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Indistinguishable things are identical."

G.W. Leibniz (1646-1714)

A fresh view at the question of randomness has been taken in the theory of computing: It has
been postulated that a distribution is pseudorandom if it cannot be told apart from the uniform
distribution by any efficient procedure. The paradigm, originally associating efficient procedures
with polynomial-time algorithms, has been applied also with respect to a variety of limited classes
of such distinguishing procedures.

At the extreme, this approach says that the question of whether the world is deterministic or
allows for some free choice (which may be viewed as sources of randomness) is irrelevant. What
matters is how the world looks to us and to various computationally bounded devices. That is, if
some phenumenon looks random then we may just treat it as if it were random. Likewise, if we
can generate sequences that cannot be told apart from the uniform distribution by any efficient
procedure, then we can use these sequences in any efficient randomized application instead of the
ideal random bits that are postulated in the design of this application.

Summary: A generic formulation of pseudorandom generators consists of specifying
three fundamental aspects — the stretch measure of the generators; the class of dis-
tinguishers that the generators are supposed to fool (i.e., the algorithms with respect
to which the computational indistinguishability requirement should hold); and the re-
sources that the generators are allowed to use (i.e., their own computational complezity).

The archetypical case of pseudorandom generators refers to efficient generators that
fool any feasible procedure; that is, the potential distinguisher is any probabilistic
polynomial-time algorithm, which may be more complex than the generator itself (which,
in turn, has time-complexity bounded by a fixed polynomial). These generators are
called general-purpose, because their output can be safely used in an efficient appli-
cation. Such (general-purpose) pseudorandom generators exist if and only if one-way
functions exist.

!This is the Principle of Identity of Indiscernibles. Leibniz admits that counterexamples to this principle are
conceivable but will not occur in real life because God is much too benevolent. We thus believe that he would have
agreed to the theme of this text, which asserts that indistinguishable things should be considered as identical.



For purposes of derandomization one may use pseudorandom generators that are some-
what more complex than the potential distinguisher (which represents the algorithm to
be derandomized). Following this approach, suitable pseudorandom generators, which
can be constructed assuming the existence of problems in £ that have no sub-exponential
size circuits, yield a full derandomization of BPP (i.e., BPP = P).

It is also beneficial to consider pseudorandom generators that fool space-bounded dis-
tinguishers and generators that exhibit some limited random behavior (e.g., outputting
a pair-wise independent or a small-bias sequence).
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1 Introduction

The second half of this century has witnessed the development of three theories of randomness, a
notion which has been puzzling thinkers for ages. The first theory (cf., [12]), initiated by Shan-
non [42], is rooted in probability theory and is focused at distributions that are not perfectly
random. Shannon’s Information Theory characterizes perfect randomness as the extreme case in
which the information contents is maximized (i.e., there is no redundancy at all). Thus, perfect
randomness is associated with a unique distribution — the uniform one. In particular, by definition,
one cannot (deterministically) generate such perfect random strings from shorter random seeds.

The second theory (cf., [28, 29]), due to Solomonov [43], Kolmogorov [25] and Chaitin [10],
is rooted in computability theory and specifically in the notion of a universal language (equiv.,
universal machine or computing device). It measures the complexity of objects in terms of the
shortest program (for a fixed universal machine) that generates the object. Like Shannon’s theory,
Kolmogorov Complexity is quantitative and perfect random objects appear as an extreme case.
However, in this approach one may say that a single object, rather than a distribution over ob-
jects, is perfectly random. Still, Kolmogorov’s approach is inherently intractable (i.e., Kolmogorov
Complexity is uncomputable), and — by definition — one cannot (deterministically) generate strings
of high Kolmogorov Complexity from short random seeds.

