complete set of [TV07]). There exists a set LTV ⊆
{0, 1}∗ and a probabilistic polynomial-time oracle Turing machine M that satisfy the following:

1. Let t : N → N be a super-linear, time-computable function. Then, for every set L ∈
DSPACE [t] there exists a deterministic Turing machine RL that runs in time poly(t)
such that for every x ∈ {0, 1}∗ it holds that x ∈ L ⇐⇒ RL(x) ∈ LTV.

2. On input x ∈ {0, 1}∗, the machine M only issues queries of length |x|.

3. For any x ∈ LTV it holds that Pr[M1LTV (x) = 1] = 1, where 1LTV : {0, 1}n → {0, 1} is
the indicator function of LTV ∩ {0, 1}n.

4. For any x /∈ LTV and any f : {0, 1}n → {0, 1} it holds that Pr[M f (x) = 0] ≥ 2/3.

Proof. We take LTV to be the PSPACE -complete set from [San09, Lem. 12], which
is the same set constructed in [TV07]. Items (2) – (4) follow immediately from the
original statement in [San09].15 Item (1) follows since LTV is PSPACE -complete, and
using a padding argument. Specifically, for any t and L, consider the machine RL
that combines a reduction of L to L′ = {(x, 1t) : x ∈ L} with a reduction of L′ to
LTV. The first reduction maps x 7→ (x, 1t), and since L′ ∈ PSPACE , there exists a
second reduction of L′ to LTV that can be computed in time poly(t + |x|) < poly(t)
(the inequality is since t is super-linear).

Proof of Theorem 4.2.20. Let t0 : N → N such that t0(n) = s4(n), and let t1 =
poly(t0) and t = t2 = poly(t0(poly(t0))), for sufficiently large polynomials. Let
LTV be the set from Lemma 4.2.22. Our goal is to prove that there exists a set in
MAT IME [t2]/1 that is not in SIZE [t1/4

0 ]. The proof proceeds by a case analysis.

15The original statement asserts that any x /∈ LTV is rejected with probability at least 1/2 (rather than
2/3), but this probability can be amplified to 2/3 using standard error-reduction.
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Case 1: LTV ∈ SIZE [t0]. By a standard diagonalization argument, there exists a
set Ldiag ∈ DSPACE [t1] \ SIZE [t0]. 16 Our main goal now will be to prove that
DSPACE [t1] ⊆ MAT IME [t2], which will imply that Ldiag ∈ MAT IME [t2] \
SIZE [t0]. (Indeed, in this case we are proving a stronger result, since the MA veri-
fiers do not need advice, and since the circuits are of size t0 rather than s = t1/4

0 .)
To do so, let L ∈ DSPACE [t1], and consider the followingMA verifier for L. On

input x ∈ {0, 1}n, the verifier computes x′ = RL(x), where RL is the machine from
Lemma 4.2.22. Note that n′ = |x′| ≤ poly(t1(n)), and that x ∈ L ⇐⇒ x′ ∈ LTV.
Now, the verifier parses the witness w ∈ {0, 1}poly(t0(n′)) as a description of a circuit
C : {0, 1}n′ → {0, 1} of size t0(n′), and runs the machine M from Lemma 4.2.22 on
input x′, while answering each oracle query of M using the circuit C.

Note that, since LTV ∈ SIZE [t0], there exists a circuit C over n′ input bits of size
t0(n′) that correctly computes LTV on inputs of length n′. Therefore, by Lemma 4.2.22,
when x ∈ L there exists a witness such that the verifier accepts x with probability one,
whereas the verifier rejects any x /∈ L with probability at least 2/3, regardless of the
witness. The total running time of the verifier is dominated by the time it takes to
simulate M using the circuit C, which is at most poly(n′) · poly(t0(n′)) ≤ t2(n).

Case 2: LTV /∈ SIZE [t0]. In this case we show an explicit set Lpad, which will be a
padded version of LTV, such that Lpad can be decided inMAT IME [t2] with one bit of
advice, but cannot be decided by circuits of size s = t1/4

0 . To do so, let szTV : N → N

be such that szTV(n) is the minimum circuit size for LTV
n = LTV ∩ {0, 1}n. Also, for any

integer m, let p(m) = 2blog(m)c be the largest power of two that is not larger than m,
and let n(m) = m− p(m). We think of n(m) as the “effective input length” indicated
by m, and on p(m) as the length of padding. We define the set Lpad as follows:

Lpad =
{
(x, 1p) : x ∈ LTV, and |x| = n(|x|+ p),

and t0(|x|+ p) ≤ szTV(|x|)3 < t0(|x|+ 2p)
}

.

Let us first see that Lpad cannot be decided by circuits of size t1/4
0 . Assume towards

a contradiction that there exists a circuit family {Cm} of size t1/4
0 that decides Lpad

m
correctly for every m. Since LTV /∈ SIZE [t0], there exists an infinite set I ⊆ N such
that for every n ∈ I it holds that szTV(n) > t0(n). For a sufficiently large n ∈ I, we
will construct a circuit C′n : {0, 1}n → {0, 1} of size less than szTV(n) that computes
LTV

n , which yields a contradiction to the definition of szTV.
Specifically, consider the circuit C′n : {0, 1}n → {0, 1} that acts as follows. Let p be

a power of two such that t0(n + p) ≤ szTV
3(n) < t0(n + 2p); there exists such a p since

t0(n + 2dlog(n)e) ≤ t0(n)3 < szTV
3(n). The value of this p is hard-coded into C′n. Given

16For example, Ldiag = {x : C|x|(x) = 1}, where Cn is the lexicographically-first circuit over n bits
of size at most t2

0(n) that decides a set whose circuit complexity is more than t0(n). The proof that
Ldiag ∈ DSPACE [t1] follows the well-known idea used in Kannan’s theorem (see, e.g., [Juk12, Lem.
20.12]).
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x ∈ {0, 1}n, the circuit C′n pads x with 1p, simulates the circuit Cm on (x, 1p) (where
m = n + p), and outputs Cm(x, 1p). By the definition of Lpad it holds that C′n correctly
computes LTV

n . The size of C′n is dominated by the size of Cm, and is thus at most
O(t0(n + p)1/4) = o(t0(n + p)1/3). Since t0(n + p)1/3 ≤ szTV(n) and n is sufficiently
large, the size of C′n is less than szTV(n), which yields a contradiction.

Let us now see that Lpad can be decided by an MA verifier that runs in time t2
and uses one bit of advice. Given an input z of length m, the advice bit is set to one if
and only if Lpad

m 6= ∅; if the advice is zero, the verifier immediately rejects. Otherwise,
the verifier computes n = n(m) and p = p(m), and parses the input z as (x, 1p) where
|x| = n (if the verifier fails to parse the input, it immediately rejects). The verifier
parses the witness w ∈ {0, 1}poly(t0(n+2p)) as a circuit C : {0, 1}n → {0, 1} of size
at most t0(n + 2p)1/3, and emulates the machine M from Lemma 4.2.22 on input x,
answering each oracle query of M using the circuit C. The verifier outputs the decision
of M.

Since szTV(n) < t0(n + 2p)1/3, there exists a circuit C of size at most t0(n + 2p)1/3

that computes LTV
n . For any z ∈ Lpad, when the witness represents this circuit, the

verifier accepts z with probability one. Also, for any z /∈ LTV, the verifier rejects x with
probability 2/3, regardless of the witness. Finally, note that the running time of the
verifier is dominated by the time that it takes to run the machine M while simulating
the oracle answers, which is at most poly(n) · poly(t0(2m)) ≤ t2(m).

4.2.5.2 Sufficient conditions for admissibility

The point of the current appendix is to show that essentially any increasing function
f (n) = ω(1) such that f (n) ≤ n is admissible (in the sense of Definition 4.2.12).

Claim 4.2.23. Let f (n) = ω(1) be any increasing function such that f (n) ≤ n for all n, and
t(n) = n f (n) is time-constructible, and s(n) = nlog( f (log(n))) is time-constructible, and s′(n)
is time-constructible. Then, f is admissible.

Proof. Let g(n) = log( f (log(n))) and let s(n) = ng(n). We need to verify that g is
super-constant (which holds because f is super-constant), and that t and s are suffi-
ciently gapped, and that ŝ(n) = no( f (n)). To see that t and s are sufficiently gapped,
first note that both functions are increasing (since f is increasing, and hence g is also
increasing) and are time-constructible, as is s′ (we assumed time-constructibility in the
hypothesis). Also note that s(n) ≤ nlog log(n) < 2n/γ/n.

Thus, it is left to verify that ŝ(n) = no( f (n)). The proof of this fact amounts to the
following elementary calculation. First note that

s′(n) = (s(γ · n))γ = (γ · n)γ·log( f (log(γ·n))) < nlog2( f (log2(n))) .

Thus, for any function k = k(n) and constant c ≥ 2 such that k(n) ≤ logc( f (log3c(n)))
(which in particular implies that k(n) ≤ logc(n)), we have that

s′(nk) < nk·log2( f (log2(nk))) ≤ nlog2c( f (log3c(n))) . (4.2.3)
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In particular, using Eq. (4.2.3) with k(n) = log2( f (log2(n))) and c = 2, we deduce
that s′(s′(n)) < nlog4( f (log6(n))). Then, using Eq. (4.2.3) again with k(n) = log4( f (log6(n)))
and c = 4, we deduce that s′(s′(s′(n))) < nlog8( f (log12(n))). Therefore, we have that
ŝ(n) < nγ′·log8( f (log12(n))) < nγ′·poly log( f (n)) = no( f (n)).

4.3 Uniform lower bounds and average-case derandomization

4.3.1 The main results

Assume that some function in PSPACE cannot be computed by uniform probabilistic
algorithms that run in time 2n/polylog(n). Intuitively, using “hardness-to-randomness”
results, we expect that such a strong lower bound would imply a strong derandom-
ization result. For context, recall that in non-uniform hardness-to-randomness results
(following [NW94]), lower bounds for non-uniform circuits yield pseudorandom gen-
erators (PRGs) that “fool” non-uniform distinguishers. Moreover, these results “scale
smoothly” such that lower bounds for larger circuits yield PRGs with longer stretch
(see [Uma03] for an essentially optimal trade-off); at the extreme, if E is hard almost-
always for exponential-sized circuits, then we obtain PRGs with exponential stretch
and deduce that prBPP = prP (see [IW99]).

The key problem, however, is that the long line-of-works concerning uniform “hardness-
to-randomness” did not yield such smooth trade-offs so far (see [IW98; CNS99; Kab01;
Lu01; GSTS03; TV07; SU07; GV08; Gol11; CIS18]). Ideally, given an exponential lower
bound for uniform probabilistic algorithms (such as E 6⊆ i.o.BPT IME [2ε·n]) we
would like to deduce that there exists a PRG with exponential stretch for uniform
circuits, and consequently that BPP = P in “average-case”.17 However, prior to the
current work, the state-of-the-art (by Trevisan and Vadhan [TV07]) could at best yield
PRGs with sub-exponential stretch (i.e., with seed length polylog(n)), even if the hypoth-
esis refers to an exponential lower bound. Moreover, the best currently-known PRG
only works infinitely-often, even when we assume that the “hard” function cannot be
computed by probabilistic algorithms on almost all input lengths.

Previous works bypassed these two obstacles in various indirect ways. Goldre-
ich [Gol11] relied on the (much) stronger hypothesis prBPP = prP to construct an
“almost-always” PRG with exponential stretch for uniform circuits. Similarly, Car-
mosino, Impagliazzo, and Sabin [CIS18] relied on hypotheses from fine-grained com-
plexity (recall that these are qualitatively strong, and implied by the “strong” version
of rETH, i.e. by rSETH) to bypass both obstacles and derandomize BPP “almost-

17Throughout the paper, when we say that a PRG is ε-pseudorandom for uniform circuits, we mean that
for every efficiently-samplable distribution over circuits, the probability over choice of circuit that the
circuit distinguishes the output of the PRG from uniform with advantage more than ε is at most ε (see
Definitions 2.4.14 and 2.4.11). The existence of such PRGs implies an “average-case” derandomization of
BPP in the following sense: For every L ∈ BPP there exists an efficient deterministic algorithm D such
that every probabilistic algorithm that gets input 1n and tries to find x ∈ {0, 1}n such that D(x) 6= L(x)
has a small probability of success (see, e.g., [Gol11, Prop. 4.4]).
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4.3 Uniform lower bounds and average-case derandomization

always” on average-case in polynomial time; however, their derandomization does not
rely on a PRG construction, and satisfies a weaker notion of average-case derandom-
ization than the notion that we use.18 Gutfreund and Vadhan [GV08] bypassed the
“almost-always” barrier by deducing (subexponential-time) derandomization of RP
rather than of BPP (see details below). Lastly, a line-of-works dealing with uniform
“hardness-to-randomness” for AM (rather than for BPP) was able to bypass both
obstacles in this context (see, e.g., [Lu01; GSTS03; SU07]).

In this work we tackle both obstacles directly. First, we establish for the first time
that hardness assumptions for BPT IME yield a pseudorandom generator for uni-
form circuits with near-exponential stretch (i.e., with seed length Õ(log(n))), which can
be used for average-case derandomization of BPP in nearly-polynomial-time (i.e.,
in time 2Õ(log(n)) = nloglog(n)O(1)

). Specifically, we start from the hypothesis that the
Totally Quanti�ed Boolean Formula (TQBF) problem cannot be solved by probabilistic al-
gorithms that run in time 2n/polylog(n); this hypothesis is weaker than rETH (since 3-SAT
reduces to TQBF with a linear overhead). Under this hypothesis, we show that there
exists a PRG for uniform circuits with seed length Õ(log(n)) that is computable in
time 2Õ(log(n)) = nloglog(n)O(1)

.

Theorem 4.3.1 (rETH ⇒ PRG with almost-exponential stretch for uniform circuits;
informal). Suppose that there exists T(n) = 2n/polylog(n) such that TQBF /∈ BPT IME [T].
Then, for every t(n) = npolyloglog(n), there exists a PRG that has seed length Õ(log(n)), runs
in time npolyloglog(n), and is infinitely-often (1/t)-pseudorandom for every distribution over
circuits that can be sampled in time t with log(t) bits of non-uniform advice.

The proof of Theorem 4.3.1 is based on careful refinements of the proof frame-
work of [IW98], using new technical tools that we construct. The latter tools signifi-
cantly refine and strengthen the technical tools that were used by [TV07] to obtain the
previously-best uniform hardness-to-randomness tradeoff. For high-level overviews
of the proof of Theorem 4.3.1 (and of the new constructions), see Section 4.3.2.

Overcoming the “infinitely-often” barrier. The hypothesis in Theorem 4.3.1 is that
any probabilistic algorithm that runs in time 2n/polylog(n) fails to compute TQBF infinitely-
often, and the corresponding conclusion is that the PRG “fools” uniform circuits only
infinitely-often. This is identical to all previous uniform “hardness-to-randomness” re-
sults that used the [IW98] proof framework.19

Gutfreund and Vadhan [GV08, Sec 6] showed one way to overcome this “infinitely-
often” barrier, by deducing almost-always average-case derandomization ofRP (rather
than of BPP) under an almost-always lower bound hypothesis; as in previous results,
their derandomization is relatively slow (i.e., it works in sub-exponential time). Com-
bining their ideas with the techniques underlying Theorem 4.3.1, we prove that un-

18Specifically, they deduce an average-case derandomization of BPP with respect to the uniform dis-
tribution, rather than with respect to every polynomial-time-samplable distribution.

19Other proof strategies (which use different hypotheses) were able to support an “almost-always”
conclusion, albeit not necessarily a PRG, from an “almost-always” hypothesis (see [GSTS03; CIS18]).
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der the hypothesis that rETH holds almost-always, RP can be derandomized almost-
always in average-case and in (nearly-)polynomial time (see Theorem 4.3.16).

In addition, their techniques can be adapted to yield an almost-always PRG (from
an almost-always lower bound hypothesis) that uses O(log(n)) bits of non-uniform
advice. We are able to significantly improve this: Assuming that every probabilistic
algorithm that runs in time 2n/polylog(n) fails to decide TQBF on almost all input lengths,
we prove that BPP can be derandomized in average-case and almost-always, using
only a triply-logarithmic number (i.e., O(logloglog(n))) of advice bits.

Theorem 4.3.2 (aa-rETH⇒ almost-always derandomization in time npolyloglog(n); infor-
mal). Assume that for some T(n) = 2n/polylog(n) it holds that TQBF /∈ i.o.BPT IME [T],
and let t(n) = npolyloglog(n). Then, for every L ∈ BPT IME [t] and every distribution en-
semble X = {Xn ⊂ {0, 1}n} such that x ∼ Xn can be sampled in time t(n), there exists a
deterministic algorithm D = DX that runs in time npolyloglog(n) and uses O(logloglog(n))
bits of non-uniform advice such that for almost all input lengths n ∈ N it holds that
Prx∼Xn [D(x) 6= L(x)] < 1/t(n).

Remark: Non-deterministic extensions. We note that “scaled-up” versions of Theo-
rems 4.3.1 and 4.3.2 for non-deterministic settings follow easily from known results; that
is, assuming lower bounds for non-deterministic uniform algorithms, we can deduce
strong derandomization of corresponding non-deterministic classes. First, from the
hypothesis MAETH20 we can deduce strong circuit lower bounds, and hence also worst-
case derandomization of prBPP and of prMA (this uses relatively standard Karp-
Lipton-style arguments, following [BFN+93]; see Appendix 4.3.6.1 for details and for
a related result). Similarly, as shown by Gutfreund, Shaltiel, and Ta-Shma [GSTS03], a
suitable variant of AMETH implies an average-case derandomization of AM.

4.3.2 Proof overviews

Recall that in typical “hardness-to-randomness” results, a PRG is based on a hard
function, and the proof amounts to showing that an efficient distinguisher for the
PRG can be transformed to an efficient algorithm or circuit that computes the hard
function.

In high-level, our proof strategy follows this paradigm, using the classic approach
of Impagliazzo and Wigderson [IW98]. Their approach for transforming a distin-
guisher to an algorithm for the hard function works only when the hard function
f ws : {0, 1}∗ → {0, 1}∗ is well-structured; the precise meaning of the term "well-structured"
differs across different follow-up works, and in the current proof it will also take
on a new meaning, but for now let us intuitively think of f ws as downward self-
reducible and as having properties akin to random self-reducibility. Instantiating the
Nisan-Wigderson PRG with a suitable encoding ECC( f ws) of f ws (again, the precise

20Note that indeed a non-deterministic analogue of rETH is MAETH (or, arguably, AMETH), rather
than NETH, due to the use of randomness. Also recall that, while the “strong” version of MAETH is false
(see [Wil16]), there is currently no evidence against the “non-strong” version MAETH.
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requirements from ECC differ across works), our goal is to show that if the PRG with
stretch t(n) does not “fool” uniform distinguishers even infinitely-often, then f ws is
computable in probabilistic time t′(n) > t(n).

The key challenge underlying this approach is the significant overheads in the proof,
which increase the time complexity t′ of computing f ws. In the original proof of [IW98]
this time was roughly t′(n) ≈ t(t(n)), and the state-of-the-art (prior to the results
described here), by Trevisan and Vadhan [TV07] (following [CNS99]), yielded t′(n) =
poly(t(poly(n))). Since the relevant functions f ws in all works are computable in E ,
proofs with such an overhead can yield at most a sub-exponential stretch t(n) = 2nΩ(1)

.
As mentioned in Section 4.3.1, Goldreich [Gol11] bypassed this difficulty by us-

ing the stronger hypothesis prBPP = prP , whereas Carmosino, Impagliazzo, and
Sabin [CIS18] bypassed this difficulty by using hypotheses from fine-grained com-
plexity (that are implied by the “strong” version of rETH, i.e. by rSETH). In contrast,
we take a brute-force approach: We reduce all of the polynomial overheads in the in-
put length to polylogarithmic overheads in the input length. That is, we will show that
for carefully-constructed f ws and suitably-chosen ECC (and with some variations in
the proof), if the PRG instantiated with ECC( f ws) for stretch t does not “fool” uniform
distinguishers infinitely-often, then f ws can be computed in time t′(n) = t(Õ(n))O(1).

4.3.2.1 The well-structured function f ws

Following Trevisan and Vadhan [TV07], our f ws is an artificial PSPACE -complete
problem that we carefully construct. Their goal was to construct f ws that will be
simultaneously downward self-reducible and randomly self-reducible. They achieved
this by constructing a function based on the proof of IP = PSPACE [LFK+92; Sha92]:
Loosely speaking, at input length N = poly(n) the function gets as input a 3-SAT
formula ϕ over n variables, and outputs P(ϕ,N)(ϕ) = Q1 ◦Q2 ◦ ... ◦Qpoly(n)P(ϕ), where
P(ϕ) is an arithmetization of ϕ and the Qi’s are arithmetic operators from the IP =
PSPACE proof such that P(ϕ,N)(ϕ) = TQBF(ϕ); and at input length N− i, the function
gets input (ϕ, w) and outputs P(ϕ,N−i)(ϕ, w), where P(ϕ,N−i) is the polynomial that
applies one less operator to P(ϕ) than P(ϕ,N−i+1) and fixes some input variables for
P(ϕ) according to w. Since f ws consists of low-degree polynomials, it is randomly
self-reducible; and since each P(ϕ,N−i) is obtained by applying a simple operator to
P(ϕ,N−(i−1)), the function f ws is also downward self-reducible.

Going through their proof (with needed adaptations for our “high-end” parameter
setting), we encounter four different polynomial overheads in the input length. The
first and obvious one is that inputs of length n are mapped to inputs of length N =
poly(n), corresponding to the number of polynomials in the IP = PSPACE protocol.
The other polynomial overheads in the input length come from their reduction of
TQBF to an intermediate problem that takes both ϕ and w as part of the input and is
still amenable to arithmetization,21 from the field size that is required for the strong

21Recall that the standard arithmetization of 3-SAT is a polynomial that depends on the input formula,
whereas we want a single polynomial that gets both a formula and the assignment as input.
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random self-reducibility that is needed in our parameter setting (see below), and from
the way the poly(n) polynomials are combined into a single Boolean function.

The main challenge is to eliminate all of the foregoing overheads simultaneously,
rather than separately. We will achieve this by presenting a construction of a suitable
f ws, which is a refinement of their construction, and constitutes the main technical part
in the proof of Theorem 4.3.1. We now outline (very briefly) the key points underlying
the construction; for a detailed overview we refer the reader to Section 4.3.3. After the
following brief outline, we will explain how we use f ws to prove Theorem 4.3.1.

Our main idea is to use an IP = PSPACE protocol with polylog(n) rounds in-
stead of poly(n) rounds, so that the first overhead (i.e., the additive overhead in the
input length caused by the number of operators) will be only polylog(n) instead of
poly(n). Indeed, in such a protocol the verification time in each round is high, and
therefore our downward self-reducibility algorithm is relatively slow and makes many
queries; but we will be able to afford this in our proof (since eventually we only need
to solve TQBF in time 2n/polylog(n)). While implementing this idea, we define a differ-
ent intermediate problem that is both amenable to arithmetization and reducible from
TQBF in quasilinear time (see Claim 4.3.9.1); we move to an arithmetic setting that will
support the strong random self-reducibility that we want (see details below), and arith-
metize the intermediate problem in this setting (see Claim 4.3.9.2); we show how to
execute arithmetic operators in a “batch” in this arithmetic setting (see Claim 4.3.9.3);
and we combine the resulting collection of polynomials into a single Boolean function.
We stress that we are “paying” for all the optimizations above, by the fact that the
associated algorithms (for downward self-reducibility and for our notion of random
self-reducibility that will be described next) now run in time 2n/polylog(n), instead of in
polynomial time; but again, we will be able to afford this.

We obtain a function f ws with the following properties: First, f ws is computable
in linear space; secondly, TQBF is reducible to f ws in quasilinear time; thirdly, f ws is
downward self-reducible in time 2n/polylog(n); and lastly, f ws is sample-aided worst-case to

δ-average-case reducible, for δ(n) = 2−n/polylog(n). The last property, which is implicit in
many works and was recently made explicit by Goldreich and G. Rothblum [GR17],
asserts the following: There exists a uniform algorithm T that gets as input a circuit
C : {0, 1}n → {0, 1}∗ that agrees with f wsn on at least δ(n) of the inputs, and labeled
examples (x, f ws(x)) where x ∈ {0, 1}n is uniformly-chosen, runs in time 2n/poly log(n)

and with high probability outputs a circuit C′ : {0, 1}n → {0, 1}∗ that computes f wsn on
all inputs (see Definition 4.3.4).

4.3.2.2 Instantiating the [IW98] proof framework with the function f ws

Given this construction of f ws, we now use a variant of the [IW98] proof framework, as
follows. (For simplicity, we show how to “fool” polynomial-time distinguishers that
do not use advice.) Let ECC be the Goldreich-Levin [GL89] (i.e., Hadamard) encoding
ECC( f ws)(x, r) = ⊕i f ws(x)i · ri. The argument of [IW98] (following [NW94]) shows
that if for input length n there exists a uniform poly(n)-time distinguisher A for the
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Nisan-Wigderson PRG (instantiated with ECC( f ws)) that succeeds with advantage 1/n,
then for input length ` = Õ(log(n)) (corresponding to the set-size in the underlying
combinatorial design) there is a weak learner for ECC( f ws): That is, there exists an
algorithm that gets oracle access to ECC( f ws), runs in time poly(n) ≈ 2`/polylog(`), and
outputs a small circuit that agrees with ECC( f ws) on approximately 1/2 + 1/n2 ≈
1/2 + δ0(`) of the `-bit inputs, where δ0(`) = 2−`/polylog(`).

Assuming that there exists a distinguisher for the PRG as above for every n ∈ N,
we deduce that a weak learner exists for every ` ∈N. Following [IW98], for each input
length i = 1, ..., ` we construct a circuit of size 2i/polylog(i) for f wsi . Specifically, in itera-
tion i we run the learner for ECC( f ws) on input length 2i, and answer its oracle queries
using the downward self-reducibility of f ws, the circuit that we have for f wsi−1, and the
fact that ECC( f ws)2i is easily computable given access to f wsi . The learner outputs a
circuit of size 22i/polylog(2i) that agrees with ECC( f ws) on approximately 1/2 + δ0(2i) of
the 2i-bit inputs, and the argument of [GL89] allows to efficiently transform this circuit
to a circuit of similar size that computes f ws on a approximately δ(i) = poly(δ0(2i))
of the i-bit inputs. Our goal now is to transform this circuit to a circuit of similar size
that computes f ws on all i-bit inputs. Recall that in general, performing such trans-
formations by a uniform algorithm is challenging (intuitively, if f ws is a codeword in
an error-correcting code, this corresponds to uniform list-decoding of a “very corrupt”
version of f ws). However, in our specific setting we can produce random labeled samples
for f ws, using its downward self-reducibility and the circuit that we have for f wsi−1. Re-
lying on the sample-aided worst-case to average-case reducibility of f ws, we can transform
our circuit to a circuit of similar size that computes f wsi on all inputs.

Finally, since TQBF is reducible with quasilinear overhead to f ws, if we can compute
f ws in time 2n/polylog(n) then we can compute TQBF in such time. Moreover, since
f ws is computable in space O(`) = Õ(log(n)) (and thus in time npolyloglog(n)), the
pseudorandom generator is computable in time npolyloglog(n).

4.3.2.3 The “almost-always” version: Proof of Theorem 4.3.2

We now explain how we can adapt the proof above in order to get an “almost-always”
PRG with near-exponential stretch. For starters, we will use a stronger property of
f ws, namely that it is downward self-reducible in a polylogarithmic number of steps; this
means that for every input length ` there exists an input length `0 ≥ `− polylog(`)
such that f ws is efficiently-computable at input length `0 (i.e., f ws`0

is computable in
time 2`0/polylog(`0) without a “downward” oracle; see Section 4.3.3.1 for intuition and
details).

Now, observe that the transformation of a probabilistic distinguisher A for the PRG
to a probabilistic algorithm F that computes f ws actually gives a “point-wise” guaran-
tee: For every input length n ∈N, if A distinguishes the PRG on a corresponding set of
input lengths Sn, then F computes f ws correctly at input length ` = `(n) = Õ(log(n));
specifically, Sn is the set of input lengths at which we need a distinguisher for G,
in order to obtain a weak learner for ECC( f ws) at smaller input lengths, and use the

179



4. DERANDOMIZATION AND LOWER BOUNDS

downward self-reducibility argument for f ws at input lengths `, `− 1, ..., `0. Moreover,
since f ws is downward self-reducible in polylog steps, we will only need weak learn-
ers at inputs `, ` − 1, ..., `0 = ` − polylog(`); hence, we can show that Sn is a set of
polylog(`) = polyloglog(n) input lengths in the interval [n, n2] (see Lemma 4.3.11 for
the precise calculation). Taking the contrapositive, if f ws cannot be computed by F on
almost all `’s, then for every n ∈ N there exists an input length m ∈ Sn ⊂ [n, n2] such
that G fools A at input length m.22

Our derandomization algorithm gets input 1n and also gets the “good” input
length m ∈ Sn as non-uniform advice; it then simulates G(1m) (i.e., the PRG at input
length m) and truncates the output to n bits. (We can indeed show that truncating the
output of our PRG preserves its pseudorandomness in a uniform setting; see Proposi-
tion 4.3.14 for details.) The crucial point is that since |Sn| = polyloglog(n), the advice
length is O(logloglog(n)). Note, however, that for every potential distinguisher A
there exists a different input length m ∈ Sn such that G is pseudorandom for A on
m. Hence, our derandomization algorithm (or, more accurately, its advice) depends
on the distinguisher that it wants to “fool”. Thus, for every L ∈ BPP and every
efficiently-samplable distribution X of inputs, there exists a corresponding “almost-
always” derandomization algorithm DX (see Proposition 4.3.14).

4.3.3 Construction of a well-structured function

In Section 4.3.3.1 we present the required properties of well-structured functions and
define such functions. Then, in Section 4.3.3.2 we present a high-level overview of our
construction of such functions. Finally, in Section 4.3.3.3 we present the construction
itself in detail.

4.3.3.1 Well-structured function: Definition

Loosely speaking, we will say that a function f : {0, 1}∗ → {0, 1}∗ is well-structured if
it satisfies three properties. The first property, which is not crucial for our proofs but
simplifies them a bit, is that f is length-preserving; that is, for every x ∈ {0, 1}∗ it
holds that | f (x)| = |x|.

The second property is a strengthening of the notion of downwards self-reducibility.
Recall that a function f : {0, 1}∗ → {0, 1}∗ is downwards self-reducible if fn can be
computed by an efficient algorithm that has oracle access to fn−1. First, we quantify the
notion of “efficient”, in order to also allow for very large running time (e.g., running
time 2n/polylog(n)). Secondly, we also require that for any n ∈ N there exists an input
length m that is not much smaller than n such that fm is efficiently computable without

22Actually, since f ws is downward self-reducible in polylog steps, it can be computed relatively-
efficiently on infinitely-many input lengths, and thus cannot be “hard” for almost all `’s. However,
since TQBF can be reduced to f ws with quasilinear overhead, if TQBF is “hard” almost-always then for
every `(n) there exists `′ ≤ Õ(`(n)) such that f ws is “hard” on `′, which allows our argument to follow
through, with a similar set Sn ⊂ [n, npolyloglog(n)] (see Proposition 4.3.13 for details). For simplicity, we
ignore this issue in the overview.
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any “downward” oracle. That is, intuitively, if we try to compute f on input length n
by “iterating downwards” using downward self-reducibility, our “base case” in which
the function is efficiently-computable is not input length O(1), but a large input length
m that is not much smaller than n. More formally:

Definition 4.3.3 (downward self-reducibility in few steps). For t, s : N → N, we say
that a function f : {0, 1}∗ → {0, 1}∗ is downward self-reducible in time t and s steps if
there exists a probabilistic oracle machine A that for any sufficiently large n ∈ N satisfies the
following.

1. When A is given input x ∈ {0, 1}n and oracle access to fn−1, it runs in time at most
t(n) and satisfies Prr[A fn−1(x, r) = f (x)] ≥ 2/3.

2. There exists an input length m ∈ [n− s(n), n] such that A computes fm in time t(m)
without using randomness or oracle queries..

In the special case that s(n) = n, we simply say that f is downward self-reducible in time t.

The third property that we need is a refinement of the notion of random self-
reducibility, which is called sample-aided worst-case to average-case reducibility. This no-
tion was recently made explicit by Goldreich and G. Rothblum [GR17], and is implicit
in many previous results (see, e.g., the references in [GR17]).

To explain the notion, recall that if a function f is randomly self-reducible, then
a circuit C̃ that computes f on most of the inputs can be efficiently transformed to a
(probabilistic) circuit C that computes f on every input (whp). We want to relax this
notion, by allowing the efficient algorithm that transforms C̃ into C to obtain random
labeled samples for f (i.e., inputs of the form (r, f (r)) where r is chosen uniformly at
random). The main advantage in this relaxation is that we will not need to assume that
C̃ computes f on most of the inputs, but will be satisfied with the weaker assumption
that C̃ computes f on a tiny fraction of the inputs. Specifically:23

Definition 4.3.4 (sample-aided reductions; see [GR17, Def 4.1]). Let f : {0, 1}∗ →
{0, 1}∗ be a length-preserving function, and let s : N → N and δ0 : N → [0, 1). Let M
be a probabilistic oracle machine that gets input 1n and a sequence of s(n) pairs of the form
(r, v) ∈ {0, 1}n × {0, 1}n and oracle access to a function f̃n : {0, 1}n → {0, 1}n, and outputs
a circuit C : {0, 1}n → {0, 1}n with oracle gates. We say that M is a sample-aided reduction

of computing f in the worst-case to computing f on δ0 of the inputs using a sample of size s if
for every f̃n : {0, 1}n → {0, 1}n satisfying Prx∈{0,1}n [ f̃n(x) = fn(x)] ≥ δ0(n) the following
holds: With probability at least 1− δ0(n) over choice of r̄ = r1, ..., rs(n) ∈ {0, 1}n and over the
internal coin tosses of M, we have that M f̃n(1n, (ri, fn(ri))i∈[s(n)]) outputs a circuit C such
that Pr[C f̃n(x) = fn(x)] ≥ 2/3 for every x ∈ {0, 1}n.

23Definition 4.3.4 is actually a slightly modified version of the definition in [GR17]. First, we consider
reductions of computing f in the worst-case to computing f in “rare-case”, whereas [GR17] both reduce
the computation of f to the computation of a possibly different function f ′, and parametrize the success
probability of computing both f and f ′. Secondly, we separately account for the success probability of
the transformation M and of the final circuit C. And lastly, we also require f to be length-preserving.
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Definition 4.3.5 (sample-aided worst-case to average-case reducibility). For δ0 : N →
(0, 1), we say that a function f : {0, 1}∗ → {0, 1}∗ is sample-aided worst-case to δ0-

average-case reducible if there exists a sample-aided reduction M of computing f in worst-
case to computing f on δ0 of the inputs such that M runs in time poly(n, 1/δ0(n)) and uses
poly(1/δ0(n)) samples.

For high-level intuition of why labeled samples can be helpful for worst-case to
average-case reductions, and for a proof that if f is a low-degree multivariate polyno-
mial then it is sample-aided worst-case to average-case reducible, see Appendix 4.3.6.2.

We are now ready to define well-structured functions. Fixing a parameter δ > 0, a
function f ws is δ-well-structured if it is length-preserving, downward self-reducible in
time poly(1/δ), and sample-aided worst-case to δ-average case reducible. That is:

Definition 4.3.6 (well-structured function). For δ : N → (0, 1) and s : N → N, we say
that a function f ws : {0, 1}∗ → {0, 1}∗ is (δ, s)-well-structured if f ws is length-preserving,
downward self-reducible in time poly(1/δ) and s steps, and sample-aided worst-case to δ-
average-case reducible. Also, when s(n) = n (i.e., f ws is simply downward self-reducible in
time poly(1/δ)), we say that f ws is δ-well-structured.

In the following definition, we consider reductions from a decision problem L ⊆
{0, 1}∗ to a well-structured function f ws : {0, 1}∗ → {0, 1}∗. To formalize this we
consider both a reduction R, which transforms any input x for L to an input R(x) for
f ws, and a “decision algorithm” D, which translates the non-Boolean result f ws(R(x))
into a decision of whether or not x ∈ L.

Definition 4.3.7 (reductions to multi-output functions). Let L ⊆ {0, 1}∗ and f : {0, 1}∗ →
{0, 1}∗. For t, b : N→ N, we say that L reduces to f in time t with blow-up b if there exist
two deterministic time-t algorithms R and D such that for every x ∈ {0, 1}∗ it holds that
|R(x)| ≤ b(|x|) and that x ∈ L if and only if D( f (R(x))) = 1.

4.3.3.2 Overview of our construction

For δ = 2−n/polylog(n) and s = polylog(n), our goal is to construct a (δ, s)-well-
structured function f ws : {0, 1}∗ → {0, 1}∗ such that TQBF reduces to f ws in quasi-
linear time (and thus with quasilinear blow-up). Throughout the section, assume
that an n-bit input to TQBF is simply a 3-SAT formula ϕ on n variables, and it is
assumed that all variables are quantified in-order, with alternating quantifiers (e.g.,
∀w1∃w2∀w3...ϕ(w1, ..., wn); see Definition 4.3.8).

Our starting point is the well-known construction of Trevisan and Vadhan [TV07],
which (loosely speaking) transforms the protocol underlying the IP = PSPACE
proof into a computational problem LTV : {0, 1}∗ → {0, 1}∗.24 They required that LTV

24Actually, in [TV07] they define a Boolean function, which treats a suffix of its input as an index of an
output bit in the non-Boolean version that we describe, and outputs the corresponding bit. To streamline
our exposition we ignore this issue.
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will meet the weaker requirements (compared to our requirements) of being down-
ward self-reducible and randomly self-reducible, where the latter means reducible
from being worst-case computabile to being computable on, say, .99 of the inputs.

Before describing our new construction, let us first review the original construction
of LTV. For every n ∈ N, fix a corresponding interval In = [N0, N1] of r(n) = poly(n)
input lengths. The input to LTV at any input length in In (disregarding necessary
padding) is a pair (ϕ, w) ∈ F2n, where F is a sufficiently-large field. If (ϕ, w) ∈
{0, 1}2n then we think of ϕ as representing a 3-SAT formula and of w as representing
an assignment. At input length N0 we define LTV(ϕ, w) = P(ϕ, w), where P(ϕ, x) is a
low-degree arithmetized version of the Boolean function (ϕ, w) 7→ ϕ(w).

Now, recall that the IP = PSPACE protocol defines three arithmetic operators
on polynomials (two quantification operators and a linearization operator). Then, at
input length N0 + i, the problem LTV is recursively defined by applying one of the three
arithmetic operators on the polynomial from the previous input length N0 + i − 1.25

Observe that computing LTV at input length N0 + i corresponds to the residual com-
putational problem that the verifier faces at the (r− i)th round of the IP = PSPACE
protocol, when instantiated for formula ϕ and with r = r(n) rounds. Indeed, at the
largest input length N1 = N0 + r(n) the polynomial LTV is simply a low-degree arith-
metized version of the function that decides whether or not ϕ ∈ TQBF (regardless of
w); thus, TQBF can be reduced to LTV by mapping ϕ ∈ {0, 1}n to (ϕ, 1n) ∈ F2n and
adding padding to get the input to be of length N1 = poly(n). Note that LTV is indeed
both downward self-reducible (since for each operator O and polynomial P, we can
compute O(P)(ϕ, w) in polynomial-time with two oracle queries to P), and randomly
self-reducible (since the polynomials have low degree.)

Let us now define our f ws : {0, 1}∗ → {0, 1}∗, which replaces their LTV, and high-
light what is different in our setting. Recall that our main goal is to construct the well-
structured function f ws such that TQBF is reducible to f ws with only quasilinear overhead
in the input length (i.e., we need to avoid polynomial overheads), while keeping the
running time of all operations (i.e., of the algorithms for downward self-reducibility
and for sample-aided worst-case to rare-case reducibility) to be at most 2n/polylog(n).

The first issue, which is relatively easy to handle, is the number of bits that we use
to represent an (arithmetized) input (ϕ, w) for f ws. Recall that we want f ws to be worst-
case to δ-average-case reducible for a tiny δ = 2−n/polylog(n); thus, f ws will involve
computing polynomials over a field of large size |F| ≥ poly(1/δ). Using the approach
of [TV07], we would need 2n · log(|F|) = Ω̃(n2) bits to represent (ϕ, w), and thus the
reduction from TQBF to f ws would incur a polynomial overhead. This is easily solvable
by considering a “low-degree extension” instead of their “multilinear extension”: To

25In more detail, we define three arithmetic operators on functions F2n → F, each indexed by a variable
j ∈ [n], and denote these operators by {O j

k}k∈[3],j∈[n]. In each recursive step i ∈ [r(n)], the polynomial

corresponding to input length N0 + i is obtained by applying operator O j(i)
k(i), where j, k : N → [3] are

polynomial-time computable functions, to the polynomial corresponding to input length N0 + i − 1.
Thus, at input length N0 + i, we compute LTV(ϕ, w) by applying i operators on the polynomial P and
evaluating the resulting polynomial at (ϕ, w).
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represent an input (ϕ, w) ∈ {0, 1}2n to f ws we will use few elements in a very large field.
Specifically, we will use ` = polylog(n) variables (i.e., the polynomial will be F2` → F)
such that each variable “provides” O(n/polylog(n)) bits of information.

A second problem is constructing a low-degree arithmetization P(ϕ, w) of the
Boolean function that evaluates ϕ at w. In [TV07] they solve this by first reducing
TQBF to an intermediate problem TQBF′ that is amenable to such low-degree arithmeti-
zation; however, their reduction incurs a quadratic blow-up in the input length, which
we cannot afford in our setting. To overcome this we reduce TQBF to another inter-
mediate problem, denoted TQBFloc, which is amenable to low-degree arithmetization,
such that the reduction incurs only a quasilinear blow-up in the input length. (Loosely
speaking, we define TQBFloc by applying a very efficient Cook-Levin reduction to the
Turing machine that gets input (ϕ, w) and outputs ϕ(w); see Claim 4.3.9.1 for precise
details.) We then carefully arithmetize TQBFloc, while “paying” for this efficient arith-
metization by the fact that computing the corresponding polynomial now takes time
exp(n/`) = poly(1/δ), instead of poly(n) time as in [TV07] (see Claim 4.3.9.2).

Thirdly, the number of polynomials in the construction of LTV (i.e., the size of
the interval In) is r(n) = poly(n), corresponding to the number of rounds in the
IP = PSPACE protocol. This poses a problem for us since the reduction from TQBF

maps an input of length n is to an input of length N1 ≥ poly(n). We solve this
problem by “shrinking” the number of polynomials to be polylogarithmic, using an
approach similar to an IP = PSPACE protocol with only polylog(n) rounds and a
verifier that runs in time 2n/polylog(n): Intuitively, at each input length, we define f ws

by simultaneously applying O(log(1/δ)) operators (rather than a single operator) to
the polynomial that corresponds to the previous input length. Indeed, as one might
expect, this increases the running-time of the downward self-reducibility algorithm to
poly(1/δ), but we can afford this. Implementing this approach requires some care,
since multiple operators will be applied to a single variable (which represents many
bits of information), and since the linearization operator needs to be replaced by a
“degree-lowering operation” (that will reduce the individual degree of a variable to
be poly(1/δ)); see Claim 4.3.9.3 for details.

