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PrefaceThese teaching notes were initially intended for myself, as an aid for preparing the lectures inthe course Foundations of Cryptography given at Weizmann Institute at the Fall of 2001. It thenoccurred to me that these notes may also serve as suggestions to others as to how such a coursecan be taught, and the notes were slightly adapted accordingly.The course was based on the �rst two volumes of my work Foundations of Cryptography. The�rst volume, entitled Foundations of Cryptography { Basic Tools [14], has appeared with CambridgeUniversity Press in June 2001. The second volume, entitled Foundations of Cryptography { BasicApplications, will hopefully be completed in a couple of years. Preliminary versions of the chaptersof the second volume are available from the web-pagehttp://www.wisdom.weizmann.ac.il/�oded/foc-book.htmlYou may want to check this web-site for various updates and notices concerning the entire work.These teaching notes refer to the above work. Speci�cally, they merely summarize and annotatethe parts of the work that was taught in class. The detailed material is to be found in the bookitself, and the boxes ushed to the right (as the example below) refer to the sections in the bookin which the relevant material is to be found. ExampleState and usage of these notes: Unfortunately, I've stopped writing these notes at the middleof the semester. Thus, the current notes only cover the �rst 8 lectures (out of the planned 14lectures). I hope to complete the missing notes next time I teach this course (which may be nextyear).Unlike the abovementioned work, these teaching notes were not carefully proofread. I apologizefor the various errors that they may contain, and hope that nevertheless these notes will be useful.Needless to say, the teaching pace should and does depend on the speci�c class. In fact, I oftenproceeded in pace di�erent than the one I have originally planned, omitting or adding materialon-the-y.
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From the preface of Volume 1It is possible to build a cabin with no foundations,but not a lasting building.Eng. Isidor Goldreich (1906{1995)Cryptography is concerned with the construction of schemes that withstand any abuse: Suchschemes are constructed so to maintain a desired functionality, even under malicious attemptsaimed at making them deviate from their prescribed functionality.The design of cryptographic schemes is a very di�cult task. One cannot rely on intuitionsregarding the typical state of the environment in which the system operates. For sure, the adversaryattacking the system will try to manipulate the environment into untypical states. Nor can one becontent with counter-measures designed to withstand speci�c attacks, since the adversary (whichacts after the design of the system is completed) will try to attack the schemes in ways that aretypically di�erent from the ones the designer had envisioned. The validity of the above assertionsseems self-evident, still some people hope that in practice ignoring these tautologies will not resultin actual damage. Experience shows that these hopes rarely come true; cryptographic schemesbased on make-believe are broken, typically sooner than later.In view of the above, we believe that it makes little sense to make assumptions regarding thespeci�c strategy that the adversary may use. The only assumptions that can be justi�ed referto the computational abilities of the adversary. Furthermore, it is our opinion that the designof cryptographic systems has to be based on �rm foundations; whereas ad-hoc approaches andheuristics are a very dangerous way to go. A heuristic may make sense when the designer has avery good idea about the environment in which a scheme is to operate, yet a cryptographic schemehas to operate in a maliciously selected environment which typically transcends the designer's view.This book is aimed at presenting �rm foundations for cryptography. The foundations of cryp-tography are the paradigms, approaches and techniques used to conceptualize, de�ne and providesolutions to natural \security concerns". We will present some of these paradigms, approaches andtechniques as well as some of the fundamental results obtained using them. Our emphasis is on theclari�cation of fundamental concepts and on demonstrating the feasibility of solving several centralcryptographic problems.Solving a cryptographic problem (or addressing a security concern) is a two-stage process con-sisting of a de�nitional stage and a constructive stage. First, in the de�nitional stage, the function-ality underlying the natural concern is to be identi�ed, and an adequate cryptographic problem hasto be de�ned. Trying to list all undesired situations is infeasible and prone to error. Instead, oneshould de�ne the functionality in terms of operation in an imaginary ideal model, and require acandidate solution to emulate this operation in the real, clearly de�ned, model (which speci�es theadversary's abilities). Once the de�nitional stage is completed, one proceeds to construct a systemV



VIthat satis�es the de�nition. Such a construction may use some simpler tools, and its security isproven relying on the features of these tools. (In practice, of course, such a scheme may need tosatisfy also some speci�c e�ciency requirements.)This book focuses on several archetypical cryptographic problems (e.g., encryption and signatureschemes) and on several central tools (e.g., computational di�culty, pseudorandomness, and zero-knowledge proofs). For each of these problems (resp., tools), we start by presenting the naturalconcern underlying it (resp., its intuitive objective), then de�ne the problem (resp., tool), and �nallydemonstrate that the problem may be solved (resp., the tool can be constructed). In the latter step,our focus is on demonstrating the feasibility of solving the problem, not on providing a practicalsolution. As a secondary concern, we typically discuss the level of practicality (or impracticality)of the given (or known) solution.Computational Di�cultyThe speci�c constructs mentioned above (as well as most constructs in this area) can exist onlyif some sort of computational hardness exists. Speci�cally, all these problems and tools require(either explicitly or implicitly) the ability to generate instances of hard problems. Such ability iscaptured in the de�nition of one-way functions (see further discussion in Section 2.1). Thus, one-way functions is the very minimum needed for doing most sorts of cryptography. As we shall see,they actually su�ce for doing much of cryptography (and the rest can be done by augmentationsand extensions of the assumption that one-way functions exist).Our current state of understanding of e�cient computation does not allow us to prove thatone-way functions exist. In particular, the existence of one-way functions implies that NP is notcontained in BPP � P (not even \on the average"), which would resolve the most famous openproblem of computer science. Thus, we have no choice (at this stage of history) but to assumethat one-way functions exist. As justi�cation to this assumption we may only o�er the combinedbelieves of hundreds (or thousands) of researchers. Furthermore, these believes concern a simplystated assumption, and their validity is supported by several widely believed conjectures which arecentral to some �elds (e.g., the conjecture that factoring integers is hard is central to computationalnumber theory).As we need assumptions anyhow, why not just assume what we want (i.e., the existence ofa solution to some natural cryptographic problem)? Well, �rst we need to know what we want:as stated above, we must �rst clarify what exactly do we want; that is, go through the typicallycomplex de�nitional stage. But once this stage is completed, can we just assume that the de�nitionderived can be met? Not really: the mere fact that a de�nition was derived does not mean thatit can be met, and one can easily de�ne objects that cannot exist (without this fact being obviousin the de�nition). The way to demonstrate that a de�nition is viable (and so the intuitive securityconcern can be satis�ed at all) is to construct a solution based on a better understood assumption(i.e., one that is more common and widely believed). For example, looking at the de�nition of zero-knowledge proofs, it is not a-priori clear that such proofs exist at all (in a non-trivial sense). Thenon-triviality of the notion was �rst demonstrated by presenting a zero-knowledge proof system forstatements, regarding Quadratic Residuosity, which are believed to be hard to verify (without extrainformation). Furthermore, in contrary to prior beliefs, it was later shown in that the existence ofone-way functions implies that any NP-statement can be proven in zero-knowledge. Thus, facts thatwere not known at all to hold (and even believed to be false), were shown to hold by reduction towidely believed assumptions (without which most of modern cryptography collapses anyhow). Tosummarize, not all assumptions are equal, and so reducing a complex, new and doubtful assumption



VIIto a widely-believed simple (or even merely simpler) assumption is of great value. Furthermore,reducing the solution of a new task to the assumed security of a well-known primitive typicallymeans providing a construction that, using the known primitive, solves the new task. This meansthat we do not only know (or assume) that the new task is solvable but rather have a solutionbased on a primitive that, being well-known, typically has several candidate implementations.Structure and PrerequisitesOur aim is to present the basic concepts, techniques and results in cryptography. As stated above,our emphasis is on the clari�cation of fundamental concepts and the relationship among them. Thisis done in a way independent of the particularities of some popular number theoretic examples.These particular examples played a central role in the development of the �eld and still o�er themost practical implementations of all cryptographic primitives, but this does not mean that thepresentation has to be linked to them. On the contrary, we believe that concepts are best clari�edwhen presented at an abstract level, decoupled from speci�c implementations. Thus, the most rele-vant background for this book is provided by basic knowledge of algorithms (including randomizedones), computability and elementary probability theory. Background on (computational) numbertheory, which is required for speci�c implementations of certain constructs, is not really requiredhere (yet, a short appendix presenting the most relevant facts is included in this volume so tosupport the few examples of implementations presented here).Volume 1: Introduction and Basic ToolsChapter 1: IntroductionChapter 2: Computational Di�culty (One-Way Functions)Chapter 3: Pseudorandom GeneratorsChapter 4: Zero-Knowledge ProofsVolume 2: Basic ApplicationsChapter 5: Encryption SchemesChapter 6: Signature SchemesChapter 7: General Cryptographic ProtocolsVolume 3: Beyond the Basics� � �Figure 0.1: Organization of this bookOrganization of the book. The book is organized in three parts (see Figure 0.1): Basic Tools,Basic Applications, and Beyond the Basics. The current (�rst) volume contains an introductorychapter as well as the �rst part (Basic Tools). This part contains chapters on computationaldi�culty (one-way functions), pseudorandomness and zero-knowledge proofs. These basic toolswill be used for the Basic Applications of the second part, which consist of Encryption, Signatures,and General Cryptographic Protocols.The partition of the book into three parts is a logical one. Furthermore, it o�ers the advantageof publishing the �rst part without waiting for the completion of the other parts. Similarly, wehope to complete the second part within a couple years, and publish it without waiting for thethird part.