The third theory is rooted in complexity theory and is the focus of this text. This approach is
explicitly aimed at providing a notion of randomness that nevertheless allows for an efficient (and
deterministic) generation of random strings from shorter random seeds. The heart of this approach
is the suggestion to view objects as equal if they cannot be told apart by any efficient procedure.
Consequently, a distribution that cannot be efficiently distinguished from the uniform distribution
will be considered as being random (or rather called pseudorandom). Thus, randomness is not
an “inherent” property of objects (or distributions) but is rather relative to an observer (and
its computational abilities). To demonstrate this approach, let us consider the following mental
experiment.

Alice and Bob play “head or tail” in one of the following four ways. In each of them
Alice flips an unbiased coin and Bob is asked to guess its outcome before the coin hits
the floor. The alternative ways differ by the knowledge Bob has before making his guess.

In the first alternative, Bob has to announce his guess before Alice flips the coin. Clearly,
in this case Bob wins with probability 1/2.

In the second alternative, Bob has to announce his guess while the coin is spinning in
the air. Although the outcome is determined in principle by the motion of the coin,
Bob does not have accurate information on the motion and thus we believe that also in
this case Bob wins with probability 1/2.

The third alternative is similar to the second, except that Bob has at his disposal
sophisticated equipment capable of providing accurate information on the coin’s motion
as well as on the environment effecting the outcome. However, Bob cannot process this
information in time to improve his guess.



In the fourth alternative, Bob’s recording equipment is directly connected to a powerful
computer programmed to solve the motion equations and output a prediction. It is
conceivable that in such a case Bob can improve substantially his guess of the outcome
of the coin.

We conclude that the randomness of an event is relative to the information and computing resources
at our disposal. Thus, a natural concept of pseudorandomness arises — a distribution is pseudo-
random if no efficient procedure can distinguish it from the uniform distribution, where efficient
procedures are associated with (probabilistic) polynomial-time algorithms. This notion of pseudo-
randomness is indeed the most fundamental one, and much of this text is focused on it. Weaker
notions of pseudorandomness arise as well — they refer to indistinguishability by weaker procedures
such as space-bounded algorithms, constant-depth circuits, etc. Stretching this approach even fur-
ther one may consider algorithms that are designed on purpose so not to distinguish even weaker
forms of “pseudorandom” sequences from random ones (such algorithms arise naturally when trying
to convert some natural randomized algorithm into deterministic ones; see Section 6).

The foregoing discussion has focused at one aspect of the pseudorandomness question — the
resources or type of the observer (or potential distinguisher). Another important aspect is whether
such pseudorandom sequences can be generated from much shorter ones, and at what cost (or
complexity). A natural approach is that the generation process has to be at least as efficient
as the distinguisher (equiv., that the distinguisher is allowed at least as much resources as the
generator). Coupled with the aforementioned strong notion of pseudorandomness, this yields the
archetypical notion of pseudorandom generators — these operating in polynomial-time and produc-
ing sequences that are indistinguishable from uniform ones by any polynomial-time observer. Such
(general-purpose) pseudorandom generators allow to reduced the randomness complexity of any
efficient application, and are thus of great relevance to randomized algorithms and cryptography
(see Section 3).

seed ] output sequence

L ——Gen —

a truly random sequence

Figure 1: Pseudorandom generators — an illustration.

We stress that there are important reasons for considering also an alternative that seems less
natural; that is, allowing the pseudorandom generator to use more resources (e.g., time or space)
than the observer it tries to fool. This alternative is natural in the context of derandomization (i.e.,
converting randomized algorithms to deterministic ones), where the crucial step is replacing the
random input of an algorithm by a pseudorandom input, which in turn can be generated based on
a much shorter random seed. In particular, when derandomizing a probabilistic polynomial-time
algorithm, the observer (to be fooled by the genewrator) is a fixed algorithm. In this case employing
a more complex generator merely means that the complexity of the derived deterministic algorithm
is dominated by the complexity of the generator (rather than by the complexity of the original
randomized algorithm). Needless to say, allowing the generator to use more resources than the



observer it tries to fool makes the task of designing pseudorandom generators easier, and enables
derandomization results that are not known when using general-purpose pseudorandom generators.
The usefulness of this approach is demonstrated in Sections 4 through 6.