Lastly, we also want our function to be downward self-reducible in polylog(n)
steps (i.e., after polylog(n) “downward” steps, the function at the now-smaller input
length is computable in time poly(1/δ) without an oracle). This follows by noting that
the length of each interval In is now polylogarithmic, and that at the “bottom” input
length the function f ws simply computes the arithmetized version of TQBFloc, which
(as mentioned above) is computable in time poly(1/δ).

4.3.3.3 The construction itself

We consider the standard “totally quantified” variant of the Quanti�ed Boolean Formula

(QBF) problem, called Totally Quanti�ed Boolean Formula (TQBF). In this version the
quantifiers do not appear as part of the input, and we assume that all the variables
are quantified, and that the quantifiers alternate according to the index of the variable

184



4.3 Uniform lower bounds and average-case derandomization

(i.e., xi is quantified by ∃ if i is odd, and otherwise quantified by ∀).

Definition 4.3.8 (TQBF). A string ϕ ∈ {0, 1}∗ of length n = |ϕ| is in the set TQBF ⊆ {0, 1}∗
if ϕ is a representation of a 3-SAT formula in variables indexed by [n] such that, denoting
the variables by w1, ..., wn, it holds that ∃w1∀w2∃w3∀w4...ϕ(w1, ..., wn). In other words,
ϕ ∈ TQBF if the quantified expression that is obtained by quantifying all n variables, in order
of their indices and with alternating quantifiers (starting with ∃), evaluates to true.

Recall that QBF, in which the quantifiers are part of the input, is reducible in lin-
ear time to TQBF from Definition 4.3.8 (by renaming variables and adding dummy
variables).

The main result in this section is a construction of a well-structured function f ws

such that TQBF can be reduced to f ws with only quasilinear blow-up. This construction
is detailed in the following lemma:

Lemma 4.3.9 (a well-structured set that is hard for TQBF under quasilinear reductions).
There exists a universal constant r ∈ N such that for every constant c ∈ N the following
holds. For `(n) = log(n)3c and δ(n) = 2−n/`(n), there exists a (δ, O(`2))-well-structured
function f ws : {0, 1}∗ → {0, 1}∗ such that f ws is computable in linear space, and TQBF

deterministically reduces to f ws in time n · log2c+r(n).

Proof. In high-level, we first reduce TQBF to a problem TQBFloc that will have a prop-
erty useful for arithmetization, and then reduce TQBFloc to a function f ws that we will
construct as follows. We will first carefully arithmetize a suitable witness-relation that
underlies TQBFloc; then transform the corresponding arithmetic version of TQBFloc to
a collection of low-degree polynomials that also satisfy a property akin to downward
self-reducibility (loosely speaking, these polynomials arise from the protocol under-
lying the proof of IP = PSPACE [LFK+92; Sha92]); and finally “combine” these
polynomials to a Boolean function f ws that will “inherit” the useful properties of the
low-degree polynomials, and will thus be well-structured.

A variant of TQBF that is amenable to arithmetization. We will need a non-standard
variant of TQBF, which we denote by TQBFloc, such that TQBF is reducible to TQBFloc

with quasilinear blow-up, and TQBFloc has an additional useful property. To explain
this property, recall that the verification procedure of a “witness” w = w1, ..., wn in
TQBF is local, in the following sense: For every fixed ϕ it holds that ϕ ∈ TQBF iff
∃w1∀w2... 3SAT(ϕ, w), where 3SAT(ϕ, w) = ϕ(w) is a relation that can be decided by
a conjunction of local conditions on the “witness” w. We want the stronger property
that the relation that underlies TQBFloc can be tested by a conjunction of conditions that
are local both in the input and in the witness. That is, denoting the underlying relation by
R-TQBFloc, we will have that x ∈ TQBFloc iff ∃w1∀w2... R-TQBFloc(x, w), where R-TQBFloc

is a conjunction of local conditions on (x, w). In more detail:

Claim 4.3.9.1 (a variant of TQBF with verification that is local in both input and wit-
ness). There exists a set TQBFloc ∈ SPACE [O(n)] and a relation R-TQBFloc ⊆ ({0, 1}∗ ×
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{0, 1}∗) such that TQBFloc = {x : ∃w1∀w2∃w3∀w4...(x, w) ∈ R-TQBFloc}, and the following
holds.

1. (Length-preserving witnesses.) For any (x, w) ∈ R-TQBFloc it holds that |w| = |x|.

2. (Verification that is local in both input and witness.) For every n ∈ N there exist n
functions { fi : {0, 1}n × {0, 1}n → {0, 1}}i∈[n] such that the mapping (x, w, i) 7→
fi(x, w) is computable in quasilinear time and linear space, and each fi depends on
only three variables, and (x, w) ∈ R-TQBFloc if and only if for all i ∈ [n] it holds that
fi(x, w) = 1.

3. (Efficient reduction with quasilinear blow-up.) There exists a deterministic linear-space
and quasilinear-time algorithm A that gets as input ϕ ∈ {0, 1}n and outputs x = A(ϕ)
such that ϕ ∈ TQBF if and only if x ∈ TQBFloc.

Proof. Consider a 3-SAT formula ϕ ∈ {0, 1}n as an input to TQBF, and for simplicity
assume that n is even (this assumption is insignificant for the proof and only simplifies
the notation). By definition, we have that ϕ ∈ TQBF if and only if

∃w1∀w2∃w3....∃wn ϕ(w1, ..., wn) = 1 .

Now, let M be a linear-space and quasilinear-time machine that gets as input (ϕ, w)
and outputs ϕ(w). We use an efficient Cook-Levin transformation of the computation
of the machine M on inputs of length 2n to a 3-SAT formula, and deduce the fol-
lowing:26 There exists a linear-space and quasilinear-time algorithm that, on input
1n, constructs a 3-SAT formula Φn : {0, 1}n × {0, 1}n × {0, 1}ql(n) → {0, 1} of size
ql(n) = Õ(n) such that for any (ϕ, w) ∈ {0, 1}n × {0, 1}n it holds that ϕ(w) = 1 if and
only if there exists a unique w′ ∈ {0, 1}ql(n) satisfying Φn(x, w, w′) = 1.

Now, using the formula Φn, note that ϕ ∈ {0, 1}n is in TQBF if and only if

∃w1∀w2∃w3...∃wn ∃w′1∃w′2...∃w′ql(n) Φn(ϕ, w, w′) = 1 . (4.3.1)

We slightly modify Φn in order to make the suffix of existential quantifiers in Eq. (4.3.1)
alternate with universal quantifiers that are applied to dummy variables. (Specifically,
for each i ∈ [ql(n)], we rename w′i to w′2i, which effectively introduces a dummy
variable before w′i.) Denoting the modified formula by Φ′n, we have that ϕ ∈ TQBF if
and only if

∃w1∀w2∃w3...∃wn∀w′1∃w′2∀w′3...∃w′2ql(n) Φ′n(ϕ, w, w′) = 1 .

We define the relation R-TQBFloc to consist of all pairs (x, w) such that x = (ϕ, 12ql(|ϕ|))
and w = (w(0), w(1)) ∈ {0, 1}|ϕ| × {0, 1}2ql(|ϕ|) and Φ′|ϕ|(ϕ, w(0), w(1)) = 1. Indeed, in
this case the corresponding set TQBFloc is defined by

TQBFloc =
{
(ϕ, 12ql(|ϕ|)) : ∃w(0)

1 ∀w(0)
2 ...∃w(0)

|ϕ|∀w(1)
1 ∃w(1)

2 ...∃w(1)
2ql(|ϕ|) Φ′|ϕ|(ϕ, w(0), w(1)) = 1

}
.

26The algorithm transforms M into an oblivious machine [PF79; GS89], and then applies an efficient
Cook-Levin transformation of the oblivious machine to a 3-SAT formula (see, e.g., [AB09, Sec 2.3.4]).
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Note that, by definition, for every (x, w) ∈ R-TQBFloc we have that |w| = |x|. To see
that R-TQBFloc can be tested by a conjunction of efficiently-computable local conditions,
note that an n-bit input to TQBFloc is of the form (ϕ, 12ql(|ϕ|)) ∈ {0, 1}m×{1}2ql(m), and
recall that Φ′m is a 3-SAT formula of size ql(m) < n that can be produced in linear space
and quasilinear time from input 1m. Also, TQBFloc is computable in linear space, since
on input (ϕ, 12ql(|ϕ|)) the number of variables that are quantified is |ϕ|+ 2ql(|ϕ|), and
since Φ′|ϕ| can be evaluated in space O(|ϕ|). Lastly, TQBF trivially reduces to TQBFloc

by adding padding ϕ 7→ (ϕ, 12ql(|ϕ|)). �

Arithmetic setting. For any n ∈ N, let `0 = `0(n) = b(log n)cc, let n′ = dn/`0e, let
δ0(n) = 2−n′ , and let F be the field with 25n′ = 1/poly(δ0(n)) elements. Recall that
a representation of such a field (i.e., an irreducible polynomial of degree 5n′ over F2)
can be found deterministically either in linear space (by a brute-force algorithm) or in
time poly(n′) = poly(n) (by Shoup’s [Sho90] algorithm).

Fix a bijection π between {0, 1}5n′ and F (i.e., π maps any string in {0, 1}5n′ to the
bit-representation of the corresponding element in F) such that both π and π−1 can be
computed in polynomial time and linear space. Let H ⊂ F be the set of 2n′ elements
that are represented (via π) by bit-strings with a prefix of n′ arbitrary bits and a suffix
of 4n′ zeroes (i.e., H =

{
π(z) : z = x04n′ , x ∈ {0, 1}n′

}
⊂ F such that |H| = 2n′).27

We will consider polynomials F2`0 → F, and we think of the inputs to each such
polynomial as of the form (x, w) ∈ F`0 × F`0 . Note that, intuitively, x and w each
represent about 5n bits of information. When x and w are elements in the subset
H`0 ⊂ F`0 , we think of them as a pair of n-bit strings that might belong to R-TQBFloc.

Arithmetization of R-TQBFloc. Our first step is to carefully arithmetize the relation
R-TQBFloc within the arithmetic setting detailed above. We will mainly rely on the
property that there is a “doubly-local” verification procedure for R-TQBFloc.

Claim 4.3.9.2 (low-degree arithmetization). There exists a polynomial PTQBFloc : F2`0 → F

such that the following holds:

1. (Low-degree.) The degree of PTQBFloc is at most O(n · 2n′).

2. (Arithmetizes R-TQBFloc.) For every (x, w) ∈ H`0 × H`0 it holds that PTQBFloc(x, w) =
1 if (x, w) ∈ R-TQBFloc, and PTQBFloc(x, w) = 0 otherwise.

3. (Efficiently-computable.) There exists a deterministic algorithm that gets as input (x, w) ∈
F2`0 , runs in time poly(|F|), and outputs PTQBFloc(x, w) ∈ F. There also exists a deter-
ministic linear-space algorithm with the same functionality.

Proof. We first show a polynomial-time and linear-space algorithm that, given input 1n,
constructs a low-degree polynomial PTQBFloc

0 : F2n′·`0 → F that satisfies the following:

27The specific choice of H as the image of H0 = {x04n′ : x ∈ {0, 1}n′} under π is immaterial for our
argument, as long as we can efficiently decide H0 and enumerate over H0.
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For every (x, w) ∈ F
2n′·`0
2 (i.e., when the input is a string of 2n′ · `0 ≥ 2n bits, and

we interpret it as a pair (x, w) ∈ {0, 1}2n) it holds that PTQBFloc

0 (x, w) = 1 if (x, w) ∈
R-TQBFloc(x, w), and PTQBFloc

0 (x, w) = 0 otherwise.
To do so, recall that by Claim 4.3.9.1 we can construct in polynomial time and

linear space a collection of n polynomials
{

fi : F
2n′·`0
2 → F2

}
i∈[n]

such that for each

i ∈ [n] the polynomial fi depends only on three variables in the input (x, w), and
such that (x, w) ∈ R-TQBFloc if and only if for all i ∈ [n] it holds that fi(x, w) =
1. For each i ∈ [n], let pi : F2n′·`0 → F be the multilinear extension of fi, which
can be evaluated in time poly(n) and in linear space (since fi depends only on three
variables, and using Lagrange’s interpolation formula and the fact that π is efficiently-
computable). Then, the polynomial PTQBFloc

0 is simply the multiplication of all the pi’s;
that is, PTQBFloc

0 (x, w) = Πi∈[n]pi(x, w). Note that PTQBFloc

0 can indeed be evaluated in

time poly(n) and in linear space, and that the degree of PTQBFloc

0 is O(n) (since each pi
is a multilinear polynomial in O(1) variables).

Now, let π
(H)
1 , ..., π

(H)
n′ : H → {0, 1} be the “projection” functions such that π

(H)
i

outputs the ith bit in the bit-representation of its input according to π. Abusing nota-
tion, we let π

(H)
1 , ..., π

(H)
n′ : F → F be the low-degree extensions of the π

(H)
i ’s, which

are of degree at most |H| − 1 < 2n′ . Also, for every σ ∈ F, we denote by π(H)(σ) the
string π

(H)
1 (σ), ..., π

(H)
n′ (σ) ∈ Fn′ . Note that the mapping of σ ∈ F to π(H)(σ) ∈ Fn′

can be computed in time poly(|H|) = poly(|F|) and in linear space (again just using
Lagrange’s interpolation formula and the fact that π is efficiently-computable).

Finally, we define the polynomial PTQBFloc : F2`0 → F. Intuitively, for (x, w) ∈
H`0 × H`0 , the polynomial PTQBFloc first uses the π

(H)
i ’s to compute the bit-projections

of x and w, which are each of length n′ · `0, and then evaluates the polynomial PTQBFloc

0
on these 2n′ · `0 bit-projections. More formally, for every (x, w) ∈ F2`0 we define

PTQBFloc(x, w) = PTQBFloc

0

(
π(H)(x1), ..., π(H)(x`0), π(H)(w1), ..., π(H)(w`0)

)
.

The first item in the claim follows since for every i ∈ [n′] the degree of π
(H)
i is

less than 2n′ , and since deg(PTQBFloc

0 ) = O(n). The second item in the claim follows
immediately from the definition of PTQBFloc . And the third item in the claim follows
since π(H) can be computed in time poly(|F|) and in linear space, and since PTQBFloc

0
can be constructed and evaluated in polynomial time and in linear space. (The two
different algorithms are since we need to find an irreducible polynomial, which can
be done either in linear space or in time poly(n) < poly(|F|).) �

Constructing a “downward self-reducible” collection of low-degree polynomials.
Our goal now is to define a collection of O(`2

0) polynomials
{

Pn,i : F2`0 → F
}

i∈[O(`2
0)]

such that the polynomials are of low degree, and Pn,1 essentially computes TQBFloc,
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and computing Pn,i can be reduced in time poly(1/δ0(n)) to computing Pn,i+1. The
collection and its properties are detailed in the following claim:

Claim 4.3.9.3. There exists a collection of ¯̀0 = `0(2`0 + 1)+ 1 polynomials, denoted
{

Pn,i : F2`0 → F
}

i∈[ ¯̀0]
,

that satisfies the following:

1. (Low degree:) For every i ∈ [ ¯̀0], the degree of Pn,i is at most O(n · `0 · 22n′).

2. (Pn,1 computes TQBFloc on H-inputs:) For any (x, w) ∈ H`0 × H`0 it holds that
Pn,1(x, w) = 1 if x ∈ TQBFloc, and Pn,1(x, w) = 0 if x /∈ TQBFloc. (Regardless of w.)

3. (“Forward” self-reducible:) For every i ∈ [ ¯̀0] it holds that Pn,i can be computed in
time poly(2n′) when given oracle access to Pn,i+1.

4. (Efficiently-computable:) The polynomial Pn, ¯̀0 can be computed in time poly(2n′).
Moreover, for every i ∈ [ ¯̀0] it holds that Pn,i can be computed in space O(n · ¯̀0).

Proof. For simplicity of notation, assume throughout the proof that n′ is even. To-
wards defining the collection of polynomials, we first define two operators on func-
tions p : F2`0 → F. Loosely speaking, the first operator corresponds to n′ alternating
quantification steps in the IP = PSPACE proof (i.e., n′ steps of alternately quantify-
ing the next variable either by ∃ or by ∀), and the second operator roughly corresponds
to a linearization step that is simultaneously applied to n′ variables. In both cases, the
n′ variables that we consider are the bits in the representation of a single element in
the second input to p.

Quantifications operator: Let i ∈ [`0]. Loosely speaking, Quant(i)(p) causes p to
ignore the ith variable of its second input, and instead consider alternating quantifi-
cation steps applied to the bits that represent this variable. To do this, we define a
sequence of functions such that the first function replaces the ith variable in the second
input for p by a dummy variable in H, and each subsequent function corresponds to a
quantification step applied to a single bit in the representation of this dummy variable.

Formally, we recurvisely define n′+ 1 functions Quant(i,0), ..., Quant(i,n
′) = Quant(i)(p)

such that for j ∈ {0, ..., n′} it holds that Quant(i,j)(p) is a function F2`0 ×{0, 1}n′−j → F.
The function Quant(i,0)(p) gets as input (x, w) ∈ F2`0 and σ ∈ {0, 1}n′ , ignores the
ith element of w, and outputs Quant(i,0)(x, w, σ) = p(x, w1...wi−1π(σ04n′)). Then, for
j ∈ [n′], if j is odd then we define

Quant(i,j)(p)(x, w, σ1...σn′−j) = 1−
(

∏
z∈{0,1}

(
1− Quant(i,j−1)(p)(x, w, σ1, ..., σn′−jz)

))
,

and if j is even then we define

Quant(i,j)(p)(x, σ1, ..., σn′−j) = ∏
z∈{0,1}

Quant(i,j−1)(p)(x, w, σ1...σn′−jz) .

Note that the function Quant(i)(p) can be evaluated at any input in linear space
with oracle access to p (since each Quant(i,j)(p) can be evaluated in linear space with
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oracle access to Quant(i,j−1)(p)). Also observe the following property of Quant(i)(p),
which follows immediately from the definition:

Fact 4.3.9.3.1. If for some x ∈ H`0 and any w ∈ H`0 it holds that p(x, w) ∈ {0, 1}, then for
the same x and any w ∈ H`0 it holds that Quant(i)(p)(x, w) = 1 if ∃σ1∀σ2∃σ3...∀σn′ such
that p(x, w1...wi−1π(σ1...σn′04n′)wi+1...w`0) = 1, and Quant(i)(p)(x, w) = 0 otherwise.

Degree-reduction operator: For every fixed z ∈ H, let Iz : H → {0, 1} be the
indicator function of whether the input equals z, and let Īz : F→ F be the low-degree
extension of Iz, which is of degree at most |H| − 1 (i.e., Īz(x) = ∏h∈H\{z}

x−h
z−h ). Then,

for any i ∈ [`0], we define

DegRed(i)(p)(x, w) = ∑
z∈H

Īz(xi) · p(x1...xi−1zxi+1...x`0 , w) ,

and similarly for i ∈ [2`0] we denote i′ = i− `0 and define

DegRed(i)(p)(x, w) = ∑
z∈H

Īz(wi′) · p(x, w1...wi′−1zwi′+1...w`0) .

Similarly to the operator Quant(i), note that the function DegRed(i)(p) can be eval-
uated at any input in linear space with oracle access to p. Also, the definition of the
operator DegRed(i) implies that:

Fact 4.3.9.3.2. For i ∈ [2`0], let v be the variable whose degree DegRed(i) reduces (i.e., v = xi
if i ∈ [`0] and v = wi′ = wi−`0 if i ∈ [2`0]). Then, the individual degree of v in DegRed(i)(p)
is |H| − 1, and the individual degree of any other input variable to DegRed(i)(p) remains the
same as in p. Moreover, for every (x, w) ∈ F`0 × F`0 , if the input (x, w) assigns the variable
v to a value in H, then DegRed(i)(p)(x, w) = p(x, w).

Composing the operators: We will be particularly interested in what happens when
we first apply the quantifications operator to some variable i ∈ [`0], and then apply
the degree-reduction operator to all variables, sequentially. A useful property of this
operation is detailed in the following claim:

Claim 4.3.9.3.3. Let p : F2`0 → F and x ∈ H`0 such that for any w ∈ H`0 it holds
that p(x, w) ∈ {0, 1}. For i ∈ [`0], let p′ : F2`0 → F be the function that is obtained by first
applying Quant(i) to p, then applying DegRed(j) for each j = 1, ..., 2`0. Then, for any w′ ∈ H`0

we have that p′(x, w′) = 1 if ∃σ1∀σ2∃σ3...∀σn′ : p(x, w′1...w′i−1π(σ1...σn′)w′i+1...w′`0
) = 1,

and p′(x, w′) = 0 otherwise.

Proof. Fix any w′ ∈ H`0 . By Fact 4.3.9.3.1, and relying on the hypothesis that for
any w ∈ H`0 we have that p(x, w) ∈ {0, 1}, it follows that Quant(i)(p)(x, w′) = 1 if
∃σ1∀σ2∃σ3...∀σn′ : p(x, w′1...w′i−1π(σ1...σn′)w′i+1...w′`0

) = 1 and that Quant(i)(p)(x, w′) =
0 otherwise. Now, let p(0) = Quant(i)(p), and for every j ∈ [2`0] recursively de-
fine p(j) = DegRed(j)(p(j−1)). By the “moreover” part of Fact 4.3.9.3.2, and since
(x, w′) ∈ H`0 × H`0 , for every j ∈ [2`0] we have that p(j)(x, w′) = p(j−1)(x, w′), and
hence p′(x, w′) = Quant(i)(x, w′). �
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Defining the collection of polynomials: Let us now define the collection of ¯̀0 =
`0(2`0 + 1) + 1 polynomials. We first define Pn,`0(2`0+1)+1(x, w) = PTQBFloc(x, w). Then,
we recursively construct the collection in `0 blocks such that each block consists of
2`0 + 1 polynomials. The base case will be block i = `0, and we will decrease i down
to 1. Loosely speaking, in each block i ∈ [`0], starting from the last polynomial in
the previous block, we first apply a quantification operator to the ith variable of the
second input w, and then apply 2`0 linearization operators, one for each variable in
the inputs (x, w). Specifically, for the ith block, we define the first polynomial by
Pn,i(2`0+1)(x, w) = Quant(i)(Pn,i(2`0+1)+1)(x, w); and for each j = 1, ..., 2`0, we define
Pn,i(2`0+1)−j(x, w) = DegRed(j)(Pn,i(2`0+1)−j+1)(x, w).

Note that the claimed Property (3) of the collection holds immediately from our
definition. To see that Property (4) also holds, note that the first part (regarding Pn, ¯̀0)
holds by Claim 4.3.9.2; and for the “moreover” part, recall (by the properties of the
operators Quant(i) and DegRed(i) that were mentioned above) that each polynomial Pn,k
in the collection can be computed in linear space when given access to the “previous”
polynomial Pn,k−1, and also that we can compute the “first” polynomial Pn,`0(2`0+1)+1 in
linear space (since this polynomial is just PTQBFloc , and relying on Claim 4.3.9.2). Using
a suitable composition lemma for space-bounded computation (see, e.g., [Gol08, Lem.
5.2]), we can compute any polynomial in the collection in space O(n · ¯̀0).

We now prove Property (1), which asserts that all the polynomials in the col-
lection are of degree at most O(n · `0 · 22n′). We prove this by induction on the
blocks, going from i = `0 down to i = 1, while maintaining the invariant that
the “last” polynomial in the previous block i + 1 (i.e., the polynomial Pn,i(2`0+1)+1)
is of degree at most O(n · 2n′). For the base case i = `0 the invariant holds by
our definition that Pn,`0(2`0+1)+1 = PTQBFloc and by Claim 4.3.9.2. Now, for every
i = `0, ..., 1, note that the first polynomial Pn,i(2`0+1) in the block is of degree at most
2n′ · deg(Pn,i(`0+1)+1) = O(n · 22n′) (i.e., the quantifications operator induces a degree
blow-up of 2n′), and in particular the individual degrees of all variables of Pn,i(2`0+1)
are upper-bounded by this expression. Then, in the subsequent 2`0 polynomials in the
block, we reduce the individual degrees of the variables (sequentially) until all indi-
vidual degrees are at most |H| − 1 < 2n′ (this relies on Fact 4.3.9.3.2). Thus, the degree
of the last polynomial in the block (i.e., of Pn,(i−1)(2`0+1)+1) is at most 2`0 · 2n′ < n · 2n′ ,
and the invariant is indeed maintained.

Finally, to see that Property (2) holds, fix any (x, w) ∈ H`0 × H`0 . Our goal is to
show that Pn,1(x, w) = 1 if x ∈ TQBFloc and Pn,1(x, w) = 0 otherwise (regardless of
w). To do so, recall that Pn, ¯̀0 = PTQBFloc , and hence for any w′ ∈ H`0 it holds that
Pn, ¯̀0(x, w′) = 1 if (x, w′) ∈ R-TQBFloc and Pn, ¯̀0(x, w′) = 0 otherwise. Note that the
last polynomial in block i = `0 (i.e., the polynomial Pn,`0(2`0+1)−2`0

) is obtained by
applying Quant(`0) to Pn, ¯̀0 and then applying DegRed(j) for each j = 1, ..., 2`0. Us-
ing Claim 4.3.9.3.3, for any w′ ∈ H`0 , when this polynomial is given input (x, w′), it
outputs the value 1 if ∃σ1∀σ2∃σ3...∀σn′(x, w′1...w′`0−1π(σ1...σn′)) ∈ R-TQBFloc, and out-
puts 0 otherwise. By repeatedly using Claim 4.3.9.3.3 for the last polynomial in each

191



4. DERANDOMIZATION AND LOWER BOUNDS

block i = `0 − 1, ..., 1, we have that Pn,1(x, w) = 1 if ∃σ
(1)
1 ∀σ

(1)
2 ...∀σ

(1)
n′ ...∃σ

(`0)
1 ...∀σ

(`0)
n′ :

(x, w′) ∈ R-TQBFloc, where w′ = (π(σ
(1)
1 ...σ(1)

n′ ), ..., π(σ
(`0)
1 ...σ(`0)

n′ )); and Pn,1(x, w) = 0
otherwise. In other words, we have that Pn,1(x, w) = 1 if x ∈ TQBFloc and Pn,1(x, w) = 0
otherwise, as we wanted. �

Combining the polynomials into a Boolean function. Intuitively, the polynomials in
our collection are already downward self-reducible (where “downward” here means
that Pn,i is reducible to Pn,i+1) and sample-aided worst-case to average-case reducible
(since the polynomials have low degree, and relying on Proposition 4.3.19). Our goal
now is simply to “combine” these polynomials into a single Boolean function f ws :
{0, 1}∗ → {0, 1}∗ that will be δ-well-structured.

For every n ∈N, we define a corresponding interval of input lengths In = [N, N +
¯̀0 − 1], where N = 10n′ · `0 + 11n · ¯̀0 = O(n · ¯̀0). Then, for every i ∈ {0, ..., ¯̀0 − 1},

we define f ws on input length N + i such that it computes (a Boolean version of)
Pn, ¯̀0−i. Specifically, f ws : {0, 1}N+i → {0, 1}N+i considers only the first 10n′ · `0 = 2`0 ·
log(|F|) = O(n) bits of its input, maps these bits to (x, w) ∈ F2`0 using π, computes
Pn, ¯̀0−i(x, w), and outputs the bit-representation of Pn, ¯̀0−i(x, w) (using π−1), padded to
the appropriate length N + i. On input lengths that do not belong to any interval In
for n ∈N, we define f ws in some fixed trivial way (e.g., as the identity function).

A straightforward calculation shows that the intervals {In}n∈N are disjoint, and
thus f ws is well-defined.28 In addition, since the input length to f ws is N = O(n · ¯̀0)
and each polynomial in the collection is computable in space O(n · ¯̀0), it follows that
f ws is computable in linear space. To see that TQBF reduces to f ws, recall that by
Claim 4.3.9.1 we can reduce TQBF to TQBFloc in time n · (log n)r (for some universal
constant r ∈ N); and note that we can then further reduce TQBFloc to f ws by mapping
any x ∈ {0, 1}n to an (N + ¯̀0 − 1)-bit input of the form (x, w, p), where w is an
arbitrary string and p is padding. (This is since f ws on inputs of length N + ¯̀0 −
1 essentially computes Pn,1.) This reduction is computable in deterministic time n ·
log(n)r+2c+1.

We now want to show that f ws is downward self-reducible in time poly(1/δ) and
in O((log N)2c) steps, where δ(N) = 2N/(log N)3c

and N denotes the input length. To
see this, first note that given input length N ∈ N we can find in polynomial time an
input length n such that N ∈ In, if such n exists. If such n does not exist, then the func-
tion is defined trivially on input length n and can be computed in polynomial time.
Otherwise, let N0 ≤ N be the smallest input length in In (i.e., N0 = 10 dn/`0(n)e ·
`0(n) + 11n · ¯̀0(n)), and denote N = N0 + i, for some i ∈ {0, ..., ¯̀0(n) − 1}. Note
that f wsN corresponds to the polynomial Pn, ¯̀0(n)−i, and f wsN−1 corresponds to the polyno-
mial Pn, ¯̀0(n)−(i−1). By Claim 4.3.9.3, the former can be computed in time poly(2n′) =

poly(2n/(log n)c
) = poly(2N/(log N)3c

) with oracle access to the latter. Lastly, recall that

28This is the case since the largest input length in In is 10 dn/`0(n)e · `0(n) + 11n · ¯̀0(n) + ( ¯̀0(n)− 1) <
10n + 10`0(n) + (11n + 1) · ¯̀0(n)− 1 < 10n + 11(n + 1) · ¯̀0(n)− 1, whereas the smallest input length in
In+1 is 10 d(n + 1)/`0(n + 1)e · `0(n + 1) + 11(n + 1) · ¯̀0(n + 1) ≥ 10n + 11(n + 1) ¯̀0(n + 1) + 10.
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|In| = ¯̀0(n) < O(log N)2c and that f wsN0
corresponds to Pn,`0(n), which can be computed

in time poly(2n′); hence, there exists an input length N0 ≥ N−O((log N)2c) such that
f wsN0

can be computed in time poly(2n′) < poly(1/δ(N0)).
To see that f ws is sample-aided worst-case to δ-average-case reducible, first note

that computing f ws on any input length N on which it is not trivially defined is
equivalent (up to a polynomial factor in the runtime) to computing a polynomial
F2`0(n) → F of degree d = O(poly(n) · 22n′) in a field of size q = |F| = 25n′ , where
n < N/(log N)2c and n′ = dn/`0(n)e. 29 We use Proposition 4.3.19 with parameter
ρ(log(|F2`0(n)|)) = δ0(n) < δ(N), and note that its hypothesis δ0(n) ≥ 10 ·

√
d/|F| is

satisfied since we chose |F| = poly(1/δ0(n)) to be sufficiently large.

4.3.4 PRGs for uniform circuits with almost-exponential stretch

Let δ(n) = 2−n/polylog(n). The following proposition asserts that if there exists a func-
tion that is both δ-well-structured and “hard” for probabilistic algorithms that run
in time 2n/polylog(n), then there exists an i.o.-PRG for uniform circuits with almost-
exponential stretch. That is:

Proposition 4.3.10 (almost-exponential hardness of a well-structured function⇒ PRG
for uniform circuits with almost-exponential stretch). Assume that for some constant
c ∈ N and for δ(n) = 2−n/ log(n)c+1

there exists a δ-well-structured function that can be
computed in linear space but cannot be computed by probabilistic algorithms that run in time
2n/ log(n)c

. Then, for every k ∈ N and for t(n) = nloglog(n)k
there exists a (1/t)-i.o.-PRG

for (t, log(t))-uniform circuits that has seed length Õ(log(n)) and is computable in time
npolyloglog(n).

Proposition 4.3.10 follows as an immediate corollary of the following lemma. Loosely
speaking, the lemma asserts that for any δ-well-structured function f ws, there exists a
corresponding PRG with almost-exponential stretch such that a uniform algorithm
that distinguishes the output of the PRG from uniform yields a uniform probabilistic
algorithm that computes f ws. Moreover, the lemma provides a “point-wise” state-
ment: For any n ∈N, a distinguisher on a small number (i.e., polyloglog(n)) of input
lengths in a small interval around n yields a uniform algorithm for f ws on input length
Õ(log(n). We will later use this “point-wise” property of the lemma to extend Propo-
sition 4.3.10 to “almost everywhere” versions (see Propositions 4.3.13 and 4.3.14).

In the following statement we consider three algorithms: The pseudorandom gen-
erator G; a potential distinguisher for the PRG, denoted A; and an algorithm F for
the “hard” function f ws. Loosely speaking, the lemma asserts that for any n ∈ N, if
G is not pseudorandom for A on a every input length in a small set of input lengths

29The only potential issue here is that the Boolean function is actually a “padded” version of the func-
tion that corresponds to polynomial: It is not immediate that if there exists an algorithm that computes
the Boolean function correctly on ε > 0 of the n-bit inputs, then there exists an algorithm that computes
the polynomial correctly on the same fraction ε > 0 of the m = log(|F2`0 |)-bit inputs. However, the latter
assertion holds in our case since we are interested in probabilistic algorithms.
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surrounding n, then F computes f ws on input length `(n) = Õ(log(n)). We will
first fix a constant c that determines the target running time of F (i.e., running time
tF(`) = 2`/ log(`)c

), and the other parameters (e.g., the parameters of the well-structured
function, and the seed length of the PRG) will depend on c. Specifically:

Lemma 4.3.11 (distinguishing a PRG based on f ws ⇒ computing f ws). Let c ∈ N be
an arbitrary constant, let δ(n) = 2−n/ log(n)c+1

, and let s : N → N be a polynomial-time
computable function such that s(n) ≤ n/2 for all n ∈ N. Let f ws : {0, 1}∗ → {0, 1}∗ be
a (δ, s)-well-structured function that is computable in linear space, let t(n) = nloglog(n)k

for
some constant k ∈ N, and let `(n) =

⌈
log(n) · (loglogn)b⌉ for a sufficiently large constant

b ∈N. Then, there exist two objects that satisfy the property detailed below:

1. (Pseudorandom generator). An algorithm G0 that gets as input 1n and a random seed of
length `G(n) = Õ(`(n)), runs in time npolyloglog(n), and outputs a string of length n.

2. (Mapping of any input length to a small set of surrounding input lengths). A polynomial-
time computable mapping of any unary string 1n to a set Sn ⊂

[
n, n2] of size |Sn| =

s(Õ(log(n))), where a ∈N is a sufficiently large constant that depends on k.

The property that the foregoing objects satisfy is the following. For every probabilistic
time-t algorithm A that uses log(t) bits of non-uniform advice there exists a corresponding
probabilistic algorithm F that runs in time tF(`) = 2`/ log(`)c

such that for any n ∈N we have
that: If for every m ∈ Sn it holds that G0(1m, u`G0 (m)) is not (1/t(m))-pseudorandom for A,
then F computes f ws on strings of length `(n).

Moreover, for any function str : N → N such that str(n) ≤ n, the above property
holds if we replace G0 by the algorithm G that computes G0 and truncates the output to length
str(n) (i.e., G(1n, z) = G0(1n, z)1, ..., G0(1n, z)str(n)).

Observe that Proposition 4.3.10 indeed follows as a contra-positive of Lemma 4.3.11
(with str being the identity function, which means that G = G0): If every probabilis-
tic algorithm F that gets an `-bit input and runs in time 2`/ log(`)c

fails to compute
f ws infinitely-often, then for every corresponding time-t algorithm A there exists an
infinite set of inputs on which G is pseudorandom for A.

Proof of Lemma 4.3.11. For any p, s, δ, k, t, and f ws that satisfy our hypothesis, let
f GL(ws) : {0, 1}∗ → {0, 1} be defined as follows: For any (x, r) ∈ {0, 1}n × {0, 1}n we let
f GL(ws)(x, r) = ∑i∈[n] f ws(x)i · ri, where the arithmetic is over F2.30 (We use the notation
f GL(ws) since we will use the algorithm of Goldreich and Levin [GL89] to transform a
circuit that agrees with f GL(ws) on 1/2+ ε of the inputs into a circuit that computes f ws

on poly(ε) of the inputs.)
The algorithm G0 is the Nisan-Wigderson generator, instantiated with f GL(ws) as the

hard function and with combinatorial designs such that the output length is n, the sets
in the design are of size `(n) =

⌈
log(n) · (loglogn)b⌉ (where b is a sufficiently large

30On odd input lengths the function f GL(ws) is defined by ignoring the last input bit; that is,
f GL(ws)(x, rσ) = f GL(ws)(x, r), where |x| = |r| and |σ| = 1.
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constant that depends on k), the seed length is `G(n) = Õ(`(n)) = Õ(log(n)), and the
size of the intersection between any two sets in the design is γ · log(n) where γ > 0
is a sufficiently small constant (see, e.g., [Vad12, Prob 3.2] for a suitable construction).
Since f ws is computable in linear space, the function f GL(ws)(x, r) is computable in time
npolyloglog(n), and hence G0 is computable in time npolyloglog(n).

Fix a mapping of any 1n to a corresponding set Sn that will be defined in a moment
(and depends only on the parameters up to this point). Now, let str : N → N

be any polynomial-time computable function satisfying str(n) ≤ n, and let G be
such that G(1n, s) = G0(1n, s)1,...,str(n). For t(n) = nloglog(n)k

, let A be a probabilistic
algorithm that gets input 1n and log(t(n)) bits of non-uniform advice and runs in
time t(n). For any sufficiently large n ∈ N, we assume that for every m ∈ Sn, when
A is given input 1str(m) and corresponding “good” advice, with probability at least
1/t(m) it outputs a circuit Dstr(m) : {0, 1}str(m) → {0, 1} that (1/t(m))-distinguishes
G(1m, u`G(m)) from uniform. Under this assumption, we will construct a probabilistic
algorithm that gets input 1`(n), runs in time poly(1/δ(`(n)) = 2O(`(n)/ log(`(n))c+1), and
with high probability outputs a circuit {0, 1}`(n) → {0, 1} that correctly computes
f ws on `(n)-bit inputs. This implies that a probabilistic algorithm can decide f ws on
{0, 1}`(n) in time at most 2`(n)/ log(`(n))c

.
Towards presenting the construction, denote `′(n) = `(n)/ log(`(n))c+1, and fix a

sufficiently small universal constant ε > 0 (which depends only on universal constants
from arguments in [NW94; IW98]). We assume that `(n) is sufficiently large such that
t(n) = nloglog(n)k ≤ 2ε·`′(n). Recall that, since f ws is downward self-reducible in s steps,
there exists an input length `0(n) ≥ `(n)− s(`(n)) such that f ws`0(n)

is computable in
time poly(1/δ(`0(n))). For Ln = {`0(n), ..., `(n)}, we define Sn = {`−1(2i) : i ∈
Ln}. Note that indeed |Sn| ≤ s(`(n)) = s(Õ(log(n))); and relying on the fact that
s(`(n)) ≤ `(n)/2, we have that Sn ⊂ [n0, n1] where n0 = `−1(2`0) ≥ `−1(`(n)) = n
and n1 = `−1(2`(n)) < n2. Lastly, note that Sn does not depend on the function str

or on the algorithm A.
Our first step is to show that (loosely speaking) under our assumption about A, for

any m ∈ Sn we can efficiently construct (using only a small amount of non-uniform
advice) a circuit that computes f GL(ws) on noticeably more than half of the inputs of
length `(m). The proof of this claim is a variation on the standard efficient transfor-
mation of distinguishers for the Nisan-Wigderson PRG to approximating circuits for
the “hard” function, from [IW98] (following [NW94]).

Claim 4.3.11.1. There exists a probabilistic algorithm such that for any m ∈ Sn, when the
algorithm is given input 1`(m), and oracle access to f GL(ws) on `(m)-bit inputs, and 2ε · `′(m)
bits of non-uniform advice, the algorithm runs in time 2`

′(m) and with probability more than
2−`

′(m) outputs a circuit {0, 1}`(m) → {0, 1} that computes f GL(ws) correctly on more than
1/2 + 2−`

′(m) of the inputs.

Proof. Let ` = `(m), let `′ = `′(m), and let m′ = str(m) ≤ m. Let us first assume that
m′ = m (i.e., G0 = G and str is the identity function). In this case, a standard argument
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(based on [NW94] and first noted in [IW98]) shows that there exists a probabilistic
polynomial time algorithm ANW that satisfies the following: When given as input
a circuit Dm : {0, 1}m → {0, 1} that (1/mloglog(m)k

)-distinguishes G(1m, u`G(m)) from
uniform, and also given oracle access to f GL(ws) on `-bit inputs, with probability at
least 1/O(m) the algorithm ANW outputs a circuit C` : {0, 1}` → {0, 1} such that
Prx∈{0,1}` [C`(x) = f GL(ws)(x)] ≥ 1/2 + 1/O(mloglog(m)k

).
Towards extending this claim to the setting of str(m) < m, let us quickly recap the

original construction of ANW : The algorithm randomly chooses an index i ∈ [m] (for a
hybrid argument) and values for all the bits in the seed of the NW generator outside
the ith set (in the underlying design); then uses its oracle to query poly(m) values for
f GL(ws) (these are potential values for the output indices whose sets in the seed intersect
with the ith set), and “hard-wires” them into a circuit C` that gets input x ∈ {0, 1}`,
simulates the corresponding m-bit output of the PRG, and uses the distinguisher to
decide if x ∈ f GL(ws). Now, note that if the output of the PRG is truncated to length
m′ = str(m) < m, the construction above works essentially the same if we choose
an initial index i ∈ [m′] instead of i ∈ [m], and if C` completes x to an m′-bit output
of the PRG instead of an m-bit output. Indeed, referring to the underlying analysis,
these changes only improve the guarantee on the algorithm’s probability of success
(we do not use the fact that the guarantee is better). Thus, for any m′ = str(m) ≤ m,
there is an algorithm ANW that gets as input a circuit Dm′ : {0, 1}m′ → {0, 1} that
(1/mloglog(m)k

)-distinguishes G(1m, u`G(m)) from uniform, and oracle access to f GL(ws)` ,
and with probability at least 1/O(m) outputs a circuit C` : {0, 1}` → {0, 1} such that
Prx∈{0,1}` [C`(x) = f GL(ws)(x)] ≥ 1/2 + 1/O(mloglog(m)k

).
Now, for ` ∈ N, let m = m(`) be such that ` is the seed length of G on m-bit

inputs, and let m′ = str(m). Our probabilistic algorithm is given as input 1` and
non-uniform advice (a, m′) such that |a| = log(t(m)) = log(m) · loglog(m)k = ε · `′;
note that, since m′ ≤ m, the total length of the advice is at most ε · `′ + log(m) <
2ε · `′. Our probabilistic algorithm simulates the algorithm A on input 1m′ with the
advice a, and feeds the output of A as input for ANW . This algorithm runs in time
mO(loglog(m)k) = 2`

′
. Note that with probability more than (1/mloglog(m)k

), the algorithm
A outputs Dm′ : {0, 1}m′ → {0, 1} that (1/mloglog(m)k

)-distinguishes G(1m, u`G(m)) from
uniform, and conditioned on this event, with probability at least 1/O(m) the combined
algorithm outputs a circuit C` : {0, 1}` → {0, 1} that correctly computes f GL(ws) on
1/2 + 1/O(mloglog(m)k

) > 1/2 + 2−`
′

of the `-bit inputs. �

We will call the algorithm in the statement of Claim 4.3.11.1 a weak learner for f GL(ws)

on input length `(m). Then, Claim 4.3.11.1 implies that there exists a weak learner for
f GL(ws) on any input length in 2Ln = {2i : i ∈ Ln}. See Figure 4.1 for a pictorial
description of the sets Ln, 2Ln, and Sn, and for a reminder about our assumptions at
this point.