VIIITeaching. The material presented in this book is, on one hand, way beyond what one may wantto cover in a course, and on the other hand falls very short of what one may want to know aboutCryptography in general. To assist these conicting needs we make a distinction between basic andadvanced material, and provide suggestions for further reading (in the last section of each chapter).In particular, sections, subsections, and subsubsections marked by an asterisk (*) are intended foradvanced reading.Each lecture consists of one hour. Lectures 1{15 are covered by thecurrent volume. Lectures 16{28 will be covered by the second volume.Lecture 1: Introduction, Background, etc.(depending on class)Lecture 2{5: Computational Di�culty (One-Way Functions)Main: De�nition (Sec. 2.2), Hard-Core Predicates (Sec. 2.5)Optional: Weak implies Strong (Sec. 2.3), and Sec. 2.4.2{2.4.4Lecture 6{10: Pseudorandom GeneratorsMain: De�nitional issues and a construction (Sec. 3.2{3.4)Optional: Pseudorandom Functions (Sec. 3.6)Lecture 11{15: Zero-Knowledge ProofsMain: Some de�nitions and a construction (Sec. 4.2.1, 4.3.1, 4.4.1{4.4.3)Optional: Sec. 4.2.2, 4.3.2, 4.3.3{4.3.4, 4.4.4Lecture 16{20: Encryption SchemesDe�nitions and a construction (consult Apdx. B.1.1{B.1.2)(See also fragments of a draft for the encryption chapter [12].)Lecture 21{24: Signature SchemesDe�nition and a construction (consult Apdx. B.2)(See also fragments of a draft for the signatures chapter [13].)Lecture 25{28: General Cryptographic ProtocolsThe de�nitional approach and a general construction (sketches).(Consult Apdx. B.3, see also our exposition [11].)Figure 0.2: Plan for one-semester course on Foundations of CryptographyVolumes 1 and 2 of this book are supposed to provide all material for a course on Foundationsof Cryptography. For a one-semester course, the teacher will de�nitely need to skip all advancedmaterial (marked by an asterisk) and maybe even some basic material: see suggestion in Figure 0.2.This should allow, depending on the class, to cover the basic material at a reasonable level (i.e.,cover all material marked as \main" and some of the \optional"). Volumes 1 and 2 can also serveas textbook for a two-semester course. Either way, the current volume only covers the �rst half ofthe material mentioned above. The second half will be covered in Volume 2. In the meanwhile, wesuggest to use other sources for the second half. A brief summary of Volume 2 and recommendationsfor alternative sources are given in Appendix B. (In addition, fragments and/or preliminary draftsfor the three missing chapters are available from [12], [13] and [11], respectively.)Giving a course solely based on the material that appears in the current volume is indeedpossible, but such a course cannot be considered a stand-alone course in Cryptography (for thereason that the current volume does not consider at all the basic tasks of encryption and signatures).



IXPractice. The aim of this book is to provide sound theoretical foundations for cryptography.As argued above, such foundations are necessary for sound practice of cryptography. Indeed,practice requires more than theoretical foundations, whereas the current book makes no attempt toprovide anything beyond the latter. However, given sound foundations, one can learn and evaluatevarious practical suggestions that appear elsewhere (e.g., in [26]). On the other hand, lack of soundfoundations results in inability to critically evaluate practical suggestions, which in turn leads tounsound decisions. Nothing could be more harmful to the design of schemes that need to withstandadversarial attacks than misconceptions about such attacks.Relation to another book by the authorA frequently asked question refers to the relation of the current book to our text Modern Cryp-tography, Probabilistic Proofs and Pseudorandomness [10]. The latter text consists of three briefintroductions to the related topics in the title. Speci�cally, Chapter 1 of [10] provides a brief (i.e.,30-page) summary of the current book. The other two chapters of [10] provide a wider perspectiveon two topics mentioned in the current book (i.e., Probabilistic Proofs and Pseudorandomness).Further comments on the latter aspect are provided in the relevant chapters of the current book.
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Lecture SummariesLecture 1: Getting Started. This is an introductory lecture: a bit of motivation (what is thecourse about), a bit of background (on computation), and a taste of the real material (one-wayfunctions). Speci�cally:1. Introduce the topics of the course.2. Introduce the basic computational notions underlying the course.3. Discuss computational di�culty as captured by one-way functions.4. Present the �rst result and its proof (stressing the proof technique).Lecture 2: Working with Intractability Assumptions. The bulk of this lecture is devotedto proving that if there exist weakly one-way functions then there exists strongly one-way functions.The construction itself is simple, but again the focus should be on the proof technique. In addition,we introduce the notion of a collection of one-way functions, and the notion of a hard-core predicateof (a one-way function).Lecture 3: Hard-Core Predicates and Pseudorandom Generators. This lecture consistsof two independent parts. In the �rst (and main) part we present a proof of the existence of ageneric hard-core predicate. In the second part we provide a short introduction to the notion ofpseudorandom generators, which will be the focus of subsequent lectures.Lecture 4: Computational Indistinguishability. The focus of this lecture is on the conceptof computational indistinguishability, which is a key concept in the area, and in particular underliesthe notion of pseudorandomness. Speci�cally, we present the basic de�nition, discuss its relationto statistical indistinguishability, consider its preservation under repeated sampling, and presentthe hybrid technique (which is often used towards proving computational indistinguishability). Wethen recall the de�nition of pseudorandom generator and prove that a construction with any givenstretching factor yields constructions for any desired stretching factor.Lecture 5: Constructing Pseudorandom Generators and Functions. In the �rst part ofthis lecture we show how to construct pseudorandom generators using any 1-1 one-way function(i.e., one-way permutation). In the second part, we de�ne pseudorandom functions and show howthey can be constructed using any pseudorandom generator.Lecture 6: Zero-Knowledge Interactive Proofs. We �rst motivate the notion of zero-knowledge. Next, we de�ne, illustrate and discuss the natural notion of interactive proof systems(which is the adequate framework for the introduction of zero-knowledge proofs). Next we use thisframework to de�ne and illustrate the notion of zero-knowledge. The illustrative examples used arethe Graph Non-Isomorphism and Graph Isomorphism protocols, respectively.XI



XIILecture 7: Constructing Zero-Knowledge Proofs. We recall the basic conditions underly-ing the de�nitional framework of zero-knowledge proofs, and present the actual de�nition that istypically used. We claim (and sketch a proof) that this de�nition is preserved under sequentialcomposition. We de�ne and show how to construct commitment schemes, and using the latter weshow how to construct zero-knowledge proof systems for every language in NP.Lecture 8: De�ning Security of Encryption Schemes. After presenting the basic syntax,we de�ne two equivalent notions of security: semantic security and the technical de�nition ofindistinguishability of encryptions. We prove the equivalence of the two de�nitions, and considertheir generalization to the encryption of several plaintexts (under the same key). We discuss theinherent role of probabilistic encryption algorithms (for satisfying the de�nitions).
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Lecture 1Getting Started SummaryThis is an introductory lecture: a bit of motivation (what is the course about), a bitof background (on computation), and a taste of the real material (one-way functions).Speci�cally:1. Introduce the topics of the course.2. Introduce the basic computational notions underlying the course.3. Discuss computational di�culty as captured by one-way functions.4. Present the �rst result and its proof (stressing the proof technique).1.1 IntroductionJust give a vague feeling of what this course is about. Make sure the students are comfortable withrandomized algorithms and with the notions of e�cient and infeasible.1.1.1 The topics Sec. 1.1The most basic topics of cryptography are:1. Encryption: Providing secret communication.2. Signatures: Providing authentic communicationComment: here we mean communication in a broad sense. Nowadays we associate communicationwith electronic communication of computers (over the Internet) or humans (over phone lines); thatis, communication is associated with real-time interaction. However, a century ago, communica-tion was associated with the written letter or book (which are far from occurring in real-time).But non-immediate communication exists also nowadays (e.g., stored data), and by referring tocommunication we refer to such non-immediate communication as well.We will also discuss general cryptographic protocols. These are protocols that are abuse-resilient;that is, they maintain their designated functionality also under attacks of malicious adversaries. Infact, maintaining a desired functionality under malicious attacks may be used as the de�nition ofthe entire area of cryptography.But before embarking on the study of the above topics, we will present tools and attitudes.1