We note that the goal of all types of pseudorandom generators is to allow the generation
of “sufficiently random” sequences based on much shorter random seeds. Thus, pseudorandom
generators offer significant saving in the randomness complexity of various applications. This saving
is valuable because many applications are severly limited in their ability to generate or obtain truly
random bits. Furthermore, typically generating truly random bits is significantly more expensive
than standard computation steps. Thus, randomness is a computational resource that should be
considered on top of time complexity (analogously to the consideration of space complexity).

Organization. In Section 2 we present the general paradigm underlying the various notions of
pseudorandom generators. The archetypical case of general-purpose pseudorandom generators is
presented in Section 3. We then turn to the alternative notions of pseudorandom generators: Gen-
erators that suffice for the derandomization of complexity classes such as BPP are discussed in
Section 4; Pseudorandom generators in the domain of space-bounded computations are discussed
in Section 5; and special-purpose generators are discussed in Section 6. (For an alternative presen-
tation, which focuses on general-purpose pseudorandom generators and provides more details on
it, the reader is referred to [16, Chap. 3].)

Teaching note: If you can afford teaching only one of the alternative notions of pseudo-
random generators, then we suggest teaching the notion of general-purpose pseudoran-
dom generators (presented in Section 3). Our reasons being that this notion is relevant
to computer science at large and that the technical material is relatively simpler. The
text is organized to facilitate this option.

Prerequisites: We assume a basic familiarity with elementary probability theory and randomized
algorithms. In particular, standard conventions regarding random variables will be extensively used.

2 The General Paradigm

Teaching note: We advocate a unified view of various notions of pseudorandom gener-
ators. That is, we view these notions as incarnations of a general abstract paradigm, to
be presented in this section. A teacher that wishes to focus on one of the special cases
may still use this section as a general motivation towards the specific definitions used

later.

A generic formulation of pseudorandom generators consists of specifying three fundamental as-
pects — the stretch measure of the generators; the class of distinguishers that the generators are
supposed to fool (i.e., the algorithms with respect to which the computational indistinguishability
requirement should hold); and the resources that the generators are allowed to use (i.e., their own
computational complexity).

Stretch function: A necessary requirement from any notion of a pseudorandom generator is
that it is a deterministic algorithm that stretches short strings, called seeds, into longer output
sequences. Specifically, it stretches k-bit long seeds into £(k)-bit long outputs, where £(k) > k. The
function £: N— N is called the stretch measure (or stretch function). In some settings the specific
stretch measure is immaterial (e.g., see Section 3.4).



Computational Indistinguishability: A necessary requirement from any notion of a pseudo-
random generator is that it “fools” some non-trivial algorithms. That is, any algorithm taken from
some class of interest cannot distinguish the output produced by the generator (when the generator
is fed with a uniformly chosen seed) from a uniformly chosen sequence. Typically, we consider a
class D of distinguishers and a class F of (threshold) functions, and require that the generator G
satisfies the following: For any D € D, any f € F, and for all sufficiently large k’s

|PriD(G(Uk)) = 1] = PrIDUywy) = 1| < f(k) (1)

where U,, denotes the uniform distribution over {0,1}" and the probability is taken over Uy (resp.,
Ug(k)) as well as over the coin tosses of algorithm D in case it is probabilistic.? The reader may
think of such a distinguisher, D, as trying to tell whether the “tested string” is a random output
of the generator (i.e., distributed as G(Uy)) or is a truly random string (i.e., distributed as Upy)-
The condition in Eq. (1) requires that D cannot make a meaningful decision; that is, ignoring a
negligible difference (represented by f(k)), D’s verdict is the same in both cases. The archetypical
choice is that D is the set of all probabilistic polynomial-time algorithms, and F is the set of all
functions that are the reciprocal of some positive polynomial.

Complexity of Generation: The archetypical choice is that the generator has to work in
polynomial-time (in length of its input — the seed). Other choices will be discussed as well. We
note that placing no computational requirements on the generator (or, alternatively, putting very
mild requirements such as a double-exponential running-time upper bound), yields “generators”
that can fool any subexponential-size circuit family (see Exercise 30).