Given as input 1`(n), we construct in time poly(1/δ(`(n))) = 2O(`(n)/ log(`(n))c+1) =
2O(`′(n)) a circuit for f ws`(n), by inductively constructing circuits for f wsi , for increasing
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`0(n) `(n)

Ln

2`0(n) 2`(n)

2Ln

`−1(2`0(n)) `−1(2`(n))

contains Sn = `−1(2Ln)

Figure 4.1: We want to compute f ws on inputs of length `(n). We define a correspond-
ing interval Ln = {`0(n), ..., `(n)} of input lengths, where `0(n) ≥ `(n)− s(`(n)), in
which we will use the downward self-reducibility of f ws. We assume that there is
a uniform distinguisher A for the PRG on all input lengths in Sn = `−1(2Ln), and
deduced that there exists a weak learner for f GL(ws) on all input lengths in 2Ln.

values of i ∈ Ln = {`0(n), ..., `(n)}, where for each i we will construct the correspond-
ing circuit in time 2O(i/ log(i)c+!). Indeed, the construction for the base case i = `0(n)
is trivial, since f ws`0(n)

is computable in time poly(1/δ(`0(n))) ≤ 2O(`0(n)/ log(`0(n))c+1),
where the inequality is due to our hypothesis that δ is sufficiently large (the precise
requirement from δ will be specified below). Therefore we just need to prove the
inductive step. This will be done as follows:

Claim 4.3.11.2. There exists an algorithm that gets as input i ∈ Ln \ {`0(n)} and a circuit
Ci−1 : {0, 1}i−1 → {0, 1} that computes f wsi−1, runs in time 2O(i/ log(i)c+1) · poly(|Ci−1|), and
with probability at least 1− exp(i/ log(i)c+1) outputs a circuit Ci : {0, 1}i → {0, 1} of size
2O(i/ log(i)c+1) that computes f wsi . (Note that the size of the output circuit Ci does not depend
on the size of the input circuit Ci−1.)

Proof. Let i′ = 2i/ log(2i)c+1, and let S = |Ci−1|. First note that the algorithm can
compute f wsi in time poly(1/δ(i), S) (using the downward self-reducibility of f ws and
the circuit Ci−1) and also compute f GL(ws)2i in time poly(1/δ(i), S) (using the fact that
f GL(ws)(x, r) = ∑j∈[i] f wsi (x)j · rj). We will construct Ci in four steps:

1. Simulating the learner for f GL(ws)2i . We use the weak learner for f GL(ws)2i to construct
a list of 2O(i′) circuits {0, 1}2i → {0, 1} of size 2i′ such that at least one circuit in the list
correctly decides f GL(ws)2i on 1/2 + 2−i′ of the (2i)-bit inputs.

To do so, we enumerate over all 22ε·i′ possible advice strings for the weak learner
for f GL(ws)2i . For each fixed advice string a ∈ {0, 1}2ε·i′ , we simulate the weak learner
with advice a for 2O(i′) times (using independent randomness in each simulation),
while answering its queries to f GL(ws)2i using Ci−1. Note that when a is the “good”
advice, each simulation of the learner is successful with probability at least 2−i′ . Thus,
with probability at least 1− exp(−i′) our list contains at least one circuit that correctly
computes f GL(ws)2i on at least 1/2 + 2−i′ of its inputs.

197



4. DERANDOMIZATION AND LOWER BOUNDS

2. Weeding the list to find a circuit for f GL(ws)2i . We now test each of the 2O(i′) circuits

in order to find a single circuit C′i : {0, 1}2i → {0, 1} that computes f GL(ws)2i on 1/2 +

2−2i′ of the inputs.
To test each circuit we randomly sample 2O(i′) inputs, compute f GL(ws)2i at each of

these inputs using Ci−1, and compare the value of f GL(ws)2i to the output of the candidate
circuit. For each circuit, with probability at least 1− 2−O(i′) over the sampled inputs,
we correctly estimate its agreement with f GL(ws)2i up to error 2−2i′−1. Union-bounding
over the 2O(i′) circuits, with probability at least 1− 2−O(i′), the circuit that we find in
this step has agreement at least 1/2 + 2−2i′ with f ws.

3. Conversion to a circuit that computes f wsi on average. We now convert the circuit
C′i for f GL(ws)2i to a circuit {0, 1}i → {0, 1}i of size 2O(i′) that computes f wsi correctly on
δ(i) = 2−O(i′) of its i-bit inputs.31

To do so, we first use the algorithm of Goldreich and Levin [GL89] to convert the
deterministic circuit C′i into a probabilistic circuit C′′i of size 2O(i′) such that Pr[C′′i (x) =
f wsi (x)] ≥ 2−O(i′), where the probability is taken both over a random choice of x ∈
{0, 1}i and over the internal randomness of C′′i . Specifically, the circuit C′′i : {0, 1}i →
{0, 1} gets input x ∈ {0, 1}i, and simulates the algorithm from [Gol08, Thm 7.8] with
parameter δ0 = 2−2i′ , while resolving the oracle queries of the algorithm using the
circuit C′i ; then, the circuit C′′i outputs a random element from the list that is produced
by the algorithm from [Gol08]. Since Ex[Prr[C′i(x, r) = f GL(ws)2i (x, r)]] ≥ 1/2 + δ0, it
follows that for at least δ0/2 of the inputs x ∈ {0, 1}i it holds that Prr[C′i(x, r) =

f GL(ws)2i (x, r)] ≥ 1/2 + δ0/2. For each such input, with probability at least 1/2 the
algorithm of [GL89] outputs a list of size poly(1/δ0) that contains f ws(x), and thus the
circuit C′′i outputs f ws(x) with probability poly(δ0).

To conclude we now choose randomness for C′i and “hard-wire” it into the circuit.
With probability at least 1− exp(i′), we obtain a circuit C′′′i of size 2O(i′) that computes
f wsi correctly on δ = poly(δ0) of the inputs.

4. Worst-case to δ-average-case reduction for f wsi . Our final step is to convert C′′i
(which computes f wsi correctly on δ(i) of the i-bit inputs) into a circuit Ci of size 2O(i′)

that correctly computes f wsi on all inputs.
To do so we will use the fact that f ws is sample-aided worst-case to δ-average-case

reducible, and the fact that we can generate random labeled samples (r, f wsi (r)) by
using the circuit Ci−1 to compute f wsi (r). With probability at least 1− δ(i), the uniform
reduction outputs a probabilistic circuit C′′′i of size 2O(i′) such that for every x ∈ {0, 1}i

31Recall that in our hypothesis we required a δ-well-structured function where δ(n) = 2−n/polylog(n)

for a sufficiently large polylogarithmic function. At this point we can specify our precise requirement,
which is that δ(n) = 2−O(n/ log(n)c+1), where the universal constant hidden inside the O-notation depends
only on universal constants from [GL89] as explained in the argument that we now present.
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4.3 Uniform lower bounds and average-case derandomization

it holds that Prr[C′′′i (x, r) = f ws(x)] ≥ 2/3. 32 Using naive error-reduction we obtain a
circuit of size 2O(i′) that correctly computes f ws at any input with probability 1− 2−O(i).
Then we uniformly choose randomness of this circuit and “hard-wire” the randomness
into it, such that with probability at least 1 − 2−i we obtain a deterministic circuit
Ci : {0, 1}i → {0, 1} that computes f wsi . �

Repeating the algorithm from Claim 4.3.11.2 for i = `0(n) + 1, ..., `(n), we obtain
an algorithm that runs in time 2O(`′), and outputs a circuit for f ws`(n) with probability at

least 1−∑`
i=`′ exp(i/ log(i)c+1) ≥ 2/3, assuming that ` is sufficiently large.

In the last part of the proof of Lemma 4.3.11, after we converted a distinguisher for
f GL(ws) into a weak learner for f GL(ws) (i.e., after Claim 4.3.11.1), we used the existence
of the weak learner for f GL(ws) on 2Ln to obtain a circuit that computes f ws on Ln. This
part of the proof immediately implies the following, weaker corollary. (The corollary
is weaker since it does not have any “point-wise” property, i.e. does not convert a
learner on specific input lengths to a circuit for f ws on a corresponding input length.)

Corollary 4.3.12 (learning f GL(ws) =⇒ computing f ws). Let c ∈N be an arbitrary constant,
let f ws : {0, 1}∗ → {0, 1}∗ be a δ-well-structured function for δ(n) = 2−n/ log(n)c+1

, and let
f GL(ws) be defined as in the proof of Lemma 4.3.11. Assume that for every ` ∈ N there exists
a weak learner for f GL(ws); that is, an algorithm that gets input 1` and oracle access to f GL(ws)` ,
runs in time δ−1(`), and with probability more than δ(`) outputs a circuit over ` bits that
computes f GL(ws) correctly on more than 1/2 + δ(`) of the inputs. Then, there exists an
algorithm that for every `, when given input 1`, runs in time 2`/ log(`)c

and outputs an `-bit
circuit that computes f ws.

We now use the “point-wise” property of Lemma 4.3.11 to deduce two “almost-
always” versions of Proposition 4.3.10. Recall that in our construction of a well-
structured function f ws, on some input lengths f ws is defined trivially, and thus it
cannot be that f ws is “hard” almost-almost.33 However, since TQBF can be reduced to
f ws with a quasilinear blow-up b : N → N, we can still deduce the following: If TQBF
is “hard” almost-always, then for every n ∈ N there exists n′ ≤ b(n) such that f ws is
“hard” on input length n′ (i.e., this holds for the smallest n′ ≥ n of the form b(n0) for
n0 ∈N).

In our first “almost-always” result, the hypothesis is that a well-structured function
is “hard” on a dense set of input lengths as above, and the conclusion is that there
exists an “almost-everywhere” HSG for uniform circuits.

Proposition 4.3.13 (“almost everywhere” hardness of f ws ⇒ “almost everywhere” de-
randomization ofRP “on average”). Assume that for some constant c ∈N and for δ(n) =

32In Definition 4.3.5 the output circuit has oracle gates to a function that agrees with the target function
on a δ fraction of the inputs. Indeed, we replace these oracle gates with copies of the circuit C′′i .

33Moreover, in every small interval of input lengths, there is an input length on which f ws can be
solved in time poly(1/δ) (without using an oracle).
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2−n/ log(n)c+1
there exists a (δ, polylog(n))-well-structured function and b(n) = Õ(n) such

that for every probabilistic algorithm that runs in time 2n/ log(n)c
, and every sufficiently large

n ∈ N, the algorithm fails to compute f ws on input length n = min{b(n0) ≥ n : n0 ∈ N}.
Then, for every k ∈ N and for t(n) = nloglog(n)k

there exists a (1/t)-HSG for (t, log(t))-
uniform circuits that is computable in time npolyloglog(n) and has seed length Õ(log(n)).

Proof. We instantiate Lemma 4.3.11 with the constant c, the function f ws, the parame-
ter 2k instead of k (i.e., the parameter t in Lemma 4.3.11 is t(n) = nloglog(n)2k

) and with
str(n) = n (i.e., str is the identity function). Let `(n) =

⌈
Õ(log(n))

⌉
be the quasilog-

arithmic function given by Lemma 4.3.11, let G = G0 be the corresponding PRG, and
let `G(n) = Õ(log(n)) be the seed length of G. From our hypothesis regarding the
hardness of f ws, we can deduce the following:

Corollary 4.3.13.1. For every n ∈ N there is a polynomial-time-enumerable set Sn =
Snpolyloglog(n) ⊂ [n, npolyloglog(n)] of size polyloglog(n) such that for every probabilistic al-
gorithm A′ that runs in time t2 and uses 2 log(t) bits of advice, if n ∈ N is sufficiently large
then there exists m ∈ Sn such that G(1m, u`G(m)) is (1/t2(m))-pseudorandom for A′.

Proof. For every n ∈ N, let `(n) = min{b(`0) ≥ `(n) : `0 ∈ N}, and let n =
`−1(`(n)) ∈ [n, npolyloglog(n)]. We define Sn = Sn, where Sn is the set from Item (2)
of Lemma 4.3.11 that corresponds to n. Note that Sn ⊂ [n, npolyloglog(n)] and that
|Sn| ≤ polyloglog(n).

Now, let A′ be a probabilistic algorithm as in our hypothesis, let F′ be the cor-
responding probabilistic algorithm from Lemma 4.3.11 that runs in time tF′(i) =
2i/ log(i)c

, and let n ∈ N be sufficiently large. By Lemma 4.3.11, if there is no m ∈ Sn
such that G(1m, u`G(m)) is (1/t(m))-pseudorandom for A′, then F′ correctly computes
f ws on input length `(n) = `(n), which contradicts our hypothesis. �

The HSG, denoted H, gets input 1n, uniformly chooses m ∈ Sn, computes G(1m, s)
for a random s ∈ {0, 1}`G(m), and outputs the n-bit prefix of G(1m, s). Note that the
seed length that H requires is Õ(log(npolyloglog(n))) + log(|Sn|) = Õ(log(n)), and that
H is computable in time at most npolyloglog(n).

To prove that H is a (1/t)-HSG for (t, log(t))-uniform circuits, let A be a proba-
bilistic algorithm that runs in time t and uses log(t) bits of advice. Assume towards a
contradiction that there exists an infinite set BA ⊆ N such that for every n ∈ BA, with
probability more than 1/t(n) the algorithm A outputs a circuit Dn : {0, 1}n → {0, 1}
satisfying Prs[Dn(H(1n, s)) = 0] = 1 and Prx∈{0,1}n [Dn(x) = 1] > 1/t(n). We will
construct an algorithm A′ that runs in time less than t2, uses log(t) + log(n) < 2 log(t)
bits of advice, and for infinitely-many sets of the form Sn, for every m ∈ Sn it
holds that G(1m, u`G(m)) is not (1/t(m))-pseudorandom for A′. This contradicts Corol-
lary 4.3.13.1.

The algorithm A′ gets input 1m, and as advice it gets an integer of size at most
m. Specifically, if m is in a set Sn for some n ∈ BA, then the advice will be set to n;
and otherwise the advice is zero (which signals to A′ that it can fail on input length
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m). For any m ∈ N such that the first case holds, we know that A(1n) outputs,
with probability more than 1/t(n), a circuit Dn : {0, 1}n → {0, 1} satisfying both
Prs∈{0,1}Õ(log(n)) [Dn(H(1n, s)) = 0] = 1 and Prx∈{0,1}n [Dn(x) = 1] > 1/t(n). The algo-
rithm A′ simulates A on input length n, and outputs a circuit Dm : {0, 1}m → {0, 1}
such that Dm computes Dn on the n-bit prefix of its input. By our hypothesis regard-
ing Dn, when fixing the first part of the seed of H to be the integer m, we have that
Prs′ [Dn(H(1n, m ◦ s′)) = 0] = Prs′ [Dm(G(1m, s′)) = 0] = 1, whereas Prx∈{0,1}m [Dm(x) =
1] > 1/t(n). It follows that Dm distinguishes the m-bit output of G from uniform with
advantage 1/t(n) ≥ 1/t(m).

We also prove another “almost-everywhere” version of Proposition 4.3.10. Loosely
speaking, under the same hypothesis as in Proposition 4.3.13, we show that BPP
can be derandomized “on average” using only a small (triple-logarithmic) amount of
advice. In contrast to the conclusion of Proposition 4.3.13, in the following proposition
we do not construct a PRG or HSG, but rather simulate every BPP algorithm by
a corresponding deterministic algorithm that uses a small amount of non-uniform
advice.

Proposition 4.3.14 (“almost everywhere” hardness of f ws ⇒ “almost everywhere” de-
randomization of BPP “on average” with short advice). Assume that for some constant
c ∈ N and for δ(n) = 2−n/ log(n)c+1

there exists a (δ, polylog(n))-well-structured function
and b(n) = Õ(n) such that for every probabilistic algorithm that runs in time 2n/ log(n)c

,
and every sufficiently large n ∈ N, the algorithm fails to compute f ws on input length
n = min{b(n0) ≥ n : n0 ∈N}.

For k ∈N and t(n) = nloglog(n)k
, let L ∈ BPT IME [t] and let F be a probabilistic t-time

algorithm. Then, there exists a deterministic machine D that runs in time npolyloglog(n) and
gets O(logloglog(n)) bits of non-uniform advice such that for all sufficiently large n ∈N, the
probability (over coin tosses of F) that F(1n) is an input x ∈ {0, 1}n for which D(x) 6= L(x)
is at most 1/t(n).

Proof. Let us first prove the claim assuming that L ∈ BPT IME [t] can be decided
using only a number of random coins that equals the input length; later on we show
how to remove this assumption (by a padding argument). For t as in our hypothesis
for L as above, let M be a probabilistic t-time algorithm that decides L and that for
every input x ∈ {0, 1}∗ uses |x| random coins, and let F be a probabilistic t-time
algorithm. Consider the algorithm A that, on input 1n, simulates F on input 1n to
obtain x ∈ {0, 1}n, and outputs a circuit Cx : {0, 1}n → {0, 1} that computes the
decision of M at input x as a function of the random coins of M.

We instantiate Lemma 4.3.11 with the constant c, the function f ws, and the param-
eter k. Let ` = Õ(log(n)) be the quasilogarithmic function given by the lemma, let G0
be the PRG, and let `G = Õ(log(n)) be the seed length of G0. We first need a claim
similar to Corollary 4.3.13.1, but this time also quantifying over the function str:
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Corollary 4.3.14.1. For every n ∈ N there is a polynomial-time-enumerable set Sn =
Snpolyloglog(n) ⊂ [n, npolyloglog(n)] of size polyloglog(n) that satisfies the following. For ev-
ery str : N → N satisfying str(n) ≤ n, let Gstr be the algorithm that on input 1n uses a
random seed of length Õ(log(n)), computes G0, which outputs an n-bit string, and truncates
the output to length str(n). Then, for every probabilistic algorithm A′ that runs in time t and
uses log(t) bits of advice, if n ∈ N is sufficiently large then there exists m ∈ Sn such that
Gstr(1m, u`G(m)) is (1/t(m))-pseudorandom for A′.

Proof. For any n ∈ N we define `(n) and Sn as in the proof of Corollary 4.3.13.1. For
any str : N→N satisfying str(n) ≤ n, let Gstr be the corresponding function. Now,
let A′ be any probabilistic algorithm as in our hypothesis, let F′ be the corresponding
probabilistic algorithm from Lemma 4.3.11 that runs in time tF′(i) = 2i/ log(i)c

, and
let n ∈ N be sufficiently large. By Lemma 4.3.11, if there is no m ∈ Sn such that
Gstr(1m, u`G(m)) is (1/t(m))-pseudorandom for A′, then F′ correctly computes f ws on
input length `(n). This contradicts our hypothesis regarding f ws. �

The machine D gets input x ∈ {0, 1}n and advice of length O(logloglog(n)), which
is interpreted as an index of an element m in the set Sn. Then, for each s ∈ {0, 1}`G(m)

the algorithm computes the n-bit prefix of G0(1m, s), denoted ws = G0(1m, s)1,...,n, and
outputs the majority value of {M(x, ws) : s ∈ {0, 1}`G(m)}. Note that the machine D
indeed runs in time mpolyloglog(m) = npolyloglog(n).

Our goal now is to prove that for every sufficiently large n ∈N there exists advice
m ∈ Sn such that with probability at least 1− 1/t(n) over the coin tosses of F (which
determine x ∈ {0, 1}n and Cx : {0, 1}n → {0, 1}) it holds that∣∣∣ Pr

r∈{0,1}n
[Cx(r) = 1]− Pr

s
[Cx(G0(1m, s)1,...,n) = 1]

∣∣∣ < 1/t(n) , (4.3.2)

which is equivalent (for a fixed x ∈ {0, 1}n) to the following statement:∣∣∣ Pr
r∈{0,1}n

[M(x, r) = 1]− Pr
s
[M(x, ws) = 1]

∣∣∣ < 1/t(n) . (4.3.3)

Indeed, proving this would suffice to prove our claim, since for every x ∈ {0, 1}n such
that Eq. (4.3.3) holds we have that D(x) = L(x).

To prove the claim above, assume towards a contradiction that there exists an
infinite set of input lengths BA ⊆ N such that for every n ∈ BA and every advice
m ∈ Sn, with probability more than 1/t(n) over x ← F(1n) it holds that Cx : {0, 1}n →
{0, 1} violates Eq. (4.3.2). Let str : N → N be defined by str(m) = n if m ∈ Sn for
some n ∈ BA, and str(m) = m otherwise.34 Then, our assumption implies that for
infinitely-many input lengths n ∈ BA, for every m ∈ Sn it holds that Gstr(1m, u`G(m))
is not (1/t(n))-pseudorandom for A. This contradicts Corollary 4.3.14.1.

34Note that str is well-defined, since we can assume without loss of generality that Sn ∩ Sn′ = ∅ for
distinct n, n′ ∈ BA (i.e., we can assume without loss of generality that n and n′ are sufficiently far apart).
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Finally, let us remove the assumption that L can be decided using a linear number
of coins, by a padding argument. For any L ∈ BPT IME [t], consider a padded
version Lpad = {(x, 1t(|x|)) : x ∈ L}, and note that Lpad can be decided in linear time
using |z| coins on any input z. By the argument above, for every probabilistic t-time
algorithm Fpad there exists an algorithm Dpad that runs in time tDpad(m) = mpolyloglog(m)

such that for all sufficiently large m ∈N it holds that Prz←Fpad(1m)[Dpad(z) 6= Lpad(z)] ≤
1/t(m).

We define the algorithm D in the natural way, i.e. D(x) = Dpad(x, 1t(|x|)), and note
that this algorithm runs in time npolyloglog(n). Assume towards a contradiction that
there exists a t-time algorithm F and an infinite set of input lengths BF ⊆ N such
that for every n ∈ BF, with probability more than 1/t(n) it holds that D(x) 6= L(x).
Consider the algorithm Fpad that on input of the form 1n+t(n) runs F(1n) to obtain
x ∈ {0, 1}n, and outputs (x, 1n) (on inputs of another form Fpad fails and halts), and
let BFpad = {n + t(n) : n ∈ BF}. For any m ∈ BFpad we have that

Pr
z←Fpad(1m)

[Dpad(z) 6= Lpad(z)] = Pr
x←F(1n)

[D(x) 6= L(x)] > 1/t(n) > 1/t(m) ,

which yields a contradiction.

An aside: Derandomization using quasilogarithmic space. The PRG constructed
in Lemma 4.3.11 actually works in quasilogarithmic space (since f ws is computable in
linear space), except for one crucial part: The construction of combinatorial designs.
Combinatorial designs with parameters as in our proof actually can be constructed
in logarithmic space, but only for values of ` that are of a specific form (since the
constructions are algebraic).35 However, in our downward self-reducibility argument
we need such designs for every integer ` (such that we can assume the existence of
distinguishers on the set Sn = `−1(2Ln), and hence of learners for f GL(ws) on 2Ln).

4.3.5 Proofs of Theorems 4.3.1 and 4.3.2

Let us now formally state Theorem 4.3.1 and prove it. The theorem follows immedi-
ately as a corollary of Lemma 4.3.9 and Proposition 4.3.10.

Theorem 4.3.15 (rETH ⇒ i.o.-PRG for uniform circuits). Assume that there exists i ≥ 1
such that TQBF /∈ BPT IME [2n/ log(n)i

]. Then, for every k ∈ N and for t(n) = nloglog(n)k

there exists a (1/t)-i.o.-PRG for (t, log(t))-uniform circuits that has seed length Õ(log(n))
and is computable in time npolyloglog(n).

Proof. Let δ(n) = 2n/ log(n)3c
for a sufficiently large constant c ∈ N. By Lemma 4.3.9,

there exists (δ, O(`2))-well-structured function f ws that is computable in linear space,
and such that TQBF reduces to f ws in time ql(n) = n · log(n)2c+r, where r ∈ N is a

35This can be done using an idea from [HR03, Lemma 5.5] (attributed to Salil Vadhan), essentially
“composing” Reed-Solomon codes over GF(n) of degree n/polylog(n) with standard designs (a-la Nisan
and Wigderson [NW94]; see [HR03, Lemma 2.2]) with set-size ` = polylog(n).
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universal constant. Using our hypothesis, we deduce that f ws cannot be computed in
probabilistic time 2n/ log(n)3c−1

; this is the case since otherwise, TQBF could have been
computed in probabilistic time

2ql(n)/ log(ql(n))3c−1
= 2n·log(n)2c+r/ log(ql(n))3c−1

< 2n/ log(n)c−r−1
, (4.3.4)

which is a contradiction if c ≥ i + r + 1. Our conclusion now follows from Proposi-
tion 4.3.10.

We also formally state Theorem 4.3.2 and prove it, as a corollary of Lemma 4.3.9
and of Propositions 4.3.13 and 4.3.14.

Theorem 4.3.16 (a.a.-rETH⇒ almost-always HSG for uniform circuits and alm0st-always
“average-case” derandomization of BPP). Assume that there exists i ≥ 1 such that
TQBF /∈ i.o.-BPT IME [2n/ log(n)i

]. Then, for every k ∈N and for t(n) = nloglog(n)k
:

1. There exists a (1/t)-HSG for (t, log(t))-uniform circuits that is computable in time
npolyloglog(n) and has seed length Õ(log(n)).

2. For every L ∈ BPT IME [t] and probabilistic t-time algorithm F there exists a deter-
ministic machine D that runs in time npolyloglog(n) and gets O(logloglog(n)) bits of
non-uniform advice such that for all sufficiently large n ∈ N the probability (over coin
tosses of F) that F(1n) is an input x ∈ {0, 1}n for which D(x) 6= L(x) is at most
1/t(n).

Proof. Note that both Proposition 4.3.13 and Proposition 4.3.14 rely on the same hy-
pothesis, and that their respective conclusions correspond to Items (1) and (2) in our
claim. Thus, it suffices to prove that their hypothesis holds.

To see this, as in the proof of Theorem 4.3.15, let δ(n) = 2n/ log(n)3c
for a suffi-

ciently large constant c ∈ N, and let f ws be the (δ, polylog(n))-well-structured func-
tion that is obtained from Lemma 4.3.9 with parameter δ. Let r ∈ N be the universal
constant from Lemma 4.3.9, and let ql(n) = n · log(n)2c+r. Note that for every algo-
rithm that runs in time 2n/ log(n)3c−1

and every sufficiently large n0 ∈ N, the algorithm
fails to compute f ws on input length n = ql(n0); this is because otherwise we could
have computed TQBF on infinitely-often n0’s in time 2n/ log(n)c−r−1 ≤ 2n0/ log(n0)

k
, where

the calculation is as in Eq. (4.3.4). This implies the hypothesis of Propositions 4.3.13
and 4.3.14.

4.3.6 Appendices for Section 4.3

4.3.6.1 On implications of MAETH

Consider the hypothesis MAETH, which asserts that co-3SAT cannot be solved by
Merlin-Arthur protocols running in time 2ε·n, for some ε > 0. Recall that the “strong”
version of this hypothesis is false (since Williams [Wil16] showed that #CircuitSAT
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can be solved by a Merlin-Arthur protocol in time Õ(2n/2)), but there is currently no
evidence against the “non-strong” version.

As mentioned in Section 4.3.1, the assumption MAETH can be easily shown to
imply strong circuit lower bounds and derandomization of prBPP (and thus also
of prMA). Specifically, the following more general (i.e., parametrized) result relies
on a standard Karp-Lipton-style argument, which originates in [BFN+93]. We note
in advance that after the proof of this result we prove another result, which shows
a very different tradeoff between MA lower bounds (specifically, lower bounds for
fixed-polynomial-time verifiers) and derandomization.

Theorem 4.3.17 (lower bounds for MA algorithms imply non-uniform circuit lower
bounds). There exists L ∈ E and a constant k > 1 such that for any time-computable func-
tion S : N → N such that S(n) ≥ n the following holds. Assume that DT IME [2n] 6⊆
MAT IME [S′], where S′(n) = S(k · n)k. Then, L 6∈ SIZE [S].

Note that, using Corollary 2.4.8, under the hypothesis of Theorem 4.3.17 we have
that CAPP ∈ i.o.prDT IME [T], where T(n) = 2O(S−1(nO(1))). In particular, under
MAETH (which refers to S(n) = 2Ω(n/ log(n))) we have that prBPP ⊆ i.o.prDT IME [nO(loglog(n))].

Proof of Theorem 4.3.17. Let L be the problem from Proposition 4.4.8. Assuming to-
wards a contradiction that L ∈ SIZE [S], we show thatDT IME [2n] ⊆MAT IME [S′].

Let L0 ∈ DT IME [2n]. We construct a probabilistic verifier that gets input x0 ∈
{0, 1}n0 , and if x0 ∈ L0 then for some non-deterministic choices the verifier accepts
with probability one, and if x0 /∈ L0 then for all non-deterministic choices the verifier
rejects, with high probability. The verifier first reduces L0 to L, by computing x ∈
{0, 1}n of length n = O(n0) such that x0 ∈ L0 if and only if x ∈ L.

Let n′ = `(n) = O(n) = O(n0). By our hypothesis, there exists a circuit over n′

input bits of size S(n′) that decides Ln′ . The verifier guesses a circuit CL : {0, 1}n′ →
{0, 1} of size S(n′), and simulates the machine M from Proposition 4.4.8 on input x,
while resolving its oracle queries of using CL. The verifier accepts if and only if M
accepts. Note that if x0 ∈ L0 and the verifier’s guess was correct (i.e., CL decides Ln′),
then the verifier accepts with probability one. On the other hand, if x0 /∈ L0, then for
every guess of CL (i.e., every oracle for M) the verifier rejects, with high probability.
The running time of the verifier is poly(n) · poly(S(n′)) = S(O(n))O(1).

In the following result, instead of assuming strong (e.g., super-polynomial) lower
bounds for MAT IME against E , we assume fixed polynomial lower bounds for
MAT IME against P , and deduce both a sub-exponential derandomization of BPP ,
and a polynomial-time derandomization of BPP with nε advice, for an arbitrarly
small constant ε > 0.36

36Recall that, by Adleman’s theorem [Adl78; BG81], we can derandomize prBPP with poly(n) bits
of non-uniform advice (and even with O(n) bits, using Theorem 2.5.7). However, an unconditional
derandomization of prBPP with o(n) bits of non-uniform advice is not known.
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Theorem 4.3.18 (fixed-polynomial-size lower bounds for MA =⇒ derandomization
and circuit lower bounds). Assume that for every k ∈N it holds that P 6⊆ i.o.MAT IME [nk].
Then, for every ε > 0 it holds that prBPP ⊆ (prP/nε ∩ prDT IME [2nε

]).

Proof. In high-level, we want to use our hypothesis to deduce that there exists a
polynomial-time algorithm that outputs the truth-table of a “hard” function, and then
use that “hard” function for derandomization. Loosely speaking, the following claim,
whose proof is a refinement of on an argument from [CMM+19], asserts that if the
output string of every polynomial-time algorithm has circuit complexity at most nk,
then all of P can be decided byMA verifiers running in time nO(k).

Claim 4.3.18.1. Assume that there exists k ∈N such that for every deterministic polynomial-
time machine M there exists an infinite set S ⊆ N such that for every n ∈ S the following
holds: For every x ∈ {0, 1}n, when the output string M(x) is viewed as a truth-table of a
function, this function has circuit complexity at most nk. Then, P ⊆ i.o.MAT IME [nO(k)].

Proof. Let L ∈ P , and let M be a polynomial-time machine that decides L. Our goal is
to decide L inMAT IME [nk] on infinitely-many input lengths.

For every x ∈ {0, 1}n, let Tx : {0, 1}poly(n) → {0, 1} be a polynomial-sized circuit
that gets as input a string Π, and accepts if and only if Π is the computational his-
tory of M(x) and M(x) = 1. Note that the mapping of x 7→ Tx can be computed
in polynomial time (since M runs in polynomial time). Also, fix a PCP system for
CircuitSAT with the following properties: The verifier runs in polynomial time and
uses O(log(n)) randomness and O(1) queries; the verifier has perfect completeness
and soundness error 1/3; and there is a polynomial-time algorithm W that maps any
circuit C and a satisfying assignment for C (i.e., y ∈ C−1(1)) to a PCP proof that the
verifier accepts. For every x ∈ {0, 1}n and every input Π ∈ {0, 1}poly(n) for Tx, let
W(Tx, Π) be the corresponding PCP proof that W produces.

Observe that there is a polynomial-time algorithm A that gets as input x ∈ {0, 1}n,
produces the computational history of M(x), which we denote by HM(x), produces the
circuit Tx, and finally prints the PCP witness W(Tx, HM(x)). Thus, by our hypothesis,
there exists an infinite set S ⊆N such that for every n ∈ S and every x ∈ {0, 1}n there
exists a circuit Cx : {0, 1}O(log(n)) → {0, 1} of size nk whose truth-table is W(Tx, HM(x)).

TheMA verifier V gets input x, and expects to get as proof a circuit C : {0, 1}O(log(n)) →
{0, 1} bits. The verifier V now simulates the PCP verifier, while resolving its queries
to the PCP using the circuit C. Note that for every n ∈ S and every x ∈ {0, 1}n the
following holds: If M(x) = 1 then there exists a proof (i.e., a circuit Cx) such that the
verifier accepts with probability one; on the other hand, if M(x) = 0, then Tx rejects
all of its inputs, which implies that for every proof, with probability at least 2/3 the
MA verifier rejects. �

Using our hypothesis that for every k ∈ N it holds that P 6⊆ i.o.MAT IME [nk],
and taking the counter-positive of Claim 4.3.18.1, we deduce that:
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Corollary 4.3.18.2. For every k ∈ N there exists a polynomial-time machine M such that
for every sufficiently large n ∈ N there exists an input x ∈ {0, 1}n such that M(x) is the
truth-table of a function with circuit complexity more than nk.

Now, fix ε > 0, let L ∈ prBPP , and let R be a probabilistic polynomial-time ma-
chine that decides L. Given input x ∈ {0, 1}n, we decide whether x ∈ L in polynomial-
time and with nε advice, as follows. Consider the circuit Rx that computes the decision
of R at x as a function of the random coins of R, and let c > 1 such that the size of
Rx is at most nc. We instantiate Corollary 4.3.18.2 with k = c′/ε, where c′ > c is a
sufficiently large constant. We expect as advice an input y of length nε to the ma-
chine M such that M(y) has circuit complexity nc′ . We then use M(y) to instantiate
Theorem 2.4.7 with seed length O(log(n)) and error 1/10 and for circuits of size nc

(such that the PRG “fools” the circuit Rx), and enumerate its seeds to approximate the
acceptance probability of Rx (and hence decide whether or not x ∈ L).

We now also show that L ∈ prDT IME [2n2ε
]. To do so, consider the foregoing

algorithm, and assume that it gets no advice. Instead, it enumerates over all 2nε
pos-

sible advice strings to obtain 2nε
truth-tables, each of size poly(n). We know that at

least one of these truth-tables has circuit complexity nc′ . Now the algorithm constructs
the truth-table of a function f over nε + O(log(n)) bits, which uses the first nε bits to
“choose” one of the 2nε

truth-tables, and uses the O(log(n)) bits as an index to an entry
in that truth-table (i.e., for i ∈ {0, 1}nε

and z ∈ O(log(n)) it holds that f (i, z) = gi(z),
where gi is the function that is obtained from the ith advice string). Note that, since
at least one of the 2nε

functions had circuit complexity nc′ , it follows that f also has
circuit complexity nc′ . Thus, this algorithm can use f to instantiate Theorem 2.4.7 with
seed length nε + O(log(n)) and for circuits of size nc to “fool” the circuit Rx.

4.3.6.2 Polynomials are sample-aided worst-case to average-case reducible

Recall that in Section 4.3.3 we defined the notion of sample-aided worst-case to δ-average-
case-reducible function (see Definitions 4.3.4 and 4.3.5), following [GR17]. In this ap-
pendix we explain why labeled samples can be helpful for uniform worst-case to
“rare-case” reductions, and show that low-degree polynomials are indeed sample-
aided worst-case to average-case-reducible.

Consider a function f whose truth-table is a codeword of a locally list-decodable
code, and also assume that f is randomly self-reducible (i.e., computing f in the worst-
case is reducible to computing f on, say, .99 of the inputs). Then, for every circuit C̃
that agrees with f on a tiny fraction of inputs (i.e., C̃ computes a “corrupt” version of
f ), we can efficiently produce a small list of circuits with oracle gates to C̃ such that one
of these circuits correctly computes f on all inputs. The main trouble is that we don’t
know which candidate circuit in this list to use. This is where the labeled samples
come in: We can iterate over the candidates in the list, use the labeled samples to test
each candidate circuit for agreement with f , and with high probability find a circuit
that agrees with f on (say) .99 of the inputs. Then, using the random self-reducibility
of f , we obtain a circuit that correctly computes f on each input, with high probability.
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The crucial property that we need from the code in order to make the foregoing
algorithmic approach work is that the local list-decoding algorithm will efficiently pro-
duce a relatively short list. Specifically, recall that by our definition, a sample-aided
worst-case to δ-average-case reduction needs to run in time poly(1/δ). Hence, we
need a list-decoding algorithm that runs in time poly(1/δ) (and indeed produces a
list of such size). A suitable local list-decoding algorithm indeed exists in the case that
the code is the Reed-Muller code, which leads us to the following result:

Proposition 4.3.19 (low-degree polynomials are uniformly worst-case to average-case
reducible with a self-oracle). Let q : N → N be a field-size function, let ` : N → N

such that n ≥ ` · log(q), and let d, ρ : N → N such that 10
√

d(n)/q(n) ≤ ρ(n) ≤
(q(n))−Ω(1) = o(1). Let f = { fn : {0, 1}n → {0, 1}}n∈N be a sequence of functions such
that fn computes a polynomial F

`(n)
n → Fn of degree d(n) where |Fn| = q(n). Then f is

sample-aided worst-case to ρ-average-case reducible.

Proof. We construct a probabilistic machine M that gets input 1n, and oracle access to
a function f̃n that agrees with fn on ρ(n) of the inputs, and also poly(1/ρ(n)) labeled
samples for fn, and with probability 1− ρ(n) outputs a circuit C : F` → F such that
for every x ∈ F` it holds that Prr[C f̃n(x, r) = fn(x)] ≥ 2/3.

The first step of the machine M is to invoke the local list-decoding algorithm
of [STV01, Thm 29], instantiated with degree parameter d = d(n) and agreement
parameter ρ = ρ(n). The algorithm runs in time poly(`(n), d, log(q(n)), 1/ρ) =
poly(n, 1/ρ) and outputs a list of O(1/ρ) probabilistic oracle circuits C1, ..., CO(1/ρ) :
{0, 1}n → {0, 1}n such that with probability at least 2/3 there exists i ∈ [O(1/ρ)] sat-

isfying Pr[C f̃n
i (x) = fn(x)] ≥ 2/3 for all x ∈ {0, 1}n. We call any circuit that satisfies

the latter condition good. By invoking the algorithm of [STV01] for poly(1/ρ) times,
we obtain a list of t = poly(1/ρ) circuits C1, ..., Ct such that with probability at least
1− poly(ρ) there exists i ∈ [t] such that Ci is good.

The second step of the machine is to transform the probabilistic circuits into deter-
ministic circuits such that, with high probability, the deterministic circuit correspond-
ing to the “good” circuit Ci will correctly compute fn on .99 of the inputs (when given
oracle access to f̃n). Specifically, by implementing naive error-reduction in all circuits,

we can assume that for every x ∈ F` it holds that Prr[C
f̃n
i (x, r) = fn(x)] ≥ .995. Now

the machine M creates O(log(1/ρ)) copies of each circuit in the list, and for each copy
M “hard-wires” a randomly-chosen fixed value for the circuit’s randomness. The re-
sult is a list of t′ = poly(1/ρ) deterministic circuits D1, ..., Dt′ such that with probability

1− poly(ρ) there exists a circuit Di satisfying Prx[D
f̃n
i (x) = fn(x)] ≥ .99.

The third step of the machine M is to “weed” the list in order to find a single circuit
Di that (when given access to f̃n) correctly computes f on .95 of the inputs. To do so

M iterates over the list, and for each circuit Dj estimates the agreement of D f̃n
j with fn

with error .01 and confidence 1− poly(ρ), using the random samples.
The final step of the machine M is to use the standard random self-reducibility

of the Reed-Muller code to transform the circuit Di into a probabilistic circuit that
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correctly computes f at each input with probability at least 2/3. Specifically, the
probabilistic circuit implements the standard random self-reducibility algorithm for
the (q, `, d) Reed-Muller code (see, e.g., [AB09, Thm 19.19]), while resolving its oracle
queries using the circuit Di. The standard algorithm runs in time poly(q, `, d), and
works whenever Di agrees with fn on at least 1− 1−d/q

6 < .95 + d/q of the inputs,
which holds in our case since d/q < δ = o(1).

4.4 Towards an equivalence between derandomization and cir-
cuit lower bounds

4.4.1 The main results

Recall that the Non-Deterministic Exponential-Time Hypothesis (NETH) conjectures that
co-3SAT (with n variables and O(n) clauses) cannot be solved by non-deterministic ma-
chines running in time 2ε·n for some ε > 0. The motivating observation for our results
in this section is that NETH has an unexpected consequence to the long-standing ques-
tion of whether worst-case derandomization of prBPP is equivalent to circuit lower bounds
against E . Specifically, recall that two-way implications between derandomization and
circuit lower bounds have been gradually developing since the early ‘90s (for surveys
see, e.g., [Oli13; Wil14a]), and that it is a long-standing question whether the foregoing
implications can be strengthened to show a complete equivalence between the two. One
well-known implication of such an equivalence would be that any (worst-case) deran-
domization of prBPP necessitates the construction of PRGs that “fool” non-uniform
circuits.37 Then, being more concrete, the motivating observation for our results in
this section is that NETH implies an affirmative answer to the foregoing question (and
this is not difficult to show; see Section 4.4.2).