2 LECTURE 1. GETTING STARTED1.1.2 Basic computational notions Sec. 1.3Secrets are inherent to cryptography! What is a secret? It is something selected by one partyand unknown to others. If the others would know all determining factors e�ecting the selectionthen they'd know the secret as well. Thus, the selection must include random factors. That is,randomization is essential to cryptography.Randomized algorithms (a natural extention of the notion of an algorithm) should be contrastedwith the �cticious notion of non-deterministic machines (introduced as a technical tool). This keydistinction should have been made in a course on computability and/or complexity; however, oftenthings that should be done are not done (or are done wrongly which is even worse). Make sure thestudents understand it right!Next, we confront the following:� E�cient means computable in (probabilistic) polynomial-time. That is, there exists a polyno-mial bounding the running-time (such that an algorithm satisfying the time bound succeeds).� Infeasible means not computable in (probabilistic) polynomial-time. That is, for any polyno-mial bounding the running-time (an algorithm satisfying the time bound fails).In the context of randomized algorithms, success and failure are probabilistic events. Furthermore,we often consider input distributions (i.e., inputs drawn according to some probability distribu-tions). Corresponding notions of rareness of success and failure are:� Noticeable will indicate probability that is bounded below by a recipocal of some (positive)polynomial. That is, there exists a positive polynomial such that its recipocal lower boundsthe said probability.� Negligible will indicate probability that is bounded above by the recipocal of any polynomial.That is, for any (positive) polynomial its recipocal upper bounds the said probability.Comment: There is nothing \holy" is using polynomials as the distinction between e�cient (resp.,noticeable) and infeasible (resp., negligible). Any other nicely-behaved classes of time-bounds willdo: polynomials are just the simplest and most natural choice.1.2 One-Way FunctionsComputational di�culty (in the sense we need it) is captured by the notion of one-way functions.When proving Proposition 1.1 (or whenever preseting the �rst proof of such avor), stress thedi�culty of arguing about computational di�culty (as contrasted to the related triviality of thecombinatorics).1.2.1 Motivation Sec. 2.1



1.2. ONE-WAY FUNCTIONS 3Modern Cryptography is based on computational di�culty: e�ciency of proper behavior versusinfeasibility of causing harm by improper behavior.Typically, the honest user holds a secret enabling it to e�ciently take actions that are infeasibleto the adversary (who does not know the secret). Furthermore, the secret is typically veri�able viasome public information. Thus, �nding the secret is an NP-problem, and we assume that it is notsolveable in probabilistic polynomial-time. Thus, at the very least we assume that P 6= NP . Butworst-case hardness (as provided by P 6= NP) is not enough: we want the secret to be hard to �ndalmost always, not merely in the worst-case. Thus, we actually need problems in NP that are hardon the average. Furthermore, these hard-on-the-average problems should be easy to generate withtheir corresponding solutions (i.e., the secrets). This leads to the de�nition of one-way functions.1.2.2 De�nitions Sec. 2.2The basic de�nition is of (length preserving) functions that are e�ciently computable, but areinfeasible to invert in the average-case sense. That is, every probabilistic polynomial-time algorithmwill fail to invert the function on a random image, except for with negligible probability (taken onthe invertor's coins as well as on the random image). By a random image we mean one generatedby applying the function to a uniformly chosen preimage (of any �xed length).A weaker de�nition requires every (probabilistic polynomial-time) to fail only with noticeableprobability (rather than succeed with at most negligible probability). The probability space isagain taken over the invertor's coins as well as on the random image. We call the former type offunctions strongly one-way (or just one-way), and call the latter weakly one-way.In light of the motivating discussion, the students may wonder (or you can challenge them withthe question of) what are weakly one-way functions good for? Jumping ahead, we mention thatweak one-way functions can be transformed into strong ones (cf. Theorem 1.2). On the other hand,it is sometimes easier to construct candidate weak one-way functions that strong ones.An example of a candidate weak one-way function: integer mutiplication (i.e., breaking theinput into the binary representation of two equal-length integers, output the binary representationof their product). This seems hard to invert at least in case the preimage encodes two primes.(We could have presented a strong one-way function based on the corresponding intractabilityassumption by using a randomized algorithms for generating random primes; but this is morecomplicated { in fact we give no details.) Sec. 2.3Proposition 1.1 Assuming the existence of one-way functions, there exists a weakly one-way func-tion that is not strongly one-way.Given any one-way function, f , construct f 0(�x) def= �f(x) if � = 0log2 jxj and f 0(�x) def= �x other-wise. (The length of � should not be more than logarithmic in the length of x, and we let it belogarithmic rather than 1 in order to \maximize the dramatic e�ect".)Proving the proposition: Clearly, f 0 is not strongly one-way. The less obvious thing is to provethat f 0 is weakly one-way. Just feeling that this is right does not su�ce. We need to show thatany algorithm that contradicts the weak one-way property of f 0 can be converted into an algorithm



4 LECTURE 1. GETTING STARTEDthat contradicts the hypothesis that f is (strongly) one-way. Speci�ally, prove that (on inputs oflength n) the function f 0 is hard to invert with success probability greater than 1 � 12n . Givenan f 0-inverter A0, construct an f -inverted, denoted A, that on input y = f(x) invokes A0 on theinput 0log2 jyjy, and outputs the jyj-bit long su�x of the answer. In the analysis, consider �rst thesuccess probability of A0 on inputs of the form 0log2 jyjy (using the fact that such inputs occur withprobability 1=jyj as images of f 0).Preview: Although there may exists weak one-way functions that are not strongly one-way, wecan transform any weak one-way function into a strong one-way function. That is:Theorem 1.2 If there exist weakly one-way functions, then there exists strongly one-way functions.The proof will be given in the next lecture. (Challenge the students to try to guess the construction.)Historical NotesThe notion of one-way functions was introduced by Di�e and Hellman in their seminal work NewDirections in Cryptography [6], which set the direction of the �eld for many years. The conjecturethat factoring integers is intracatable was put forward by Rivest, Shamir and Adleman in theirinuential design of the RSA scheme [28]. Jumping ahead, I'd like to mention a third seminalpaper that has actually set the tone for the entire approach followed in this course: I refer to thepaper Probabilistic Encryption [22] of Goldwasser and Micali.



Lecture 2Working with IntractabilityAssumptions SummaryThe bulk of this lecture is devoted to proving that if there exist weakly one-way functionsthen there exists strongly one-way functions. The construction itself is simple, but againthe focus should be on the proof technique.In addition, we introduce the notion of a collection of one-way functions, and the notionof a hard-core predicate of (a one-way function).The title of the lecture emphasizes the non-triviality of deriving intractability results (such as theexistence of strong one-way functions) based on intracatbility assumptions.2.1 Weak one-way functions imply strong ones Sec. 2.3Recall the theorem stated at the end of last lecture.Theorem 2.1 If there exist weakly one-way functions, then there exists strongly one-way functions.Suppose that f is hard to invert (in probabilistic polynomial-time) on at least a � = 1=poly(n)fraction of its probability space. De�ne F by partitioning the (t � n-bit long) input string intot def= n=� equal-length parts and applying f to each of them. We claim that F is a strongly one-wayfunction.The proof does not amount to saying that the probability of t successes in t trials, eachsucceeding with probability at most 1� �, is (1� �)t = exp(�n). Such an \argument" assumes thatthe F -invertor operates independently on each of the t parts of the image. One may say that suchan assumption is \reasonable", but what can be called reasonable when it comes to adversaries?Anyhow, we know of no way to justify this \reasonable" assumption, and we do not want anyadditional (ill-formed) assumption but rather a proof. The real proof proceeds by showing how anyF -inverter that is too good can be transformed into an f -inverter that is too good.5