Notational conventions. We will consistently use k to denote the length of the seed of a pseu-
dorandom generator, and £(k) to denote the length of the corresponding output. In some cases, this
makes our presentation a little more cumbersome (as a natural presentation may specify some other
parameters and let the seed-length be a function of these). However, our choice has the advantage
of focusing attention on the fundamental parameter of pseudorandom generation — the length of
the random seed. We note that whenever a pseudorandom generator is used to “derandomize”
an algorithm, n will denote the length of the input to this algorithm, and k& will be selected as a
function of n.

Some instantiations of the general paradigm. Two important instantiations of the notion
of pseudorandom generators relate to probabilistic polynomial-time observers.

1. General-purpose pseudorandom generators correspond to the case that the generator itself
runs in polynomial time and needs to withstand any probabilistic polynomial-time distin-
guisher, including distinguishers that run for more time than the generator. Thus, the same
generator may be used safely in any efficient application.

2. In contrast, pseudorandom generators intended for derandomization may run more time than
the distinguisher, which is viewed as a fixed circuit having size that is upper-bounded by a
fixed polynomial.

2The class of threshold functions F should be viewed as determining the class of noticeable probabilities (as a
function of k). Thus, we require certain functions (i.e., the absolute difference between the above probabilities), to
be smaller than any noticeable function on all but finitely many integers. We call the former functions negligible.
Note that a function may be neither noticeable nor negligible (e.g., it may be smaller than any noticeable function
on infinitely many values and yet larger than some noticeable function on infinitely many other values).



In addition, the general paradigm may be instantiated by focusing on the space complexity of the
potential distinguishers (and the generator), rather than on their time complexity. Furthermore,
one may also consider distinguishers that merely reflect probabilistic properties such as pair-wise
independence, small-bias, and hitting frequency.

3 General-Purpose Pseudorandom Generators

Randomness is playing an increasingly important role in computation: It is frequently used in the
design of sequential, parallel and distributed algorithms, and it is of course central to cryptography.
Whereas it is convenient to design such algorithms making free use of randomness, it is also desirable
to minimize the usage of randomness in real implementations. Thus, general-purpose pseudorandom
generators (as defined next) are a key ingredient in an “algorithmic tool-box” — they provide an
automatic compiler of programs written with free usage of randomness into programs that make
an economical use of randomness.

3.1 The basic definition

Loosely speaking, general-purpose pseudorandom generators are efficient (i.e., polynomial-time)
deterministic programs that expand short randomly selected seeds into longer pseudorandom bit
sequences, where the latter are defined as computationally indistinguishable from truly random se-
quences by any efficient (i.e., polynomial-time) algorithm. Thus, the distinguisher is more complex
than the generator: The generator is a fixed algorithm working within some fized polynomial-time,
whereas a potential distinguisher is any algorithm that runs in polynomial-time. Thus, for example,
the distinguisher may always run in time cubic in the running-time of the generator. Furthermore,
to facilitate the development of this theory, we allow the distinguisher to be probabilistic (whereas
the generator remains deterministic as above). We require that such distinguishers cannot tell the
output of the generator from a truly random string of similar length, or rather that the difference
that such distinguishers may detect (or sense) is negligible. Here a negligible function is one that
vanishes faster than the reciprocal of any positive polynomial.

Definition 1 (general-purpose pseudorandom generator): A deterministic polynomial-time algo-
rithm G is called a pseudorandom generator if there exists a stretch function, £: N—N (satisfying
k) > k for all k), such that for any probabilistic polynomial-time algorithm D, for any positive
polynomial p, and for all sufficiently large k’s

1
|Pr[D(G(Uy)) = 1] = Pr[D(Uyyy) =1]| < o(F) (2)
where Uy, denotes the uniform distribution over {0,1}™ and the probability is taken over Uy (resp.,
Ug(k)) as well as over the internal coin tosses of D.