Our main contribution is in showing that, loosely speaking, even a very weak form
of NETH suffices to answer the question of equivalence in the affirmative, and that this
weak form of NETH is in some sense inherent (see details below). Towards presenting
this very weak form, let us define NT IME -uniform circuits:

Definition 4.4.1 (NT IME [T]-uniform circuits). For S, T : N → N, we say that a set
L ⊆ {0, 1}∗ can be decided by NT IME [T]-uniform circuits of size S if there exists a non-
deterministic machine M that gets input 1n, runs in time T(n), and satisfies the following:

37The question of equivalence is mostly “folklore”, but was mentioned several times in writing. It was
asked in [IKW02, Remark 33], who proved an analogous equivalence between non-deterministic deran-
domization with short advice and circuit lower bounds against non-deterministic classes (i.e., against
NT IME ; see also [CR20]). It was also mentioned as a hypothetical possibility in [TV07] (referred
to there as a “super-Karp-Lipton theorem”). Following the results of [MW18], the question was re-
cently raised again as a conjecture in [Tel19b] (see Conjecture 4.2.4). We note that in the context of
uniform “hardness-to-randomness”, equivalences between average-case derandomization, lower bounds
for uniform classes, and PRGs for uniform circuits have long been known (see [IW98; Gol11]), but these
equivalences do not involve circuit lower bounds or standard PRGs.
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1. For every n ∈N there exist non-deterministic choices such that M(1n) outputs a circuit
C : {0, 1}n → {0, 1} of size at most S(n) that decides Ln.

2. For every n ∈N and non-deterministic choices, M(1n) either outputs a circuit C : {0, 1}n →
{0, 1} that decides Ln, or outputs ⊥.

When we simply say that L can be decided by NT IME [T]-uniform circuits (without
specifying a size bound S), we consider the trivial size bound S(n) = T(n).

The hypotheses that will suffice to show an equivalence between derandomization
and circuit lower bounds are of the form “E does not have NT IME [T]-uniform cir-
cuits of size S(n)� T(n)”, for values of T and S that will be specified below. In words,
this hypothesis rules out a world in which every L ∈ E can be computed by small cir-
cuits that can be efficiently produced by a uniform (non-deterministic) machine. Indeed,
this hypothesis is weaker than the NETH-style hypothesis E 6⊆ NT IME [T], and even
than the hypothesis E 6⊆ (NT IME [T] ∩ SIZE [T]). We stress that our hypothesis
refers to lower bounds for uniform models of computation, for which strong lower
bounds (compared to those for non-uniform circuits) are already known. (For exam-
ple, NP is hard for NP-uniform circuits of size nk for every fixed k ∈N (see [SW13]),
whereas we do not even know if ENP is hard for non-uniform circuits of arbitrarily
large linear size.) The fact that such a weak hypothesis suffices to deduce that deran-
domization and circuit lower bounds are equivalent can be seen as appealing evidence
that the equivalence indeed holds.

Our first result is that if E cannot be decided by NT IME [2nδ
]-uniform circuits of

polynomial size (for some δ > 0), then derandomization of prBPP in sub-exponential
time is equivalent to lower bounds for polynomial-sized circuits against EXP .

Theorem 4.4.2 (NETH ⇒ circuit lower bounds are equivalent to derandomization;
“low-end” setting). Assume that there exists δ > 0 such that E cannot be decided by
NT IME [2nδ

]-uniform circuits of arbitrary polynomial size, even infinitely-often. Then,

prBPP ⊆ i.o.prSUBEXP ⇐⇒ EXP 6⊂ P/poly .

Theorem 4.4.2 also scales-up to “high-end” parameter settings, albeit not smoothly,
and using different proof techniques (see Section 4.4.4 for details). Nevertheless, an
analogous result holds for the extreme “high-end” setting: Under the stronger hy-
pothesis that E cannot be decided by NT IME [2Ω(n)]-uniform circuits, we show that
prBPP = prP is equivalent to lower bounds for exponential-sized circuits against E ;
that is:

Theorem 4.4.3 (NETH ⇒ circuit lower bounds are equivalent to derandomization;
“high-end” setting). Assume that there exists δ > 0 such that E cannot be decided by
NT IME [2δ·n]-uniform circuits, even infinitely-often. Then:

prBPP = prP ⇐⇒ ∃ε > 0 : DT IME [2n] 6⊂ i.o.SIZE [2ε·n] .
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Remarkably, as mentioned above, hypotheses such as the ones in Theorems 4.4.2
and 4.4.3 actually yield a stronger conclusion, and are also necessary for that stronger
conclusion. Specifically, the stronger conclusion is that even non-deterministic deran-
domization of prBPP (such as prBPP ⊆ prNSUBEXP) yields circuit lower bounds
against E , which in turn yield PRGs for non-uniform circuits.

Theorem 4.4.4 (NT IME -uniform circuits for E , non-deterministic derandomization,
and circuit lower bounds). Assume that there exists δ > 0 such that E cannot be decided by
NT IME [2nδ

]-uniform circuits of arbitrary polynomial size. Then,

prBPP ⊆ prNSUBEXP =⇒ EXP 6⊂ P/poly . (4.4.1)

In the other direction, if Eq. (4.4.1) holds, then E cannot be decided by NP-uniform circuits.

Note that in Theorem 4.4.4 there is a gap between the hypothesis that implies
Eq. (4.4.1) and the conclusion from Eq. (4.4.1). Specifically, the hypothesis refers to
NT IME [2nδ

]-uniform circuits of polynomial size, whereas the conclusion refers to
NP-uniform circuits. By optimizing the parameters, this gap between sub-exponential
and polynomial can be considerably narrowed (see Theorem 4.4.17).

4.4.2 Proof overviews

As mentioned in Section 4.4.1, the motivating observation is that NETH implies an
equivalence between derandomization and circuit lower bounds; let us start by prov-
ing this statement:

Proposition 4.4.5 (“warm-up”: a weaker version of Theorem 4.4.2). Assume that EXP 6⊂
i.o.NSUBEXP . Then, prBPP ⊆ prSUBEXP ⇐⇒ EXP 6⊂ i.o.P/poly.

Proof. The “⇐=” direction follows (without any assumption) from [BFN+93]. For the
“=⇒” direction, assume that prBPP ⊆ prSUBEXP , and assume towards a contra-
diction that EXP ⊂ i.o.P/poly. The latter hypothesis implies (using the Karp-Lipton
style result of [BFN+93]) that EXP ⊂ i.o.MA. Combining this with the former hy-
pothesis, we deduce that EXP ⊂ i.o.NSUBEXP , a contradiction.

Our proofs of Theorems 4.4.2 and 4.4.3 will follow the same logical structure as
the proof of Proposition 4.4.5, and our goal will be to relax the hypothesis EXP 6⊂
i.o.NSUBEXP . We will do so by strengthening the Karp-Lipton style result that
uses [BFN+93] and asserts that a joint “collapse” hypothesis and derandomization hy-
pothesis implies that EXP can be decided in small non-deterministic time. We will
show two different strengthenings, each referring to a different parameter setting: The
first strengthening refers to a “low-end” setting, and asserts that if EXP ⊂ P/poly
and prBPP ⊆ prSUBEXP then EXP has NSUBEXP-uniform circuits of polyno-
mial size (see Item (1) of Proposition 4.4.12); and the second strengthening refers to
a “high-end” setting, and asserts that if E ⊂ i.o.SIZE [2ε·n] and prBPP = prP then
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E has NT IME [2O(ε)·n]-uniform circuits (see Proposition 4.4.13). The proofs of these
two different strengthenings rely on different ideas; for high-level descriptions of the
proofs see Sections 4.4.4.2 and 4.4.4.3, respectively.

For context, recall that (as noted by Fortnow, Santhanam, and Williams [FSW09]),
the proof of [BFN+93] already supports the stronger result that EXP ⊂ P/poly ⇐⇒
EXP = OMA;38 and by adding a derandomization hypothesis (e.g., prBPP = prP)
we can deduce that EXP = ONP . Nevertheless, our results above are stronger,
because NP-uniform circuits are an even weaker model than ONP : This is since in
the latter model the proof is verified on an input-by-input basis, whereas in the former
model we only verify once that the proof is convincing for all inputs. We also stress
that some lower bounds for this weaker model (i.e., for NT IME -uniform circuits of
small size) are already known: Santhanam and Williams [SW13] proved that for every
k ∈N there exists a function in NP that cannot be computed by NP-uniform circuits
of size nk.

We also note that our proofs actually show that (conditioned on lower bounds
for NT IME -uniform circuits against E ) even a relaxed derandomization hypothesis is
already equivalent to the corresponding circuit lower bounds. For example, in the
“high-end” setting, to deduce that E 6⊂ SIZE [2Ω(n)] it suffices to assume that CAPP
on v-bit circuits of size n = 2Ω(v) can be solved in time 2ε·v, for a sufficiently small
ε > 0.39 For more details, see Section 4.4.5.

Proof of Theorem 4.4.4. The first part of Theorem 4.4.4 asserts that if E does not
have NT IME [2nδ

]-uniform circuits of polynomial size, then the conditional state-
ment “prBPP ⊆ prNSUBEXP =⇒ EXP 6⊂ P/poly” holds. The proof of this state-
ment again follows the logical structure from the proof of Proposition 4.4.5, and relies
on a further strengthening of our “low-end” Karp-Lipton style result such that the
result only uses the hypothesis that prBPP ⊆ prNSUBEXP rather than prBPP ⊆
prSUBEXP .40

The second part of Theorem 4.4.4 asserts that if the conditional statement “prBPP ⊆
prNSUBEXP =⇒ EXP 6⊂ P/poly” holds, then E does not have NP-uniform
circuits. We will in fact prove the stronger conclusion that E 6⊆ (NP ∩ P/poly).
(Recall that the class of problems decidable by NP-uniform circuits is a subclass of
ONP ⊆ NP ∩P/poly.) The proof itself is very simple: Assume towards a contradic-
tion that E ⊆ (NP ∩ P/poly); since BPP ⊆ EXP , it follows that prBPP ⊆ prNP

38The notation OMA stands for “oblivious”MA. It denotes the class of problems that can be decided
by an MA verifier such that for every input length there is a single “good” proof that convinces the
verifier on all inputs in the set (rather than a separate proof for each input); see, e.g., [FSW09; GM15].

39Note that the problem of solving CAPP for v-bit circuits of size n = 2Ω(v) can be trivially solved in
time 2O(v) = poly(n), and thus unconditionally lies in prP ∩ prBPT IME [Õ(n)]. The derandomization
problem described above simply calls for a faster deterministic algorithm for this problem.

40Intuitively, in the “low-end” Karp-Lipton result we only need to derandomize probabilistic decisions
made by the non-deterministic machine that constructs the circuit, whereas the circuit itself is determin-
istic; thus, a non-deterministic derandomization hypothesis suffices for this result. See Section 4.4.4.2 for
details.
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(see the proof of Theorem 4.4.16); and by the hypothesized conditional statement,
we deduce that EXP 6⊂ P/poly, a contradiction. Indeed, the parameter choices
in the foregoing proof are far from tight, and (as mentioned after the statement of
Theorem 4.4.4) the quantitative gap between the two parts of Theorem 4.4.4 can be
considerably narrowed (see Theorem 4.4.17).

4.4.3 An E -complete problem with useful properties

Our proofs will rely on the well-known existence of an E -complete problem Lnice with
the following useful properties: The problem Lnice is randomly self-reducible and that
has an instance checker with linear-length queries such that both the instance checker
and the random self-reducibility algorithm use a linear number of random bits. Let
us properly define these notions:

Definition 4.4.6 (instance checkers). A probabilistic polynomial-time oracle machine IC is
an instance checker for a set L ⊆ {0, 1}∗ if for every x ∈ {0, 1}∗ the following holds:

1. (Completeness.) ICL(x) = L(x), with probability one.

2. (Soundness.) For every L′ ⊆ {0, 1}∗ we have that Pr[ICL′(x) /∈ {L(x),⊥}] ≤ 1/6. 41

For ` : N → N, if for every x ∈ {0, 1}∗, all the oracle queries of IC on input x are of length
`(|x|), then we say that IC has queries of length `. We will also measure the maximal number
of queries that IC makes on inputs of any given length.

Definition 4.4.7 (random self-reducible function). We say that f : {0, 1}∗ → {0, 1}∗
is randomly self-reducible if there exists a probabilistic oracle machine Dec that gets input
x ∈ {0, 1}n and access to an oracle g : {0, 1}n → {0, 1}∗, runs in time poly(n), makes oracle
queries such that each query is uniformly distributed in {0, 1}n, and if for every oracle query
q ∈ {0, 1}n it holds that g(q) = f (q), then Decg(x) = f (x).

In high-level, the problem Lnice is the low-degree extension of an (arbitrary) E -
complete problem. The intuition is that since Lnice is a low-degree extension it is
randomly self-reducible, and since Lnice is E -complete we can construct an instance
checker for it. (Specifically, the instance checker for Lnice simulates a PCP verifier
for Lnice, and the problem of answering the verifier’s queries reduces to Lnice, to the
verifier’s queries can be answered using an oracle to Lnice.) Details follow.

Proposition 4.4.8 (an E -complete problem that is random self-reducible and has a
good instance checker). There exists Lnice ∈ DT IME [Õ(2n)] such that:

1. Any L ∈ DT IME [2n] reduces to Lnice in polynomial time with a constant multiplica-
tive blow-up in the input length; specifically, for every n there exists n′ = O(n) such
that any n-bit input for L is mapped to an n′-bit input for Lnice.

41The standard definition of instance checkers fixes the error probability to 1/3, but we can reduce the
error to 1/6 using standard error-reduction.
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2. The problem Lnice is randomly self-reducible by an algorithm Dec that on inputs of
length n uses n + polylog(n) random bits.

3. There is an instance checker IC for Lnice that on inputs of length n uses n +O(log(n))
random bits and makes O(1) queries of length `(n) = O(n).

Proof. For a sufficiently small δ ≤ η/7, let LE = {(〈M〉 , x) : M accepts x in 2|x| steps}.
Let fLE : {0, 1}∗ → {0, 1}∗ be the low-degree extension of LE such that inputs of length
n0 for LE are mapped to inputs in Fm, where m = δ · n0

blog(n0)c and |F| = 2(1/δ+1)·dlog(n0)e,

for a polynomial of individual degree d =
⌈
(n0)1/δ

⌉
. Note that (d + 1)m ≥ 2n0

(i.e., there is a unique extension of LE with these parameters), and that |F| > m · d
(i.e., the polynomial is indeed of low degree). Finally, let Lnice be the set of pairs
(z, i) ∈ {0, 1}m·log(|F|) × {0, 1}dloglog(|F|)e, such that fLE (z)i = 1 (i.e., the ith bit in the
binary representation of fLE (z) ∈ F equals one).

Note that LE is reducible in polynomial time to fLE , which is in turn reducible in
polynomial time to Lnice; and that inputs of length n0 ∈ N for LE are mapped to
inputs of length n = m · log(|F|) + dloglog(|F|)e+ 1 < (1 + 2δ) · n0 for Lnice. Thus
any L ∈ DT IME [2n] is reducible in polynomial time to Lnice with a multiplicative
overhead of at most 1+ 3δ in the input length. Also note that Lnice ∈ DT IME [Õ(2n)],
since the polynomial fLE can be evaluated in such time.

Let us now prove that Lnice is randomly self-reducible with at most (1 + δ) · n
random bits. Let Dec0 be the standard random self-reducibility algorithm for fLE ,
which uses less than n random bits.42 Given input (z, i) ∈ {0, 1}m·dlog(|F|)e+dloglog(|F|)e

and oracle access to some L′ ⊆ {0, 1}n, we simulate Dec0 at input z and with oracle
access to a function induced by L′ (as detailed below), and then output the ith bit of
its answer. Specifically, we initially choose a random permutation π of {0, 1}loglog(|F|),
using polylog(n) < δ · n random coins, and whenever Dec0 makes a query q1 ∈ Fm,
we query L′ at all inputs {(q1, q2)}q2∈{0,1}dloglog(|F|)e , ordered according to π, and answer
Dec0 accordingly. Note that each of our queries is uniformly distributed: This is since
for every query (q1, q2) we have that q1 is uniform (because Dec0’s queries are uniform)
and that q2 is uniform and independent from q1 (because we chose a random π). Also
note that if L′(q1, q2) = Lnice(q1, q2) for every query (q1, q2), then each query q1 of Dec0
is answered by fLE (q1), in which case we output fLE (z)i = Lnice(z, i).

Finally, to see that Lnice has an instance checker that uses n + O(log(n)) random
bits and issues O(1) queries of length (2 + 7δ) · n, fix a PCP system for DT IME [T],
where T(n) = Õ(2n), with the following specifications: The verifier V runs in poly-
nomial time, uses n + O(log(n)) bits of randomness, issues O(1) queries, and has
perfect completeness and soundness error 1/6; and there is an algorithm P that gets
an input x ∈ {0, 1}n and outputs a proof for x in this PCP system (or ⊥, if x /∈ L) in
deterministic time Õ(2n) (for a suitable PCP system, see [BSCG+13, Thm 1]). We will
instantiate this PCP system for the set Lnice

1 = {(z, i, b) : Lnice(z, i) = b}, which is in
DT IME [Õ(2n)].

42Recall that Dec0 chooses a random vector ~u ∈ Fm, which requires m · log(|F|) < n random bits, and
queries its oracle on a set of points on the line corresponding to ~u; see, e.g., [Gol08, Sec. 7.2.1.1].
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The instance checker IC for Lnice gets input (z, i) ∈ {0, 1}n and simulates the
verifier V for Lnice

1 on inputs (z, i, 0) and (z, i, 1). Whenever V(z, i, b) queries its proof
at location j ∈ [Õ(2n)], the instance checker IC uses its oracle to try and decide the
problem Π at input (z, i, b, j), where Π =

{
((z, i, b), j) : P(z, i, b)j = 1

}
. Specifically,

since Π ∈ DT IME [Õ(2n/2)] ⊆ DT IME [Õ(2n)] it holds that Π reduces to Lnice in
polynomial time and with multiplicative blow-up of 1 + 3δ in the input length; hence,
IC reduces ((z, i, b), j) to an input for Lnice of length `(n) ≤ (1 + 3δ) · (2n + 1) <
(2 + 7δ) · n and uses its oracle to try and obtain Π((z, i, b), j). For σ ∈ {0, 1}, the
instance checker IC outputs σ if and only if V(z, i, σ) = 1 and V(z, i, 1− σ) = 0, and
otherwise outputs ⊥. Note that ICLnice

(z, i) = Lnice(z, i), with probability one; and
that IC errs when given oracle L′ 6= Lnice (i.e., ICL′(z, i) = 1− Lnice(z, i)) only when
V accepts (z, i, 1− Lnice(z, i)) /∈ Lnice

1 , which happens with probability at most 1/6 for
any L′.

4.4.4 Strengthened Karp-Lipton style results

Recall that Babai et al. [BFN+93] proved that if EXP ⊂ P/poly then EXP = MA;
if we also use an additional hypothesis that prBPP = prP , then we can deduce the
stronger conclusion EXP = NP . In the current section we will prove two strength-
enings of this result, which further strengthen the foregoing conclusion: Instead of
deducing that EXP = NP , we will deduce that EXP can be decided byNT IME [T]-
uniform circuits of size S, for small values of T, S.

Since we will be repeating some technical non-degeneracy conditions on functions
throughout the section, let us define these conditions concisely at this point:

Definition 4.4.9 (size functions and time functions). We say that S : N → N is a size

function if S is time-computable, increasing, satisfies S(n) = o(2n/n), and for every n ∈ N

satisfies S(n) > n and S(n + 1) ≤ 2S(n). We say that T : N→ N is a time function if T is
time-computable, increasing, and for every n ∈N satisfies T(n) > n.

We first prove, in Section 4.4.4.1 a lemma that will be used in one of our proofs;
we present this lemma and the underlying question in a separate section since they
might be of independent interest. The two strengthened Karp-Lipton style results will
be subsequently proved in Sections 4.4.4.2 and 4.4.4.3, respectively.

4.4.4.1 Solving (1, 1/3)-CAPP using many untrusted CAPP algorithms

Recall that in the problem (α, β)-CAPP, we get as input a description of a circuit, and
our goal is to distinguish between circuits with acceptance probability at least α >
0 and circuits with acceptance probability at most β > 0; we also denote CAPP =
(2/3, 1/3)-CAPP (see Definition 2.4.1). Assume that we want to solve CAPP on an input
circuit C of description length n, and that we are guaranteed that an algorithm A solves
CAPP on some input length (unknown to us) in the interval [n, S(n)], for some function
S. This problem arises, for example, if we assume that prBPP ⊂ i.o.prNP (which
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implies that CAPP ∈ i.o.prNP), and want to derandomizeMA infinitely-often. (This
is because when the MA verifier gets an input of length m, the derandomization of
the verifier corresponds to a CAPP problem on some input length n = mk, but we are
not guaranteed that the CAPP algorithm works on input length n.)43 How can we solve
this problem?

If we invoke the algorithm A on each input length in the interval [n, S(n)], while
feeding it C as input each time (i.e., C is padded up to the appropriate length), then
we obtain a variety of answers, and it is not clear a-priori how we can distinguish the
correct answer from possibly-misleading ones. In this section we show a solution for
this problem in the setting where we only need to solve CAPP with one-sided error, and
when A solves a problem in prBPP that slightly generalizes CAPP. Intuitively, since
we only need to solve (1, 1/3)-CAPP, it will be possible to prove to us that C is not a YES
instance (i.e., that C does not accept all of its inputs); and since A solves a problem
that slightly generalizes CAPP, we will be able to modify it to an algorithm that is able
to provide such a proof when C is not a YES instance. Details follow.

We first define the aforementioned variation of (α, β)-CAPP, denoted pCAPP (for
“parametrized CAPP”), in which α and β are specified as part of the input.

Definition 4.4.10 (parametrized CAPP). In the promise problem pCAPP[S, `], the input is
a triplet (C, α, β), where C is a Boolean circuit over v variables and of size S(v) and 1 >
α > β > 0 are rational numbers specified with `(v) bits. The YES instances are such that
Prx[C(x) = 1] ≥ α and the NO instances are such that Prx[C(x) = 1] ≤ β.

Note that if `(v) = O(log(S(v))), then pCAPP[S, `] ∈ prBPP . (This is since we can
uniformly sample ε−2 inputs for C, where ε = β − α ≥ 1/poly(S(v)), and estimate
Prx[C(x) = 1] with accuracy (α − β)/2, with high probability). We now show that
solving (1, 1/3)-CAPP for circuits of size S(n) infinitely-often reduces to solving pCAPP
infinitely-often (i.e., on an arbitrary infinite set of input lengths).

Lemma 4.4.11 (solving CAPP with one-sided error on a fixed input length reduces
to solving pCAPP on an unknown “close” input length). For any two size functions
S(n), S(v) : N→N and time function T : N→N, assume that pCAPP[S(v), `] ∈ i.o.DT IME [T],
where `(v) = 4 · log(v). Then, there exists an algorithm McoRP that for infinitely-many
values of n ∈ N, when given as input (1n, C) such that C a v-bit circuit of size at most
max

{
S(n)(n), S(v)(v)

}
, the algorithm McoRP solves (1, 1/3)-CAPP on C in time poly(n) ·

v · Õ(S(n)) · T(Õ(S(n)(n))).

Proof. Let ql(S) = Õ(S) such that circuits of size S can be described by strings of
length ql(S). For any n ∈ N, we consider inputs of length S(n)(n) that describe v-bit
circuits of size S(v)(v). Let In = [2ql(S(n)(n)), 2ql(S(n)(n + 1)) − 1], and note that
any sufficiently large integer belongs to a unique interval In. Let MpCAPP be a time-T
algorithm that solves pCAPP[S(v), `] infinitely-often. We will use MpCAPP to construct
the following search algorithm:

43Also, in this setting the function S represents “how far ahead” (beyond n) we are willing to look in
our search for the “good” input length.
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Claim 4.4.11.1 (search-to-decision reduction that preserves the input length). There
exists an algorithm F that gets as input (1n, C, m), where C is a v-bit circuit of size at most
max

{
S(n)(n), S(v)(v)

}
and m ∈ In, runs in time poly(n) · v ·T(m), and if MpCAPP correctly

solves pCAPP[S(v), `] on input length m and Prx[C(x) = 1] ≤ 1/3 then F(1n, C, m) ∈
C−1(0).

Proof. In the following we will construct a set of m-bit inputs and run MpCAPP on each
of those inputs. Since all of our inputs will be of the form (C, α, β) where α and β can
be specified with 4 · log(v) bits, each input will be of size less than 2ql(SO(n)(n)) ≤ m;
we will therefore pad each input to be of length exactly m.

First we run MpCAPP on input (C, 1/2, 1/3), and if MpCAPP accepts then we output
0v. Otherwise, when MpCAPP rejected, we have that Prx[C(x) = 1] ≤ 1/2; in this case
our goal will be to construct a string in C−1(0), bit-by-bit. Let ¬C be the circuit that
computes C and negates the output, let σ0 be the empty string, and for i ∈ [v], in
iteration i we act as follows:

1. We start with a prefix σi−1 ∈ {0, 1}i−1, and with the guarantee that the circuit
¬Cσi−1 , which is obtained by fixing the first i − 1 input variables of ¬C to σi−1,
satisfies Prx[¬Cσi−1(x) = 1] ≥ 1/2− (i− 1) · v−2.

2. We run MpCAPP at input (¬Cσi−10, 1/2− (i − 1) · v−2, 1/2− i · v−2). If MpCAPP

accepts then we define σi = σi−10, and otherwise we define σi = σi−11.

3. To see that the guarantee on ¬Cσi is preserved for iteration i + 1, note that if
MpCAPP accepted then Prx[¬Cσi(x) = 1] > 1/2− i · v−2; and otherwise we have
that Prx[¬Cσi−11(x) = 0] ≤ 1/2− (i − 1) · v−2, which implies (by the guarantee
on ¬Cσi−1 from the beginning of the iteration) that Prx[¬Cσi(x) = 1] ≥ 1/2− (i−
1) · v−2.

After the v iterations we have that Prx[¬Cσi(x) = 1] > 0, and therefore σi ∈ (¬C−1)(1) =
C−1(0) and we output σi. The running time of each iteration is poly(n) · v · T(m). �

Our algorithm McoRP runs F at inputs {(1n, C, k)}k∈In
, and evaluates C at the out-

puts of F; if for some k ∈ In it holds that C(F(C, k)) = 0 then McoRP rejects, and
otherwise McoRP accepts. The running time of McoRP is poly(n) · v · T(2ql(S(n)(n +
1))) · |In| = poly(n) · Õ(S(n)(n)) · v · T(Õ(S(n)(n))).

Now, fix n ∈N such that for some m ∈ In it holds that MpCAPP decides pCAPP[S(v), `]
on inputs of length m. To see that McoRP correctly solves (1, 1/3)-CAPP on an input
circuit C over v bits of size at most max

{
S(n)(n), S(v)(v)

}
, note that if C accepts all its

inputs then McoRP always accepts C; and if C accepts at most 1/3 of its inputs then
for the “good” m ∈ In it holds that F(1n, C, m) ∈ C−1(0), in which case McoRP rejects.
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4.4.4.2 A strengthened Karp-Lipton style result for the “low-end” setting

To prove our first strengthening of [BFN+93], let L ∈ EXP , and note that by our
assumption L ∈ P/poly. Consider an MA verifier V that gets input 1n, guesses a
circuit CL : {0, 1}n → {0, 1}, and tries to decide if CL correctly computes Ln = L ∩
{0, 1}n. The key observation is that since this decision problem (of deciding whether
or not a given n-bit circuit computes Ln) is in EXP , we can apply the original Karp-
Lipton style result of [BFN+93] to it. The latter result implies that there exists an
MA verifier M that decides whether or not CL computes Ln correctly. Our verifier V
guesses CL and a witness for M, simulates M, and if M confirms that CL computes Ln
then V outputs CL.

We will derandomize the foregoing MA verifier in one of two ways. The first
relies on a hypothesis of the form prBPP ⊆ prNSUBEXP , which immediately
implies that MA ⊆ NSUBEXP . The second relies on a hypothesis of the form
prBPP ⊂ i.o.prSUBEXP ; in this case we derandomize the MA verifier infinitely-
often, relying on the fact that the MA verifier can be assumed to have perfect com-
pleteness [FGM+89] and on Lemma 4.4.11 (which was presented in Section 4.4.4.1).
Note that in both cases, the running time of the resulting non-deterministic machine
is subexponential, but the size of the output circuit CL is nevertheless still polynomial.

The following statement and proof generalize the above, using parametrized “col-
lapse” and derandomization hypotheses. Specifically, if we assume that E ⊂ SIZE [S]
and that prBPP can be derandomized in time T, we deduce that E has NT IME [T′]
uniform circuits of size S(n), where T′(n) ≈ T(S(S(n))).

Proposition 4.4.12 (a strengthened “low-end” Karp-Lipton style result). There exist two
constants k, k′ > 1 such that for any size function S : N → N and time function T : N →
N satisfying T(n) ≥ nk′ the following holds. Let T′(n) = T (S̄(n)))O(1) where S̄(n) =
Õ(S(Õ(S(n)))).

1. If DT IME [2n] ⊂ SIZE [S] and pCAPP[vk · S(v), 4 · log(v)] ∈ i.o.prDT IME [T],
then any L ∈ DT IME [2n] can be decided on infinitely-many input lengths byNT IME [T′]-
uniform circuits of size S(n).

2. If DT IME [2n] ⊂ SIZE [S] and (1, 1/3)-CAPP[vk · S(v)] ∈ prNT IME [T], then
any L ∈ DT IME [2n] can be decided (on all input lengths) by NT IME [T′]-uniform
circuits of size S(n).

Proof. We first prove Item (1). Fix L ∈ DT IME [2n], and recall that by our hypothesis
L ∈ SIZE [S]. We define a corresponding problem L-Ckts as the set of size-S circuits
that decide L; that is, denoting by ql(S) = Õ(S) the description length of size-S
circuits, on inputs of length N = n + ql(S(n)) we define L-Ckts by

L-CktsN = {(1n, C) : |C| = ql(S(n)) ∧ ∀x ∈ {0, 1}n, C(x) = L(x)} ,

and on inputs of length N that cannot be parsed as N = n+ ql(S(n)) we define L-Ckts
trivially. Note that L-Ckts ∈ DT IME [2N ], since we can enumerate the 2n < 2o(N)

inputs, and for each x ∈ {0, 1}n compute C(x) and L(x) in time 2n +poly(|C|) < 2o(N).
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Given input 1n, we first guess a circuit C(L)
n of size S(n), in the hope that C(L)

n de-
cides Ln; note that a suitable circuit exists by our hypothesis. Now we consider the
problem of deciding if x = (1n, C(L)

n ) ∈ L-Ckts, where x ∈ {0, 1}N=n+ql(S(n)). Since
L-Ckts ∈ DT IME [2N ], we can reduce L-Ckts to the problem Lnice from Proposi-
tion 4.4.8; that is, we compute in time poly(N) an input x′ ∈ {0, 1}N′=O(N) for Lnice

such that x ∈ L-Ckts ⇐⇒ x′ ∈ Lnice.
Now, let N̄ = `(N′) = O(N), where ` is the query length of the instance checker IC

for Lnice. We guess another circuit, which is of size S(2N̄) and denoted CLnice

N̄ : {0, 1}N̄ →
{0, 1}, in the hope that CLnice

N̄ decides Lnice
N̄ ; again, a suitable circuit exists by our hy-

pothesis.44 We then construct a circuit IC
CLnice

N̄
x′ : {0, 1}O(N̄) → {0, 1} that computes the

decision of IC at input x′ and with oracle CLnice

N̄ , as a function of the O(N̄) random
coins of IC, and maps the outputs {0,⊥} of IC to 0, and the output 1 of IC to 1.

Note that the circuit IC
CLnice

N̄
x′ is over v = O(N̄) input bits and of size S(n)(n) def

==

poly(N) · S(2N̄). Also, measuring the size of IC
CLnice

N̄
x′ as a function of its number of

input bits (i.e., of v), the size is upper-bounded by S(v)(v) def
== vk · S(v), where k ∈N is

a sufficiently large universal constant (and we assume without loss of generality that
v ≥ 2N̄). By the properties of the instance checker, and using the fact that a suitable
circuit CLnice

N̄ for Lnice
N̄ exists, we have that:

1. If C(L)
n decides L then x′ ∈ Lnice, and hence for some guess of CLnice

N̄ the circuit

IC
CLnice

N̄
x′ will have acceptance probability one.

2. If C(L)
n does not decide L then x′ /∈ Lnice, and hence for all guesses of CLnice

N̄ the

circuit IC
CLnice

N̄
x′ accepts at most 1/6 of its inputs.

Using our hypothesis about pCAPP and Lemma 4.4.11, there exists an algorithm

McoRP that for infinitely-many values of n ∈ N gets input (1n, IC
CLnice

N̄
x′ ) and solves

(1, 1/3)-CAPP on IC
CLnice

N̄
x′ in time poly(n) · v · Õ(S(n)) · T

(
Õ(S(n)(n)

)
. We run this

algorithm on (1n, IC
CLnice

N̄
x′ ), and if it accepts (i.e., asserts that the acceptance probability

of IC
CLnice

N̄
x′ is larger than 1/3) then we output the circuit C(L)

n ; otherwise we output ⊥.
Note that the size of the circuit that we output is S(n), and that our running time

44To see this more formally, let Lpad =
{
(x, 1O(log(|x))) : x ∈ Lnice

}
. Since Lnice ∈ DT IME [Õ(2n)],

we have that Lpad ∈ DT IME [2n]. Using our hypothesis, Lpad on inputs of length N′ = N̄ + O(log(N̄))
has circuits of size S(N′), and these circuits can be converted (by hardwiring the last N′ − N̄ input bits)
to N̄-bit circuits for Lnice of size S(N′) < S(2N̄).
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is at most

poly(n) · v · Õ(S(n)) · T
(

Õ(S(n)(n)
)
= poly(n) · Õ(S(n))2 · T

(
Õ(S(Õ(S(n))))

)
≤ T

(
Õ(S(Õ(S(n))))

)O(1) ,

where the last inequality relied on the fact that T(n) ≥ nk′ for a sufficiently large
constant k′.

Let us now explain how to prove Item (2). We guess C(L)
n and CLnice

N̄ and con-

struct IC
CLnice

N̄
x′ as above. However, instead of using Lemma 4.4.11, we run the hypoth-

esized non-deterministic (1, 1/3)-CAPP[vk · S(v)] machine, denoted McoRP , on input

IC
CLnice

N̄
x′ (the advantage in the current setting being that, in contrast to the proof of

Item (1), the machine McoRP is guaranteed to work on all input lengths). When C(L)
n

decides Ln there are some non-deterministic choices that will cause McoRP to accept,
whereas when C(L)

n does not decide Ln, all non-deterministic choices will cause McoRP

to reject. Our running time is T(Õ(S(n)(n))), which can be bounded as above by

T
(
Õ(S(Õ(S(n))))

)O(1).

Note that in the proof of Proposition 4.4.12 we did not use the fact that Lnice is
randomly self-reducible, but only the facts that Lnice is complete for E under linear-
time reductions (such that all n-bit inputs are mapped to n′-bit inputs, for n′ = O(n))
and that it has an instance checker with query length `(n) = O(n).

4.4.4.3 A strengthened Karp-Lipton style result for the “high-end” setting

The result presented next asserts that if E ∈ SIZE [S] and prBPP can be derandom-
ized in time T, then E has NT IME [T′] uniform circuits (with a trivial size bound
of T′(n)), where T′ ≈ T(S(n)). The main difference between this result and the re-
sult presented in Section 4.4.4.3, other than the differences in parameters, is that for
this result we will need to assume that prBPP can be derandomized deterministically,
rather than only non-deterministically.

Let us briefly describe the proof idea. We construct a circuit for an E -complete
problem Lnice that has an instance checker and that is randomly self-reducible (see
Section 4.4.3 for definitions and details). We guess a circuit CLnice

for Lnice, which
exists by our “collapse” hypothesis, and randomly check whether or not this circuit
“convinces” the instance checker on almost all inputs; if it does, we instantiate the
instance checker with CLnice

as an oracle, to obtain a “corrupt” version of Lnice, denoted
L̃. We then construct a probabilistic circuit C′ that decides Lnice, with high probability,
using the random self-reducibility of Lnice and oracle access to L̃.

Now, under the hypothesis prBPP ⊆ prDT IME [T], we can derandomize the
two probabilistic steps in the foregoing construction. Specifically, we derandomize
the probabilistic verification that the circuit CLnice

“convinces” the instance checker
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on almost all inputs, and we also derandomize the probabilistic circuit itself (i.e., we
actually output a deterministic circuit that constructs the probabilistic circuit C′ and
applies a deterministic CAPP algorithm to C′). Details follow.

Proposition 4.4.13 (a strengthened “high-end” Karp-Lipton style result). There exist
two constants k, k′ > 1 such that for any size function S : N→N and time function T : N→
N the following holds. Assume that DT IME [2n] ⊂ i.o.SIZE [S] and that CAPP[vk′ ·
S(v)] ∈ prDT IME [T]. Then any L ∈ DT IME [2n] can be decided on infinitely-many
input lengths by NT IME [T′]-uniform circuits, where T′(n) = Õ

(
T
(
nk · S(k · n)

))
.

Note that the actual hypothesis of Proposition 4.4.13 is weaker than the hypothesis
prBPP ∈ prDT IME [T], since we only require an algorithm for CAPP for large circuits
(i.e., for v-bit circuits of size poly(v) · S(v)).

Proof of Proposition 4.4.13. Fixing any L ∈ DT IME [2n], we prove that there exist
NT IME [T′]-uniform circuits that solve L infinitely-often. In what follows, it will
be important to distinguish between the non-deterministic machine M, and the deter-
ministic circuit C : {0, 1}n → {0, 1} that M constructs. The machine M gets input 1n

and constructs C as follows.

Step 1: Reduce L to Lnice. As its first step, the circuit C computes the linear-time
reduction from L to the problem Lnice from Proposition 4.4.8; that is, C maps its input
x ∈ {0, 1}n into x′ ∈ {0, 1}n′ , where n′ = O(n), such that x ∈ L if and only if x′ ∈ Lnice.

Step 2: Guess-and-verify a circuit for Lnice
n̄ . Let IC be the instance checker for Lnice

and let n̄ = `(n′) be the length of queries that IC makes to its oracle on inputs of
length n′.

Claim 4.4.13.1. For infinitely-many input lengths n there exists a circuit CLnice

n̄ : {0, 1}n̄ →
{0, 1} of size S(4n̄) that decides Lnice

n̄ .

Proof. For every n ∈ N let In = [2α · n, 2α · (n + 1)− 1], where α ∈ N is the constant
such that n̄ = `(n′) = α · n. Note that every sufficiently large integer m ∈ N belongs
to a unique interval In (i.e., n = bm/2αc). We define L′ to be the language that on
input length m ∈ In considers only its first n̄ = α · n input bits and decides Lnice

n̄ on
those input bits. Since L′ on input length m can be decided in time Õ(2n) < 2m, by
our hypothesis there exist an infinite setM ⊆ N of input lengths such that for every
m ∈ M there exist size-S(m) circuits for L′m. For every such m ∈ In, we hard-wire the
last m− n̄ input bits (to be all-zeroes), and obtain a circuit of size S(m) < S(4α · n) =
S(4n̄) that decides Lnice

n̄ . �

Thus, if n is one of the infinitely-many input lengths mentioned in Claim 4.4.13.1,
then there exists CLnice

n̄ : {0, 1}n̄ → {0, 1} of size S(4n̄) that decides Lnice
n̄ . The machine
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M non-deterministically guesses such a circuit. We define the corruption of CLnice

n̄ by

Crpt(CLnice

n̄ ) = Pr
z∈{0,1}n′

[
Pr[ICCLnice

n̄ (z) =⊥] > 1/6
]

,

where the internal probability is over the random choices of the machine IC. Let Dec
be the machine underlying the random self-reducibility of Lnice, and let c ∈ N such
that the number of queries that Dec makes on inputs of length n′ is at most (n′)c.
Consider the following promise problem Π:

• The input is guaranteed to be a circuit CLnice

n̄ : {0, 1}n̄ → {0, 1} of size S(4n̄).

• YES instances: The circuit CLnice

n̄ decides Lnice
n̄ , in which case Crpt(CLnice

n̄ ) = 0.

• NO instances: It holds that Crpt(CLnice

n̄ ) > (n′)−2c.

Now, note that Π ∈ pr-coRP , since a probabilistic algorithm that gets CLnice

n̄ as in-
put can decide whether CLnice

n̄ is a YES instance or a NO instance by sampling z’s and

estimating Pr
[
ICCLnice

n̄ (z) =⊥
]

for each z. Moreover, using the sampler from Theo-

rem 2.5.7, there is a probabilistic coRP algorithm for Π that on input CLnice

n̄ : {0, 1}n̄ →
{0, 1} of size S(4n̄) uses m = O(n) random bits and runs in time poly(n) · S(4n̄). 45

Hence, the problem Π is reducible to an instance of (1, 1/3)-CAPP with a circuit CΠ
on v = O(n) input bits and of size nO(1) · S(4n̄) = vO(1) · S(v). The machine M runs the
hypothesized CAPP[vk′ · S(v)] algorithm on CΠ, which takes time T

(
nO(1) · S(O(n))

)
,

and rejects iff the CAPP algorithm rejects. Thus, from now on we can assume that CLnice

n̄
is not a NO instance of Π, or in other words that Crpt(CLnice

n̄ ) ≤ (n′)−2c.

Step 3: Transforming a non-corrupt CLnice

n̄ into a probabilistic circuit for L. Given
that Crpt(CLnice

n̄ ) ≤ (n′)−2c, the machine M now transforms CLnice
into a probabilistic

circuit C′ that computes L. In high-level, the circuit C′ simulates the random self-
reducibility algorithm Dec for L, while resolving the random queries of Dec by instan-
tiating the instance checker with oracle CLnice

. Details follow.