6 LECTURE 2. WORKING WITH INTRACTABILITY ASSUMPTIONSSuppose towards the contradiction that F is easy to invert on at least an � = 1=poly(n) fractionof the probability space. We will show that this yields that f is easy to invert on 1� � fraction ofthe probability space, which contradicts the hypothesis.Speci�cally, we �x an inverting algorithm A for F , and proceed as follows. For i = 1; :::; t, callan f -preimage x i-good (or good in direction i) if the probability that A inverts F on the imageF (r1; :::; ri�1; x; ri+1; :::; rt) is at least �=2t, where the probability is taken over all possible choicesof r1; :::; ri�1; ri+1; :::; rt 2 f0; 1gn and over A's coin tosses. (Note that x (and i) is �xed and theri's are random.)Claim 2.2 There exists an i such that at least 1� (�=2) fraction of the f -preimages are i-good.The proof is an easy counting argument. Assuming on the contrary that in all directions there areless than a 1 � (�=2) fraction of good preimages, we upperbound the success probability of A bynoting that non-good preimages contribute at most a probability mass of �=2t in each direction,whereas the intersection of the good regions is exponentially vanishing. That's the combinatorialpart.We turn to the algorithmic part. The point is that, given y = f(x), we may try to invertf on y as follows. For every i = 1; :::; t, using the F -invertor A, we try nt=� times to invert Fon f(r1); :::; f(ri�1); y; f(ri+1); :::; f(rt), where r1; :::; ri�1; ri+1; :::; rt are selected at random by us.If x happens to be i-good (for any i), then each of the corresponding trials has a probability ofat least �=2t to succeed. Trying nt=� times, the probability that we fail in all trials is at most(1 � �=2t)nt=� = exp(�n). Combining this with Claim 2.2 (and letting i be as guaranteed by theclaim), we conclude that for a random x, our f -inverying algorithm succeeds with probability atleast Pr[x is i-good] � (1� Pr[we fail to invert f on f(x) jx is i-good])� �1� �2� � (1� exp(�n)) > 1� �and contradiction follows.Digest: The crux of the entire proof is neither (the proof of) Claim 2.2 nor the analysis of thef -inverter (presented above). It is rather the f -inverter itself. Put in other words, the crux of theproof is in the way an F -inverter (which succeeds only with probability �) can be used to derivean f -inverter (which succeeds with probability 1� �). It should not be surprising that we have toinvoke the former (i.e., F -invertor) many (i.e., nt=�) times, because we are amplifying the successprobability.More thoughts: Emphasize the non-triviality of deriving intractability results (such as the ex-istence of strong one-way functions) based on intracatbility assumptions (such as the existence ofweak one-way functions). Indeed proving such implications is easier than proving the correspondingintractability results without making assumptions (currently way beyond our reach), but still thefact that we use assumptions means that we don't really understand the context (or else we wouldnot have needed to assume anything). Thus, we should be \super-careful" in deriving implications.The only implications allowed are those that we can formally prove (and not merely conjectureor consider reasonable). Typically, implications of the above type are proven by counter-positive.Given an algorithm that violates the conclusion (that's nice: we are given something alas this thing



2.2. COLLECTIONS OF ONE-WAY FUNCTIONS 7is \generic"), we derive an algorithm that violates the hypothesis (and thus derive a contradiction).We construct the latter algorithm while using the former one as a sub-routine (because this algo-rithm is \generic"), and since the context is probabilitic it is important to invoke the sub-routineon input distributions about which we can make meaningful claims (regarding the sub-routinebehaviour).2.2 Collections of one-way functions Sec. 2.4The more cumbersome formulation is motivated in two ways. Firstly, it is more suitable for dis-cussion of most popular candidates of one-way functions. Secondly, it allows a natural introductionof the notion of trapdoor (one-way functions).The basic formulation refers to collections (of (�nite) functions) ff� : D� ! R�g�2I , whereI � f0; 1g�. To be able to use such a collection we need e�cient (uniform (for the collection))algorithms for selecting indices in I (i.e., given 1n, generate an element of I \f0; 1gn), for selectingdomain elements (i.e., given � 2 I, generate an element of D�), and for evaluating the function(i.e., given � 2 I and x 2 D�, output f�(x)). The one-way property has to be stated with respectto the distribution induced by the index and domain sampling algorithms.Example: the RSA collection. We view it as a collection of one-way functions, not as anencryption and/or signature scheme. The reasons for this perspective will become clear when wede�ne encryption and signature schemes.Additional properties enjoyed by the RSA collection include the functions being permutations(over the corresponding domains), the sampling algorithms generating (almost) uniform samplesfrom the corresponding sets, and { most importantly { having trapdoors that allow e�cient inver-sion.Trapdoor collections. The index-sampling algorithm is required to output a pair, where the�rst element is an index (as before) and the second is a corresponding trapdoor. In addition, ane�cient algorithm is presented for inverting the function when given also the trapdoor. Invertingremains infeasible when not given the trapdoor but rather given the index of the function (whichdoes allow e�cient evaluation of the function).2.3 Hard-core predicates (of one-way functions) Sec. 2.5We turn back to the less cumbersome formulation (in which there is a single in�nite functionrather than an in�nite collection of �nite functions).We have seen (or show now) that a one-way function may \leak" many bits of its preimage (e.g.,given a one-way function f consider the function f 0(x; y) = (x; f(y)), where jxj = jyj). Going to theother extreme, we say that a simple (i.e., e�ciently computable) predicate is a hardcore of a functionif given a random image it is infeasible to guess (with non-negligible advantage) the predicate'svalue on \the" corresponding preimage. The interesting case is when the function is 1-1, otherwise



8 LECTURE 2. WORKING WITH INTRACTABILITY ASSUMPTIONShardcore may exists in a trivial (i.e., information-theoretic) manner (e.g., f 0(�x) = (0; f(x)) hasthe hardcore predicate b(�x) = �, regardless if f is hard to invert or not). In case the function is1-1 (and e�ciently computable), if it has a hardcore then it must be one-way (i.e., otherwise the\hardcore" is computed by inverting the function and computing the \hardcore" on the resultingpreimage). In constrast, any (strongly) one-way function can be slightly modi�ed to have a hardcorepredicate. Speci�cally:Theorem 2.3 Suppose that f is a one-way function. Let f 0(x; r) = (f(x); r), and b(x; r) be theinner-product mod 2 of x and r. Then b is a hardcore predicate of f 0.The theorem will be proven in the next lecture. Note that f 0 preserves many properties of f (e.g.,being 1-1, evaluation time, etc).Historical NotesTheorem 2.1 is due to Yao [30], and its proof has �rst appeared in [7]. Theorem 2.3 is due toGoldreich and Levin [16], and improves over a more complicated construction due to Yao. Thelatter construction is analyzed using the so-called Yao's XOR-Lemma, which is of independentinterest. A proof of Yao's XOR-Lemma has �rst appeared in Levin's paper [25], but the interestedreader is referred to other sources (e.g., a good place to start is [19]).



Lecture 3Hard-Core Predicates andPseudorandom GeneratorsSummaryThis lecture consists of two independent parts. In the �rst (and main) part we presenta proof of the existence of a generic hard-core predicate. In the second part we providea short introduction to the notion of pseudorandom generators, which will be the focusof subsequent lectures.The two parts are not unrelated: in a lecture (or two) we will see how to use hard-core predicatesto construct pseudorandom generators.3.1 Existence of a Generic Hard-core predicate Sec. 2.5Recall the de�nitions of (strong) one-way functions and hard-core predicate as well as the followingresult (stated in previous lecture and to be proven now).Theorem 3.1 (Theorem 2.3, restated): Suppose that f is a one-way function. Let f 0(x; r) =(f(x); r), and b(x; r) be the inner-product mod 2 of x and r. Then b is a hardcore predicate of f 0.Let A be any probabilistic polynomial-time algorithm and �(n) def= Pr[A(f 0(Xn; Rn)) = b(Xn; Rn)]�12 , where Xn and Rn are independently and uniformly distributed over f0; 1gn. That is, � representsA's advantage over a random guess.De�ne s(x) def= Pr[A(f(x); Rn) = b(x;Rn)], so E[s(Xn)] = 12 + �(n). De�ne Sn def= fx : s(x) >(1=2) + (�(n)=2)g to be the set of x's for which A has a relatively signi�cant advantage, and provethat jSnj > (�(n)=2) � 2n. Focus on an arbitrary �xed x in Sn, and let � = �(n).The easy (alas unrealistic) case: Suppose that s(x) > (3=4) + (�=2) (rather than s(x) >(1=2) + (�=2)). Then,Prr hA(f(x); r)�A(f(x); r � 0i�110n�i) = b(x; r)� b(x; r � 0i�110n�i)i � 1�2��14 � �2� = 12+�9