Thus, Definition 1 is derived from the generic framework (presented in Section 2) by taking the
class of distinguishers to be the set of all probabilistic polynomial-time algorithms, and taking the
class of (noticeable) threshold functions to be the set of all functions that are the reciprocals of
some positive polynomial.®> The latter choice is naturally coupled with the association of efficient

3Definition 1 requires that the distinguishing gap of certain algorithms must be smaller than the reciprocal of any
positive polynomial for all but finitely many k’s. Such functions are called negligible; see Footnote 2. The notion
of negligible probability is robust in the sense that an event which occurs with negligible probability occurs with
negligible probability also when the experiment is repeated a “feasible” (i.e., polynomial) number of times.



computation with polynomial-time algorithms: An event that occurs with noticeable probability
occurs almost always when the experiment is repeated a “feasible” (i.e., polynomial) number of
times.

We note that Definition 1 does not make any requirement regarding the stretch function
¢:N—N, except for the generic requirement that £(k) > k for all k. Needless to say, the larger ¢
is the more useful is the pseudorandom generator. In Section 3.4 we show how to use any pseudo-
random generator (even one with minimal stretch £(k) = k+1) in order to obtain a pseudorandom
generator of any desired polynomial stretch function. But before going so, we rigorously discuss the
“reduction in randomness” offered by pseudorandom generators, and the notion of computational
indistinguishability underlying Definition 1.

3.2 The archetypical application

We note that “pseudo-random number generators” appeared with the first computers. However,
typical implementations use generators that are not pseudorandom according to Definition 1. In-
stead, at best, these generators are shown to pass some ad-hoc statistical test (cf., [24]). We warn
that the fact that a “pseudo-random number generator” passes some statistical tests, does not
mean that it will pass a new test and that it will be good for a future (untested) application.
Furthermore, the approach of subjecting the generator to some ad-hoc tests fails to provide general
results of the form “for all practical purposes using the output of the generator is as good as using
truly unbiased coin tosses.” In contrast, the approach encompassed in Definition 1 aims at such
generality, and in fact is tailored to obtain it: The notion of computational indistinguishability,
which underlines Definition 1, covers all possible efficient applications guaranteeing that for all of
them pseudorandom sequences are as good as truly random ones. Indeed, any efficient randomized
algorithm maintains its performance when its internal coin tosses are substituted by a sequence
generated by a pseudorandom generator. That is:

Construction 2 (typical application of pseudorandom generators): Let G be a pseudorandom
generator with stretch function {: N—N. Let A be a probabilistic algorithm, and p(n) denote a
(polynomial) upper bound on its randomness complexity. Denote by A(x,r) the output of A on
mput x and coin tosses sequence T € {0,1}"(|x|). Consider the following randomized algorithm,
denoted Aq:

On input x, set k = k(|x|) to be the smallest integer such that ((k) > p(|z|), uniformly
select s € {0,1}, and output A(x,r), where r is the p(|z|)-bit long prefiz of G(s).

That is, Ag(z,s) = A(z,G'(s)), for |s| = k(|z|) = argmin{€(i) > p(|z|)}, where G'(s) is the
p(|z])-bit long prefix of G(s).

Thus, using Ag instead of A, the randomness complexity is reduced from p to £~! o p, while (as
we show next) it is infeasible to find inputs (i.e., 2’s) on which the noticeable behavior of Aq is
different from the one of A. For example, if £(k) = k2, then the randomness complexity is reduced
from p to \/p. We stress that the pseudorandom generator G is universal; that is, it can be applied
to reduce the randomness complexity of any probabilistic polynomial-time algorithm A.

Proposition 3 Let A, p and G be as in Construction 2, and suppose that p: N — N is 1-1. Then,
for every pair of probabilistic polynomial-time algorithms, a finder F' and a distinguisher D, every
positive polynomial p and all sufficiently long n’s

we{zo;l}n PrlF(1") =] - | Aap(z)]| < o) (3)



where Ay p(z) ot Pr[D(x, A(z,Upy(ey) = 1] — Pr[D(z, Ag(x, Uk(z)))) = 1], and the probabilities

are taken over the U,,’s as well as over the coin tosses of F and D.