45Specifically, the algorithm uses the sampler from Theorem 2.5.7 (with a sufficiently large β, γ > 1
and sufficiently small α > 0) to sample D = poly(n) strings z1, ..., zD ∈ {0, 1}n′ , and then uses this
sampler again to sample D strings r1, ..., rD ∈ {0, 1}n+O(log(n)) to be used as randomness for the machine

IC. The algorithm rejects CLnice

n̄ if and only if Pri∈[D]

[
Prj∈[D]

[
ICCLnice

n̄ (z, rj) =⊥
]
≥ .01

]
≥ 1/2(n′)−2c,

where ICCLnice
n̄ (z, rj) denotes the simulation of ICCLnice

n̄ (z) with the fixed randomness rj. This algorithm
always accepts YES instances. Now, assume that CLnice

n̄ is a NO instance, and let us call z ∈ {0, 1}n′

is bad if Pr
[
ICCLnice

n̄ (z) =⊥
]
≥ 1/6. By the properties of the sampler, with high probability over the

choice of z1, ..., zD, the fraction of bad z’s in our sample is at least 1/2(n′)−2c; and for any (fixed) bad

z, the probability that Prj∈[D]

[
ICCLnice

n̄ (z, rj) =⊥
]
< .01 is exp(−n). Hence, CLnice

n̄ will be rejected with
high probability. The bound on the algorithm’s running time follows from standard quasilinear-time
algorithms for the Circuit Eval problem (see, e.g., [LW13, Thm 3.1]) and since Õ(S(4n̄)) < poly(n) · S(2n̄).
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Lemma 4.4.13.2 (non-corrupt CLnice

n̄ ⇒ probabilistic circuit for Lnice). There exists an
algorithm that gets as input 1n and a circuit CLnice

n̄ : {0, 1}n̄ → {0, 1} of size S(4n̄) such
that Crpt(CLnice

n̄ ) ≤ (n′)−2c, and outputs a probabilistic circuit C′ : {0, 1}n′ → {0, 1} of size
poly(n) · S(4n̄) that uses O(n) random coins such that for every x′ ∈ {0, 1}n′ , with high
probability over choice of random coins r for C′ it holds that C′(x′, r) = Lnice(x′).

Proof. We consider an instantiation of IC on inputs of length n′ and with oracle to
CLnice

n̄ , and as a first step we reduce the error of this algorithm. Let m = O(n) be
the number of random bits that IC uses on inputs of length n′. Consider the following
probabilistic algorithm ÎC : {0, 1}n′ → {0, 1,⊥}. Given input z ∈ {0, 1}n′ , the algorithm
ÎC uses the sampler from Theorem 2.5.7, instantiated for output length m and with
accuracy 1/n, to obtain a sample of D = poly(n) strings r1, ..., rD ∈ {0, 1}m; then ÎC

outputs the majority vote among the values {vi}i∈[D], where vi is the output of IC

when instantiated on input z with oracle CLnice

n̄ and fixed randomness ri.
Note that ÎC uses O(n) random bits and runs in time poly(n) · S(4n̄). We claim

that there exists a set G ⊆ {0, 1}n′ of density 1− (n′)−2c such that for every z ∈ G,
with probability at least 1− exp(−n) over the randomness of ÎC it holds that ÎC(z) =
Lnice(z). To see this, let G be the set of z’s such that Pr[ICCLnice

n̄ (z) =⊥] ≤ 1/6,
and recall that the density of G is at least 1 − (n′)−2c. Note that for any z ∈ G
we have that Pr[ICCLnice

n̄ (z) = Lnice(z) ≥ 2/3, because Pr[ICCLnice
n̄ (z) 6= Lnice(z)] ≤

Pr[ICCLnice
n̄ (z) =⊥] + Pr[ICCLnice

n̄ (z) = ¬CLnice

n̄ (z)] ≤ 1/3. Thus, for any fixed z ∈ G, the
probability (over the random choices of ÎC) that the majority vote of the vi’s will not
equal Lnice(z) is at most exp(−n).

Now, consider a probabilistic circuit C′ : {0, 1}n′ → {0, 1} that chooses O(n) ran-
dom bits to be used as randomness for ÎC, and simulates the random self-reducibility
algorithm Dec on its input x′ ∈ {0, 1}n′ , while answering its queries using the algo-
rithm ÎC with the fixed random bits chosen in advance. Note that the circuit C′ is
of size poly(n) · S(4n̄). We claim that for every x′ ∈ {0, 1}n′ , with high probability
C′(x) = Lnice(x′). To see this, recall that Dec makes at most (n′)c queries such that
each query is uniformly-distributed, and thus the probability that all queries of Dec lie
in the set G is at least 1− (n′)−c. Conditioned on this event, for each fixed query z, the
probability over choice of randomness for ÎC that ÎC(z) does not output Lnice(z) is at
most exp(−n). Hence, by another union-bound, with high probability all the queries
of Dec are answered correctly, in which case C′(x′) = Lnice(x′). �

Step 4: Derandomizing C′. The non-deterministic machine guessed-and-verified a
circuit CLnice

n̄ : {0, 1}n̄ → {0, 1} such that Crpt(CLnice

n̄ ) ≤ (n′)−2c, and transformed it
(using the algorithm from Proposition 4.4.13.2) into a probabilistic circuit C′. The
machine M then constructs the final circuit C, which gets input x ∈ {0, 1}n and acts as
follows:

1. Computes the reduction from L to Lnice to obtain x′ ∈ {0, 1}n′ .
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2. Hard-wires x′ into C′ to obtain a description of a circuit C′x′ : {0, 1}O(n) → {0, 1}
such that C′x′(r) = C′(x′, r).

3. Runs the hypothesized CAPP[vk′ · S(v)] algorithm on C′x and outputs its decision.

Note that C′x is a circuit with v = O(n) input bits and of size poly(n) · S(4n̄) =
vO(1) · S(v), and therefore for an appropriate choice of constant k′, the CAPP[vk′ · S(v)]
algorithm distinguishes between the case that C′ accepts x′ with high probability and
the case that C′ rejects x′ with high probability. Thus, for every x ∈ {0, 1}n it holds
that C(x) = L(x). Finally, both the size of the circuit C and the running time of our
non-deterministic machine are bounded by Õ

(
T
(
(nO(1) · S(O(n))

))
.

4.4.5 Proof of Theorems 4.4.2, 4.4.3, and 4.4.4

We first prove Theorem 4.4.2, which refers to the “low-end” parameter setting: Subexponential-
time derandomization of prBPP and lower bounds for polynomial-sized circuits
against EXP .

Theorem 4.4.14 (Theorem 4.4.2, restated). Assume that there exists δ > 0 such that
DT IME [2n] cannot be decided by NT IME [2nδ

]-uniform circuits of an arbitrarily large
polynomial size, even infinitely-often. Then, denoting prSUBEXP = ∩ε>0 prDT IME [2nε

],
we have that

∪cpCAPP[vc, 4 · log(v)] ⊂ i.o.prSUBEXP ⇐⇒ EXP 6⊂ P/poly .

Proof. Let us first prove the first statement. The “⇐=” direction follows from [BFN+93],
relying on the fact that ∪cpCAPP[vc, 4 · log(v)] ∈ prBPP . For the “=⇒” direction, as-
sume that for every c ∈ N and every ε > 0 it holds that pCAPP[vc, 4 · log(v)] ∈
i.o.prDT IME [2nε

]. Assuming towards a contradiction that EXP ⊂ P/poly, we have
that DT IME [2n] ⊂ SIZE [nc] for some c ∈ N. We use Item (1) of Proposition 4.4.12
with parameters S(n) = nc and T(n) = 2nε

, where ε > 0 is sufficiently small. We
deduce that DT IME [2n] can be decided infinitely-often by NT IME [T′]-uniform
circuits of size nc, where

T′(n) ≤ T(Õ(S(Õ(S(n)))))O(1) < T(nOc(1))O(1) = 2nε·Oc(1) ,

which contradicts our hypothesis if ε is sufficiently small.

We now prove Theorem 4.4.15, which refers to a “high-end” parameter setting (i.e.,
faster derandomization and lower bounds for larger circuits). We will in fact show that,
conditioned on the hypothesis that E cannot be decided by NT IME [2Ω(n)]-uniform
circuits, even a weaker derandomization hypothesis is already equivalent to circuit
lower bounds. For example, instead of assuming that prBPP = prP , we will only
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need to assume that CAPP for v-bit circuits of size 2Ω(v) can be solved deterministically
in time 2α·v, for some small constant α > 0. 46

Theorem 4.4.15 (Theorem 4.4.3, restated). Assume that there exists δ > 0 such that E
cannot be decided by NT IME [2δ·n]-uniform circuits even infinitely-often. Then:

1. There exists a universal constant c > 1 such that

∃ε > 0 : CAPP[2ε·v] ∈ prDT IME [n(δ/c)/ε)] ⇐⇒ ∃ε > 0 : E 6⊂ i.o.SIZE [2ε·n] .

2. For every fixed constant c > 1 it holds that

∃α > 1 : CAPP[2v1/c
] ∈ prDT IME [2α·(log n)c

] ⇐⇒ ∃ε > 0 : E 6⊂ i.o.SIZE [2ε·n1/c
] .

Proof. We first prove Item (1). The “⇐=” direction follows from [IW99] (or, alter-
natively, from the more general Corollary 2.4.8). Specifically, the hypothesized circuit
lower bound implies that prBPP = prP , and in particular that CAPP ∈ prDT IME [nc′ ]
for some c′ ∈ N. The conclusion then holds for ε < δ

c·c′ . For the “=⇒” direction,
let k, k′ ∈ N be as in Proposition 4.4.13, and let c = 2k. Assume that for some
ε > 0 it holds that CAPP[S′] ∈ prDT IME [T], where T(n) = n(δ/c)/ε), and S(n) =
2ε·n/nk′ , and S′(v) = vk′ · S(v) = 2ε·v. Assuming towards a contradiction that E ⊂
i.o.SIZE [S], Proposition 4.4.13 implies that DT IME [2n] can be decided infinitely-
often by NT IME [T′]-uniform circuits, where T′(n) = Õ

(
T(nk · S(k · n))

)
< 2δ·n; this

is a contradiction.
The proof of Item (2) is similar. The “⇐=” follows from Corollary 2.4.8, instanti-

ated with S(n) = 2ε·n1/c
, to deduce that CAPP ∈ prDT IME [T] for T(n) = 2∆·S−1(n∆) =

2(∆/ε)c·(log n)c
. For the “=⇒” direction, let ε < (δ/kα)1/c be sufficiently small, let

S(n) = 2ε·n1/c
/nk′ , let S′(v) = vk′ · S(v) = 2v1/c

, and let T(n) = 2α·(log n)c
. We use Propo-

sition 4.4.13 as above, and rely on the fact that T′(n) = Õ
(
T(nk · S(k · n))

)
< 2δ·n.

Next, we prove Theorem 4.4.4, which asserts that if non-deterministic derandom-
ization implies lower bounds against EXP , then EXP does not have NP-uniform
circuits. We will actually prove a stronger result: First, we will use a weaker hy-
pothesis than in Theorem 4.4.4, namely that prBPP ⊆ prNP implies circuit lower
bounds against EXP ; and secondly, we will deduce the stronger conclusion that
EXP 6⊆ (NP ∩ P/poly). (This conclusion is stronger because the class of problems
decidable by NP-uniform circuits is a subclass of NP ∩P/poly.)

46This is reminiscent of the recent results of Murray and Williams [MW18], who showed that solving
CAPP for v-bit circuits of size 2Ω(v) in time 2.99·v suffices to deduce circuit lower bounds. Note that the
foregoing CAPP problem can be solved in deterministic polynomial time, since the input length is 2Ω(v)

(i.e., this CAPP problem lies in prBPT IME [Õ(n)] ∩ prP).
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Theorem 4.4.16 (Theorem 4.4.4, restated). Assume that there exists δ > 0 such that E does
not have NT IME [2nδ

]-uniform circuits of an arbitrarily large polynomial size. Then,

prBPP ⊂ prNSUBEXP =⇒ EXP 6⊂ P/poly , (4.4.2)

where prNSUBEXP = ∩ε>0 prNT IME [2nε
]. In the other direction, if Eq. (4.4.2) holds,47

then EXP 6⊆ (NP ∩P/poly), and in particular EXP does not have NP-uniform circuits.

Proof. The proof of the first statement is similar to the proof of Theorem 4.4.14. We
assume that EXP ⊂ P/poly, and use Item (2) of Proposition 4.4.12 with parameters
S(n) = nc and T(n) = 2nε

, where ε > 0 is sufficiently small; we deduce that any L ∈ E
can be decided on all input lengths by NT IME [T′]-uniform circuits of size nc, where
T′(n) < 2O(n3ε·c) < 2nδ

, which is a contradiction (the last inequality relied on ε > 0
being sufficiently small).

To prove the “in the other direction” statement, first recall that prEXP ⊆ pr(NP ∩
P/poly) ⇐⇒ EXP ⊆ (NP ∩ P/poly), because every exponential-time machine
that solves a promise problem also induces a language.48 Now, assume towards a
contradiction that prEXP ⊆ pr(NP ∩ P/poly). Since prBPP ⊆ prEXP , we have
that prBPP ⊆ pr(NP ∩ P/poly). By the hypothesized conditional statement, it
follows that EXP 6⊂ P/poly, a contradiction.

As mentioned in the introduction, by optimizing the parameters we can show
tighter two-way implications between the statement “derandomization and lower bounds
are equivalent” and the statement “E does not have NT IME [T]-uniform circuits”.
Towards proving this result, we define the following class of growth functions, which
lie “in between” quasipolynomial functions and subexponential functions. For ev-
ery two constants k, c ∈ N, we denote by e(k,c) : N → N the function that ap-
plies k logarithms to its input, raises the obtained expression to the power c, and
then takes k exponentiations of this expression. For example, e(1,c)(n) = 2(log n)c

and
e(2,c)(n) ∈ 22polyloglog(n)

. Note that e(k+1,c) grows asymptotically faster than e(k,c′) for any
constants c, c′, and that e(k,c) is smaller than any subexponential function. Then, we
have that:

47In fact, for this statement it suffices to assume that prBPP ⊆ prNP =⇒ EXP 6⊂ P/poly. However,
since we will show a result with tighter relations between the parameters below (see Theorem 4.4.17), in
the current statement we ignore this issue for simplicity.

48 In more detail, the “=⇒” direction is trivial, so we prove the “⇐=” direction. For every Π ∈ prEXP ,
let M be an exponential-time machine that solves Π, and let LM be the set of inputs that M accepts. Since
LM ∈ EXP , there exists an NP-machine that decides LM and a polynomial-sized circuit family that
decides LM, and the foregoing machine and circuit family also solve Π.
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Theorem 4.4.17 (Theorem 4.4.4, a tighter version). For any constant k ∈N we have that:

∃δ > 0 : DT IME [2n] does not have NT IME [T]-uniform circuits, for T = 2e
(k,δ)

(4.4.3)ww�
prBPP ⊆ ∩ε>0 prNT IME [2e(k,ε)

] =⇒ DT IME [2n] 6⊂ ∪c0∈NSIZE [e(k,c0)] (4.4.4)ww�
∀c0 ∈N,DT IME [2n] 6⊂ (NT IME [T] ∩ SIZE [T]), for T(n) = e(k,c0) (4.4.5)

that is, statement (4.4.3) implies statement (4.4.4), which in turn implies statement (4.4.5).

We stress that the gap between the values of T in statements (4.4.3) and (4.4.5) is
substantial, but nevertheless much smaller than an exponential gap. This is since in
statement (4.4.3) the hypothesis is for T that is exponential in e(k,δ) where δ > 0 is an
arbitrarily small constant, whereas in statement (4.4.5) the conclusion is for T = e(k,c0)

where c0 is an arbitrarily large constant. For example, for k = 1 this is the difference
between quasipolynomial functions and functions of the form 22(log n)ε � 2nε

.

Proof of Theorem 4.4.17. To see that statement (4.4.3) implies statement (4.4.4), first
observe that for any two constants c, c′ ∈N it holds that (e(k,c))−1(n) = e(k,1/c)(n) and
that e(k,c)(e(k,c′)(n)) = e(k,cc′)(n). Now, assuming that prBPP ⊆ ∩ε prNT IME [2e(k,ε)

]
and that DT IME [2n] ⊂ ∪c0SIZE [e(k,c0)], we will show that Eq. (4.4.3) does not
hold. To do so we use Item (2) of Proposition 4.4.12 with S(n) = e(k,c0) and with
T(n) = 2e

(k,ε)
(n) for a sufficiently small ε > 0, and rely on the fact that for some b ∈N

it holds that T′(n) < T(S(S(n)b)b)b < T(e(k,2b2·c0)(n))b = 2e
(k,2εb3 ·c0)(n).

To see that statement (4.4.4) implies statement (4.4.5), assume towards a contra-
diction that for some c0 ∈ N it holds that prDT IME [2n] ⊆ pr(NT IME [T] ∩
SIZE [T]), where T(n) = e(k,c0)(n). Hence, CAPP ∈ DT IME [Õ(2n)] ⊆ pr(NT IME [T(Õ(n))]∩
SIZE [T(Õ(n))]), and it follows that

prBPP ⊆ ∪c∈N prNT IME [T(nc)]

⊆ ∪c∈N prNT IME
[
e(k,c)

]
⊆ ∩ε>0 prNT IME

[
2e

(k,ε)
]

.

By our hypothesis (i.e., by Eq. (4.4.4)) it follows thatDT IME [2n] 6⊂ ∪c0∈NSIZE
[
e(k,c0)

]
,

which is a contradiction. Finally, to deduce the statement (i.e. bridge the gap between
prDT IME [2n] and DT IME [2n]), we use the same argument as in Footnote 48.
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Appendix A

Brief Descriptions of Several Other
Works

In this appendix we provide high-level descriptions of several results that were ob-
tained during our doctoral studies, but that were not included above. Specifically, Sec-
tion A.1 is based on a joint work with Oliveira and Santhanam [OST19], Section A.2 is
based on the work [Tel18a], and Section A.3 is based on the work [Tel20].

A.1 Expander-based cryptography meets natural proofs

In a joint work with Oliveira and Santhanam [OST19], we introduce new forms of
attack on expander-based cryptography, and in particular on Goldreich’s pseudorandom
generator and one-way function. Our attacks exploit low circuit complexity of the un-
derlying expander’s neighbor function and/or of the local predicate. Our two key
conceptual contributions are:

1. The security of Goldreich’s PRG and OWF hinges, at least in some settings, on
the circuit complexity of the underlying expander’s neighbor function and of the
local predicate. This sharply diverges from previous works, which focused on
the expansion properties of the underlying expander and on the algebraic proper-
ties of the predicate.

2. We uncover new connections between long-standing open problems: Specifically,
we tie the security of Goldreich’s PRG and OWF both to the existence of unbalanced
lossless expanders with low-complexity neighbor function, and to limitations on
circuit lower bounds (i.e., natural proofs).

We prove two types of technical results that support the above conceptual mes-
sages. First, we unconditionally break Goldreich’s PRG when instantiated with a specific
expander (whose existence we prove), for a class of predicates that match the parame-
ters of the currently-best “hard” candidates, in the regime of quasi-polynomial stretch.
Secondly, conditioned on the existence of expanders whose neighbor functions have

228



A.2 Lower bounds on black-box reductions of hitting to density estimation

extremely low circuit complexity, we present attacks on Goldreich’s generator in the
regime of polynomial stretch. As one corollary, conditioned on the existence of the fore-
going expanders, we show that either the parameters of natural properties for several
constant-depth circuit classes cannot be improved, even mildly; or Goldreich’s generator
is insecure in the regime of a large polynomial stretch, regardless of the predicate used.

In particular, our results further motivate the investigation of average-case lower
bounds against DNF-XOR circuits of exponential size, and of the parameters that can
be achieved by affine/local unbalanced expanders.

A.2 Lower bounds on black-box reductions of hitting to den-
sity estimation

Consider a deterministic algorithm that tries to find a string in an unknown set
S ⊆ {0, 1}n, under the promise that S has large density. The only information that the
algorithm can obtain about S is estimates of the density of S in adaptively chosen subsets
of {0, 1}n, up to an additive error of µ > 0. This problem is appealing as a derandom-
ization problem, when S is the set of satisfying inputs for a circuit C : {0, 1}n → {0, 1}
that accepts many inputs: In this context, an algorithm as above constitutes a deter-
ministic black-box reduction of the problem of hitting C (i.e., finding a satisfying input
for C) to the problem of approximately counting the number of satisfying inputs for C
on subsets of {0, 1}n.

In the work [Tel18a] we prove tight lower bounds for this problem, demonstrating
that naive approaches to solve the problem cannot be improved upon, in general. First,
we show a tight trade-off between the estimation error µ and the required number of
queries to solve the problem: When µ = O(log(n)/n) a polynomial number of queries
suffices, and when µ ≥ 4 · (log(n)/n) the required number of queries is 2Θ(µ·n). Sec-
ondly, we show that the problem “resists” parallelization: Any algorithm that works
in iterations, and can obtain p = p(n) density estimates “in parallel” in each iteration,
still requires Ω

(
n

log(p)+log(1/µ)

)
iterations to solve the problem.

This work extends the well-known work of Karp, Upfal, and Wigderson [KUW88],
who studied the setting in which S is only guaranteed to be non-empty (rather than
dense), and the algorithm can only probe subsets for the existence of a solution in
them. In addition, our lower bound on parallel algorithms affirms a weak version of
a conjecture of Motwani, Naor, and Naor (1994); we also make progress on a stronger
version of their conjecture.

A.3 A note on tolerant testing with one-sided error

A tolerant tester with one-sided error for a property is a tester that accepts every input
that is close to the property, with probability 1, and rejects every input that is far from
the property, with positive probability. In the work [Tel20] we show that such testers
require a linear number of queries.
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Appendix B

Surveys and Expositions of Known
Results

In this appendix we include several surveys and expositions of known results that
were initially published in our personal website during our doctoral studies. The
following expositions and surveys are included:

1. In Section B.1 we present an overview of the lower bound proof of Li, Razborov,
and Rossman [LRR17] for computing subgraph isomorphism in AC0.

2. In Section B.2 we describe a short and almost elementary proof of Williams’ [Wil13]
result that “non-trivial” derandomization implies weak circuit lower bounds.

3. In Section B.3 we describe the proof of the results of Bazzi, Razborov, and Braver-
man [Baz09; Raz09; Bra10], which assert that polylog-wise independent distri-
butions “fool” AC0 circuits.

4. In Section B.4 we include a survey of Karp-Lipton theorems, with a focus on the
underlying technical challenges and proof techniques.

5. In Section B.5 we show that significantly better sub-exponential lower bounds
for AC0 would imply lower bounds for polynomial-sized circuits from classes
such as AC0[Sym] or NC1.

B.1 Overview of the lower bound of Li, Razborov, and Ross-
man for subgraph isomorphism in AC0

The following overview is based on the lecture series of Ben Rossman in the Swedish Summer
School of Computer Science (S3CS), 2017. It was aided by many helpful answers to my ques-
tions by Ben and by Igor Oliveira. Nevertheless, the overview reflects my own understanding
of the lower bound proof, and neither Ben nor Igor should be held accountable for any mistakes.

230



B.1 Overview of the lower bound of Li, Razborov, and Rossman

B.1.1 The lower bound: Bird’s eye

In 2008, Ben Rossman proved [Ros08] that for any constant k = O(1), any AC0 cir-
cuit that solves the k-clique problem has nΩ(k) gates. This improved a decades-old
lower bound of nΩ(k/d2) by Beame, mainly by removing the dependency on the cir-
cuit depth d. The new techniques that were introduced in Rossman’s work led to a
sequence of works proving lower bounds for AC0 circuits solving the more general
subgraph isomorphism problem. In this text I will give an overview of the lower
bound for the subgraph isomorphism problem that was proved by Li, Razborov, and
Rossman [LRR17]. The reason to survey the more general result of [LRR17] (rather
than the original result in [Ros08] for k-clique) is that in this case the abstraction and
generalization seem to distill and clarify the underlying ideas.

The lower bound of [LRR17] is parametrized, according to the subgraph in ques-
tion. That is, for the G-subgraph isomorphism problem, where G is of constant size,
the lower bound asserts that AC0 circuits need nκ(G) gates to solve the problem, where
κ is a graph-theoretic parameter. In particular, for k-clique (and for many other graphs
on k vertices), κ(G) = Ω(k). The lower bound also extends to circuits solving the
problem in average-case, under specific distributions, and to circuits of super-constant
depth, up to depth o(log(n)/ log log(n)). However, for simplicity, I will focus on the
lower bound for circuits of constant depth that solve the problem in the worst-case.

Of course, sub-exponential lower bounds for AC0 circuits that compute the parity
function in worst-case and in average-case have been known for decades. However,
the parity function can be easily computed in circuit classes larger than AC0 (e.g., in
NC1), whereas the subgraph isomorphism problem is NP-complete. This raises the
possibility that the lower bound on subgraph isomorphism can be extended further to
circuit classes larger than AC0.

Moreover, one of the main innovations in this line of work is an interesting tech-
nique: Specifically, the core part of the proof shows that we can, in some very loose
sense, identify the structure of any AC0 circuit solving the G-subgraph isomorphism
problem with the structure of the graph G itself. This seems exciting, since it gives
some kind of intuition as to the structure of circuits solving this problem.

B.1.2 The colorful subgraph isomorphism problem

The lower bound itself is actually for AC0 circuits solving the colorful subgraph isomor-
phism problem, which is a somewhat contrived variation of the (standard) subgraph
isomorphism problem. In general, the colorful version is at least as hard as the stan-
dard version, but in many cases (e.g., in the case where G is a clique) the problems are
essentially equivalent for circuits; see details below. Let us therefore start by properly
defining the colorful subgraph isomorphism problem.

The colorful subgraph isomorphism problem is parametrized by a fixed graph G
over k = O(1) vertices. For every n ∈N, consider the “blow-up” version of G, denoted
by G↑n, which is defined as follows. First, replace every vertex v ∈ G with a “cloud” of
n vertices; thus, each vertex in G↑n can be described by a pair (v, i) where v ∈ G and
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i ∈ [n]. Two vertices (u, i) and (v, j) in G↑n are connected iff u and v are connected in
G; put otherwise, there are no edges within each cloud in G↑n, and two clouds form a
biclique iff the corresponding two vertices in G are connected. More formally:

Definition B.1.1 (the “blow-up” version of G). For a graph G over k = O(1) vertices and
n ∈ N, let G↑n be the graph with vertex-set V(G↑n) = {(v, i) : v ∈ V(G) ∧ i ∈ [n]} and
edge-set E(G↑n) = {((u, i), (v, j)) : (u, v) ∈ E(G) ∧ i, j ∈ [n]}.

The name of the problem comes from thinking of each “cloud” in G↑n as a “color-
class”, and of the vertices in G↑n as colored in k distinct colors. In the colorful subgraph
isomorphism problem, we are given as input a subgraph X ⊆ G↑n, and we need to
decide whether or not X contains a “distinctly-colored” copy of G. That is:

Definition B.1.2 (distinctly-colored subgraphs of G↑n). We say that a subgraph G′ of G↑n

is distinctly-colored if for every two vertices (u, i) and (v, j) of G′ it holds that u 6= v.

Definition B.1.3 (colorful subgraph isomorphism problem). For a graph G over k ∈ N

vertices, the colorful subgraph isomorphism problem corresponding to G, denoted by SUB(G),
is the following: For every n ∈N, given a subgraph X ⊆ G↑n as input, decide whether or not
X contains a distinctly-colored subgraph that is isomorphic to G.

Note that for every n ∈ N, the input to SUB(G) is of length (k
2) · n2. The standard

subgraph isomorphism problem can be randomly reduced to the colorful version, with
constant success probability, by randomly coloring the vertices of an input graph in k
distinct colors.1 On the other hand, for a large class of graphs, the colorful problem
is deterministically reducible to the standard problem; specifically, this holds for any
graph G such that any homomorphism G → G is bijective (i.e., an automorphism).2

B.1.3 An overview of the proof

Fix some constant-sized graph G; for convenience, one may think of G being the
k-clique. A natural strategy to try and prove a lower bound for SUB(G) is to try
and emulate the lower bound proof for parity: That is, construct a distribution on
restrictions that, on one hand, simplifies every AC0 circuit to the constant function,
with high probability (say, 0.9); and on the other hand, keeps the function SUB(G)
alive, with high probability (again, say, 0.9).

The proof follows by showing a distribution ρ over restrictions with similar prop-
erties: On the one hand, for any AC0 circuit C of sufficiently small size (i.e., less than
nκ(G), when κ is the graph-theoretic parameter that was mentioned in Section B.1.1),
with high probability over ρ ∼ ρ it holds that C�ρ is insensitive to some of the living

1Specifically, given an arbitrary graph X, randomly color its vertices with k colors, and remove edges
within each color-class. Indeed, if X contains a copy of G, then with probability at least k−k we obtain a
subgraph of G↑n that contains a distinctly-colored copy of G.

2Given an input X ⊆ G↑n to the colorful problem, observe that every copy G′ of G in X is distinctly-
colored: This is because any coloring of G′ is a homomorphism, and is thus an automorphism. Thus, we
can reduce the colorful problem to the standard problem by simply ignoring the coloring.
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B.1 Overview of the lower bound of Li, Razborov, and Rossman

variables; and on the other hand, with constant probability over ρ ∼ ρ, the function
SUB(G)�ρ remains sensitive to all of the living variables.

B.1.3.1 The distribution over restrictions

The distribution ρ over restrictions will satisfy three properties, which I will now
detail. Recall that each input variable indicates whether or not a corresponding edge
of G↑n is included in X. The first property of the distribution is the following:

1. Each restriction in the distribution’s support leaves exactly |E(G)| variables alive,
which correspond to the edges of some distinctly-colored copy of G.

The second property of the distribution will imply that with probability Ω(1) over
ρ ∼ ρ, the function SUB(G)�ρ remains sensitive to all of the living variables. Intu-
itively, we want that the subgraph that corresponds to the fixed variables under ρ will
not contain any distinctly-colored copy of G, and that the only way to add a distinctly-
colored copy of G to this subgraph will be to add all the edges that correspond to the
living variables. This requirement can be phrased as follows:

2. With probability Ω(1), if we fix all the living variables under ρ to one, then there
will be a unique distinctly-colored copy of G in the graph.

Indeed, the unique distinctly-colored copy of G mentioned in the second require-
ment is simply the copy of G that corresponds to the living variables. The first two
properties imply that with probability Ω(1) it holds that SUB(G)�ρ is just the AND
function, and in particular is sensitive to all of the living variables.

The third property is that any “sufficiently small” AC0 circuit becomes insensitive
to some of the living variables under ρ ∼ ρ:

3. For any AC0 circuit C of size nκ(G)−Ω(1), where κ is a function that I will formally
define later on, with probability 1− o(1) over ρ ∼ ρ it holds that C�ρ is insensitive
to some of the living input variables.

Indeed, at first glance the third property seems quite weak: After all, we are fixing
all but O(1) of the variables! However, the proof of the third property is far from being
a simple application of Håstad’s switching lemma. This is the case because neither the
choice of variables to keep alive nor the choice of values for the fixed variables are
uniform. (The variables that will be kept alive correspond to the edges of a distinctly-
colored copy of G, whereas the first two properties suggest, at least intuitively, that
the vast majority of the fixed variables will be fixed to zero.)

For any G such that we are able to design a distribution that satisfies the three
properties above, we can obtain a corresponding lower bound for AC0 circuits com-
puting SUB(G): Every sufficiently small AC0 circuit becomes insensitive to some of
the living variables under ρ, with high probability, whereas the function SUB(G) re-
mains sensitive to all of the living variables under ρ, with probability Ω(1).
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B.1.3.2 Constructing a distribution with seemingly-weaker properties

The first step in the proof is to construct a distribution ρ that satisfies Properties (1)
and (2), and also satisfies a property that is seemingly-weaker than Property (3). Later
on (in the next section) we will see that any such distribution in fact also satisfies
Property (3). The distribution ρ will be defined using the notion of a “threshold
function” θ, which is defined as follows.

Definition B.1.4 (threhold function; see [LRR17, Def. 2.8]). A threshold function for a

graph G is a function θ : E(G)→ [0, 2] that satisfies the following properties:

1. For every subgraph H of G is holds that ∑e∈E(H) θ(e) ≤ |V(H)|.

2. ∑e∈E(G) θ(e) = |V(G)|.

As an example, for any r-regular graph G, the constant function θ ≡ 2/r is a
threshold function. This is the case because for any subgraph H ⊆ G it holds that
∑e∈E(H) θ(e) = 2

r · |E(H)| ≤ |V(H)|, and it also holds that ∑e∈E(G) θ(e) = |V(G)|.
Given a threshold function θ for G, we can now define a corresponding distribution ρ:

Definition B.1.5 (the distribution ρ). Given a graph G and a threshold function θ for G, the
distribution ρ on restrictions for functions {0, 1}|E(G↑n)| → {0, 1} is defined as follows:

1. Randomly choose a distinctly-colored copy of G in G↑n. The variables that correspond to
the edges of this copy of G will be kept alive.

2. For every other variable xi, let e be the edge of G that xi corresponds to (i.e., xi corre-
sponds to an edge of G↑n, which corresponds to a unique edge e ∈ E(G)). Then, fix xi to
one with probability n−θ(e), and to zero otherwise.

Observe that Property (1) holds by the definition of ρ (we keep alive exactly |E(G)|
variables, corresponding to the edges of a distinctly-colored copy of G).

Recall that Property (2) asserts that with probability Ω(1), if we fix all the living
variables under ρ to one, there will be a unique distinctly-colored copy of G in the
graph. To get some intuition as to why this property holds, let us count the expected
number of distinctly-colored copies of G when fixing all the variables to values chosen
as in Item (2) of Definition B.1.5. The number of potential distinctly-colored copies of
G in G↑n is n|V(G)|, and each copy exists in the graph with probability ∏e∈E(G) n−θ(e) =

n−∑e∈E(G) θ(e) = n−|V(G)| (the last equality is since θ is a threshold function). Thus, in
expectation, there is exactly one distinctly-colored copy of G when fixing all variables.
In particular, if the variance of the RV “the number of distinctly-colored copies of G”
is not too small, then the probability that this RV takes the value zero is constant. For
a full proof that Property (2) holds, see [LRR17, Lem. B.1.3, Lem. 2.10, Apdx. A.].

Property (3) asserts that any “sufficiently small” AC0 circuit C becomes insensitive
to some of the living input variables under ρ, with high probability. As mentioned,
the first step is to show a seemingly-weaker property of ρ: Namely, that by fixing a few
additional variables after applying ρ, any AC0 circuit becomes insensitive to some of the
living variables, with high probability. We first need the following definitions:
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B.1 Overview of the lower bound of Li, Razborov, and Rossman

Definition B.1.6 (“fixing a few more variables”). Let G be a graph, let σ ∈ {0, 1}|E(G)|,
and let H ⊆ G. Then, we denote by χσ

H the restriction that fixes the variables that correspond
to E(G) \ E(H) to values according to the corresponding bits in σ, and leaves all the variables
corresponding to E(H) alive.

Fix a function f over variables that correspond to the edge-set of a graph G. We
say that f is sensitive to a subgraph H ⊆ G if f is sensitive to all the variables that
correspond to E(H). The following definition refines this notion by imposing a stricter
requirement: Intuitively, f is strongly-sensitive to H if f remains sensitive to the variables
that correspond to E(H) even after we fix all the other variables (i.e., after fixing the
variables that correspond to E(G) \ E(H)). More formally,

Definition B.1.7 (strong sensitivity). Let G be a graph, and let f be a function whose input
variables correspond to the edge-set of G. For any subgraph H ⊆ G and σ ∈ {0, 1}|E(G)|, we
say that f is σ-strongly-sensitive to H if f �χσ

H
is sensitive to all of the living input variables.

The seemingly-weaker property that we will start from is that for some distribu-
tion σ over {0, 1}|E(G)|, for “many” subgraphs H ⊆ G, the probability that C�ρ is
σ-strongly-sensitive to H is very small.

3̃. There exists a non-negative function ∆ on the set of subgraphs of G and a distri-
bution σ over {0, 1}|E(G)| such that:

• For any fixed H ⊆ G and any AC0 circuit C, the probability over ρ ∼ ρ and
σ ∼ σ that C�ρ is σ-strongly sensitive to H is at most n−∆(H).

• Informally, we want that for “many” subgraphs H ⊆ G it holds that ∆(H)
is “large” (e.g., ∆(H) > 1).

I will be more formal as to the second item in the next section, after presenting
some necessary definitions. For the moment, let us see that Property (3̃) holds for the
distribution ρ that was defined above with respect to a specific function ∆ and specific
distribution σ over {0, 1}|E(G)|:

Definition B.1.8 (excess function; see [LRR17, Def. 2.8(i) with α ≡ 1 and β = θ and
∆ = α− β]). Given a graph G and a threshold function θ for G, we define the following func-
tion ∆ = ∆θ on subgraphs H of G: For any H it holds that ∆(H) = |V(H)| −∑e∈E(H) θ(e).

The distribution σ over {0, 1}|E(G)| is obtained by fixing values to each edge simi-
larly to Item (2) of Definition B.1.5 (i.e., for every e ∈ E(G), the corresponding bit in σ
is set to one with probability n−θ(e)). The proof of the first item of Property (3̃) appears
in [LRR17, Lem. 3.10]. To get some intuition, fix an AC0 circuit C, and consider the
following process of generating the restriction χσ

H ◦ ρ. First, we apply a restriction ρ1

that fixes all but nΩ(1) of the variables to values that are chosen as in Item (2) of Def-
inition B.1.5. Then, with overwhelmingly high probability, the restricted circuit C�ρ1

depends on at most nδ variables, where δ > 0 can be made arbitrarily small.3

3The choice of variables to be kept alive is not uniform, and again relies the threshold function θ. The
analysis of the effect of ρ1 relies on Håstad’s switching lemma as well as on the fact that values for the
fixed variables in ρ1 are chosen independently.
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We then apply a second restriction ρ2, in which we choose a random distinctly-
colored copy of H within the subgraph that corresponds to the living variables under
ρ1, and fix all the variables except the ones corresponding to the edges of this copy
of H (again, to values that are chosen as in Item (2) of Definition B.1.5). Observe that
ρ2 ◦ ρ1 is essentially distributed identically to χσ

H ◦ ρ. Also, the only case in which
C�ρ2◦ρ1

is sensitive to all the living variables is if the variables corresponding to the
copy of H that were left alive are all in the set of at most nδ variables that C�ρ1

depended
on.

Given suitable parameters for the distribution ρ1, the number of copies of H inside
the subgraph corresponding to the living variables under ρ1 is extremely likely to be
approximately n∆(H)−δ·|E(H)|. On the other hand, the number of copies of H inside the
subgraph corresponding to the variables that C�ρ1

depends on is at most ( nδ

|E(H)|) <

nδ·|E(H)|. Thus, the probability that C�ρ2◦ρ1
is sensitive to all the living variables is at

most n∆(H)−2·|E(H)|·δ, where δ > 0 is arbitrarily small.
As for the second requirement in Property (3̃), observe that this requirement ac-

tually depends on the specific choice of θ. In fact, anticipating ahead, for any graph G
we will want to construct θ such that ∆ satisfies this requirement, and the final lower
bound will depend quantitatively on this choice. In the next section I will define this
requirement more formally, and in Section B.1.4 I will describe a nice example of a
graph G and a corresponding threshold function for which this is true.

B.1.3.3 Deducing Property (3) from Property (3̃)

The key thing that is left to prove is that any distribution that satisfies Properties (1)
and (3̃) also satisfies Property (3). The proof of this claim will contain the technique
that was mentioned in Section B.1.1 (of relating the structure of any AC0 circuit that
computes SUB(G) to the structure of G). To begin, let us define a combinatorial object
that is called a pattern for the graph G. Loosely speaking, a pattern is a procedure to
construct G in which the initial “building-blocks” are the edges of G, and in each step
we combine (i.e., take a union of) two existing “building-blocks”. More formally:

Definition B.1.9 (patterns; see [LRR17, Def. 2.11 of “union sequences”]). A pattern for
a graph G is a labeled binary tree that satisfies the following properties:

1. Each leaf in the tree is labeled by an edge of G.

2. Each non-leaf node in the tree is labeled by the subgraph of G obtained from the union of
the labels its children.

3. The root of the tree is labeled by G.

As an illustrating example, note for any graph G, a natural pattern is the complete
binary tree in which the set of leaves corresponds exactly to the set of edges. However,
Definition B.1.9 also allows for less natural patterns, in which an edge might appear
in many leaves, leaves might appear in different levels of the tree, etc.
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Now, fix any circuit C whose input variables correspond to the edge-set of G↑n,
and any restriction ρ that keeps alive a set of variables that correspond to the edge-
set of G. Our main goal is to relate the structure of the circuit C�ρ to a pattern for G.
To do so, we first convert C to a circuit C′ in which each gate has fan-in at most 2;
this is done by replacing each gate in C with a binary tree, in the natural way (i.e., a
gate with fan-in m is converted to a binary tree of depth dlog(m)e). We say that C′�ρ
contains a σ-strongly-sensitive pattern for G if there exists a pattern P for G such that
we can associate each node v in P with a gate g of C′�ρ that is σ-strongly-sensitive to
Label(v).

Definition B.1.10 (associating circuits with patterns). Let C′�ρ be a circuit whose input
variables correspond to the edge-set of a graph G. For σ ∈ {0, 1}|E(G)|, we say that C′�ρ
contains a σ-strongly-sensitive pattern for G if there exists a pattern P for G and a mapping
Φ from the nodes of P to the gates of C′�ρ that satisfies the following: For every node v in P it
holds that Φ(v) is σ-strongly-sensitive to Label(v).

In other words, each node v in the pattern, which is labeled with Hv = Label(v),
is associated with a gate g of C′�ρ that satisfies the following: When fixing all the
variables except for the ones corresponding to E(Hv), using the values specified in σ,
the gate g still remains sensitive to all of the |E(Hv)| living variables. The crucial ob-
servation in the proof is that every circuit C′�ρ that is sensitive to all its input variables
contains a strongly-sensitive pattern for G:

Proposition B.1.11 (see [LRR17, Lem. 3.7]). Let C′�ρ be a circuit whose input variables
correspond to the edges of a graph G, and whose gates have fan-in at most two. If C′�ρ is
sensitive to all of its input variables, then for every σ ∈ {0, 1}|E(G)| it holds that C′�ρ contains
a σ-strongly-sensitive pattern for G.

Proof. Assume that C′�ρ is sensitive to all of its input variables, and fix σ ∈ {0, 1}|E(G)|.
We prove the following claim: For every gate g in C′�ρ and every non-empty subgraph
H such that g is σ-strongly-sensitive to H it holds that g contains a σ-strongly-sensitive
pattern for H. The proposition follows by applying the claim to the top gate of C′�ρ
with H = G. We prove the claim by induction on the depth of g. The base case is when
g is a variable; in this case H is a single edge (and g contains a σ-strongly-sensitive
pattern for this edge).

For the induction step, let g be a gate of fan-in at most two, and let H ⊆ G be a
graph to which g is σ-strongly-sensitive. If there exists a child g′ of g such that g′ is
σ-strongly-sensitive to H, then by the induction hypothesis g′ contains a σ-strongly-
sensitive pattern for H, and thus g also contains this pattern.

Otherwise, g = g1 ∧ g2 or g = g1 ∨ g2. For any function f , denote by Hsens( f )
the graph whose edges correspond to the set of variables that f is sensitive to. For
i ∈ {1, 2}, let Hi = Hsens(gi�χσ

H
), and observe that gi is σ-strongly-sensitive to Hi. 4 By

4In general, any function f is σ-strongly-sensitive to Hsens( f ), and also σ-strongly-sensitive to
Hsens( f �χσ

H
) for any H.
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the induction hypothesis, for i ∈ {1, 2} it holds that gi contains a σ-strongly-sensitive
pattern Pi for Hi. Let P be the pattern whose top gate is connected to P1 and to P2,
and observe that the top node in P is labeled with H1 ∪ H2 = H, where the equality is
due to the following: First, for i ∈ {1, 2} it holds that Hsens(gi�χσ

H
) ⊆ H, and second,

H = Hsens(g�χσ
H
) ⊆ Hsens(g1�χσ

H
) ∪ Hsens(g2�χσ

H
). Finally, to see that g contains P,

extend the mappings Φ1 and Φ2 of H1 and H2 to a mapping Φ in the natural way (i.e.,
map the top node of P to g).