10 LECTURE 3. HARD-CORE PREDICATES AND PSEUDORANDOM GENERATORSOn the other hand, for �i;j = 1 if i = j and �i;j = 0 otherwise,b(x; r)� b(x; r � 0i�110n�i) � nXj=1xjrj + nXj=1xj(rj + �i;j) � xi (mod 2)Thus, a sample of �(n=�2) (pairwise) independent random r's will give us xi with probability atleast 1�(1=2n). Thus, with probability at least 1=2, we correctly recover all bits of x (and so invertf on f(x)).The real case: We only have s(x) > (1=2)+(�=2). The doubling of error in the above procedure,makes it inadequate for the case s(x) � 3=4. To avoid the error doubling phenumena, let us dream.Suppose that somebody gave us the values of b(x; r)'s for su�ciently (i.e., �(n=�2)) many randomr's. Then, it would su�ce to query A on the corresponding (f(x); r � 0i�110n�i)'s so to obtainguesses for b(x; r � 0i�110n�i). Thus, with probability s(x) > (1=2) + (�=2), each such random ryields the value of xi (by A(f(x); r�0i�110n�i)�b(x; r)), and ruling by majority we are again correctwith probability at least 1 � (1=2n). But how do we get the values of b(x; r)'s for m def= �(n=�2)random r's. The answer is that we are going to guess them! Certainly, if the r's were totallyindependent then we would be correct with probability 2�m (which is way too low). Instead, weuse (a speci�c construction of) m pairwise-independent random r's such that the probability thatwe correctly guess all b(x; r)'s is 1=poly(m) (which we can a�ord). Note that the majority ruleworks also for pairwise-independent random r's.We construct m pairwise independent r's, based on ` = dlog2(m + 1)e independent randomstrings in f0; 1g`. Speci�cally, we uniformly and independently select s1; :::; s` 2 f0; 1gn, and setrI = �i2Isi for every non-empty I � [`]. Thus, we obtain m pairwise independent rI 's.1 We obtaina guess for all b(x; rI)'s, by merely guessing all b(x; si)'s at random, and usingb(x; rI) = b(x;�i2Isi) = nXj=1xjXi2I sij = Xi2I nXj=1xjsij � Xi2I b(x; si) (mod 2)Thus, if our initial ` guesses are correct (which happens with probability 2�` � 1=m) then thevalues obtained for all b(x; rI)'s are correct.3.2 Introduction to Pseudorandom Generators Sec. 3.1Loosely speaking, a pseudorandom generator is an e�cient program (or algorithm) that stretchesshort random strings into long pseudorandom sequences. Thus, a pseudorandom generator doesnot \generate randomness" (from scratch) but rather expands small amounts of true randomness(present in the seed) into bigger objects that are not truly random but do appear as if they are.Emphasize the three fundamental aspects in the notion of a pseudorandom generator:1To see that the rI 's are pairwise independent consider any I 6= J and any �; � 2 f0; 1gn. We need to prove thatPr[rI=� & rJ=�] = (1=2n)2. Suppose (w.l.o.g) that k 2 I n J , and writePr[rI=� & rJ=�] = Pr[rJ =�] � Pr[rI=� j rJ=�]Clearly, Pr[rJ =�] = Pr[�j2Jsj ] = 2�n. By �xing all sj 's except for sk that is kept random, we have Pr[rI=� j rJ=�] = Pr[sk=�� (�i2Infkgsi)] = 2�n.



3.2. INTRODUCTION TO PSEUDORANDOM GENERATORS 111. E�ciency of the generator.2. Stretching: Short seeds are stretched into longer output sequences. Speci�cally, n-bit longseeds are stretched into `(n)-bit long outputs, where `(n) > n (and typically `(n)� n).3. Pseudorandomness: The longer (`(n)-bit long) outputs (produced based on uniformly dis-tributed n-bit seeds) are computationally indistinguishable from uniformly distributed se-quences of the same length (i.e., of length `(n)).Indeed, the notion of computationally indistinguishable is the heart of the de�nition and will bediscussed extensively in the next lecture.Pseudorandom generators allow to generate, communicate and store `(n)-bit long random se-quences at the cost of actually generating, communicating and storing only n (random) bits.Historical NotesTheorem 3.1 is due to Goldreich and Levin [16], but their original proof (see generalization in [21])is di�erent that the proof presented above. The proof presented above, which follows ideas thatoriginate in [1], was discovered later (and independently) by Levin and Racko�.Although pseudorandom generators have been used and referred to (implicitly and explicitly)from the early days of computer science, a rigorous de�nition of the notion was �rst put forwardby Blum and Micali [5].



12 LECTURE 3. HARD-CORE PREDICATES AND PSEUDORANDOM GENERATORS



Lecture 4Computational IndistinguishabilitySummaryThe focus of this lecture is on the concept of computational indistinguishability, whichis a key concept in the area, and in particular underlies the notion of pseudorandomness.Speci�cally, we present the basic de�nition, discuss its relation to statistical indistin-guishability, consider its preservation under repeated sampling, and present the hybridtechnique (which is often used towards proving computational indistinguishability). Wethen recall the de�nition of pseudorandom generator and prove that a construction withany given stretching factor yields constructions for any desired stretching factor.4.1 The basic notion and some basic properties Sec. 3.24.1.1 The actual de�nitionThe intuition: An e�cient procedure (or observer) is given either a sample from one distributionor a sample from the other. Can he/she distinguish the two cases?The formalism: We cannot talk about a �nite distribution (because an e�cient machine canincorporate it), but rather of distribution ensembles; that is, in�nite sequences fZngn2N, where eachZn is �nite random variable (or distribution). Typically, Zn ranges over f0; 1gn (or over f0; 1gp(n),for some polynomial p that is �xed for the entire ensemble).For an observer A, consider the sequence of pn def= Pr[A(Xn) = 1] versus the sequence ofqn def= Pr[A(Yn) = 1]. (Spell out what these probabilities mean; that is, write Pr[A(Xn) = 1] =Px Pr[Xn = x] �Pr[A(x) = 1], students often have problems with this.) If jpn � qnj is negligible (asa function of n), we say that A does not distinguish between fXngn2N and fYngn2N.We say that X = fXngn2N and Y = fYngn2N are computationally indistinguishable if no proba-bilistic polynomial-time distinguishes them.Computational indistinguishability is a relaxation of statistical indistinguishability de�ned as hav-ing negligible variation distance. Exercise: Show that statistical indistinguishability implies com-putational indistinguishability. (Comment: the relaxation is strict if and only if one-way functionsexist. More about this, at a later stage.) 13



14 LECTURE 4. COMPUTATIONAL INDISTINGUISHABILITYComment: Distinguishing �xed objects (rather than distributions) is a special case.4.1.2 Repeated samplesSuppose that X = fXngn2N and Y = fYngn2N are computationally indistinguishable. Does thismeans that an e�cient observer cannot distinguish two independently selected samples of X fromtwo independently selected samples of Y ?In general, the answer is NO, but for the special case we care about in which both ensembles are\e�ciently sampleable" the answer is YES. (An ensemble Z = fZngn2N is e�ciently sampleable ifthere exists an a probabilistic polynomial-time S such that S(1n) is distributed identically to Zn.)The negative part should teach us a lesson: not to rush to conclusions regarding complexnotions.The positive part is proven next. The proof utilizes a central (new) technique, to be called a\hybrid argument". Let us restate our claim (for X and Y as above): For every polynomial t,consider the t-product of Z = fZngn2NfZ(1)n ; Z(2)n ; :::; Z(t(n))n gn2Nwhere the Z(i)n 's are independent copies of Zn. We claim that if X and Y are computationallyindistinguishable then so are their t-products (for every polynomial t). Suppose that A distinguishesthe t-products; that is, there exists a polynomial p and in�nitely many n's such that���Pr[A(X(1)n ;X(2)n ; :::;X(t(n))n ) = 1]� Pr[A(Y (1)n ; Y (2)n ; :::; Y (t(n))n ) = 1]��� > 1p(n)(Verify that this is the negation, and that we may drop the absolute value.) Consider such a genericn. Then, there exists an i 2 f0; :::; t(n) � 1g such thatPr[A(X(1)n ; :::;X(i)n ; X(i+1)n ; Y (i+2)n ; :::; Y (t(n))n ) = 1]� Pr[A(X(1)n ; :::;X(i)n ; Y (i+1)n ; Y (i+2)n ; :::; Y (t(n))n ) = 1] > 1t(n) � p(n)That is, for every j, we consider a hybrid distribution composed of j copies of Xn followed byt(n)� j copies of Yn. The above inequality asserts that A distinguishes the i+1st hybrid from theith hybrid. (It follows by observing that the t-product of X coincides with the last (i.e. t(n)th)hybrid, whereas the t-product of Y coincides with the 0-hybrid.) In fact, the expected gap for arandom pair of neighboring hybrids is also 1=t(n) � p(n). Using the sampleability of both ensembles,we convert A into an observer that distinguishes a single copy of X from a single copy of Y (incontradiction to the hypothesis).Comment: Some students may wonder as to why should A, which is supposed to run on productdistributions, agree (or behave nicely) on intermediate hybrids. Address the issue explicitly sayingthat A being merely an algorithm is not asked to agree but is rather being run on arbitrary inputsand its behavior on various distribution is well-de�ned. (In fact, if it behave \non-nicely" on somehybrids then even better...)