Algorithm F represents a potential attempt to find an input « on which the output of Aq is distin-
guishable from the output of A. This “attempt” may be benign as in the case that a user employs
algorithm Ag on inputs that are generated by some probabilistic polynomial-time application.
However, the attempt may also be adversarial as in the case that a user employs algorithm Ag on
inputs that are provided by a potentially malicious party. The potential distinguisher, denoted D,
represents the potential use of the output of algorithm A, and captures the requirement that this
output be as good as a corresponding output produced by A. Thus, D is given z as well as the
corresponding output produced either by Ag(z) def A(x, Ug(ny) or by A(x) = A(w,Upy)), and it is
required that D cannot tell the difference. In the case that A is a probabilistic polynomial-time
decision procedure, this means that it is infeasible to find an x on which A decides incorrectly (i.e.,
differently than A). In the case that A is a search procedure for some NP-relation, it is infeasible
to find an z on which Ag outputs a wrong solution. For details, see Exercise 31.

Proof: The proposition is proven by showing that any triplet (A, F, D) violating the claim can be
converted into an algorithm D’ that distinguishes the output of G' from the uniform distribution, in
contradiction to the hypothesis. The key observation is that A4 p(z) equals Pr[D(z, A(z,Uy,))) =
1] = Pr[D(z, A(z,G'(Ug(n)))) = 1], where G’(s) is the p(n)-bit long prefix of G(s). Details follow.

On input 7 (taken from either Uy(y)) or G(Uy(y))), algorithm D' first obtains z < F(1"), where
n can be obtained easily from |r| (because p is 1-1 and 1™ — p(n) is computable via A). Next, D’
obtains y = A(x,r'), where 7’ is the p(|z|)-bit long prefix of r. Finally D’ outputs D(x,y). Note
that D' is implementable in probabilistic polynomial-time, and that

DI(UP(H)) = D(Xn, A(Xy, Up(n)))v where X, © F(1")

D'(G"(Uym) = D(Xn, A(Xy,G'(Ur(ny))) , where X, © F(17)
It follows that | Pr[D"(Uyr(ny)) = 1] — Pr[D'(G(Ukn))) = 1]| equals E[A4 p(F(1™))], which implies
a weaker version of the proposition (referring to E[{A 4 p(#(1™))] rather than to E[|A4 p(F(1"))]]).
In order to prove that E[|A4 p(F(1™))|] (rather than to E[{A4 p(F(1™))]) is negligible, we need to
modify D’ a little. We start by assuming, towards the contradiction, that E[|A4 p(F(1™))|] > e(n)
for some non-negligible function e. On input r (taken from either Uyx(n)y or G(Ug(n))), the modified
algorithm D' first obtains = «— F(1™), as before. Next, using a sample of size poly(n/e(n)),
it approximates py(z) def Pr[D(x, A(z,Uymy) = 1] and pg(z) def Pr[D(z, A(z, G'(Ukny)) = 1]
such that each probability is approximated to within a deviation of ¢(n)/8 with negligible error
probability (say, exp(—n)). (Note that, so far, the actions of D’ only depend on the length of its
input 7, which determines n.) If these approximations indicate that py(xz) > pg(x) (equiv., that
Ay, p > 0) then D' outputs D(z, A(z, ")) else it outputs 1 —D(z, A(x,r’)), where 1’ is the p(|z|)-bit
long prefix of 7 and we assume without loss of generality that the output of D is in {0,1}. It follows
that

PrD'(Uymy) = 1IF(1") = 2] — Pr[D"(G'(Uy(y)) = 1|F(1") = ]
e(n)