Using Proposition B.1.11, we can now prove that any distribution that satisfies
Properties (1) and (3̃) also satisfies Property (3). In fact, we can now get rid of the
informal parts in Property (3̃); that is, we can replace the requirement that for “many”
subgraphs H ⊆ G it holds that ∆(H) is “large” by a formal requirement, as follows:

Lemma B.1.12 (main lemma). Let G be a graph on k = O(1) vertices, let ∆ be a non-
negative function on the subgraphs of G, let ρ be a distribution that satisfies Property (1), and
let σ be a distribution {0, 1}|E(G)|. Assume that:

1. For any fixed H ⊆ G and any AC0 circuit C, the probability over ρ ∼ ρ and σ ∼ σ
that C�ρ is σ-strongly-sensitive to H is at most n−∆(H).

2. There exists a number κ > 0 such that in any pattern for G there exists a node labeled
by a subgraph H satisfying ∆(H) ≥ κ.

Then, for any AC0 circuit C with nκ/2−Ω(1) gates, with probability 1− o(1) over choice of
ρ ∼ ρ it holds that C�ρ is insensitive to some of the living input variables.

Proof. For a constant ε > 0, let C be a circuit with nκ/2−ε gates and constant depth.
Let C′ be the circuit that is obtained by replacing every gate in C by a corresponding
binary tree (such that every gate in C′ is of fan-in at most 2). Since C has at most
nκ/2−ε gates, the number of gates in C′ is at most nκ−2ε.

Let E be the event that C�ρ is sensitive to all of its input variables. We start to
upper-bound the probability over ρ ∼ ρ of E , using the following claim.

Claim B.1.12.1. Fix any choice of ρ ∼ ρ such that E happens. Then, for every fixed choice
of σ ∼ σ, there exists a gate g of C′ and a subgraph H ⊆ G such that ∆(H) ≥ κ and g�ρ is
σ-strongly-sensitive to H.

Proof. Fix ρ such that E happens, and fix any σ ∈ {0, 1}|E(G)|. By Proposition B.1.11 it
holds that C′�ρ contains a σ-strongly-sensitive pattern for G. By our hypothesis, there
exists a node v in the pattern that is labeled by H such that ∆(H) ≥ κ. Thus, the
mapping Φ between the pattern and the circuit yields a gate g′ = Φ(v) of C′�ρ such
that g′ is σ-strongly-sensitive to H. Finally, any gate g′ in C′�ρ is of the form g′ = g�ρ,
for some gate g of C′. �
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Let Hκ be the set of subgraphs H ⊆ G such that ∆(H) ≥ κ, let GC′ be the set of
gates of C′, and let Eσ(g, H) be the event that gate g is σ-strongly-sensitive to H. Then,
Claim B.1.12.1 implies that

Pr
ρ∼ρ

[E ] ≤ Pr
ρ∼ρ

[
∀σ ∈ {0, 1}|E(G)| ∃g ∈ GC′ , H ∈ Hκ : Eσ(g, H)

]
≤ Pr

ρ∼ρ,σ∼σ
[∃g ∈ GC′ , H ∈ Hκ : Eσ(g, H)]

≤ ∑
g∈GC′

∑
H∈Hκ

Pr
ρ∼ρ,σ∼σ

[Eσ(g, H)] . (B.1.1)

Now, recall that each gate g ∈ GC′ computes an AC0 function. Relying on the
hypotheses of the lemma, each summand in Eq. (B.1.1) is upper-bounded by n−∆(H) ≤
n−κ. Thus, Eq. (B.1.1) is upper-bounded by nκ−2ε · 2|E(G)| · n−κ = O(n−2ε).

B.1.4 The main theorem, and an example

We are now ready to define the graph-theoretic parameter κ = κ(G), and to state
and prove the lower bound of [LRR17] using this definition. Loosely speaking, Sec-
tions B.1.3.2 and B.1.3.3 imply the following: If, for some κ > 0, we are able to design a
threshold function θ such that in any pattern for G there exists a node labeled by a sub-
graph such that ∆θ(H) ≥ κ, then AC0 circuits that compute SUB(G) have more than
nκ/2−Ω(1) gates. This naturally gives rise to the following definition of the parameter
κ = κ(G):

Definition B.1.13 (the parameter κ; see [LRR17, Def. 2.12(ii)]). For any graph G and
threshold function θ for G, let κ(G, θ) be the maximal value such that in any pattern for G
there exists a node labeled with subgraph H satisfying ∆θ(H) ≥ κ. 5 Let κ = κ(G) be the
maximum, over all threshold functions θ for G, of κ(G, θ).

Theorem B.1.14 (main theorem). For any graph G on k = O(1) vertices, SUB(G) cannot
be computed by AC0 circuits with nκ(G)/2−Ω(1) gates.

Proof. By Lemma B.1.12, for any AC0 circuit C with nκ(G)/2−Ω(1) gates it holds that
C�ρ is insensitive to some of its input variables, with probability 1− o(1) over choice
of ρ ∼ ρ. However, by Property (2) it holds that SUB(G)�ρ is sensitive to all of the
input variables, with probability Ω(1).

Thus, to obtain a lower bound for AC0 circuits computing SUB(G), it suffices to
lower bound κ(G). As an illustrating example, let us consider the graph G = Kk that
is the clique on k vertices, and show that κ(G) ≥ Ω(k). As a threshold function we
use the constant function θ ≡ 2/(k − 1). Indeed, θ satisfies the two requirements
from a threshold function: For any subgraph H of Kk, we have that ∑e∈E(H) θ(e) ≤
(|V(H)|

2 ) · 2
k−1 ≤ |V(H)|, and ∑e∈E(G) θ(e) = k.

5Equivalently, κ(G, θ) = minP∈Patterns(G)

{
maxH∈{labels of nodes in P} {∆θ(H)}

}
.
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Observe that in any pattern for G, there exists a node labeled with a subgraph H
over j = |V(H)| vertices such that k/3 ≤ j ≤ 2k/3. For any such subgraph H, it holds
that ∆(H) ≥ ∆(Kj) = j− ( j

2) ·
2

k−1 = j ·
(

1− j−1
k−1

)
> j

k ·
(

1− j
k

)
· k ≥ 2k/9. Therefore,

κ(G) ≥ 2k/9, and we obtain the following corollary of Theorem B.1.14:

Corollary B.1.15 (AC0 lower bounds for k-clique). AnyAC0 circuit that computes SUB(Kk)
has at least nΩ(k) gates.

B.2 Non-trivial derandomization implies weak lower bounds:
An (almost) elementary proof

A derandomization algorithm for a circuit class C is a deterministic algorithm that
gets as input a circuit C ∈ C, and distinguishes between the case that the acceptance
probability of C is one and the case that the acceptance probability of C is less than
half. (Indeed, in this text we focus on derandomization of circuits with one-sided
error.) Ryan Williams’ fundamental result [Wil13] asserts that for many circuit classes
C, any non-trivial derandomization of C implies weak lower bounds for C.

In Williams’ original result, “weak lower bounds” means that C does not contain
the (large) class NEXP . The current text presents an alternative argument, in which
“weak lower bounds” means that C does not contain the (also large) class ENP . 6 This
alternative argument is already implicit in [Wil13, Lem. 3.2 & Thm. 3.5], and it also
appears in [BSV14, Thm 1.4].7 The advantages of this alternative argument are that
it applies to more circuit classes C, and that the proof is short and almost completely
self-contained. In fact, the only non-elementary part in the proof is a black-box use of
a (known) PCP construction.

As in the original result, to obtain lower bounds for a class C of circuits of some
fixed size and depth, one needs a non-trivial derandomization algorithm for a class
Ĉ of circuits of polynomially-larger size and of somewhat larger depth. The exact
overhead in the proof (i.e., the difference between C and Ĉ) is flexible, since it depends
on various technical details. Since these details are of secondary importance, I will
first state the main theorem slightly informally, without fully defining what Ĉ is with
respect to C, and elaborate on this point immediately after the proof.

Theorem B.2.1 (non-trivial derandomization implies weak lower bounds; informal).
Let C be a class of circuits of size less than 2n/4, and let Ĉ be a class of circuits that are
“slightly larger” than circuits in C. Assume that there exists a deterministic algorithm D that,
when given as input a circuit C ∈ Ĉ over n input bits, distinguishes in time 2n/nω(1) between
the case that C accepts all of its inputs and the case that C rejects most of its inputs. Then,
there exists a function f ∈ ENP such that f /∈ C.

6As far as I know, the two results are incomparable, since I don’t know of any containment ENP ⊆
NEXP or NEXP ⊆ ENP . Note that both classes are contained in EXPNP .

7The work of Ben-Sasson and Viola [BSV14] allowed to extend the alternative argument to significantly
more circuit classes than what was known before; see further details after the proof of Theorem B.2.1.
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Proof. Assume towards a contradiction that ENP ⊆ C. Fixing an arbitrary set L ∈
NTIME(2n), we will construct a non-deterministic machine that decides L in time
2n/nω(1). This will contradict the non-deterministic time hierarchy.

Towards describing the machine, first fix a PCP system for L with the following
properties: The verifier in this system, denoted V, is given an input x ∈ {0, 1}n,
randomness r ∈ {0, 1}n′ , and a proof-oracle πx ∈ {0, 1}2n′

for x, where n′ = n +
O(log(n)); the verifier issues poly(n) queries to πx, verifies the answers to the queries
in time poly(n), and has perfect completeness and soundness 1/2. A PCP construction
with such properties appears in [BGH+05], which builds on [bss05]. Observe that if
we denote N = 2n (such that L ∈ NTIME(N)), then the proof length is Õ(N), and the
number of queries and running time of V are polylogarithmic in N.

The strategy of the machine is as follows. Assume, for a moment, that for any x ∈ L
there exists a proof πx for x that has a concise representation by a circuit from C. Specifically,
assume that there exists a circuit Px ∈ C such that for i ∈ [n′] it holds that Px(i) is the ith

bit of some (fixed) proof πx for x. Since circuits in C are of size significantly less than
2n, the representation length of Px is much smaller than the length of proofs in the PCP
system (i.e., 2n′). Then, given input x ∈ {0, 1}n, the machine can non-deterministically
guess the circuit Px, and construct a circuit Cx,Px ∈ Ĉ such that Cx,Px(r) = VPx(x, r); that
is, the circuit Cx,Px implements the verification procedure of V, while resolving oracle
queries using copies of the circuit Px. Observe that if x ∈ L, then for some guess of Px
it holds that Cx,Px has acceptance probability one, and if x /∈ L, then for any guess of Px
it holds that Cx,Px has acceptance probability at most 1/2. The machine can distinguish
between these two cases in time 2n′/(n′)ω(1) = 2n/nω(1) using the algorithm D from
the theorem’s hypothesis.

The key observation is that if ENP ⊆ C, then for any x ∈ L there indeed exists a
concise representation of a proof πx for x. To see this, consider the function Π that gets
as input x and a location i ∈ [2n′ ], and outputs the ith bit of the lexicographically-first
correct proof for x, if such a proof exists. Note that the function Π is in ENP , since
the lexicographically-first proof for x can be constructed in its entirety by an ENP
machine, bit-by-bit.8 Therefore, relying on the hypothesis that ENP ⊆ C, there exists a
circuit P ∈ C such that P(x, i) = Π(x, i). By hard-wiring x into P, there exists a circuit
Px ∈ C such that Px(i) = Π(x, i).

In the theorem’s hypothesis, we assumed that the algorithm D works when given a
circuit from a class Ĉ of circuits that we informally referred to as “slightly larger” than
circuits in C. What we will actually rely on is that the algorithm D works when given
the circuit Cx,Px . To conclude, let us bound the running-time of the non-deterministic
machine. Since the verifier V runs in time poly(n), and Px has size at most 2(1−Ω(1))·n, 9

8Specifically, the ENP algorithm works in 2n′ iterations: In the ith iteration, the algorithm extends
the prefix of length i − 1 of the lexicographically-first proof for x by a single bit, using the NP oracle
to decide whether or not the prefix can be extended by zero. (Given an i-bit prefix τ ∈ {0, 1}i, the
non-deterministic machine that implements the oracle function “guesses” a suffix τ′ ∈ {0, 1}n′−i, and
simulates the PCP verifier V on all 2n′ possible coin tosses to check whether ττ′ is a correct proof for x.)

9The size bound is because the circuit P is a C-circuit over n + n′ < 3n input bits, and therefore P and
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the circuit Cx,Px can be constructed in non-deterministic time 2(1−Ω(1))·n. The running
time is thus dominated by the running time of the algorithm D, which is at most
2n′/(n′)ω(1) = 2n/nω(1).

Digest. The proof is based on the following unconditional lower bound: Given a rep-
resentation Px of a proof in the aforementioned PCP system (for an arbitrary set in
NTIME(2n)), it is impossible to decide in time 2n/nω(1) whether the acceptance prob-
ability of Cx,Px(r) = VPx(x, r) is one or is at most half. Therefore (disregarding for a
moment the difference between C and Ĉ), a circuit class C cannot be both so strong
such that we are able to get Px ∈ C and construct Cx,Px ∈ C, while still susceptible to
derandomization in non-trivial time.

Let me now be more specific with respect to the definition of the circuit class Ĉ.
The exact requirements from Ĉ depend on the specific PCP system that we use in
the proof; that is, fixing a suitable PCP system with a verifier V, the class Ĉ can be
defined as the class of circuits that, when given input r, implement the verification
procedure of V on some input x with randomness r, while resolving each query to
the proof oracle by a sub-circuit from C. Subsequent research indeed focused on
constructing PCP systems with extremely efficient verifiers; in particular, Ben-Sasson
and Viola [BSV14] constructed a PCP in which the query-locations are projections of
bits of the randomness, and the verification procedure (of the answers) is just a 3CNF.
This allows, for example, to apply the argument in Theorem B.2.1 to classes of circuits
of constant depth (since the depth overhead when constructing Ĉ from C is constant).

The only property of ENP that is used in the proof is that the function Π is in ENP
(which allowed us to deduce that for any x ∈ L there exists a concise representation
of a proof πx for x by a C-circuit). Thus, using the same proof, we can separate C
from any class that contains Π. As mentioned above, in the original proof of Williams,
instead of separating the class C from ENP , the class C is separated from NEXP .
Indeed, for many specific circuit classes C, if NEXP ⊆ C, then for any x ∈ L there
exists a concise representation of a proof πx for x by a C-circuit (see [Wil13; Wil11;
SW13] for further details). However, this fact is highly non-trivial, and follows from
the work of Impagliazzo, Kabanets, and Wigderson [IKW02].

Finally, one can immediately strengthen Theorem B.2.1 in two ways. First, we don’t
have to unconditionally assume that the algorithm D exists; in fact, it suffices to only
assume that D exists under the hypothesis that ENP ⊆ C. Secondly, since we are using
the algorithm D as a sub-routine of a non-deterministic algorithm, we can allow D to
be non-deterministic itself. However, the non-determinism of D should be such that
there exists a proof that leads D to accept circuits with acceptance probability one,
whereas circuits with low acceptance probability are rejected by D (regardless of the
proof); it’s not a-priori clear how non-determinism might be useful for this task.

Px are of size at most 2(3n)/4.
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B.3 The Bazzi-Razborov-Braverman Theorems: Polylogarith-
mic Independence Fools AC0

A distribution w over {0, 1}n is called t-wise independent if for every set S ⊆ [n]
of size |S| = t, the marginal distribution wS is uniform. Linial and Nisan [LN90]
conjectured that any AC0 circuit C : {0, 1}n → {0, 1} of depth d cannot distinguish,
up to error ε, between the uniform distribution un over {0, 1}n and any (arbitrary)
distribution w over {0, 1}n that is t-wise independent, where t = logO(d)(n/ε); that
is, |Pr[C(un) = 1]− Pr[C(w) = 1]| ≤ ε. 10 After decades of the conjecture being an
open problem, it was finally proved in a sequence of works by Bazzi, Razborov, and
Braverman [Baz09; Raz09; Bra10]. In this text I survey their proofs. (I will not survey
a subsequent improvement of t to logO(d)(m) · log(1/ε) by [HS16].)

Bird’s eye. In high-level, AC0 circuits are “fooled” by polylog-wise independent dis-
tributions because AC0 circuits can be approximated by real polynomials of poly-
logarithmic degree, and such polynomials are “fooled” by polylog-wise independent
distributions (since each monomial depends only on a polylogarithmic number of vari-
ables, and using linearity of expectation). However, this is only a very rough intuition.
In particular, various approximations of AC0 circuits by polynomials of polylogarith-
mic degree have been known since the 80’s, but the proof of the conjecture hinges on
a specific type of approximation that we will need to carefully construct.

Starting point. The starting point for the proofs is the well-known fact, first proved
in [LMN93], that any depth-d circuit C can be approximated in `2-distance by a real
polynomial p : {0, 1}n → R of degree t = O(logd(n/ε)); that is, ‖C− p‖2

2 =
Ex∼un

[
(C(x)− p(x))2] ≤ ε. 11 Let us try to directly use the existence of p to prove the

conjecture, and see where we get stuck. In the following expression, w is a distribution
that is t-wise independent, and we abbreviate E[C] = E[C(un)] and Ew[C] = E[C(w)]:∣∣∣E[C]−Ew[C]

∣∣∣ ≤ ∣∣∣E[C]−E[p]
∣∣∣+ ∣∣∣E[p]−Ew[p]

∣∣∣+ ∣∣∣Ew[p]−Ew[C]
∣∣∣ . (B.3.1)

The second term in Eq. (B.3.1) is zero (since w “fools” p), and the first term is
upper-bounded by E[|C− p|] = ‖C− p‖1 ≤ ‖C− p‖2 (using Cauchy-Schwarz), which
is smaller than ε if we take p to be an `2-approximation of C with error ε2. However,
it is not clear how to upper-bound the last term in Eq. (B.3.1). This is the case since
p only approximates C in `2-distance, which is measured with respect to the uniform
distribution on the inputs (i.e., the measure distance is the expected value of (C(x)−
p(x))2 where x is sampled uniformly). In contrast to the uniform distribution, the
distribution w might have very small support, and in particular w might put a lot of
weight on inputs where p(x) significantly differs from C(x).

10The original conjecture was for t = O(logd−1(n)), but this stronger form was proven incorrect [LV96].
11The celebrated result of [LMN93] is based on a Fourier-analytical reduction to Håstad’s switching

lemma [Hås87]; their analysis was later improved to yield a tight result, see [Bop97; Tal17].
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The first observation in the proof, which is due to Bazzi, is the following. Assume
that instead of one approximating polynomial p we have two polynomials p` and pu
that both ε-approximate C in `2-distance, and for every x ∈ {0, 1}n we have that
p`(x) ≤ C(x) ≤ pu(x). That is, p` and pu and “lower-sandwiching” and “upper-
sandwiching” for C, respectively. Then, we deduce that

E[C]−Ew[C] ≤ E[C]−E[p`] + E[p`]−Ew[p`] + Ew[p`]−Ew[C] ≤ ε , (B.3.2)

where the inequality is since the first term and the second term are bounded by ε as
above, whereas the third term is non-positive since p` is “lower-sandwiching”. Simi-
lary, using pu instead of p`, we can deduce that Ew[C]−E[C] ≤ ε. Put together, we

can then deduce that
∣∣∣E[C]−Ew[C]

∣∣∣ ≤ ε, which is what we wanted.
In fact, we don’t even have to assume that the “sandwiching” polynomials p` and

pu approximate C in `2-distance, and it suffices to assume that they approximate C in
`1-distance; that is, we just need that ‖C− p`‖1 = Ex[|C(x)− p`(x)|] ≤ ε, and ditto
for pu. (Recall that for any f we have that ‖ f ‖1 ≤ ‖ f ‖2, by Cauchy-Schwarz, and so
an approximation in `2-distance is stronger than an approximation in `1-distance.)

B.3.1 Bazzi’s Lemma: `2-approximations with one-sided error

The initial lemma that the proof relies on is the following: If there exists a low-degree
polynomial p0 of degree d that ε-approximates C in `2-distance and has one-sided
error (i.e., p0 vanishes on C−1(0)), then there exists a polynomial p` of degree 2d
that ε-approximates C in `1-distance and is “lower-sandwiching” for C. As explained
above, it follows that E[C]−Ew[C] ≤ ε for any (2d)-wise independent distribution w.

Moreover, since we are dealing with AC0, then a “lower-sandwiching” p` suffices,
and we don’t need an “upper-sandwiching” approximation pu. This is because for any
class F of functions that is closed to negations, if we know that E[ f ]−Ew[ f ] ≤ ε for
every f ∈ F , then we also know that Ew[ f ]−E[ f ] = E[1− f ]−Ew[1− f ] ≤ ε (where
we used the fact that 1− f = ¬ f ∈ F ).

Armed with this lemma, which will be proved in a moment, the gap between what
we know and what we need to prove is the following: We know that any circuit C of
depth d and size m can be ε-approximated in `2-distance by a polynomial p of degree
O(logd(m/ε)), and we want to have such an approximation by a polynomial p0 that
also vanishes on C−1(0). Constructing p0 will indeed be the focus of the proof, and we
will be able to construct p0 with degree logO(d)(m/ε).)

Let us now formally state Bazzi’s lemma, which constructs a “lower-sandwiching”
`1-approximation p` given a one-sided error `2-approximation p0. Afterwards, we
state a useful corollary, which refers to classes F that are closed to negations.

Lemma B.3.1 (Bazzi’s lemma; the core argument). Let f : {0, 1}n → {0, 1}. Assume that
there exists p0 : {0, 1}n → R such that ‖ f − p0‖2

2 ≤ ε and p0 vanishes on f−1(0). Then, the
polynomial p` = 1− (1− p0)2 is a “lower-sandwiching” ε-approximation of f in `1-distance
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(i.e., Ex[| f (x)− p`(x)|] ≤ ε, and p`(x) ≤ f (x) for every x ∈ {0, 1}n). Consequently, for any
distribution w over {0, 1}n that is ε-pseudorandom for p` it holds that E[ f ]−Ew[ f ] ≤ 2ε.

Proof. We first claim that for every x ∈ {0, 1}n it holds that f (x)− p`(x) = ( f (x)−
p0(x))2. This is the case since for every x ∈ f−1(0) we have that p0(x) = p`(x) = 0,
whereas for every x ∈ f−1(1) we have that f (x)− p`(x) = f (x)− 1 + (1− p0(x))2 =
(1− p0(x))2. It follows that p`(x) ≤ f (x) for all x ∈ {0, 1}n (since f − p` is a non-
negative function), and that ‖ f − p`‖1 = Ex[| f (x)− p`(x)|] = Ex[( f (x)− p0(x))2] =

‖ f − p0‖2
2 ≤ ε. The “consequently” part follows by bounding the expression in

Eq. (B.3.2) as in the initial overview.

Corollary B.3.2 (a useful corollary of Lemma B.3.1). Let F ⊆ {{0, 1}n → {0, 1}} be
a class of functions that is closed to negations. Assume that for every f ∈ F there exists
p0 : {0, 1}n → R of degree d such that ‖ f − p0‖2

2 ≤ ε and p0 vanishes on f−1(0). Then, any
distribution w that is (2d)-wise independent is ε-pseudorandom for F .

Let me mention in advance that the proof will not rely on Corollary B.3.2 as a
“black-box”, but will need variations of it.12 However, Corollary B.3.2 seems like a
clean statement that still captures the main idea in the underlying argument.

B.3.2 Low-degree approximations in `2 distance with one-sided error for
small-depth circuits

Our goal now is to approximate every AC0 circuit C in `2 distance with one-sided
error by a low-degree polynomial p0. I’ll first present Bazzi’s proof for the special
case of depth-two circuits (as simplified by Razborov and by Wigderson), and then
present Braverman’s proof for AC0 circuits of any constant depth. (The special case of
depth-two circuits has both a simpler proof, and better parameters: The distribution
for depth-two circuits is O(log2(m/ε))-wise independent, whereas the distribution for
depth-d circuits is logO(d)(m/ε)-wise independent.)

B.3.2.1 Depth-two circuits: Wigderson’s simplification of Razborov’s simplification
of Bazzi’s construction

We will prove that all DNFs are “ε-fooled” by any distribution w that is O(log2(m/ε))-
wise independent. It follows that all CNFs are also “ε-fooled” by w. Let f : {0, 1}n →
{0, 1} be computed by a depth-two circuit, and assume that f = A1 ∨ ... ∨ Am, where
each Ai is a conjunction of O(log(m/ε)) literals.13

12The main source of trouble for Bazzi’s argument is that the class F of DNFs is not closed to negations.
In Braverman’s argument, we do not construct p0 directly for a circuit C, but rather for auxiliary circuits
that approximate C.

13More formally, we carry out the analysis with respect to the DNF f̃ that is obtained by trimming
each of the m clause of f to consist of at most w = O(log(m/ε)) literals. We can analyze f̃ instead of f

since
∣∣∣E[ f ]−E[ f̃ ]

∣∣∣ ≤ ε and
∣∣∣Ew[ f ]−Ew[ f̃ ]

∣∣∣ ≤ ε (the inequalities are since each clause is satisfied only if

its first w literals are true, which happens with probability 2−w ≤ ε/m both under un and under w).
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Our first step is to construct a polynomial p0 of degree O(log2(m/ε)) that ε-
approximates f in `2-distance while vanishing on all points in f−1(0). To do so, for any
i ∈ [m], denote by f (i) the function f (i)(x) = A1(x)∨ ...∨ Ai(x), and also denote by f (0)

the constant zero function. Then, a useful observation is that for every x ∈ {0, 1}n it
holds that f (x) = ∨i∈[m]

(
Ai(x) ∧ ¬ f (i−1)(x)

)
= ∑i∈[m] Ai(x) ·

(
1− f (i−1)(x)

)
, where

the arithmetic is over the reals. This is because if f (x) = 0, then for every i ∈ [m] it
holds that Ai(x) = 0; whereas if f (x) = 1 then there exists a unique i ∈ [m] such that
Ai(x) = 1 and that f (i−1)(x) = 0 (i.e., Aj(x) = 0 for all j < i).

The approximating polynomial p0 of f is p0(x) = ∑i∈[m] ai(x) ·
(

1− p(i−1)(x)
)

,

where ai is the multiplication of the O(log(m/ε)) literals in Ai, and p(i−1)(x) is the
standard (known) `2 approximation of the sub-DNF f (i−1)(x), with error δ = ε/m2

and degree O(log(m/δ)) (see [Bop97]). So overall p0 has degree O(log2(m/ε)).
To see that p0 has one-sided error in approximating f , note that if f (x) = 0 then

Ai(x) = ai(x) = 0 for all i ∈ [m], which implies that p0(x) = 0. To see that p0 is an
approximation in `2-distance for f , note that

‖ f − p0‖2
2 = Ex

[
( f (x)− p0(x))2

]
= Ex

( ∑
i∈[m]

ai(x) ·
(

p(i−1)(x)− f (i−1)(x)
))2

 (Ai(x) = ai(x))

≤ Ex

[
m · ∑

i∈[m]

a2
i (x) ·

(
p(i−1)(x)− f (i−1)(x)

)2
]

(Cauchy-Schwartz)

≤ m · ∑
i∈[m]

·
∥∥∥p(i−1) − f (i−1)

∥∥∥2

2
, (ai(x) ∈ {0, 1})

which is upper-bounded by δ ·m2 = ε.
Now, due to our construction of p0, we can rely on Lemma B.3.1 to deduce that

E[ f ]−Ew[ f ] ≤ ε for any O(log2(m/ε))-wise independent distribution w. However,
we still need to prove that Ew[ f ] − E[ f ] ≤ ε, and we cannot apply Corollary B.3.2,
since the class of DNFs is not closed to negations. To overcome this problem, Bazzi
used the existence of p0 to explicitly construct an “upper-sandwiching” polynomial
pu for f such that ‖ f − pu‖2

2 ≤ ε. Specifically, let pu(x) = 1 − (1 − ∑i∈[m] Ai(x)) ·
(1− p0(x))2. One can verify that pu vanishes on f−1(0) and that for every f−1(1) it
holds that pu(x) ≥ 1; hence, pu is indeed “upper-sandwiching” for f . Additionally,
we have that Ex[pu(x)− f (x)] ≤ Ex[pu(x)− p`(x)] = Ex

[
∑i∈[m] Ai(x) · (1− p0)2

]
=

Ex

[
∑i∈[m] Ai(x) · ( f − p0)2

]
≤ m · ‖ f − p0‖2

2, where the penultimate equality can be

verified by separately considering x ∈ f−1(1) and x−1(0). Thus, if we take δ = ε/m3,
we have Ex[pu(x)− f (x)] ≤ δ ·m3 ≤ ε, and it follows that Ew[ f ]−E[ f ] ≤ ε.
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A follow-up: The PRG of De et al. [DET+10]. Bazzi’s proof framework was later on
used by De et al. [DET+10] (see also improvement by Tal [Tal17]) to construct what are
currently the best-known pseudorandom generators for depth-two circuits.

Specifically, for every DNF f , De et al.constructed a polynomial p0 that ε-approximates
f in `2-distance and vanishes on f−1(0) such that p0 has small spectral norm, rather than
low degree (i.e., p0 has small `1-norm in the Fourier basis). Then, they used Bazzi’s
constructions of p` and of pu, while arguing that the spectral norm does not signif-
icantly increase, and deduced that any distribution that is pseudorandom for poly-
nomials with small spectral norm is also pseudorandom for depth-two circuits. (In
particular, any small-biased set is pseudorandom for depth-two circuits.) In fact, their
construction of p0 is very similar to the construction above, the main difference being
that the p(i)’s are not the standard `2-approximations of the f (i)’s, but rather different
(known) `2-approximations by Mansour [Man95] that have small spectral norm.

B.3.2.2 Constant depth circuits: Braverman’s idea

I’ll present the proof in a slightly different way than in the original paper, mainly by
introducing a preliminary conceptual step.

A preliminary step: Randomly computing a function by a distribution over simpler
functions We say that a distribution g over functions g : {0, 1}n → {0, 1} randomly
computes a function f : {0, 1}n → {0, 1} with error ε if for every x ∈ {0, 1}n it holds
that Prg∼g[g(x) = f (x)] ≥ 1 − ε. The following claim asserts that if g randomly
computes f , then any distribution w that is pseudorandom for all the functions g in
the support of g is also pseudorandom for f . In fact, the conclusion also holds if w is
pseudorandom for almost all the functions g in the support of g. This follows the ideas
outlined in Section 3.2.

Lemma B.3.3 (randomized tests; a basic form). Let f : {0, 1}n → {0, 1}, and let g be
a distribution over functions g : {0, 1}n → {0, 1} that randomly computes f with error ε.
Let w be a distribution such that the probability over g ∼ g that w is ε-pseudorandom for g
is at least 1− ε. Then, w is 4ε-pseudorandom for f . Moreover, if we only assume that for
1− ε of the g’s in the support of g it holds that E[g]−Ew[g] ≤ ε, then we can deduce that
E[ f ]−Ew[ f ] ≤ 4ε.

Proof. Note that
∣∣∣E[ f (un)]−E[ f (w)]

∣∣∣ is upper-bounded by

∣∣∣E[ f (un)]−E[g(un)]
∣∣∣+ ∣∣∣E[g(un)]−E[g(w)]

∣∣∣+ ∣∣∣E[g(w)]−E[ f (w)]
∣∣∣ .

The first term
∣∣∣E[ f (un)] − E[g(un)]

∣∣∣ is at most ε, since for any fixed x ∈ {0, 1}n

it holds that Pr[ f (x) 6= g(x)] ≤ ε. The same reasoning implies that the third term is
also upper-bounded by ε. To see that the second term is also upper-bounded by ε,
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consider a choice of g ∼ g, and denote by E the event that w is ε-pseudorandom for
g; then, we have that∣∣∣E[g(un)]−E[g(w)]

∣∣∣ ≤ Eg∼g

[∣∣∣E[g(un)]−E[g(w)]
∣∣∣]

≤ Pr
g∼g

[¬E ] + max
g∼g|E

{∣∣∣E[g(un)]−E[g(w)]
∣∣∣} ,

which is upper-bounded by 2ε. The “moreover” part uses essentially the same proof,
the only difference being that all the expressions are without absolute values.

Lemma B.3.3 is useful when we want to construct a pseudorandom generator for
a function f . The lemma asserts that if f can be computed by a distribution g over
“simpler” functions, then it suffices to construct a pseudorandom generator for the
“simpler” functions (since such a generator “fools” f ). The point is that the distribu-
tion g might have very high entropy (i.e., we can use a lot of randomness to compute
f ), but this distribution is still only part of the analysis, and thus we don’t “pay” for
this randomness when constructing the generator itself.

The proof outline Let C : {0, 1}n → {0, 1} be a circuit of depth d and size m. Our
proof strategy will be to randomly compute C by a distribution C such that almost
all of the functions Cp : {0, 1}n → {0, 1} in the support of C have approximations
in `2-distance with one-sided error by a low-degree polynomial. We then rely on
Lemma B.3.1 to claim that a distribution with limited independence is pseudorandom
for almost all the functions Cp in the support of C, and rely on Lemma B.3.3 to deduce
that this distribution is also pseudorandom for C. That is, the proof overview is:

1. New claim: The circuit C can be randomly computed by a distribution C such
that 1 − ε of the functions in the support of C can be ε-approximated in `2

distance with one-sided error by a polynomial of degree t = logO(d)(m/ε).

2. Lemma B.3.1: For 1 − ε of the functions Cp in the support of C it holds that
E[Cp]−Ew[Cp] ≤ ε, where w is a t-wise independent distribution.

3. Lemma B.3.3: It holds that E[C]−Ew[C] = O(ε).

Finally, since the class of depth-d circuits is closed to negations, the argument above
also holds for ¬C = 1− C, and thus Ew[C]−E[C] = E[¬C]−Ew[C] = O(ε). 14

14Braverman’s original proof did not rely on a lemma similar to Lemma B.3.3. In the original proof,
Braverman relied on the existence of C to deduce that for every distribution µ over the inputs there exists
a single “good” Cp ∼ C that agrees with C on 1− ε of the inputs according to µ (this claim is then used
with µ = un and µ = w). When using Lemma B.3.3 we avoid this argument.
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Randomly computing AC0 circuits by functions that can be approximated in `2 dis-
tance with one-sided error The main thing to prove is the “new claim” from the
outline above: Every depth-d circuit C of size m can be randomly computed by a distri-
bution C such that 1− ε of the functions Cp in the support of C can be ε-approximated
in `2 distance with one-sided error by a polynomial of degree t = logO(d)(m/ε).

The starting point of the proof is the following claim, which asserts the existence
of a distribution p of low-degree polynomials that randomly compute C, as well as an
accompanying small-depth circuit Ep for each choice of p ∼ p. The circuit Ep acts as
an “error-detector” for p; that is, whenever p(x) 6= C(x) we have that Ep(x) = 1.

Lemma B.3.4 (Razborov-Smolensky polynomials with an error-detector). Let C : {0, 1}n →
{0, 1} be a circuit of depth d and size m, and let ε > 0. Then, there exists a distribution p
over real polynomials p : {0, 1}n → R, and a mapping p 7→ Ep where Ep : {0, 1}n → {0, 1}
is computable by a circuit of depth d + O(1), that has the following properties:

1. All polynomials p in the support of p have degree r = O(log(m/ε))d+1.

2. For every x ∈ {0, 1}n it holds that maxp∼p{|p(x)|} = 2logO(d)(m/ε).

3. For every x ∈ {0, 1}n and p ∼ p such that p(x) 6= C(x) it holds that Ep(x) = 1.

4. For every x ∈ {0, 1}n it holds that Prp∼p[Ep(x) = 1] ≤ ε2.

Lemma B.3.4 is not stated as-is in Braverman’s paper, but Braverman’s proofs read-
ily yield it (see [Bra10, Thm. 8, Prop. 9]). The proof relies on a modification of clas-
sical constructions of probabilistic polynomials for AC0 and for AC0[⊕] circuits (i.e.,
the constructions of [Raz87; Smo87; BRS91; Tar93]; the constructions are surveyed in
many good sources, e.g. [AB09, Sec. 14.2]). The main new observation of Braverman
is the function Ep can be computed by a small-depth circuit; one should think of Ep
as an “error-detector” that gets input x ∈ {0, 1}n and detects the “error” p(x) 6= C(x)
such that Ep never misses but has (few) false alarms.

Indeed, by an averaging argument, one can see that almost all polynomials p in
the support of p agree with C on almost all inputs. However, any such polynomial p
might not be a good approximator in `2-distance for C, since p might take very large
values (i.e., up to ±2logO(d)(m/ε)) on inputs on which it disagrees with C.

The plan and intuition for the rest of the proof are as follows (the overview that
comes next roughly corresponds to the one in [Bra10, Sec. 1.3]). We first “approx-
imate” C by considering the distribution C = C ∨ Ep; that is, the distribution ob-
tained by sampling p ∼ p and outputting Cp = C ∨ Ep. Due to Items (3) and (4) in
Lemma B.3.4, this distribution computes C with error ε2. Using an averaging argu-
ment, we will deduce that for 1− ε of the functions Cp = C ∨ Ep in the support of C it
holds that Prx[Ep(x) = 1] ≤ ε. Finally, we approximate any such Cp = C ∨ Ep by the
polynomial p · (1− Ẽp), where Ẽp is the standard `2-approximation of the circuit Ep
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(i.e., without one-sided error), with a small error δ to be determined later.15 The intu-
itive idea behind this approximation is that in the (rare) event that p(x) 6= C(x), the
multiplication of p(x) by 1− Ẽp(x) ≈ 0 will “suppress” the potentially-large values of
p.

Let us see that p · (1− Ẽp) is indeed an ε-approximation in `2-distance for Cp and
that it vanishes on C−1

p (0). To do so, first note that when Cp(x) = 0 we have that
Ep(x) = C(x) = 0 ⇒ p(x) = 0, and hence p · (1− Ẽp) vanishes on C−1

p (0). Now,
intuitively, we replaced C with p, and replaced the disjunction with Ep with a multi-
plication by (1− Ẽp). On inputs x ∈ E−1

p (0), this replacement shouldn’t matter much,
since C(x) = p(x) and 1− Ẽp(x) ≈ 1 (and the latter approximation is in `2-distance).
On inputs x ∈ E−1

p (1), the replacement of C by p might create an error as large as

2logO(d)(m/ε) (due to Item (2) in Lemma B.3.4). However, note that the contribution of
each such input to the error is the (square of the) difference between Cp(x) = 1 and
p · (1− Ẽp), where 1− Ẽp(x) ≈ 0. In particular, if we take Ẽp to be an approximation of

Ep with error δ = 2− logO(d)(m/ε), which requires degree about log(1/δ) = logO(d)(m/ε),
the contribution of each such input is approximately C2

p(x) = 1, and thus their overall
contribution is approximately Prx[Ep(x) = 1] ≤ ε. Details follow.

To sample Cp ∼ C, we sample p from the distribution p in Lemma B.3.4, and let
Cp = C ∨ Ep. First note that C indeed randomly computes C with error ε (i.e., for
every x ∈ {0, 1}n it holds that PrCp∼C[Cp(x) = C(x)] ≥ 1− ε); this is the case since
Cp(x) 6= C(x) only when Ep(x) = 1, which happens with probability at most ε2 < ε.

Let Cp = C ∨ Ep be in the support of C, and let Ẽp be the standard `2 approxi-

mation of the AC0 circuit Ep (which has depth d + O(1)), with error δ = 2− logO(d)(m/ε)

and degree logd+O(1)(m) · log(1/δ) = logO(d)(m/ε). 16 We define the approximating
polynomial for Cp to be C̃p(x) = p(x) · (1− Ẽp(x)). Note that the degree of C̃p is at
most deg(p) + deg(Ẽp) = logO(d)(m/ε). Also note that C̃p vanishes on C−1

p (0), since if
Cp(x) = 0 then C(x) = Ep(x) = 0, which implies that p(x) = 0 and hence C̃p(x) = 0.

Now, observe that the probability over p ∼ p that Prx[Ep(x) = 1] ≤ ε is at least
1− ε. This follows by an averaging argument: Specifically, since for every x ∈ {0, 1}n

we have that Prp[Ep(x) = 1] ≤ ε2, it follows that Ex[Prp[Ep(x) = 1]] ≤ ε2, and hence
Ep[Prx[Ep(x) = 1]] ≤ ε2. Thus, the probability over p ∼ p (and hence also on Cp ∼ C)
that Prx[Ep(x) = 1] ≥ ε is at most ε. For every Cp such that Prx[Ep(x) = 1] ≤ ε, we
will show that C̃p = p · (1− Ẽp) ε-approximates Cp in `2-distance.

Claim B.3.5. For every Cp ∼ C such that Prx[Ep(x) = 1] ≤ ε it holds that
∥∥Cp − C̃p

∥∥2
2 ≤

4ε.

15It would have been nicer to define Cp = C ∧ (¬Ep) and approximate Cp by p · (1− Ẽp). However, the
latter polynomial does not have one-sided error with respect to C ∧ (¬Ep).

16To get such a good dependence of the degree on δ, the classical results of [LMN93; Bop97] do not
suffice, and we need the recent improvement from [Tal17].
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Proof. We upper-bound
∥∥Cp − C̃p

∥∥
2 by 2

√
ε, as follows:∥∥Cp − C̃p

∥∥
2 ≤

∥∥Cp − p · (1− Ep)
∥∥

2 +
∥∥p · (1− Ep)− C̃p

∥∥
2 . (B.3.3)

To upper-bound the left term, let ` = Cp − p · (1− Ep). Note that for every x ∈
E−1

p (0) it holds that p(x) = Cp(x), and hence `(x) = 0; whereas for every x ∈ E−1
p (1)

it holds that `(x) = Cp(x) ∈ {0, 1}. Thus, ‖`‖2 ≤
√

Prx[Ep(x) = 1] ≤
√

ε. To upper-

bound the right-term, observe that p · (1 − Ep) − C̃p = p ·
(
Ep − Ẽp

)
; recalling that

|p(x)| ≤ 2logO(d)(m/ε) for every x ∈ {0, 1}n (by Item (2) of Lemma B.3.4), we have that∥∥p · (1− Ep)− C̃p
∥∥

2 ≤ 2logO(d)(m/ε) ·
∥∥Ep − Ẽp

∥∥
2 < 2logO(d)(m/ε) ·

√
δ ,

and since δ = 2− logO(d)(m/ε) the expression can be upper-bounded by
√

ε.