4.2. BACK TO THE DEFINITION OF PSEUDORANDOM GENERATORS 15Hybrid technique { digest. The key features are de�ning a polynomially-bounded number ofhybrids such that the extreme hybrids correspond to the conclusion, whereas neighboring hybridscorrespond to the hypothesis. Elaborate on each of these three aspects.4.2 Back to the de�nition of pseudorandom generators Sec. 3.3Recall that a pseudorandom generator is an e�cient deterministic program (or algorithm)that stretches short random strings into long pseudorandom sequences, where pseudorandom (`(n)-bit long) sequences are de�ned as computationally indistinguishable from uniformly distributedsequences of the same length (i.e., of length `(n)).Stretching: It is required that short seeds are stretched into longer output sequences. Speci�cally,n-bit long seeds are stretched into `(n)-bit long outputs, where `(n) > n (for some polynomial `).Indeed, typically we want `(n) � n, but in the de�nition we only required `(n) > n. This gap isaddressed by the following result:Theorem 4.1 Suppose that G is a pseudorandom generator stretching seeds of length n to outputsof length n + 1. Then, for every polynomial ` (such that `(n) > n), there exists a pseudorandomgenerator G0 stretching seeds of length n to outputs of length `(n).The desired G0 is constructed as follows. On input s 2 f0; 1gn, we proceed in ` def= `(n) iterationsstarting with s0 def= s, and outputting one bit in each iteration. In the ith iteration we output the�rst bit of G(si�1) and set si to equal the other n bits of G(si�1). (Draw a picture!)To prove the pseudorandomness of G0, we consider the following hybrids. For i = 0; 1::::; `(n),the ith hybrid outputs a uniformly distributed i-bit long string followed by the (`(n)� i)-bit pre�xof G0(Un). Clearly, the 0-hybrid coincides with G0(Un), whereas the `(n)-hybrid coincides withU`(n). To utilize potential gaps between neighboring hybrids, we review the structure of the i-hybrid versus the (i + 1)-hybrid. (Draw a picture!) For x 2 f0; 1gn+1, let lead(x) denote the �rst(leading) bit of x and rest(x) denote the following n bits; that is, x = lead(x) �rest(x). View thei-hybrid as starting with a uniformly distributed i-bit long string followed by lead(G(Un)) followedby the (`(n) � i � 1)-bit pre�x of G0(rest(G(Un)). Likewise, view (i + 1)-hybrid as starting witha uniformly distributed i-bit long string followed by lead(Un+1) followed by the (`(n)� i� 1)-bitpre�x of G0(rest(Un+1). Thus, distinguishing these two neighboring hybrids allows to distinguishG(Un) from Un+1.Historical NotesThe notion of computational indistinguishability was introduced in the work of Goldwasser andMicali [22] within the special context of indistinguishability of ciphertexts (as a de�nition of securityfor encryption schemes). The general notion of computational indistinguishability has �rst appearedin Yao's work [30], where it was used to de�ne pseudorandom sequences (as being computationallyindistinguishable from truly random sequences). Yao also proved that this notion of pseudorandomsequences is equivalent to the notion of unpredictable sequences (which was used as the notion ofpseudorandomness in the work of Blum and Micali [5]).



16 LECTURE 4. COMPUTATIONAL INDISTINGUISHABILITY



Lecture 5Constructing PseudorandomGenerators and FunctionsSummaryIn the �rst part of this lecture we show how to construct pseudorandom generators us-ing any 1-1 one-way function (i.e., one-way permutation). In the second part, we de�nepseudorandom functions and show how they can be constructed using any pseudoran-dom generator.5.1 Constructing Pseudorandom Generator Sec. 3.4Recall the de�nition of a pseudorandom generator, and that pseudorandom generators with minimalstretch su�ce for constructing pseudorandom generators with arbitrary (polynomial) stretch.Letting f be a 1-1 one-way function, and b be a corresponding hard-core predicate, we provethat G(s) def= f(s)b(s) is a pseudorandom generator. That is, we proveLemma 5.1 fG(Un)gn2N and fUn+1gn2N are computationally indistinguishable.De�ne G0(s) def= f(s)b(s), where b(s) def= 1�b(s). The key observation is that Un+1 � f(Un)U 01 equalsG(Un) = f(Un)b(Un) with probability 1=2 and equals G0(Un) = f(Un)b(Un) otherwise. Thus, forevery algorithm D,Pr[D(G(Un)) = 1]� Pr[D(Un+1) = 1] = Pr[D(G(Un)) = 1]� Pr[D(G0(Un)) = 1]2and it su�ces to show that fG(Un)gn2N and fG0(Un)gn2N are computationally indistinguishable.The latter is proven by contradiction; that is, (w.l.o.g.) suppose that�(n) def= Pr[D(G(Un)) = 1]� Pr[D(G0(Un)) = 1] � 0then given y = f(x) we predict b(x) by uniformly selecting � 2 f0; 1g and outputting � if D(y�) = 1(and � otherwise). Intuitively, D(y�) is more likely to be 1 if � = b(x). Formally, we just evaluatethe success probability of this prediction rule, and conclude that it is correct with probability12 + �(n)2 . 17



18 LECTURE 5. CONSTRUCTING PSEUDORANDOM GENERATORS AND FUNCTIONSAn alternative construction: By combining the above construction with the transformationshown in the previous lecture (and mentioned above), we obtainTheorem 5.2 If 1-1 one-way functions exist then, for every polynomial ` such that `(n) > n (8n),there exist a pseudorandom generator with stretch function `.A direct construction (which is in fact equivalent to the one obtained by combining the two above-mentioned constructions), follows. Let f be a 1-1 one-way function and b be a corresponding hard-core, then G(s) def= b(s)b(f(s))b(f2(s)) � � � b(f `(n)�1(s)) is a pseudorandom generator. The proofis obtained by combining the proof ideas used to establish the validity of the two correspondingconstructions.Getting rid of the 1-1 condition: In fact, pseudorandom generators can be constructed usingany one-way function (rather than only 1-1 one-way functions), alas the construction (and moreso its analysis) is too complex to be presented here. One the other hand, it is easy to showthat the existence of pseudorandom generators implies the existence of one-way functions (e.g., ifG : f0; 1gn ! f0; 1g2n is a pseudorandom generator, then for jxj = jyj the function f(xy) = G(x)is one-way (hint: U2n is unlikely to have a preimage under f)). Thus:Theorem 5.3 Pseudorandom generators exist if and only if one-way functions exist.5.2 Pseudorandom Functions Sec. 3.6Pseudorandom generators yield distributions with support size of at most 2n that are computation-ally indistinguishable from the uniform distribution on 2poly(n) objects. Pseudorandom functions(de�ned below) yield distributions with support size of at most 2n that are computationally in-distinguishable from the uniform distribution on 22n objects. For example, a distribution of up-to2n many functions f0; 1gn ! f0; 1g is computationally indistinguishable from a random functionf0; 1gn ! f0; 1g, where computational indistinguishability means failure of any e�cient test thatmay obtain the value of the function at inputs of its choice to distinguish the two cases.Formalism: Here the distinguisher is an oracle machine given oracle access to a function. Forexample, we may consider collections ffs : f0; 1gjsj ! f0; 1gjsjgs2f0;1g� satisfying the following twoconditions:1. E�cient evaluation: There exist an e�cient algorithm that given a function description s andan argument x returns fs(x).2. Pseudorandomness: For every probabilistic polynomial-time oracle machine M ,jPr[MfUn (1n) = 1]� Pr[MFn(1n) = 1]jis negligible, where Fn : f0; 1gn ! f0; 1gn denotes a random function.Clearly, pseudorandom functions yields pseudorandom generators (e.g., G(s) = fs(1)fs(2) � � � fs(t)).We show a construction establishing the converse.