We can now complete the proof, as in the outline described above. Let w be a
distribution that is t-wise independent, for t = logO(d)(m/ε). Using Lemma B.3.1, for
1− ε of the functions Cp in the support of C it holds that E[Cp]−Ew[Cp] ≤ 8ε. Using
the “moreover” part of Lemma B.3.3, it holds that E[C]−Ew[C] ≤ 32ε. And since the
class of depth-d circuits is closed to negations, the same argument applies for 1− C,
and hence Ew[C]−E[C] ≤ 32ε.

B.4 Karp-Lipton Theorems: Translating Non-Uniform Collapses
into Uniform Collapses

Abstract. Assume that there exists an infinite sequence of small circuits, one for each
input length, that solves some “hard” problem. Can we use this fact to construct a
single efficient algorithm that solves some (possibly different) “hard” problem on all
input lengths? Put otherwise, does a collapse of some strong uniform class into small
non-uniform circuits imply an analogous collapse of some (possibly different) strong
uniform class into a seemingly-weaker uniform class?

This is the general question that underlies many results that are typically referred
to as “Karp-Lipton theorems”, following the classic result in this spirit by Karp and
Lipton [KL80]. My goal in this text is to describe the various ideas that were intro-
duced over the years to try and answer the question.

This survey is written from a technical perspective: More emphasis is given to proof ideas rather
than to the results themselves and their implications. Moreover, the text is a bit advanced,
and does not fully explain many notions (e.g., PCPs, MIPs, the Nisan-Wigderson PRG, and
natural proofs). Nevertheless, I hope that the text can be useful, perhaps for more experienced
researchers or for students interested in the specific area.

My warm thanks to Eylon Yogev and to Lijie Chen for very helpful comments on
drafts of the text, and to my advisor Oded Goldreich for detailed useful feedback!
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B.4.1 Overview, context, and a few examples

The context of Karp-Lipton theorems is the project of trying to prove circuit lower
bounds; that is, of trying to prove that “small” non-uniform circuits cannot decide
every problem in some “strong” uniform complexity class.

Karp-Lipton theorems can be thought of as intermediate results towards this goal:
Such theorems start from a hypothesis that small non-uniform circuits are unexpect-
edly strong (we think of this as a “towards a contradiction hypothesis”), and derive
conclusions that seem even more unlikely. The latter conclusions are typically in the
uniform world, and assert that some uniform class is also unexpectedly strong. That is,
we begin with the hypothesis that some “hard” problem can be solved by an infinite
sequence of small circuits, one for every input length, and we want to deduce that
some (possibly different) “hard” problem can be solved by a single efficient uniform
algorithm, which handles all (or at least infinitely-many) input lengths. Of course, we
hope to continue deriving conclusions that are more and more unlikely, and end up
with a contradiction, hence proving circuit lower bounds.

The point in a Karp-Lipton theorem as above is that given such a result, we are
now completely in the uniform world, and thus hope to have an easier time progressing
towards a contradiction. The source of hope is that instead of comparing the uniform
complexity of the “hard” problem to the non-uniform complexity of the circuit family,
we are now comparing the uniform complexity of the “hard” problem to the uniform
complexity of the algorithm; that is, we are closer to comparing “apples-to-apples”.
Ideally, we would like to compare the complexity of the problem and of the algorithm
along a single complexity measure (e.g., time or space) and obtain a contradiction by
a hierarchy theorem; for example, if the “hard” problem is complete for DTIME[T],
and we are able to solve it in time T′ � T, then we obtain a contradiction and deduce
circuit lower bounds. For a setting where this actually happens, see Section B.4.5.

As pointed out by Oded Goldreich, this way of thinking about Karp-Lipton theo-
rems is relatively new. Originally, the unlikely conclusions of Karp-Lipton theorems
were seen as providing evidence that circuit lower bounds are even possible (see,
e.g., [Gol08, Sec. 3.2.3]). In contrast, the description above considers the unlikely con-
clusions as intermediate results on our way to obtain a contradiction and prove circuit
lower bounds (where the latter are a-priori believed to be true).

My goal in this text is to present the main technical challenge underlying the proofs
of Karp-Lipton theorems, and to describe various ideas that were introduced over the
years to overcome this challenge (and that I’m familiar with). Along the way, I’ll
mention some of the Karp-Lipton theorems that I know of and describe their proofs.

A few examples. Let us begin by stating a few well-known examples of Karp-Lipton
theorems and parsing their statements, mostly to get used to the type of results in this
field. Instead of beginning with the original theorem by Karp and Lipton, I want to
start from subsequent theorems, which more closely resemble recent results.

As a first example, Babai et al. [BFN+93] showed that if EXP ⊂ P/poly (i.e., if
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polynomial-sized circuits can decide every problem in EXP), thenMA = EXP . It’s
useful to read the latter conclusion as “MA is unexpectedly strong”; this is since
MA is the randomized version of NP , and so we expect it to equal NP under
a sufficiently strong derandomization hypothesis. There are several results that are
very similar to this one, which stem from the works of Impagliazzo, Kabanets, and
Wigderson [IKW02], of Lund et al. [LFK+92] and Shamir [Sha92], and of Kabanets and
Impagliazzo [KI04]:17

Theorem B.4.1 ([BFN+93; LFK+92; Sha92; IKW02; KI04]). For any uniform class
U ∈ {EXP ,NEXP ,PSPACE ,PP}, if U ⊂ P/poly, then MA = U . Similarly, if
#P has polynomial-sized arithmetic circuits, thenMA = P#P .

Another Karp-Lipton theorem underlies the results of Williams [Wil13] and of
Murray and Williams [MW18]. For simplicity, let’s focus on [Wil13]: Loosely speak-
ing, the underlying Karp-Lipton theorem asserts that for any “typical” circuit class C,
if NEXP ⊂ C, then NE can be decided by anMA protocol that uses a linear number
of random coins, and whose residual decision as a function of its random coins can be
computed by a C-circuit (for precise details see Section B.4.3.2). These results are es-
pecially interesting since for some classes C we can “push forward” this intermediary
conclusion to actually derive a contradiction, and deduce lower bounds for C.

Yet another example comes from the work of Impagliazzo and Wigderson’s [IW99].
The Karp-Lipton theorem that underlies their main result asserts that if EXP ⊂
P/poly and the Nisan-Wigderson generator, instantiated with the permanent function
and for polynomial stretch, does not fool uniform polynomial-time algorithms, then
BPP = EXP (for precise details and various extensions see Section B.4.4.2). Note
that this result differs from the results above, since it uses an additional hypothesis
(that the NW generator doesn’t fool uniform algorithms) but is then able to construct
a BPP algorithm, rather than just anMA verifier, for EXP .

As a last example (in this non-exhaustive list), we can also consider the original
theorem by Karp and Lipton [KL80] as following the same template: IfNP ⊂ P/poly,
then “Σ2 is too strong”, in the sense that Σ2 can decide Π2 and therefore all of the
polynomial-time hierarchy. I discuss this theorem in Section B.4.3.1, and mention
various extensions and improvements in Sections B.4.3.1, B.4.4.1 and B.4.6.

Lower bounds via a win-win analysis. A classic approach to deduce unconditional
lower bounds from Karp-Lipton theorems is a win-win analysis first introduced by
Kannan [Kan82]. As an example, recall the original Karp-Lipton theorem “NP ⊂
P/poly ⇒ Σ2 = PH”. The win-win analysis in Kannan’s theorem allows us to
deduce from this result that for any fixed k ∈ N it holds that Σ2 6⊂ SIZE[nk]. This
is done by analyzing two cases: Either NP 6⊂ P/poly, in which case we are done;
or NP ⊂ P/poly, which implies that Σ2 = PH. Now, since we already know that
PH 6⊂ SIZE[nk] for any fixed k (by a straightforward diagonalization argument, see

17Some of the results aren’t stated in this fashion in the original papers, but are well-known to follow
as corollaries; I’ll explain how in Section B.4.3.
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e.g. [Juk12, Lem. 20.12]), in the second case we can deduce that Σ2 6⊂ SIZE[nk] for any
fixed k. Put together, for any fixed k it holds that Σ2 6⊂ SIZE[nk].

Similar win-win analyses has been used to deduce various unconditional lower
bounds from Karp-Lipton theorems (see, e.g., [KW99; Vin05; Aar06; San09]); in fact, it
turns out that in some settings Karp-Lipton theorems are necessary in order to deduce
the lower bounds that can be obtained by this type of win-win analysis (see the recent
paper by Chen et al. [CMM+19]). However, as my focus in this text is on how to prove
Karp-Lipton theorems, I will not survey these results here.

Organization. In Section B.4.2 I’ll describe the main technical challenge underlying
Karp-Lipton theorems, and in Sections B.4.3 and B.4.4 I’ll survey some general ideas
that were introduced to overcome this challenge. In Section B.4.5 I’ll survey one way
of “pushing forward” the conclusions of Karp-Lipton theorems (other than win-win
analyses as described above), namely by also considering a derandomization hypothesis;
this approach yields proofs that derandomization imply circuit lower bounds. Finally,
in Section B.4.6 I’ll briefly mention a few results that consider natural variations of the
basic question underlying Karp-Lipton theorems.

B.4.2 The core technical challenge

The core technical challenge that underlies Karp-Lipton theorems is the following.
Assume that some small circuit class is unexpectedly strong; for example, assume
that EXP ⊂ P/poly. Using this hypothesis, we want to show that some uniform
class, say MA, is unexpectedly strong. Of course, to do so we want to leverage the
hypothesis that there exists a family of small circuits for some “very hard” problem
L ∈ EXP . The core issue is that, while we are guaranteed that circuits for L exist, we
are not guaranteed that we can efficiently find such a circuit that solves L. So how can
a uniform algorithm make any use of the hypothesis that the circuit exists, if it might
be difficult for the algorithm to get its hands on such a circuit?

The naive solution is to go over all relevant circuits, and for each circuit test
whether or not it has the correct functionality. The trouble with this approach is
not only that exhaustive search is inefficient, but also that it is not even clear how
to efficiently verify that a given circuit has the expected functionality. Thus, we are
faced with two separate problems: The problem of verifying that a given circuit has the
expected functionality, and the problem of finding a circuit with the functionality that
we want. That is, we have a decision problem and a corresponding search problem.

The main point of this text is to survey some known general ideas for solving these
problems, and to state corresponding results that are obtained. It’s worthwhile to
note in advance that the majority of solutions only address the verification problem,
without solving the search problem. Such solutions yield uniform algorithms that
are non-deterministic: The algorithms use their non-determinism to obtain a candidate
circuit, then efficiently verify the circuit’s functionality, and finally use the circuit to
solve some hard problem. For some (partial) explanation why most known algorithms
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solve only the verification problem and not the search problem, see Section B.4.4.
Let me stress that we are interested in verifying that the circuit correctly computes

the corresponding function on all inputs; that is, we are verifying that the circuit is
correct in “worst-case”. One may also consider a relaxed setting, in which we only
wish to verify that the circuit is correct on average-case (e.g., that the circuit behaves
correctly on 99% of the inputs). Indeed, the latter notion has been extensively studied,
and is related to program checking, property testing, error-correcting codes, and PCPs;
needless to say, I have no intention of trying to survey those here. A natural strategy
to solve the worst-case problem is to try and first verify that a circuit is correct on
average-case, and then use a worst-case to average-case reduction to obtain a circuit
that is correct on worst-case. One result that uses such a strategy (by Impagliazzo and
Wigderson [IW98]) will be presented in Section B.4.4.

B.4.3 Verifying the functionality of a circuit

In this section, I’ll survey some of the ideas used to construct algorithms that verify
that a given circuit has the expected functionality. As one might expect when dealing
with such verification, the main technical tool used by most of the solutions is proof systems
with specific useful properties.

The specific proof systems that are used in the results in this section are the inter-
active proof underlying IP = PSPACE (see [LFK+92; Sha92]), the two-prover MIP
for EXP (see [BFL91]), and PCPs with almost-linear proof length and very efficient
verifiers (see [BGH+05; BSV14]).

B.4.3.1 Proof systems with efficient provers

Assume that we want to decide a set L in some large uniform class U , under the
“collapse” hypothesis that U (or some other large uniform class U ′) has small circuits.
The first idea leverages the existence of a proof system for U such that the strategy of
the prover (or provers) in this proof system can be implemented by an efficient algorithm (e.g.,
the prover strategy is in U ). The idea is that instead of expecting to receive (and verify)
a small circuit that computes L, for every input x, we will expect to receive a small
circuit P that implements the prover strategy for L at x. Indeed, the main point is that
now we can efficiently verify that the circuit P has the expected functionality (since,
by definition, this expected functionality can be verified in a proof system). To recap
the main idea, instead of verifying circuits for L, we verify “prover-circuits” for L.

The main advantage in this approach is that the resulting verifier is more efficient
than the verification protocol in the original proof system. For example, the original
verifier might have needed many rounds of interaction with the prover (as in the proof
system underlying IP = PSPACE ), or might have needed to simultaneously interact
with several provers that do not communicate between them (i.e., the original system
was an MIP, as in the two-prover MIP for EXP). In contrast, in our setting, the verifier
just receives a small circuit P that implements the prover strategy, and simulates the
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proof system by itself, by “interacting” only with P.18

Indeed, this essentially sums up the proofs of three of the results stated in Theo-
rem B.4.1. Specifically, the result that EXP ⊂ P/poly ⇒ MA = EXP implements
this proof approach using the MIP proof system of [BFL91] for EXP whose prover
strategies are computable in EXP ; the result that PSPACE ⊂ P/poly ⇒ MA =
PSPACE uses this proof approach with the proof system of [Sha92; LFK+92] for
PSPACE , whose prover strategy is computable in PSPACE ; and similarly, the result
that PP ⊂ P/poly ⇒ MA = PP uses this proof approach with the proof system
of [LFK+92] for PP , whose prover strategy is computable in P#P = PPP .

This proof approach fails when trying to prove that if NEXP ⊂ P/poly then
NEXP = MA: The reason is that we do not know of an MIP proof system for
NEXP with provers whose strategies are computable in NEXP . (In the MIP proof
system for NEXP of [BFL91] the complexity of the provers isn’t known to be in
NEXP , since the two provers need to independently construct a single, identical proof
that serves as the basis for their communication with the verifier.) However, we can
still use this strategy to prove a seemingly-weaker statement:

Proposition B.4.2 (folklore; see, e.g., [Wil13],[FSW09, Sec. 4]). If EXPNP ⊂ P/poly
thenMA = NEXP .

Proof. Consider a PCP proof system for NEXP with proof length 2poly(n) and a veri-
fier that runs in polynomial time (e.g., the PCP of [BGH+05]). Observe that for every
L ∈ NEXP there exists an EXPNP algorithm that, on input (x, i) where x ∈ L, finds
the lexicographically-first proof for x in the foregoing PCP system, and returns the
ith bit in this proof.19 Now, under the hypothesis EXPNP ⊂ P/poly there exists a
polynomial-sized circuit that solves the latter problem. Thus, the verifier in the PCP
system can be turned into anMA verifier: On input x ∈ {0, 1}n theMA verifier gets
a polynomial-sized circuit P : {0, 1}n+poly(n) → {0, 1} that represents a PCP proof, and
simulates the execution of the PCP verifier on x while answering its queries using the
circuit P (i.e., query i ∈ [2poly(n)] is answered by P(x, i)).

Proposition B.4.2 demonstrates another way in which this proof approach can yield
a verifier that is more efficient in the original proof system. Specifically, recall that in
the previous examples the advantage was that we replaced complicated interaction
(e.g., many rounds, or interaction with two provers) with a single “static” proof. In
contrast, in Proposition B.4.2 the main advantage is that the new proof is shorter than the
original one (i.e., instead of a PCP proof of size 2poly(n), the new proof is a description

18As Ron Rothblum eloquently put it, we “pack the prover in a box” (the box is the small circuit) and
ship it to the verifier.

19Specifically, the EXPNP algorithm constructs the lexicographically-first proof bit-by-bit, where each
decision problem is of the form “does there exist a continuation π of the current prefix σ such that the
PCP verifier accepts x with proof π”. To solve each such decision problem, the EXP algorithm sends a
query of the form (1poly(n), x, σ) to the NP oracle, and the NP oracle guesses a continuation π of σ and
enumerates over the 2poly(n) possible values for coin tossess of the PCP verifier to determine the decision
of the verifier at input x with proof π.
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of a circuit of size poly(n)). That is, in Proposition B.4.2 we used our hypothesis to
deduce that in a suitable proof system, valid witnesses can be represented in a concise
manner (i.e., by a small circuit). This approach is the basis for the “easy witness”
method, which will be presented in Section B.4.3.2.

One can also view the proof of the original Karp-Lipton theorem as following the
same proof approach; that is, utilizing a “proof system with efficient provers” for Π2
in order to compute any L ∈ Π2 in Σ2, under the collapse hypothesis. To do so, recall
that for L ∈ Π2 we have that x ∈ L iff ∀w1∃w2 : V(x, w1, w2) = 1, where V is an
algorithm running in time poly(|x|). Now, consider a “proof system” in which to
verify that x ∈ L, the verifier issues a challenge (x, w1) to a prover, and the prover
must reply with a correct answer w2 such that V(x, w1, w2) = 1; the system “accepts”
x if for every challenge w1 there is a valid answer w2. The point is that the prover
strategy in this system is efficient, in the sense that it is in NP (i.e., the relation
{((x, w1), w2) : V(x, w1, w2) = 1} is an NP-relation). In particular, if NP ⊂ P/poly,
then there is a polynomial-sized circuit that gets as input (x, w1) and outputs a valid
w2. In this case, the “Σ2-verifier” in this proof system can first guess a circuit P for the
“prover”, and then choose a challenge w1, feed it to this circuit, obtain w2, and verify
that V(x, w1, w2) = 1. Indeed, we thus have that x ∈ L iff there exists a “prover-circuit”
P such that for all w1, the residual verification procedure (that chooses w1, feeds it to
P, and outputs V(x, w1, P(x, w1))) accepts. It follows that Σ2 = Π2. 20

An “overkill” in the approach. In the above results, I hand-waved a bit when refer-
ring to the notion of “prover strategy”. This notion can be formalized in a straight-
forward way, for example by considering the set (x, r, i) where x is the input, r is the
communication from the verifier, and i is the index of the bit in the prover’s response.
Observe, however, that when using this approach the hypothesis gives us more than
we actually need: Specifically, when using this approach we deduce that there exists a
single circuit P that gets x as part of its input and implements the corresponding prover
strategy for x. This is an “overkill”, since the verifier only needs that for every input x
there exists a circuit Px that implements the corresponding prover strategy.

B.4.3.2 Concise representations of proofs (“easy witnesses”)

In this section our goal is to prove Karp-Lipton theorems in which the resulting “unex-
pectedly strong” uniform algorithm (which will again be essentially an MA verifier)
decides a class U for which we are not able to construct proof systems with sufficiently effi-
cient provers (i.e., the collapse hypothesis does not immediately suffice to deduce that
there exist small circuits implementing the prover’s strategy).

20 In fact, as noted by Sengupta and reported by Cai [Cai07], the same proof actually yields that Π2 can
be simulated in the “symmetric alternations class” S2, rather than only in Σ2. This is the case because
we can consider one prover that sends w1, and another prover that sends the circuit P. If x ∈ L, then no
matter what w1 the first prover sends, the second prover can send a P that we will accept; and if x /∈ L,
then there exists a w1 that the first prover can send, for which no acceptable P exists.
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To overcome this challenge, the solutions in this section exploit the relaxation men-
tioned in the end of the previous section. Specifically, for any L ∈ U , we will fix a
suitable proof system for L and use the collapse hypothesis to deduce the following:
For every x ∈ L there exists a circuit Px that gets as input (r, i) where r is the com-
munication from the verifier and i is a location in the prover’s response (the input r
can be omitted in proof systems where the verifier doesn’t sends any message to the
prover), and outputs the ith bit of the corresponding response from the prover. That is,
instead of one circuit P for every input x, we only deduce that for every input x there
exists a “prover circuit” Px. Armed with such a result, we can proceed just as in the
previous section: The verifier gets input x, guesses a prover-circuit Px, and interacts
with Px instead of with an actual prover. However, the main challenge will be proving
that such Px’s exist, which is far less straightforward than in the previous section.

Note that when the proof system is just a “static” proof (i.e., the verifier doesn’t
send any message to the prover, and the input of Px is just the location i), the circuit
Px can be thought of as a concise representation of a potentially-long proof; in other
words, the truth-table of Px is the “static” proof. In this case, the proof/witness is
“easy” in the sense that is has a concise representation by a circuit.

The original “easy witness lemma”, proved by Impagliazzo, Kabanets, and Wigder-
son [IKW02], asserts the following: If NEXP ⊂ P/poly, then for every L ∈ NEXP ,
every exponential-time verifier for L, and every x ∈ L, there exists a witness wx ∈ {0, 1}2poly(n)

for x that the verifier accepts such that wx can be concisely represented by a circuit Px of
polynomial size. This is already enough to prove the following:

Theorem B.4.3 ([IKW02]). If NEXP ⊂ P/poly, thenMA = NEXP .

Proof. Let L ∈ NEXP , and consider the PCP proof system of [BGH+05] for NEXP ,
in which the proof length is 2poly(n) and the verifier V runs in polynomial time. Using
the easy witness lemma, we deduce that for every x ∈ L there exists a witness for x
in this proof system that can be represented by a polynomial-sized circuit.21 Now, the
MA verifier gets a polynomial-sized circuit as proof, and simulates the PCP verifier
while using this circuit to simulate the proof.22

The original easy witness lemma used a strong hypothesis (i.e., NEXP ⊂ P/poly)
and deduced a strong conclusion (i.e., NEXP has witnesses of polynomial size). The
state-of-the-art easy witness lemma, proved by Murray and Williams [MW18], allows
to scale the parameters in both the hypothesis and the conclusion; specifically, it allows
to replace “exponential-time” and “polynomial-size” with any two functions t and s

21To do so, consider the deterministic exponential-time verifier V′ that enumerates over the coins of
the PCP verifier V. The easy witness lemma implies that for every x ∈ L there exists a witness wx that V′

accepts and that can be represented by a polynomial-sized circuit. Since V′ and V accept precisely the
same witnesses, the witness wx is also accepted by V.

22The original proof of [IKW02] is different. They note that from the easy witness lemma it follows
that NEXP = EXP (since one can enumerate over all polynomial-sized circuits to search for a witness).
Then, since EXP = NEXP ⊂ P/poly we have (by Theorem B.4.1) that NEXP = EXP =MA.
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(respectively) such that t � s. (For simplicity I will omit the precise parameters, but
the requirements are roughly that t(n) ≥ sO(1)(sO(1)(sO(1)(n))).) That is:

Lemma B.4.4 (the easy witness lemma of [MW18]; informal). Let t̂ � t � ŝ � s be
“nice” functions (i.e., time-computable functions that are bounded by 2ε·n for some universal
ε > 0). Then, assuming that NT IME [t̂] ⊂ SIZE[s], for every set L ∈ NT IME [t],
and every time-t verifier, and every x ∈ L, there exists a witness for x that can be concisely
represented by a circuit of size ŝ.

Note that the circuit of size ŝ in Lemma B.4.4 is indeed a concise representation
of the witnesses in the proof system, since the latter are potentially of size t � ŝ.
Moreover, Lemma B.4.4 also holds if the hypothesis refers not to general circuits,
but to circuits from some restricted circuit class C (e.g., C can be AC0,ACC0, T C0),
i.e. NT IME [t̂] ⊂ C-SIZE[s], in which case we get the stronger conclusion that
NT IME [t] has witness circuits from C of size ŝ.

Let us now see how to use the easy witness lemma of [MW18], along with PCPs
with almost-linear proof length, in order to get a Karp-Lipton theorem that is more
refined than the result stated in Theorem B.4.3. Loosely speaking, the following result
asserts that for any “typical” circuit class C, if NT IME [t̂] ⊂ C, then NT IME [t]
can be decided by anMA verifier that uses “few” random coins, and whose residual
decision as a function of its random coins can be computed by a C-circuit of size
approximately ŝ. More accurately, using the proof approach of Williams [Wil13] with
the PCP of Ben-Sasson and Viola [BSV14] and the easy witness lemma of Murray and
Williams [MW18], we get that:

Theorem B.4.5 (informal, implicit in [Wil13; BSV14; MW18]). Let t̂ � t � ŝ � s
be “nice” functions, and assume that NT IME [t̂] ⊂ C-SIZE[s]. Then, for every L ∈
NT IME [t] there exists an MA verifier for L with the following properties. On input
x ∈ {0, 1}n:

1. The verifier runs in time poly(log(t(n)), ŝ(n), n).

2. The verifier receives a proof, constructs a C-circuit Cx : {0, 1}log(t)+O(log log(t)) → {0, 1}
of size poly(ŝ, n), chooses random coins r ∈ {0, 1}log(t)+O(log log(t)), and outputs Cx(r).

Note that in Theorem B.4.5, for any proof π that the verifier receives, the acceptance
probability of the circuit Cx equals the probability that the verifier accepts x with proof
π. Thus, if we could distinguish between C-circuits with high acceptance probability
and C-circuits with low acceptance probability (where “high” and “low” correspond to
the completeness and to the soundness of theMA verifier, respectively) by an efficient
deterministic algorithm, we could replace theMA verifier with a deterministic verifier.
(For further details see Section B.4.5.)

Proof sketch for Theorem B.4.5. The proof is a refinement of the proof of Theorem B.4.3.
Using the PCP of Ben-Sasson and Viola [BSV14], every L ∈ NT IME [t] has a PCP ver-
ifier that runs in time poly(log(t), n), uses log(t) + O(log log(t)) random coins, and
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can be implemented by a very simple AC0 circuit. Using the easy witness lemma
of [MW18], for every x ∈ L there exists a C-circuit Px of size ŝ that represents a valid
witness for x in this proof system. The machine thus guesses this circuit, and then
constructs a circuit Cx that gets as input random coins r ∈ {0, 1}log(t)+O(log log(t)), com-
putes the corresponding queries made by the PCP verifier on coins r, answers these
queries using Px as a sub-circuit, and finally computes and outputs the corresponding
decision by the PCP verifier.

To recap, we stated easy witness lemmas and saw how corresponding Karp-Lipton
theorems can be derived from those lemmas. For a (very rough) proof sketch of the
state-of-the-art easy witness lemma of [MW18] see Appendix B.4.7.

B.4.3.3 Arithmetic circuit lower bounds against “highly structured” functions

A completely different strategy aims at proving lower bounds for arithmetic circuits,
instead of Boolean circuits. In this context arithmetic circuits are circuits with gates
labeled by {+,×} that are evaluated as polynomials (in their inputs) over Z. The
main advantage in this setting is that one can efficiently test some specific functionalities
of a given arithmetic circuit. Specifically, relying on the Schwartz-Zippel lemma (and
on an additional trick), one can test in probabilistic polynomial time whether or not a
given circuit computes the constant zero polynomial (see [IM83; KI04]).

Of course, assuming that small arithmetic circuits can solve some “hard” function
f , our goal is not to test whether a given arithmetic circuit computes the zero poly-
nomial, but rather to test whether or not the circuit computes f . Nevertheless, if the
function f has some specific useful structure, we can reduce the latter task to the for-
mer task; that is, we can test whether or not a given arithmetic circuit computes f
by testing whether or not certain auxiliary arithmetic circuits compute the zero poly-
nomial. Kabanets and Impagliazzo [KI04] showed how to do so in the case of the
permanent function (since their proof is short and self-contained, I’m including it be-
low). It follows that if the permanent has small arithmetic circuits, then a verifier can
get a small arithmetic circuit as proof, efficiently verify that this circuit computes the
permanent, and then use the circuit to efficiently solve any problem in P#P . Hence, if
the permanent has polynomial-sized arithmetic circuits, thenMA = P#P .

Lemma B.4.6 (verifying that an arithmetic circuit computes the permanent [KI04]). The
task of verifying that a given arithmetic circuit pn : Zn2 → Z computes the permanent func-
tion reduces in deterministic polynomial time to the task of testing whether certain (auxiliary)
arithmetic circuits compute the zero polynomial.

Proof. We think of the n2 input variables to pn as an n× n matrix. For every i ∈ [n],
let pi be the polynomial that is obtained from pn by fixing all input variables outside
the bottom-right i× i matrix such that the n− i variables along the top-left diagonal
are fixed to one, and all other n2 − i2 − (n− i) variables are fixed to zero.

Note that for every i ∈ [n] we can easily convert the circuit that computes pn to
a circuit that computes pi (by fixing n2 − i2 of the variables). Also observe that pn
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computes the permanent if and only if p1(x) = x, and for every i ∈ {2, ..., n} it holds
that pi(X) = ∑j∈[i] x1,j · pi−1(Xj), where X is an i× i input matrix, and Xj is the matrix
obtained from X by erasing the top row and the jth column. Thus, verifying that pn

computes the permanent is equivalent to verifying that the circuit h1(x) def
== p1(x)− x

computes the zero polynomial, and that for every i ∈ {2, ..., n} it holds that the circuit

hi(X)
def
== pi(X)−∑j∈[i] x1,j · pi−1(Xj) computes the zero polynomial.

As noted in [KI04], one can in fact “merge” the n tests for h1, ..., hn in the proof
of Lemma B.4.6 into a single test: Specifically, it suffices to test whether the circuit

h(X(1), X(2), ..., X(n), y) def
== h1(X(1)) · yn−1 + h2(X(2)) · yn−2 · ...hn(X(n)) computes the

zero polynomial, where each X(i) is a set of i2 variables and y is an auxiliary variable.

B.4.4 Efficiently finding a circuit with prescribed functionality

This section focuses on the problem of finding a circuit with prescribed functionality,
assuming that such a circuit exists. That is, we are now interested in a search problem.

Formalization of the problem. For a fixed target function f : {0, 1}∗ → {0, 1}, we de-
fine a corresponding search problem in which the inputs are pairs of the form (1n, 1s),
and the output is either a size-s circuit that computes fn = f ∩ {0, 1}n, or “fail”, if no
such circuit exists. In other words, the “yes” inputs are such that a size-s circuit exists
for fn, and the “no” inputs are such that no size-s circuit can compute fn.

We will also consider two relaxations of this problem. The first relaxation is a
“promise” version of the problem, in which the “yes” inputs are defined as above (i.e.,
a size-s circuit exists for fn), but the “no” inputs are (1n, 1s) such that no circuit of
size r(s(n)) > s(n) can compute fn, for some predetermined function r : N → N

(e.g., r(s(n)) = s2(n)). The second relaxation is that on “yes” inputs we will allow
the algorithm to output circuits of size larger than s, where this again refers to some
predetermined function r′ : N → N that defines the allowed circuit size r′(s(n)) >
s(n). We say that an algorithm constructs circuits for f if it solves the relaxed search
problem with functions r and r′ that will typically be clear from context.

One may think of algorithms that construct circuits for f as sub-routines of other
algorithms. For example, we can use an algorithm that constructs circuits for f to
obtain an algorithm that gets input 1n and outputs a circuit for fn of approximately
minimal size (by trying to construct circuits with increasing values of s); this is par-
ticularly interesting when the “minimal size function” for f behaves oddly (e.g., the
“minimal size function” might not be time-computable; for a natural example of a
setting where this problem arises see [San09]). And, continuing our motivation from
Sections B.4.2 and B.4.3, algorithms that construct circuits for f can be used to decide
f . However, in this section I’ll focus on the search problem per-se.
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Is the search problem difficult? Let’s begin by asking why this search problem
seems so difficult in the first place; after all, shouldn’t a search-to-decision reduc-
tion be possible in this context? An initial observation is that the standard reduction,
in which we construct a string bit-by-bit, reduces the search problem to a more dif-
ficult decision problem than merely verifying that a given circuit has the expected
functionality; specifically, the target of the standard reduction is the decision problem
of deciding whether a given string is a prefix of such a circuit, and it is not clear how
to efficiently solve the latter decision problem.

A second observation is that constructing circuits is at least as difficult as learning.
Specifically, in this section when we say learning we mean the problem of learning a
function f with membership queries over the uniform distribution: In this problem we
are given oracle access to f , and want to efficiently find a “small” circuit that agrees
with f on almost all inputs. Constructing a circuit for f is obviously at least as hard
as learning f , and in fact seems even much more difficult, since:

1. We may not have oracle access to f . (Recall that our goal when constructing
circuits for f is typically to decide f , i.e. evaluate f at a given input.)

2. We typically want to find a circuit that computes f in worst-case, rather than just
in average-case (as is the task of a learning algorithm.)

Moreover, even if we can somehow solve the two foregoing obstacles, we are still
faced with a major obstacle, since efficient learning algorithms for “hard” functions are
unlikely to exist unconditionally. Specifically, recall that under reasonable hypotheses,
there does not exist a learning algorithm for any sufficiently rich circuit class (e.g.,
for the class of all polynomial-sized circuits; this is since a learning algorithm can be
used to break a pseudorandom function). To recap this obstacle, any algorithm that
efficiently constructs circuits also yields an efficient learning algorithm, but an efficient
learning algorithm probably does not unconditionally exist.

The first set of solutions that I’ll present are unconditional constructions of relatively
inefficient algorithms for constructing circuits, where the inefficiency is what allows
us to bypass the PRF obstacle. Specifically, note that there is a naive algorithm that
constructs circuits for any function f , and works in Σ f

2 (i.e., the Σ f
2 algorithm asks “does

there exist a size-s circuit that for every input correctly computes f ?”).23 The first set
of algorithms improve on this naive construction, by improving the “base class” from
Σ2 to various subclasses of Σ2 that contain PNP .

The second idea to solve the problem, by Impagliazzo and Wigderson [IW98], uses
its unlikely hypotheses to deduce that there exists a suitable learning algorithm for a
“hard” function. Relying on the (conditional) existence of such a learning algorithm,
they are indeed able to efficiently construct a (probabilistic) circuit for any f that has
several useful properties (see Section B.4.4.2 for details).

23Here and throughout the section, I abuse the notation of classes of decision problems (such as Σ2) by
using it to refer to the underlying machines (which are now used to solve search problems).
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B.4.4.1 Unconditional algorithms between PNP and Σ2

In this section I’ll present some unconditional constructions of algorithms that con-
struct circuits for general functions; that is, the algorithms that I’ll present can construct
circuits for any function f : {0, 1}∗ → {0, 1}.

As mentioned above, there is a naive solution in Σ f
2 . Intuitively, in the algorithms

that I’ll describe, the “base class” is improved from Σ2 to various subclasses of Σ2 that
contain PNP ; for example, the “base class” is improved to ZPPNP , or to the “alter-
nating symmetric class” S2 (see below). However, none of these algorithms actually
improves the “base class” all the way to PNP (i.e., the “base class” is always larger
than PNP ). In fact, proving the unconditional existence of such an algorithm would
imply the unconditional lower bound PNP 6⊂ SIZE[nk] for any fixed k ∈ N, which is
currently not known (for a precise statement and a proof see the end of Section B.4.4.1).

Indeed, even a PNP , f algorithm might seem a-priori redundant after seeing the
verification solutions in Section B.4.3: Since we use non-determinism, we might as well
just get a circuit as proof and verify its functionality, as in the verification algorithms
surveyed in Section B.4.3. However, the solutions in Section B.4.3 all used randomness,
whereas some of the solutions in this section (let alone, a solution in PNP , f ) do not
use randomness. In addition, the solutions in Section B.4.3 required the existence of
a proof system for f with specific useful properties, whereas the algorithms in the
current section work for any function that has small circuits. And lastly, most of the
solutions in Section B.4.3 allowed us to merely compute the target function f (with
the assistance of a “prover-circuit”), whereas the solutions in this section allow us to
obtain a small circuit that in itself computes f on all inputs in {0, 1}n.

A simple algorithm in S f
2 . Recall that a set L ⊆ {0, 1}∗ is in the “alternating sym-

metric class” S2 if there exists a polynomial-time algorithm V such that the following
two conditions hold:

• For every x ∈ L there exists w1 such that for all w2 we have that V(x, w1, w2) = 1.

• For every x /∈ L there exists w2 such that for all w1 we have that V(x, w1, w2) = 0.

Also recall that PNP ⊆ S2 ⊆ ZPPNP (the second containement is by a result
of Cai [Cai07]; see also [FIK+08]), and so under the derandomization hypothesis
ZPPNP = PNP we have that S2 = PNP .

The first algorithm that I’ll present constructs circuits for any function f and works
in S f

2 . This construction is natural and is probably known, but I am not aware of any
previous written reference to it.

Theorem B.4.7 (constructing a circuit for f in S f
2 ). There exists a polynomial-time verifier

V such that for every f : {0, 1}∗ → {0, 1}, when given input (1n, 1s) and oracle access to f
on n-bit inputs, the verifier satisfies the following:

1. If there exists a size-s circuit for fn, then there exists w1 ∈ {0, 1}poly(s) such that for
every w2 ∈ {0, 1}poly(s) it holds that V(1n, 1s, w1, w2) outputs such a circuit.
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2. If every circuit of size O(s · n) fails to compute fn, then there exists w2 ∈ {0, 1}poly(s)

such that for every w1 ∈ {0, 1}poly(s) it holds that V(1n, 1s, w1, w2) outputs “fail”.

Proof. The verifier V expects to get w1 that is a description of a circuit C : {0, 1}n →
{0, 1} of size s and w2 that is a set of r = poly(s) inputs x1, ..., xr ∈ {0, 1}n. The verifier
accepts, and outputs C = w1, if and only if C(xi) = f (xi) for every i ∈ [r]. Note that
V is computable in polynomial time (in the input length s) with oracle access to f .

Note that if there exists a circuit of size s that computes f on {0, 1}n, then w1 can
be a description of this circuit, and no matter which inputs w2 represents, the verifier
will accept and output C.

On the other hand, if every circuit of size O(s · n) fails to compute f on {0, 1}n,
then by a variation of a result of Lipton and Young [LY94, Thm. 6] the following holds:
There exists a collection S ⊆ {0, 1}n of r inputs such that every circuit of size s fails
to compute f somewhere on S. 24 Given such an S, the verifier will reject any size-s
circuit C that is represented by w1.

Algorithms that use a non-deterministic oracle. I’ll now mention several efficient
algorithms that make crucial use of a non-deterministic oracle (i.e., an NP oracle or
an AM oracle) and/or of oracles that are related to the target function f . Let me note
in advance that some of these algorithms are superseded by the simple algorithm from
Theorem B.4.7, but it’s likely that the ideas underlying their proofs can nevertheless
be useful. (The fact that these algorithms are superseded by Theorem B.4.7 relies on
the fact that S2 ⊆ ZPPNP , which wasn’t known until 2007 [Cai07].)

The first algorithm by Bshouty et al. [BCG+96] constructs circuits for any function f
in ZPPNP ,equiv( f ), where equiv( f ) denotes an equivalence oracle to f ; that is, an oracle
that gets as input a circuit C : {0, 1}n → {0, 1}, and outputs x ∈ {0, 1}n such that
C(x) 6= f (x), if such x exists. Since the construction in [BCG+96] is simple and elegant,
I review it in full in Appendix B.4.8; the underlying technical ideas are reminiscent of
the ideas in the proof that was presented in Footnote 24.

The second algorithm is implicit in Fortnow et al. [FIK+08], and constructs circuits
for any function f in ZPPNP

f
. (Note that this result is weaker than that of [BCG+96],

since an equivalence oracle can be simulated by an NP f oracle.) I won’t provide
full details of their construction, but for a short explanation on how to deduce the

24 This statement can also be proved without going through [LY94]: Assuming that every circuit of
size O(s · n) fails to compute f , we find a set S of r = poly(s) inputs such that every size-s circuit fails
to compute f on at least one input in S. To do so, let C0 be the set of all size-s circuits. We construct S
iteratively: In each iteration i ∈ [r], we find an input x such that at least 1/4 of the circuits in Ci−1 fail
to compute f at x; add x to S; and remove all the circuits that fail to compute f at x from Ci−1 to obtain
Ci. The invariant in this process is that every size-s circuit that is not in Ci fails to compute f at some
x ∈ S; therefore, after r = poly(s) iterations Cr will be empty, and hence S “fails” all size-s circuits. It
is only left to see that in each iteration i ∈ [r] we can find an appropriate x. To see this, note that by a
probabilistic argument, there exists a set of O(n) circuits from Ci−1 such that on every input, the circuit
C′ that computes their majority agrees with at least 1/4 of the circuits in Ci−1. The point is that C′ is of
size O(s · n), so by our hypothesis, there exists an input on which C′ fails to compute f .
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algorithm for constructing circuits from their results see Appendix B.4.8. (In a nutshell,
the problem of constructing circuits for f reduces to the problem of efficiently finding
small near-optimal strategies in a zero-sum game; Fortnow et al. [FIK+08] showed a
solution for the latter in ZPPNP that relies on techniques from learning theory, and
this solution can be adapted to yield the construction mentioned above.)

I believe that a third algorithm can be derived from the work of Chakaravarthy
and Roy [CR11]. Specifically, as above, we first reduce the problem of constructing
circuits to a zero-sum game (again, see Appendix B.4.8 for details); and then, instead of
using [FIK+08], we use the algorithm of [CR11] that finds small near-optimal strategies
in a zero-sum game in P prAM (rather than in ZPPNP as in [FIK+08]).

Deducing Karp-Lipton theorems. Building on the learning algorithm of [BCG+96],
Watanabe [BCG+96, Thm. 24] deduced the following Karp-Lipton theorem: If NP ⊂
P/poly, then ZPPNP = PH. Indeed, since we now know that S2 ⊆ ZPPNP (which
wasn’t known at the time), this result is superseded by the strengthening of the original
Karp-Lipton theorem mentioned in Footnote 20 (i.e., NP ⊂ P/poly⇒ S2 = PH).

Nevertheless, let me sketch the proof. First, to solve PH in ZPPNP it suffices
to construct a polynomial-sized circuit for SAT in ZPPNP . To do so, we want to
simulate the ZPP algorithm that uses an NP oracle and equivalence queries to SAT,
where our simulation will run in ZPPNP . The main challenge is that in ZPPNP we
do not actually have an equivalence oracle to SAT, but only an NP oracle. However,
since NP ⊂ P/poly, we can simulate the equivalence oracle using the NP oracle,
and thus the entire algorithm runs in ZPPNP .25

The exact same proof approach can be used to deduce that if there exists an algo-
rithm that constructs circuits for any function f in PNP ,equiv( f ) (i.e., by a polynomial-
time algorithm that makes queries to NP and equivalence queries to f ), then we
have that NP ⊂ P/poly ⇒ PNP = PH. By a win-win analysis as in the end of
Section B.4.1, the latter theorem would imply that PNP 6⊂ SIZE[nk] for every fixed
k ∈N. (And in fact, as alluded to in Section B.4.1, the former Karp-Lipton theorem is
essentially necessary to prove the latter lower bound; see [CMM+19].)

B.4.4.2 An “unreasonable” learning algorithm: The idea of [IW98]

Impagliazzo and Wigderson [IW98] considered not only a collapse hypothesis, but also
an additional hypothesis, which allowed them to deduce – conditionally – that there
exists a learning algorithm for their target function. Their algorithm of was originally
presented as constructing a circuit for the permanent function, but was later on shown
to work in more general settings (see [TV07; CNS99]); I present the general setting.

25Specifically, for any C ∈ C, to construct a counter-example where x ∈ L and C(x) = 0 consider the set
A = {(〈C〉 , 1n, σ)} such that σ is a prefix of an n-bit input that can be extended to x ∈ {0, 1}n satisfying
C(x) = 0 ∧ x ∈ L. Since A ∈ NP , we can construct a counter-example bit-by-bit using the NP oracle.
To construct a counter-example where x /∈ L and C(x) = 1, consider the set B = {〈C〉 , 1n, σ} such that σ
cannot be extended to x ∈ {0, 1}n satisfying C(x) = 1∧ x ∈ L, and note that B ∈ coNP (so we can again
construct a counter-example using the NP oracle).
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Theorem B.4.8 ([IW98]). Let f : {0, 1}∗ → {0, 1} be a function that is randomly self-
reducible and downwards self-reducible, and assume that:

1. There exists a polynomial-sized circuit family that computes f .

2. For every ε > 0, let NW f be the Nisan-Wigderson PRG, instantiated for stretch nε 7→ n
with the function f . We assume that there exists a polynomial-time algorithm D that for
all n ∈N satisfies

∣∣∣Prs∈{0,1}nε [D(NW f (s)) = 1]− Pr[D(Un)] = 1
∣∣∣ > 1/n.

Then, there exists a probabilistic polynomial-time algorithm that on input 1n constructs a
circuit C : {0, 1}n → {0, 1} that computes f on {0, 1}n.

I will not survey all the details of their proof, as those are explained well in stan-
dard textbooks, e.g. in [AB09]. But I do want to discuss their ideas in high level, to
understand what allows them to solve the problem. Their construction has three parts:

1. They use the additional hypothesis (regarding the NW generator) to deduce that
there exists a learning algorithm for f (recall that by “learning” I mean learning
with membership queries over the uniform distribution). Specifically, a crucial
observation in their proof is that any “distinguisher” algorithm D for the NW
generator can be efficiently transformed into a learning algorithm for the “hard”
function with which the NW generator is instantiated (i.e., f in this case).

2. Now, to use the learning algorithm we still need to find a way to answer the
membership queries that the algorithm issues. However, since f is downwards
self-reducible, they use a “bootstrapping” argument: Specifically, they use the
learning algorithm to construct circuits for f with i-bit inputs, for i = 1, ..., n.
Whenever invoking the learning algorithm for i-bit inputs, we answer its queries
using the circuit that we already have for inputs with i− 1 bits.

3. At this point we have a circuit that computes the function f correctly on most
inputs (since we used a learning algorithm, whose guarantee is to yield a circuit
that is correct on most inputs). Indeed, since f is randomly self-reducible, we
can now modify the circuit to a probabilistic circuit that on each input computes
f correctly, with high probability. Finally, by modifying the circuit to also im-
plement standard error-reduction, we construct a probabilistic circuit that, with
high probability, correctly computes f on every input; so we can now conclude
by randomly choosing random coins for the probabilistic circuit and hard-wiring
them (to obtain a deterministic circuit).

Recapping, we used the additional hypothesis (referring to the Nisan-Wigderson
generator) to obtain a learning algorithm for f ; we used the downwards self-reducibility
of f to overcome the challenge of answering the queries of the learning algorithm; and
we used random self-reducibility to transform the circuit into a probabilistic circuit
that is correct on every input (whp). Instantiating this construction for specific set-
tings, we get the following Karp-Lipton theorems:
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Theorem B.4.9 ([IW98; CNS99; TV07]; informal). We say that there exists a uniform

distinguisher for the NW-PRG with a function f if for every ε > 0 there exists a polynomial-
time algorithm D such that for all n ∈ N it holds that

∣∣∣Prs∈{0,1}nε [D(NW f (s)) = 1] −

Pr[D(Un)] = 1
∣∣∣ > 1/n. Then,

1. If #P ⊂ P/poly and there exists a uniform distinguisher for the NW-PRG with the
permanent, then BPP = P#P .

2. If PSPACE ⊂ P/poly and there exists a uniform distinguisher for the NW-PRG with
the PSPACE -complete set of Trevisan and Vadhan [TV07], then BPP = PSPACE .

3. If EXP ⊂ P/poly and there exists a uniform distinguisher for the NW-PRG with the
permanent, then BPP = EXP .26

Let me also mention that Oliveira and Santhanam noted [OS17, Sec. 6.1] that this
proof can also be adapted to work under the weaker hypothesis that there exists a
distinguisher for the NW-PRG with f that uses a small amount of non-uniform advice.
Loosely speaking, in the “bootstrapping” step, for each input length i = 1, ..., n, when
using the learning algorithm to construct a circuit over {0, 1}i, we can try out all
potential advice strings for the learning algorithm, and efficiently test which advice
string yielded the best-performing circuit (using downwards self-reducibility). Indeed,
the running time of this algorithm grows exponentially with the length of the advice.

B.4.5 Adding a derandomization hypothesis: Derandomization implies lower
bounds

How can we “push forward” the unlikely conclusions of Karp-Lipton theorems in
order to obtain a contradiction? Recall that the conclusions in the theorems that we
surveyed were that a uniform algorithm was unexpectedly strong. Also recall that in
almost all of our solutions, the uniform algorithm crucially uses randomness.

The main observation underlying this section is that if, in addition to the collapse
hypothesis, certain derandomization hypotheses also hold, then we can transform the
uniform probabilistic algorithm into a deterministic algorithm. Now, since a determin-
istic construction is a stronger conclusion than a probabilistic construction, this brings
us “one inch closer” to a contradiction; in fact, in some settings (which will be detailed
below) this already suffices to get a contradiction! The resulting theorems in such cases
assert that derandomization implies circuit lower bounds (since the derandomization
hypothesis and the collapse hypothesis cannot be simultaneously true).

Let us begin with a well-known example of such a case. Recall the result of [IKW02]
that if NEXP ⊂ P/poly thenMA = NEXP . Now, let us consider both the collapse

26In fact, in Items (1) and (2) one can forego the collapse hypothesis, since this hypothesis follows from
the hypothesis that there exists a uniform distinguisher for the NW-PRG with a function that is complete
for the corresponding class. In contrast, in Item (3) we use the collapse hypothesis to deduce that the
permanent is complete (under this hypothesis) for EXP .
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hypothesis NEXP ⊂ P/poly and a derandomization hypothesis, say, that prBPP =
prP (which implies thatMA = NP). Under the joint hypotheses, we get that NP =
MA = NEXP , which contradicts the non-deterministic time hierarchy. In fact, even
a much weaker derandomization hypothesis would still yield a contradiction; that is,
any separation of NEXP fromMA (which we think of as derandomization ofMA)
would yield a contradiction to the hypothesis that NEXP ⊂ P/poly.

This basic approach was taken one step further by Williams [Wil13]. Recall that
the underlying Karp-Lipton theorem in his work (i.e., Theorem B.4.5) asserts that if
NEXP ⊂ C, then NT IME [2n] can be decided by an MA verifier that runs in
polynomial time (i.e., in time poly(n)), uses n + O(log(n)) bits of randomness, and
whose residual decision as a function of its random coins can be computed by a C-
circuit. Now, assume that there exists an algorithm that gets as input C ∈ C over
n′ = n + O(log(n)) input bits, runs in time 2n′/(n′)ω(1) = 2n/nω(1), and distinguishes
between the case that C accepts at least 2/3 of its inputs and the case that C re-
jects at least 2/3 of its inputs (i.e., a “non-trivial” derandomization algorithm for C).
Then, we can use this algorithm to derandomize the MA verifier, and deduce that
NT IME [2n] ⊆ NT IME [2n/nω(1)], a contradiction to the non-deterministic time hi-
erarchy. Thus, “non-trivial” derandomization of a circuit class C implies lower bounds
for C.

Finally, recall that Kabanets and Impagliazzo [KI04] proved that if the permanent
function can be computed by polynomial-sized arithmetic circuits, then P#P can be de-
cided by anMA verifier that gets an arithmetic circuit as proof, verifies in probabilistic
polynomial time that the circuit computes the permanent, and then uses the circuit to
solve P#P . Let us now add to the collapse hypothesis a derandomization hypothesis,
namely that P = BPP (the hypothesis coRP ⊆ NP also suffices for our purposes).
Under this hypothesis, the probabilistic verification of the circuit can be replaced with
a deterministic verification procedure (see [KI04, Lem. 9 & 12]). Therefore, we can
decide all of P#P in NP , which means that PH ⊆ P#P = NP (the containment
is by Toda’s theorem [Tod91]), in which case (by a padding argument) EH = NE .
Since EH contains functions with maximal circuit complexity Ω(2n/n) (by an elemen-
tary diagonalization argument), we have that NE contains functions with maximal
circuit complexity. Thus, we get the main result of [KI04], as improved by [KMS12]:
If P = BPP , then either the permanent does not have polynomial-sized arithmetic
circuits, or NE contains functions with maximal circuit complexity Ω(2n/n).

B.4.6 Variations on the collapse hypothesis

Collapse to non-uniform circuits. Several works consider a collapse hypothesis in
which a large uniform class has small non-deterministic circuits (i.e., circuits that also
use non-determinism). Specifically, Yap [yap83] generalized the original Karp-Lipton
theorem by proving that for all i ≥ 0 it holds that Σi+1 ⊂ Πi/poly ⇒ Σi+2 = Πi+2;
indeed, the original theorem is obtained when i = 0. (For a strengthening of Yap’s the-
orem see [ccho05].) Also, Aydınlıoğlu and van Melkebeek [avm12] showed that, under
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suitable hypotheses referring to derandomization of AM, if PSPACE ⊂ NP/poly
then Σ2 = PSPACE ; and similarly, under the same derandomization hypothesis, if
coNP ⊂ NP/poly then PΣ2 = PH.

Collapse to quantum circuits. Aaronson [Aar06] considered a collapse hypothesis
in which PP has small quantum circuits. Quoting his text (since that is the best I
can provide...), he proved that if PP has polynomial-sized quantum circuits, then the
counting hierarchy (which consists of PP , PPPP , PPPP

PP
etc.) collapses to QMA.

B.4.7 Addendum: Proof idea for the easy witness lemma of [MW18]

In this appendix I’ll sketch the proof idea for the easy witness lemma of [MW18].
For simplicity I’ll focus on the case of general circuits (rather than restricted circuit
classes), and will not be precise about the parameter values. Then, the lemma asserts
the following: For “well-behaved” functions t̂� t� ŝ� s, if NT IME [t̂] ⊂ SIZE[s],
then for every set L ∈ NT IME [t], and every time-t verifier, and every x ∈ L, there
exists a witness for x that can be concisely represented by a circuit of size ŝ.

The main idea in the proof dates back to a sequence of works by Kabanets and
Cai [kc00], Kabanets [Kab01], and Impagliazzo, Kabanets, and Wigderson [IKW02].
The proof approach of [MW18], which I’ll present, is more elegant than the original
one in [IKW02], but is nevertheless based on the same main idea. The starting point
of the proof is the fact that derandomization implies circuit lower bounds. Specifically, as
a corollary of (a generalization of) a result of Santhanam [San09], ifMAT IME [ŝ] ⊆
NT IME [t̂]/n then NT IME [t̂] 6⊂ SIZE[s]. 27 That is, if MAT IME [ŝ] can be de-
randomized in time t̂ and with a linear amount of non-uniform advice, then we have
the circuit lower bound NT IME [t̂] 6⊂ SIZE[s].

Loosely speaking, the main observation in the proof is that if the conclusion of
the lemma does not hold, then we can construct a pseudorandom generator that will
allows us to derandomize MAT IME [ŝ] in NT IME [t̂]/n. Thus, relying on the
result above, if the conclusion of the easy witness lemma does not hold, then we can
deduce that NT IME [t̂] 6⊂ SIZE[s]. The easy witness lemma is the contrapositive
statement: Assuming that NT IME [t̂] ⊂ SIZE[s], we deduce that the conclusion of
the lemma holds.

Let me now briefly explain how to prove the foregoing main observation. If the
conclusion of the easy witness lemma does not hold, then there exists L ∈ NT IME [t],
a t-time verifier V for L, and an infinite sequence of inputs {xn ∈ {0, 1}n}n∈S⊆N such
that every witness w ∈ {0, 1}t for x that V accepts cannot be concisely represented by
circuits of size ŝ. In other words, every such w ∈ {0, 1}t is the truth-table of a function

27 The generalization of Santhanam’s result asserts that for ŝ � s it holds that MAT IME [ŝ]/1 6⊂
SIZE[s]. Therefore, if MAT IME [ŝ] ⊆ NT IME [t̂]/n, then NT IME [t̂]/(n + 1) 6⊂ SIZE[s]. At this
point we can use an advice elimination trick to deduce that NT IME [t̂] 6⊂ SIZE[s′], where s′ is mildly
smaller than s (in this overview I ignore the difference between s′ and s). (For more specific details see
Theorem 4.2.20.)
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with circuit complexity more than ŝ. Intuitively, we will use this hypothesis to guess-
and-verify a truth-table of a function w with circuit complexity more than ŝ, and then
use w for derandomization of the verifier in theMAT IME [ŝ] protocol.

More specifically, given the above, for infinitely-many input lengths n, given xn ∈
{0, 1}n as non-uniform advice, we can non-deterministically guess a witness w ∈
{0, 1}t for xn in L, verify that V(x, w) = 1, and if that is indeed the case, we now know
that w has circuit complexity at least ŝ. Now, using standard “hardness-randomness”
results, given such a function we can derandomize MAT IME [ŝ] in NT IME [t̂],
where t̂ = poly(t). (The specific “hardness-randomness” result that we use is the one
of Umans [Uma03], following the sequence of works initiated by Nisan [Nis91] and
Nisan and Wigderson [NW94].) Thus, we can solve MAT IME [ŝ] infinitely-often in
NT IME [t̂]/n, by getting xn as advice, guessing and verifying a “hard” function w,
and using w to construct a pseudorandom generator for the MA verifier.

There is one last detail missing in the above proof sketch: We showed thatMAT IME [t]
can be simulated in NT IME [t̂]/n only infinitely-often, whereas the hypothesis of the
“derandomization ⇒ lower bounds” argument that relies on [San09] needs the hy-
pothesis that MAT IME [t] can be simulated in NT IME [t̂]/n on all input lengths.
Bridging this gap is the main technical contribution of [MW18], and it is achieved
by both improving the result from [San09] and slightly refining the proof idea above;
see [MW18, Sec. 3] for details.

B.4.8 Addendum: The algorithms of [BCG+96] and [FIK+08]

In this appendix we give some more details for the algorithms of Bshouty et al. [BCG+96]
and of Fortnow et al. [FIK+08], which were mentioned in Section B.4.4.1. Let us first
shortly review the construction of Bshouty et al. [BCG+96]:

Theorem B.4.10 ([BCG+96]). Let f : {0, 1}∗ → {0, 1} be any function. Then, there exists
a probabilistic polynomial-time algorithm that gets as input (1n, 1s), makes oracle queries to
NP and to an equivalence oracle for f ,28, and satisfies the following:

• If there exists a size-s circuit that computes fn (i.e., f on {0, 1}n), then with high prob-
ability the algorithm outputs a circuit of size O(s · n) for fn. Moreover, the algorithm
never outputs an incorrect circuit, but might output “fail” with low probability.

• If every circuit of size O(s · n) fails to compute fn, then the algorithm outputs “fail”
with probability one.

The proof below is similar to the proof that was presented in Footnote 24. However,
a crucial difference is that in the latter proof the set of “bad” inputs is constructed non-
efficiently, whereas in the proof below this set is constructed by an efficient algorithm
(with an NP oracle).

28Specifically, it issues queries of the form “given a circuit C : {0, 1}n → {0, 1} of size O(s · n), find
x ∈ {0, 1}n such that C(x) 6= f (x), or output ‘fail’ if not such input exists”.
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Proof Sketch for Theorem B.4.10. The algorithm works in r = poly(s) iterations, where
in each iteration it “tests” a different candidate circuit C of size O(s · n) for fn, using
the equivalence oracle. Note that if fn cannot be computed by circuits of size O(s · n),
then the algorithm cannot find a candidate circuit C that correctly computes fn, and
will thus always output “fail”. On the other hand, we will show that if fn can be
computed by a size-s circuit, then with high probability one of the r candidate circuits
will correctly compute C. Moreover, since the algorithm verifies each candidate circuit
using the equivalence oracle, the algorithm never outputs an incorrect circuit.

Let us now describe the iterative process. Initialize S0 ⊆ {0, 1}n as an empty set of
inputs, and let C0 be the set of all size-s circuits. In each iteration i ∈ [r], the algorithm
will send a candidate circuit C to the equivalence oracle, and if the equivalence oracle
returns x such that C(x) 6= fn(x), then the algorithm will add x to Si−1 to obtain a new
set Si; the set Ci ⊆ Ci−1 will then be defined as the set of size-s circuits that agree with f
on Si. We will show that with high probability, in each iteration i where the algorithm
adds an input x to Si−1, the set Ci “shrinks” by a multiplicative constant factor; that is
|Ci| = 3

4 · |Ci−1|. Thus, with high probability, if the process continues for r = poly(s)
iterations, then we have that Cr = ∅, which implies that no size-s circuit can compute
fn (since every such circuit disagrees with f on Sr). Taking the contrapositive of the
latter statement, if there exists a size-s circuit for fn, then with high probability the
algorithm will find a circuit C that computes fn after at most r iterations.

Being more specific, in each iteration i ∈ [r], the algorithm uniformly samples
a subset of O(n) circuits C1, ..., CO(n) ∈ Ci−1, and considers the function C(x) =
MAJ(C1(x), ..., CO(n)(x). Observe that, with high probability, for every x ∈ {0, 1}n

it holds that C(x) agrees with at least 1/4 of the circuits in Ci−1. Also note that C can
be implemented as a circuit of size O(s · n). Now, the algorithm considers C to be its
candidate circuit, and sends C as a query to the equivalence oracle. If C ≡ fn then the
algorithm successfully outputs C; and otherwise, the algorithm gets an input x such
that 1/4 of the circuits in Ci−1 disagree with fn at x. In this case the algorithm adds x
to Si−1, which implies that |Ci| ≤ 3

4 · |Ci−1|.
The only challenge in implementing the above procedure is that in each iteration

i ∈ [r] we need to uniformly sample O(n) circuits from Ci−1, where the latter is a set
of size up to 2poly(s), which is only defined “implicitly” by the constraints imposed
by Si−1. Fortunately, this “sampling from a structured set” task can be solved in
probabilistic time poly(s) with an NP oracle, relying on the results of Jerrum, Valiant,
and Vazirani [JVV86].29 Thus, we use the NP oracle to solve the problem of sampling
from Ci−1 in each step, and we use the equivalence oracle to test each candidate circuit
(and update Si−1) in each step.

Turning to the construction that is implicit in Fortnow et al. [FIK+08], let me first

29Actually, the work of [JVV86] reduces approximately-uniform sampling to approximate counting, where
the latter can be solved in time poly(s) with an NP oracle. However, the algorithm of [BCG+96]
works well even if the samples C1, ..., CO(n) ∈ Ci−1 are approximately uniform, rather than uniform
(see [BCG+96] for details).
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mention that (as mentioned in Section B.4.4.1) their algorithm relies on techniques
from learning theory. I won’t review the construction itself, but will explain how to
derive the learning algorithm from their construction:

Theorem B.4.11 (implicit in [FIK+08]). Assume that f : {0, 1}n → {0, 1} can be computed
by a circuit of size at most s. Then, there exists a probabilistic algorithm that runs in time
poly(s), makes oracle queries to NP f , and with high probability produces a circuit of size
poly(s) that computes f . Moreover, the algorithm never outputs an incorrect circuit (but
might fail and halt, with low probability).

Sketch of how to derive Theorem B.4.11 from [FIK+08]. Consider a matrix whose rows
are indexed by all size-s circuits and whose columns are {0, 1}n. The (〈C〉 , x) entry
in the matrix, where C is a size-s circuit and x ∈ {0, 1}n, is zero if C(x) = f (x) and
one if C(x) 6= f (x). This matrix describes a zero-sum game (for a definition see,
e.g., [FIK+08, Sec. 1.1]) that has value zero, since there is a circuit C that correctly
computes f on all inputs in {0, 1}n (i.e., an all-zero row).

Now, Fortnow et al. [FIK+08, Thm. 10] constructed a ZPPNP algorithm that, given
as input a circuit G : {0, 1}poly(s) × {0, 1}n → {0, 1} such that G(〈C〉 , x) is the (〈C〉 , x)
entry in the matrix (i.e., G is a concise description of the zero-sum game), outputs
a set of r = poly(s) row indices i1, ..., ir such that for every column j it holds that
Ek∈[r]G(ik, j) < 1/4. 30 Going through their proof, their algorithm works also when G
is not given explicitly, but only available as black-box to the NP oracle; that is, their
algorithm works when the input is (1n, 1s) and the oracle is NPG. In other words,
their algorithm construction is in fact in ZPPNP

G
.

Now, in our setting the rows are circuits and the columns are inputs, and so their
algorithm outputs a set of poly(s) circuits such that the majority of these circuits is
correct on any input. The algorithm can therefore output a circuit that computes the
majority of this set of poly(s) circuits. And finally, we can easily compute G at any
point given oracle access to f , and so the algorithm is in ZPPNP

f
.

B.5 On implications of better sub-exponential lower bounds
for AC0

Abstract. Lower bounds for AC0 circuits of sub-exponential size have been known
since the ‘80s. The point of this text is to highlight the (known) fact that lower bounds
for AC0 circuits of significantly larger sub-exponential size imply lower bounds for
polynomial-sized circuits from circuit classes such as AC0[Sym], linear threshold cir-
cuits of constant depth, and NC1.

Comment: The contents of this text does not contain technical innovation, and may
be known to some experts; for example, related results of similar spirit were discussed

30In the statement of [FIK+08, Thm. 10] they bound the number of rows by poly(|G|), but their proof
actually guarantees a bound of poly log(m) rows, where m is the total number of rows in the matrix.
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in [Vio17; Vio19]. However, given that some researchers are not familiar with the facts
presented here, it seems beneficial to publicly share them. Needless to say, it was also
helpful for me to flesh out the details while writing the text.

B.5.1 Context and main results

Recall that the best currently-known lower bounds for AC0 circuits against explicit
functions31 assert that circuits of depth d ≥ 2 require size 2Ω(n1/(d−1)) to compute the
parity function (see [Hås87], following [FSS84; Ajt83; Yao85]). It is well-known that
lower bounds for much larger AC0 circuits – that is, AC0 circuits of almost-exponential
size 2ω(n/loglog(n)), even just of depth three – would imply lower bounds for linear-sized
circuits of depth O(log(n)), which are currently unknown (see [Val77]).

The purpose of this text is to highlight the fact that even before considering almost-
exponential lower bounds of the form 2n/loglog(n), “just” proving significantly better sub-
exponential lower bounds for AC0 would already yield lower bounds for polynomial-size
circuits from classes such as AC0[Sym], constant-depth LTF circuits, or NC1.

Below I state three such implications, where in all cases I will concretely define
the relevant class before spelling out the relevant parameters. The first lower bound
refers to AC0[Sym] circuits of fixed polynomial size; the second lower bound refers to
LTF circuits of fixed polynomial size; and the third lower bound refers to NC1 circuits
of fixed logarithmic depth (and hence also fixed polynomial size). The proofs of these
will appear in Section B.5.2, and amount to the same (well-known) observation: That
AC0 circuits of large sub-exponential size can simulate polynomial-size circuits from
the relevant circuit classes (i.e., AC0[Sym], LTF circuits, or NC1).

In Section B.5.3 I desrcibe a similar phenomenon in a different context: Improving
our lower bounds for LTF circuits (rather than for AC0), even very mildly, would imply
new lower bounds for AC0[Sym] circuits. (For details see Section B.5.3.)

Implication 1: Lower bounds for AC0[Sym]. Recall that AC0[Sym] is the class of
constant-depth circuits whose gates can compute arbitrary symmetric functions, and
that we currently do not know a lower bound for AC0[Sym] circuits of depth two and
size n2 against an explicit function. (The best currently-known lower bound is for cir-
cuits of size Ω̃(n2); see [Tam16].) The following result asserts that such lower bounds
would follow from lower bounds for AC0 circuits of depth d and size ≈ 2n3/(d−1)

:

Theorem B.5.1 (AC0[Sym] lower bounds would follow from better AC0 lower bounds).
Lower bounds forAC0 circuits of (sufficiently large) constant depth d and size 2Ω(n3/(d−1)·log(n))

31When referring to circuits of arbitrarily large polynomial size, let us say that a function is explicit if
it can be computed in EXPNP . The reason for this choice is that if we go “higher up” in time or in
alterations, then lower bounds are already known (i.e., we can diagonalize against P/poly in time 2nω(1)

,
and Σ2[nω(1)] is hard for P/poly by Kannan’s theorem [Kan82, Thm. 4]). When referring to circuits of
size nk for a fixed k, an explicit function is one that is computable in ENP or in DT IME [2nk

]NP , for the
same reason (i.e., both EXP and Σ2 = ∪cΣ2[nc] are hard for such circuits, using the same arguments).
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would imply lower bounds for AC0[Sym] circuits of depth two and size n2. The latter lower
bounds are also implied by lower bounds for AC0 circuits of depth 6 and size 2Ω(n2/3·log(n)).

Theorem B.5.1 extends to more general parameters, asserting that lower bounds
for AC0[Sym] circuits of depth d0 and size nk would follow from lower bounds for
AC0 circuits of large constant depth d and size 2Ω̃(n∆/(d−1)), where ∆ ≈ k · d0 (see Theo-
rem B.5.6).

Note that there is a gap between the known lower bounds for AC0, which are of
the form 2Ω(n1/(d−1)) and hold for every d ≥ 2, and the lower bounds that would imply
new lower bounds for AC0[Sym] circuits, which are of the form 2Ω̃(n3/(d−1)) and should
hold for large constant depths d ≥ 6. Thus, one could improve the known AC0 lower
bounds without proving new lower bounds for AC0[Sym] circuits (e.g., by considering
circuits of depth d < 6, or of size 2n2/(d−1)

).

Implication 2: Lower bounds for T C0 and for LTF circuits. Theorem B.5.6 implies in
particular that lower bounds for subclasses of AC0[Sym] would follow from significantly
better sub-exponential lower bounds for AC0. This specifically applies to T C0, which
is the class of constant-depth circuits with unweighted majority gates.

Extending this fact, consider the class of constant-depth circuits whose gates can
compute arbitrary linear threshold functions (i.e., LTFs) rather than only unweighted
majorities; the best currently-known lower bound for LTF circuits is for circuits with
n1+c−d

wires, where c ≈ 2.41 (see [IPS97], and also [CSS16; CT19]). While LTF gates are
not symmetric, it is well-known that polynomial-sized LTF circuits can be simulated
by AC0[Sym] circuits (in fact by circuits with unweighted majority gates) of larger
polynomial size. Thus, the class of LTF circuits of fixed polynomial size nk is a subclass
of AC0[Sym] of larger fixed polynomial size nk′ , which means that lower bounds for
AC0 circuits of large sub-exponential size would imply lower bounds for LTF circuits
of polynomial size. (See Corollary B.5.7 for precise details.)

Implication 3: Lower bounds for NC1. Consider the class NC1 of circuits with fan-
in two and depth O(log(n)) (the size of such circuits is trivially bounded by poly(n)).32

As far as I am aware, we currently do not know of lower bounds for this class even
when the depth is only 2 · log(n). The following result asserts that such lower bounds
would follow from lower bounds for AC0 circuits of depth d and size ≈ 2n4/(d−1)

:

Theorem B.5.2 (NC1 lower bounds would follow from better AC0 lower bounds).
Lower bounds for AC0 circuits of constant depth d ≥ 6 and size 2Ω(n4/(d−1)) would imply lower
bounds against circuits with fan-in two and depth 2 · log(n).

32An alternative definition, ignoring polynomial overheads in the size, would be the class of formulas
of depth O(log(n)). Recall that circuits of depth d = O(log(n)) can be simulated by formulas of depth d,
which are in turn of size at most 2d = poly(n). However, this simulation potentially incurs a polynomial
overhead in the size, since the size of the initial circuit might have been smaller than 2d.
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For a statement of Theorem B.5.2 with more general paramters, see Theorem B.5.4.
As in Theorem B.5.1, there is a gap between the currently-known AC0 lower bounds,
which are of the form 2n1/(d−1)

and hold for any d ≥ 2, and the lower bounds that would
imply new NC1 lower bounds, which are of the form 2n4/(d−1)

and hold only for d ≥ 6.
Also note that the gap in Theorem B.5.1 is smaller than the gap in Theorem B.5.2.

On optimistic and pessimistic interpretations. As usual in cases of implications
between well-known open problems, an optimistic interpretation of these results is
that improving our AC0 lower bounds may be an appealing way to prove better lower
bounds for AC0[Sym], LTF circuits and NC1; whereas a pessimistic interpretation treats
the latter lower bounds as “barriers” that we should focus on before addressing AC0.

One point to note in this context is that the proofs of the results above show that
classes such as AC0[Sym] of fixed polynomial size, or NC1 of fixed logarithmic depth,
are in fact sub-classes of AC0 of large sub-exponential size; that is, the proofs show that
every problem decidable by the former is also decidable by the latter. Therefore, the
results above actually delineate several interesting special cases of the problem of proving
lower bounds for AC0 circuits of large sub-exponential size.

B.5.2 Detailed statements and proofs

The proofs of Theorems B.5.1 and B.5.2 amount to showing that polynomial-sized
AC0[Sym] circuits and NC1 circuits can be simulated by sub-exponential sized AC0

circuits (and thus lower bounds for the latter imply lower bounds for the former).
This simulation boils down to the well-known fact that any product of elements over a
set with a binary associative operation (i.e., a semigroup) can be computed by an AC0

circuit of sub-exponential size. That is:

Proposition B.5.3 (solving the semigroup problem in AC0). For a semigroup Σ of size
` = log(|Σ|) and n ∈ N, let f : {0, 1}n·` → {0, 1} such that f (x) = h

(
∏i∈[n] xi

)
for some

h : Σ → {0, 1}, where the xi’s are elements in Σ. Then, for any constant integer d ≥ 3 it
holds that f can be computed by a constant depth circuit of depth d and size 2O(n1/(d−1)·`) with
a bottom layer of OR gates, and by such a circuit with a bottom layer of AND gates.

Proof. For any m ∈ N, note that the function that takes as input m elements in Σ,
represented in binary, and outputs their product, is computable by ` DNFs of size
2m·`, and also by ` CNFs of such size.

Given x ∈ {0, 1}n·` we use a recursive construction to compute f (x). For i ∈ [d− 2],
in iteration i we start with a string of ni = n1−(i−1)/(d−1) elements in Σ. We partition
this string into ni+1 = n1−i/(d−1) substrings, each of length m = n1/(d−1), and compute
the product of the elements in each substring using ` DNFs or CNFs of size 2n1/(d−1)·`.
After completing d− 2 iterations (i.e., when i = d− 1), our string consists of a single
block of m elements r1, ..., rm ∈ Σ, represented by m · ` bits. We then directly compute
f (x) = h

(
∏i∈[n] xi

)
= h

(
∏i∈[m] ri

)
by a single depth-two formula of size 2m·`.
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If we alternate between using CNFs and using DNFs in each of the d− 2 iterations,
we can collapse one layer in each iteration after the first one. Thus, the mapping of x
to the ri’s is computed in depth d− 1 and size 2O(n1/(d−1)·`). Using either a CNF or a
DNF for the final computation of f (∏i ri) (to collapse a layer with the formula used
in the (d− 2)th iteration), the final circuit is of depth d and size 2O(n1/(d−1)·`).

We now prove Theorem B.5.2, by simulating NC1 in sub-exponential AC0. To do
so, we use Barrington’s theorem [Bar89] to reduce any problem in NC1 to the problem
of computing a product of elements over S5 (i.e., over the symmetric group over five
elements), and then use Proposition B.5.3 to solve the latter.

Theorem B.5.4 (parametrized version of Theorem B.5.2). For any d0 : N → N and any
constant d ≥ 3 the following holds. If a function f : {0, 1}n → {0, 1} cannot be computed by
n-bit AC0 circuits of depth d and size 2O(22d0(n)/(d−1)), then f cannot be computed by circuits
(with fan-in two) of depth d0(n). (Note that the size of such a circuit is at most 2d0(n).)

Proof. Let f : {0, 1}n → {0, 1} a function that is computable by a circuit of depth
d0 = d0(n), and let S5 be the symmetric group over five elements. For n ∈ N and
m = 4d0 , we say that a mapping {0, 1}n → (S5)m is local if every output permutation
depends on a single input bit. Recall that by Barrington’s theorem [Bar89], there is
a local mapping of any x ∈ {0, 1}n to a sequence of m permutations in S5 such that
f (x) = 0 if and only if the product of the m permutations is the identity element.33

OurAC0 circuit locally maps x ∈ {0, 1}n to a sequence of m permutations in S5, and
then uses Proposition B.5.3 (instantiated with the monoid S5 and with h : S5 → {0, 1}
such that h(σ) = 0 ⇐⇒ σ = e) to compute f (x) in depth d and size 2O(m1/(d−1)). By
collapsing the first layer (that computes the local mapping) with the layer above it, we
obtain a circuit of depth d and size 2O(m1/(d−1)) = 2O(22d0/(d−1)).

Towards proving Theorem B.5.1, we first note that any symmetric function can be
computed by an AC0 circuit of sub-exponential size; this fact follows as a special case
of Proposition B.5.3:

33The locality of Barrington’s reduction is well-known, but I didn’t find an explicit proof of it, so let
us verify now that it indeed holds. We map x to a sequence of permutations by iteratively constructing
the sequence in d0 layers, corresponding to the d0 layers of the original circuit. Fix cyclic permutations
σ, τ ∈ S5 such that στσ−1τ−1 is cyclic. The bottom layer consists of at most 2d0 permutations, where
each permutation is of the form σxi for some i ∈ [n]. We now construct the next layer, assuming that the
mapping of x to the layer below us is local, and that each subsequence of permutations in the layer below
us, which corresponds to a gate g, evaluates to σg(x). For each AND gate g in the current layer, consider
the two subsequences of permutations P1, P2 corresponding to the two gates feeding into g. For any two
cyclic permutations ρ1, ρ2 ∈ S5, denote by Cjρ1 7→ρ2

the element such that conjugating ρ1 by Cjρ1 7→ρ2
yields

ρ2 (i.e., Cjρ1 7→ρ2
ρ1Cj

−1
ρ1 7→ρ2

= ρ2). Let P(τ)
2 = Cjσ 7→τ P2Cj

−1
σ 7→τ , let P(σ−1)

1 = Cjσ 7→σ−1 P1Cj
−1
σ 7→σ−1 , and let

P(τ−1)
2 = Cjσ 7→τ−1 P(τ)

2 Cj−1
σ 7→τ−1 . Then, we replace g by the sequence Pg = Cjρ 7→σP1P(τ)

2 P(σ−1)
1 P(τ−1)

2 Cj−1
ρ 7→σ,

where ρ = στσ−1τ−1. Note that the mapping of x to Pg is local, and that Pg = σg(x). Finally, to simulate
a negation of a gate g, let Pg be a sequence that simulates g, and let P¬g = σCjσ 7→σ−1 PgCj

−1
σ 7→σ−1 σ.
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Corollary B.5.5 (computing symmetric functions in AC0). For any constant integer d ≥
3, any symmetric function Sym : {0, 1}n → {0, 1} can be computed by a constant depth circuit
of depth d and size nO(n1/(d−1)) with a bottom layer of OR gates, and by such a circuit with a
bottom layer of AND gates.

Proof. Denote Sym(x) = h (∑i xi), for some composition function h. Consider the set
[n] with the action that maps any x, y ∈ [n] to x+ y (mod n), and note that this yields a
monoid. Given an input x ∈ {0, 1}n, we think of x as n elements in [n], and instantiate
Proposition B.5.3 with the monoid Σ = [n] and the function h.

Theorem B.5.1 follows from Corollary B.5.5, by simulating each symmetric gate us-
ing a sub-exponential AC0 circuit. The only thing to be careful with is the parameters.

Theorem B.5.6 (parametrized version of Theorem B.5.1). For any two constants k, d0 ∈
N there exists infinitely-many constants d ∈N such that the following holds: If f : {0, 1}n →
{0, 1} cannot be computed by AC0 circuits of depth d and size 2Õ(n

ck,d0
/(d−1)

), where ck,d0 =

k · (d0 − 1) + 1, then f cannot be computed by AC0[Sym] circuits of depth d0 and size mk. In
addition, if f cannot be computed by AC0 circuits of depth 6 and size 2Õ(n2/3), then f cannot
be computed by AC0[Sym] circuits of depth two and size Õ(n2).

Proof. Let C : {0, 1}n → {0, 1} be an AC0[Sym] circuit of depth d0 and size m = nk that
computes f , for some constant k ∈ N. Our goal is to compute f by an AC0 circuit of

depth d and size 2Õ(n
ck,d0

/(d−1)
), where d can be arbitrarily large.

To do so, fix an integer parameter α ≥ 2 (this parameter will determine the final
depth d), and let d1 = α · k + 1. We will use Corollary B.5.5 to compute any symmetric
function by an AC0 circuit of depth d1 and size nO(n1/(d1−1)). For each of the top d0 −
1 layers of C, we replace each gate in the layer by an AC0 circuit of depth d1 that
computes the corresponding symmetric function. Since each such gate has fan-in at
most m = nk, the size of the corresponding AC0 circuit is 2Õ(nk/(d1−1)). We also replace
each of the gates in the bottom layer of C, which have fan-in at most n, by an AC0

circuit of depth d2 = d1−1
k + 1 and size 2Õ(n1/(d2−1)) = 2Õ(nk/(d1−1)).

To optimize this construction we use the fact (stated in Corollary B.5.5) that we can
compute any symmetric function both with AC0 circuits whose bottom layer consists
of AND gates, and with AC0 circuits as above whose bottom layer consists of OR
gates. In each layer we use AC0 circuits with a bottom layer of either OR or AND
gates, according to what would allow us to collapse a layer with the AC0 circuits in
the layer beneath the current layer.34 Thus, the final construction is of depth d =

d2 + (d0 − 1) · (d1 − 1) = α · ck,d0 + 1 and size 2Õ(nk/(d1−1)) = 2Õ(n
ck,d0

/(d−1)
).

For the “in addition” part, assume that f is computable by an AC0[Sym] circuit C of
depth two and size m = Õ(n2). Using Corollary B.5.5, we replace the top gate of C by

34In this text I assume that all AC0 circuits are layered, in the sense that all gates of a fixed distance
from the inputs are of the same type. Thus, if two consecutive layers consist of gates of the same type we
can collapse both layers to one layer and reduce the depth of the circuit.
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an AC0 circuit of depth d1 = 4 and size 2Õ(m1/3) = 2Õ(n2/3), and we replace each of the
gates in the bottom layer of C by an AC0 circuit of depth 3 and size 2Õ(

√
n). Collapsing

a single layer between the two levels of AC0 circuits as in the proof of Theorem B.5.6,
we obtain a circuit of depth 6 and size 2Õ(n2/3).

For completeness, let us also show that significantly better sub-exponential lower
bounds for AC0 would imply lower bounds for LTF circuits. To do so, we simulate LTF

circuits by AC0 circuits, by first using the result of [GK98] to simulate any LTF circuit
by a circuit with unweighted majority gates, and then relying on Theorem B.5.6 (since
circuits with unweighted majority gates are a subclass of AC0[Sym]).

Corollary B.5.7 (lower bounds for LTF circuits would follow from better AC0 lower
bounds). For any two constants k, d0 ∈ N there exists ck,d0 ∈ N and infinitely-many con-
stants d ∈ N such that the following holds. If a function f : {0, 1}n → {0, 1} cannot be

computed by AC0 circuits of depth d and size 2Õ(n
ck,d0

/(d−1)
), then f cannot be computed by LTF

circuits of depth d0 and size mk.

Proof. Recall that for every k, d0 ∈ N there exists k′ ∈ N such that any LTF cir-
cuit C : {0, 1}n → {0, 1} of depth d0 and with m = nk gates can be simulated by
a circuit C′ : {0, 1}n → {0, 1} of depth d0 + 1 with nk′ unweighted majority gates
(see [GK98]). In particular, the circuit C′ is an AC0[Sym] circuit. By Theorem B.5.6,
there exist infinitely-many d ∈ N such that C′ can be simulated by an AC0 circuit of

depth d and size 2Õ(n
ck,d0

/(d−1)
), for some ck,d0 that depends only on k and d0.

B.5.3 An analogous result: Implications of better lower bounds for LTF cir-
cuits

A similar (and even tighter) phenomenon happens when considering the implications
of better lower bounds for LTF circuits (recall that these are constant-depth circuits
with gates that compute arbitrary linear threshold functions).

As mentioned in Section B.5.1, we currently know lower bounds for LTF circuits of
depth d with n1+c−d

wires, where c ≈ 2.41 (see [IPS97], and also [CSS16; CT19]). Note
that lower bounds for LTF circuits of arbitrarily large polynomial size and constant depth
would imply lower bounds for AC0[Sym]: In fact, when considering circuits of an arbi-
trarily large polynomial size and constant depth, then LTF circuits, T C0 circuits (with
unweighted majority gates) and AC0[Sym] circuits can all compute exactly the same
set of functions (i.e., each class of circuits can simulate the others with polynomial
size overhead and constant depth overhead; see, e.g., [BBL92; GK98]). Nevertheless,
as shown next, even much milder improvements in our lower bounds for LTF circuits
– specifically, lower bounds for circuits with n1+c−d

wires where c > 1 is sufficiently
small – would imply lower bounds for AC0[Sym] circuits with a super-linear number
of wires, which are currently unknown (as far as I am aware).

278



B.5 On implications of better sub-exponential lower bounds for AC0

Theorem B.5.8 (AC0[Sym] lower bounds would follow from better lower bounds for
LTF circuits). For any constant d0 ∈ N there exists a constant c > 1 and infinitely-many
constants d ∈ N such that the following holds. If a function f : {0, 1}n → {0, 1} cannot be
computed by LTF circuits of depth d and with n1+c−d

wires, then f cannot be computed by
AC0[Sym] circuits of depth d0 and O(n) wires.

Proof. Let C : {0, 1}n → {0, 1} be a function that is computable by an AC0[Sym] circuit
of depth d0 and with m = O(n) wires. For d1 ≥ 2, recall that any symmetric function
can be computed by an LTF circuit of depth d1 and with n1+1.41−d1 wires (see [BBL92]
for details and for a finer bound that replaces 1.41 by 21−1/d1).

We replace each layer of gates in C by a layer of LTF circuits such that each gate g
with fan-in ng is replaced by an LTF circuit of depth d1 with (ng)1+1.41−d1 wires. The
overall depth of the resulting circuit is d = d0 · d1, and its number of wires is

∑
g gate

(ng)
1+1.41−d1 ≤

(
∑

g gate
ng

)1+1.41−d1

= O
(

n1+c−d
)

,

where c = (1.41)1/d0 > 1.
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