5.2. PSEUDORANDOM FUNCTIONS 19Theorem 5.4 Pseudorandom functions exist if and only if pseudorandom generators exist.Let G : f0; 1gn ! f0; 1g2n be a pseudorandom generator, and let G0(s) (resp., G1(s)) denote the�rst (resp., last) jsj bits of G(s). For s; x 2 f0; 1gn, considerfs(x) def= sx def= Gxn � � �Gx2Gx1(s)where x = x1x2 � � � xn. (Draw a picture of a binary tree where the root is labeled by s� def= s, andthe children of the node labeled s� are labeled s�0 def= G0(s�) and s�1 def= G1(s�), respectively.)Prove the validity of the construction using a hybrid argument, where the ith hybrid correspondsto a tree with random labels at the 2i vertices of level i (and their ancestors being labeled as above).Hint: use the fact that, for any polynomial t, the t-product of fG(Un)gn2N and the t-product offU2ngn2N are indistinguishable, and use samples from either fG(Un)gn2N or fU2ngn2N to constructeither the ith or i+ 1st hybrid \on the y".Applications: Pseudorandom functions enable to share a random-looking function at the costof selecting, communicating and storing a short seed. The seed is shared by the legitimate partiesand a random behavior (of the function) is guaranteed even if an adversary can obtain values ofthe function at arguments of its choice. Immediate applications include1. Private-key encryption schemes.2. Message Authentication Codes.3. Identify Friend Or Foe schemes.The �rst two applications will be discussed in subsequent lectures. The third application refers tochallenge{response identi�cation protocols, where the challenger selects a random challenge and therespond should be the value of the agreed (pseudorandom) function at this challenge point. (Onlylegitimate group members know the agreed secret function.) Note that an e�cient adversary cannotpass such a test even if prior to attempting, the adversary may play the role of the challenger (w.r.ta legitimate member) in polynomially-many instances of the protocol (and so obtain the value ofthe function at polynomially-many arguments of its choice).Historical NotesTheorem 5.2 is due to Yao [30]. The alternative proof of Theorem 5.2 coincides with the originalconstruction of Blum and Micali [5]. Theorem 5.3 is due to H�astad, Impagliazzo, Levin andLuby [24].Pseudorandom functions were de�ned and constructed (as in Theorem 5.4) by Goldreich, Gold-wasser, and Micali [15].
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Lecture 6Zero-Knowledge Interactive ProofsSummaryWe �rst motivate the notion of zero-knowledge. Next, we de�ne, illustrate and discussthe natural notion of interactive proof systems (which is the adequate framework forthe introduction of zero-knowledge proofs). Next we use this framework to de�ne andillustrate the notion of zero-knowledge. The illustrative examples used are the GraphNon-Isomorphism and Graph Isomorphism protocols, respectively.6.1 Motivation Sec. 4.1Discuss (with or without examples) the archetypical cryptographic problem of forcing properbehavior of a party without requiring it to loss anything (in case it is honest). Note that theparty's behavior depends on its secrets, which may be at least partially veri�able (via previousactions taken by the party). If the party was to reveal its secret (which is, of course, out of thequestion) then one could easily verify that this party acts properly. We want to be able to verifythe latter fact without making the party reveal its secret (nor even partial information about thesecret). That is, the veri�er should learn nothing from the proof beyond the fact that the claim (ofproper behavior) is valid.The issues at hand, are1. Presenting a (rich) framework for proofs of proper (or secret-consistent) behavior.This will lead us to the de�nition of interactive proof systems.2. Formulating what it means to learn nothing from such proofs.This will lead us to the de�nition of zero-knowledge.6.2 Interactive Proof Systems Sec. 4.221



22 LECTURE 6. ZERO-KNOWLEDGE INTERACTIVE PROOFSThe original motivation to the de�nition of interactive proof systems is that the traditional notionof (written) proofs, as captured by the class NP, does not allow zero-knowledge proofs. However,in retrospect, since proofs are going to be used inside bigger cryptographic protocols, there seems tobe no reason to insist that they be uni-directional (since bi-directional communication may anyhowoccur) and deterministically-veri�able (since all cryptography is anyhow \randomized").Interactive proof systems capture the most general way in which a probabilistic polynomial-time party may be convinced of the validity of some assertion. Present the de�nition while relyingon the intuitive notion of strategies (rather than on the cumbersome formulations of interactiveTuring machines, just as one needs not de�ne Turing machines to discuss algorithms). Indeed,uni-directional deterministically-veri�able proofs (i.e., \NP-type" proofs) are a special case.Issues to be discussed include the completeness and soundness requirements (stated with respectto negligible error probability), error-reduction (easily established via sequential repetition but doeshold here also via parallel repetition), and the discrepancy in computational power (of the proverversus the veri�er). Stress that we will focus (e.g., in the course) on prover strategies (for thecompleteness condition) that are implementable in probabilistic polynomial-time when given anadequate auxiliary input (e.g., typically an NP-witness).To illustrate the notion, present the Graph Non-Isomorphism (GNI) protocol (but avoid adetailed analysis, which refers to the automorphism group of the graphs). Stress that you showan interactive proof for a language not known to be in NP (i.e., not known to have an \NP-type"proof). You may further refer to the above issues in light of that protocol.6.3 Zero-Knowledge Sec. 4.3The simulation paradigm is the way we capture the notion of \gaining nothing beyond some-thing". It amounts to saying that whatever can be e�ciently done with the alleged gain, can alsobe e�ciently done with the original something (which is claimed to be the upper bound of gain).This is a general paradigm. In our context it says that whatever can be e�ciently computed after(e�ciently) interacting with a zero-knowledge prover, can be e�ciently computed from the asser-tion itself (provided it is valid). Thus, the only gain from the interaction is building con�dence inthe validity of the assertion (and \nothing beyond" is gained).Discuss the over-simpli�ed formulation (of perfect zero-knowledge) and its (minor) relaxationthat allows the simulator to have no output with negligible probability. Show that languages inBPP have a (trivial) zero-knowledge proof (in which the prover remains silent...). A non-trivialillustration of zero-knowledge can be given by presenting the Graph Isomorphism (GI) protocol,showing both the protocol and its simulator (but avoiding a detailed analysis). Stress that youshow an interactive proof for a language in NP, but that this \peculiar" proof system (unlike the\NP-type" proof) can be shown to be zero-knowledge.You may comment that the formulation of interactive proofs is essential to the non-trivialityof zero-knowledge (i.e., only languages in BPP have uni-directional zero-knowledge proofs). (Theproof may be left as an exercise; see Theorem 4.5.1 in the book.)Historical NotesInteractive proofs and zero-knowledge were introduced in the seminal work of Goldwasser, Micaliand Racko� [23]. We stress that their motivation for introducing interactive proofs was to formulate



6.3. ZERO-KNOWLEDGE 23the most general notion of what can be e�ciently veri�able. (In contrast, Babai's motivation forintroducing Arthur{Merlin games [2], which turned out to be as powerful as interactive proofs, wasto \slightly extend the class NP" such that it includes a speci�c computational problem that wasknown to be in NP (only) under a reasonable group-theoretic conjecture.)The protocols for GNI and GI, illustrating the notions of interactive proofs and zero-knowledgeproofs, are taken from the work of Goldreich, Micali and Wigderson [17].
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Lecture 7Constructing Zero-Knowledge ProofsSummaryWe recall the basic conditions underlying the de�nitional framework of zero-knowledgeproofs, and present the actual de�nition that is typically used. We claim (and sketcha proof) that this de�nition is preserved under sequential composition. We de�ne andshow how to construct commitment schemes, and using the latter we show how toconstruct zero-knowledge proof systems for every language in NP.7.1 Computational Zero-knowledge Sec. 4.3Recall the basic three requirements from a zero-knowledge interactive proof:1. Completeness is a viability condition referring to what happens if everybody behaves properly.In such a case, the prover only claims a valid statement and succeeds to make the veri�eraccept it.2. Soundness protects the veri�er from attempts of a cheating prover to prove false assertions.In such a case, the veri�er will reject (with high probability) no matter what the prover doesin order to cheat.3. Zero-knowledge protects the prover from attempts of a cheating veri�er to learn more thanthe validity of an assertions: No matter what a (feasible) veri�er does in order to gain extraknowledge, it can only obtain what it could obtain by itself when assuming (or believing)that the assertion is indeed valid.The set of valid assertions is associated with a language L � f0; 1g�.The actual de�nition { �rst issue. We will refer to a naturally relaxed de�nition of zero-knowledge, which su�ces for typical cryptographic purposes. Rather than asking that the simu-lation is perfect (i.e., distributed identically to the real interaction), we only require that the twoprobability ensembles be computational indistinguishable. (Stress that the ensembles are indexedby strings; typically, members of L as above.) 25



26 LECTURE 7. CONSTRUCTING ZERO-KNOWLEDGE PROOFSThe actual de�nition { second issue. On the other hand, we strengthen the de�nition byrequiring that zero-knowledge holds with respect to any a-priori information, which is capturedby an auxiliary input to the prover. This strengthening is important because it allows to usezero-knowledge proofs inside larger protocols (i.e., the original motivation), where auxiliary inputcaptures information obtained before the zero-knowledge proof is invoked. In particular, auxiliaryinputs are important for sequential composition of zero-knowledge. (Stress that, so far, typical zero-knowledge proofs were also zero-knowledge with respect to auxiliary input; but this may change inthe future following Barak's recent result [3].)Lemma 7.1 (loosely stated): Zero-knowledge with respect to auxiliary input is preserved undersequential composition.Postpone the proof of this lemma to the end of the lecture, and sketch it only if time permits.Stress that closure under parallel composition does not necessarily hold, which may be a warningto those happy to rely on unsound intuitions.7.2 How to construct zero-knowledge proofs for NP Sec. 4.4Start with an abstract description (i.e., referring to locked boxes) of the 3-colorability proof system.You may actually \play" the protocol in class (using 1+6 slides1, if you are old-fashioned like me, ora power-point...). Establish perfect completeness and \pitiful" (yet noticeable) soundness. Present(and analyze) the (abstract) simulator.The protocol is to be (sequentially) repeated to obtain a reasonable soundness bound; stressthat each repetition calls for independent coin tosses (and so although there are only 6 possiblerelabellings of the colors, a random one is selected independently at each repetition).Actual (digital) implementation. This calls for a (digital) implementation of \locked boxes",which leads to the notion of commitment schemes. De�ne this notion (referring to \hiding" and\binding" after the commit phase), and present a simple construction based on 1-1 one-way func-tions. State and discuss (as time permits) the proof of the followingTheorem 7.2 (loosely stated): Assuming the existence of commitment schemes, there exists azero-knowledge proof system for 3-Colorability.Important comments:� The proper prover (in the above proof system) can be implemented in probabilistic polynomial-time, provided it is given a 3-coloring as an auxiliary input.� Zero-knowledge holds also with respect to auxiliary input (given to the veri�er).1Draw the graph on the �rst slide and cover the vertices (drawn as small cycles) by small removable pieces ofnon-transparent material. The extra 6 slides show 6 random colorings obtained from one canonical 3-partition of thegraph into independent sets. Select one of these slides at random and place it behind the master slide, inviting thestudents to specify an edge, and revealing the colors of its endpoints (by removing the corresponding pieces).



7.2. HOW TO CONSTRUCT ZERO-KNOWLEDGE PROOFS FOR NP 27� The fact that 3-colorability has a zero-knowledge proof does imply that so does every languagein NP; but there are minor subtleties in this implication (i.e., one has to rely either on thefact that zero-knowledge holds also with respect to auxiliary input or on properties of severalrelevant reductions).The above three comments are essential to the wide applicability of the construction. Stress thata typical claim regarding proper behavior of one party (w.r.t veri�able secrets) is an NP-assertion,and that the acting party knows the relevant NP-witness (and thus can play the prover role inprobabilistic polynomial-time).Historical NotesZero-knowledge was introduced and de�ned by Goldwasser, Micali and Racko� [23]. The originalde�nition was augmented with auxiliary inputs in [20], where the Sequential Composition Lemma(i.e., Lemma 7.1) was proven.Theorem 7.2 (implying that (using commitment schemes) zero-knowledge proofs can be con-structed for any language in NP) was proved by Goldreich, Micali and Wigderson [17]. Ourpresentation follows theirs.
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Lecture 8De�ning Security of EncryptionSchemes SummaryAfter presenting the basic syntax, we de�ne two equivalent notions of security: semanticsecurity and the technical de�nition of indistinguishability of encryptions. We prove theequivalence of the two de�nitions, and consider their generalization to the encryptionof several plaintexts (under the same key). We discuss the inherent role of probabilisticencryption algorithms (for satisfying the de�nitions).8.1 The Basic Setting Sec. 5.1Depending on the background of the student and on what was done in the introductory lecture,describe and/or recall the basic setting: an insecure communication channel tapped by an adversaryand two parties that wish nevertheless to communicate in secrecy using that channel. Argue thatthe receiver must know something that the adversary does not know, and call this thing a key. Thekey is used to decrypt encrypted-messages, called ciphertexts, using a method that without loss ofgenerality may be assumed to be universal (i.e., known to all). Argue that the encryption methodmust use a (corresponding) key, and conclude by mentioning a method of generating key-pairs.Together, these three methods (or randomized algorithms) constitute an encryption scheme (witha minimal syntactic requirement that \decryption works").Point out that the above discussion does not mandate that the encryption-key equals thedecryption-key, although in traditional schemes this is the case. In such a case, the \key dis-tribution problem" arises (and is traditionally solved via an expensive secret channel). Introducethe notion of public-key encryption schemes, and show how it trivially solves the \key distributionproblem". Stress that the di�erence between private-key and public-key is reected in the de�nitionof security, which is the main subject of the current lecture.8.2 De�nitions of Security Sec. 5.229



30 LECTURE 8. DEFINING SECURITY OF ENCRYPTION SCHEMES8.2.1 Semantic Security and Indistinguishability of EncryptionsIntroduce the de�nition of semantic security �rst, emphasizing its natural appeal. Comment thatthe de�nition �ts into the simulation paradigm. Stress that it requires much more than merely theinfeasibility of recovering the entire plaintext, and justify why the latter does not su�ce. Stressthat the di�erence between the public-key and the private-key model amounts to whether or notthe (real) adversary gets the encryption-key as input.Note that (unrestricted) partial information function h provides you with all the non-uniformityyou need (for the rest of the presentation), and there is no need to consider non-uniform circuitsin this de�nition. (The letter h stands for history, but some may prefer to use ` for leak.)Advanced comment: Actually, talking in terms of non-uniform circuits will only complicatethings, because you may need to require that the description of the benign adversaries (also rep-resented by non-uniform circuits) should be e�ciently computable from the description of the realadversaries. Not making this requirement yields a de�nition that does not seem satisfactory, be-cause it may take much more e�ort to �nd a benign adversary than to �nd a real one. The sameissue may arise also in case the adversaries are represented by uniform algorithms, but seem muchless acute in the latter case.Turning to indistinguishability of encryptions, stress that this is a technical de�nition, whichis useful because it is equivalent to semantic security while being easier to work with. Here weexplicitly use non-uniformity in the formulation (i.e., the distinguishing circuits are non-uniform).Refer again to the di�erence between the public-key and the private-key models.8.2.2 Equivalence of the two de�nitionsThe interesting (i.e., useful) direction is the fact that indistinguishability of encryptions impliessemantic security. This is shown by explicitly constructing the benign adversary (which merelyinvokes the real adversary on an encryption of a dummy value). Stress that the benign adversarygenerates a key-pair by itself (and thus can work as stated also in the private-key model). Next, showthat the benign adversary performs essentially as well as the real one, because indistinguishabilityof encryptions essentially guarantees that the real adversary cannot distinguish the real situation(when it gets an encryption of the plaintext) from the simulated one (when it gets an encryptionof a dummy value). Extensive use of non-uniformity makes the implementation of this proof ideaquite easy.The other direction is essentially easier because in a sense indistinguishability of encryptions is aspecial case of semantic security in which the message distribution is uniform over two strings. Theproof is slightly complicated by the fact that we have to accommodate non-uniform distinguishers(as in indistinguishability of encryptions) by \uniform distinguishers" (provide by semantic secu-rity): here is where the non-uniformity of h comes to our rescue (i.e., we de�ne h(x) to provide thecircuit used to distinguish between the encryptions of the speci�c pair of jxj-long bit plaintexts).8.2.3 Probabilistic EncryptionShow that, in the public-key model, a secure encryption scheme must employ a probabilistic en-cryption algorithm. (Use the technical de�nition (of indistinguishability of encryption).)



8.2. DEFINITIONS OF SECURITY 318.2.4 Security of Multiple EncryptionsDiscuss the extension of the two de�nitions to multiple messages (using the same key), and suggestthe following three exercises:1. Providing a formulation of both extensions, and proving their equivalence.2. Proving that in the public-key model the single-message formulation implies the multiple-message one.Hint: use the technical de�nition (of indistinguishability of encryption). Note that it maybe dreadful to prove this implication while using the semantic security formulation (withoutpassing through the technical de�nition).3. Show that in the private-key model the single-message formulation is strictly weaker than themultiple-message one.Hint: Show that deterministic encryption algorithm su�ces for secure (private-key) encryp-tion of a single message, but cannot provide security for encryption of two messages.We'll discuss the third exercise in the next lecture.Historical NotesThe central role of complexity theory in cryptography can be traced to Shannon's seminal work [29]:Demonstrating the inherent limitations of the information theoretic notion of security, Shannonconcluded that one should settle for a computational relaxation of the secrecy condition. That is,rather than requiring that the ciphertext yields no information on the plaintext, one has to requirethat such information cannot be e�ciently computed from the ciphertext.The notion of public-key encryption scheme was introduced by Di�e and Hellman [6]. Firstconcrete candidates were suggested by Rivest, Shamir and Adleman [28] and by Merkle and Hell-man [27]. However, satisfactory de�nitions of security were presented only a few years afterwards,by Goldwasser and Micali [22]. Indeed, the latter work is the basis of the entire rigorous approach tocryptography (presented in the current book). The paper's title (\Probabilistic Encryption") is dueto the authors' realization that public-key encryption schemes in which the encryption algorithmis deterministic cannot be secure in the sense de�ned in their paper.Technically speaking, the two de�nitions we presented are somewhat di�erent from the two cor-responding de�nitions in [22] (although all these variants are equivalent). Speci�cally, our formula-tion of semantic security follows the later formulations of the simulation paradigm by Goldwasser,Micali and Racko� [23]. (The adaptation has �rst appeared in [7, 8].)
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