> |pu(z) — pa(z)] — R exp(—n)

where the £(n)/2 term is due to the maximal typical deviation (i.e., (n)/4) of our approximation
of py(x) — pg(z), and the exp(—n) term is due to the rare case that our approximation errs



by more than e(n)/4. Thus, Pr[D'(Uy(ny)) = 1] — Pr[D'(G(Uym)) = 1] is lower-bounded by
E[|Aa,p(F(1™))]] — (e(n)/2) — exp(—n) > €(n)/3, and the proposition follows. Il

Conclusion. Analogous arguments are applied whenever one wishes to prove that an efficient
randomized process (be it an algorithm as above or a multi-party computation) preserves its be-
havior when one replaces true randomness by pseudorandomness as defined above. Thus, given a
pseudorandom generator with a large stretch function, one can considerably reduce the randomness
complexity in any efficient application.

3.3 Computational Indistinguishability

In this section we spell-out (and study) the definition of computational indistinguishability that
underlies Definition 1. The general definition of computational indistinguishability refers to arbi-
trary probability ensembles, where a probability ensemble is an infinite sequence of random variables
{Z,}nen such that each Z,, ranges over strings of length bounded by a polynomial in n. We say
that {X,},en and {Y), },en are computationally indistinguishable if for every feasible algorithm A

the difference d4(n) o |PrlA(X,,)=1] — Pr[A(Y;,)=1]| is a negligible function in n. That is:

Definition 4 (computational indistinguishability): We say that the probability ensembles { X, }en
and {Y,}nen are computationally indistinguishable if for every probabilistic polynomial-time algo-
rithm D, every positive polynomaial p, and all sufficiently large n,

Pr[D(X,)=1] — Pr[D(Y,,)=1]] < — 4
PrID(X,) =1] = Pr[D(Y,,) =1]| e (4)
where the probabilities are taken over the relevant distribution (i.e., either X,, or Y,,) and over the
internal coin tosses of algorithm D. The l.h.s. of Eq. (4), when viewed as a function of n, is often
called the distinguishing gap of D where {X,, },en and {Y,, }nen is understood from the context.

That is, we can think of D as somebody who wishes to distinguish two distributions (based on a
sample given to it), and think of 1 as D’s verdict that the sample was drawn according to the first
distribution. Saying that the two distributions are computationally indistinguishable means that
if D is a feasible procedure then its verdict is not really meaningful (because the verdict is almost
as often 1 when the input is drawn from the first distribution as when the input is drawn from
the second distribution). We comment that the absolute value in Eq. (4) can be omitted without
affecting the definition (see Exercise 32), and we will often do so without warning.

In Definition 1, we required that the probability ensembles {G(Ux)}ren and {Uys)}ren be
computationally indistinguishable. Indeed, an important special case of Definition 4 is when one
ensemble is uniform, and in such a case we call the other ensemble pseudorandom.

Non-triviality of Computational Indistinguishability. Clearly, any two probability ensem-
bles that are statistically close* are computationally indistinguishable. Needless to say, this is a
trivial case of computational indistinguishability, which is due to information theoretic reasons. In
contrast, as noted in Section 2, there exist probability ensembles that are statistically far apart and
yet are computationally indistinguishable (see Exercise 30). However, at least one of the probability

“Two probability ensembles, {Xn},en and {Yn}, o, are said to be statistically close if for every positive poly-
nomial p and sufficient large n the variation distance between X, and Y, (i.e., 3 2. |Pr[X, = 2] — Pr[Y, = z]|) is
bounded above by 1/p(n).
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ensembles in Exercise 30 is not polynomial-time constructible. One non-trivial case of computa-
tional indistinguishability in which both ensembles are polynomial-time constructible is provided
by the definition of pseudorandom generators (see Exercise 33). As we shall see (in Theorem 11),
the existence of one-way functions implies the existence of pseudorandom generators, which in turn
implies the existence of polynomial-time constructible probability ensembles that are statistically
far apart and yet are computationally indistinguishable. We mention that this sufficient condition
is also necessary (see Exercise 34).

Indistinguishability by Multiple Samples

The definition of computational indistinguishability (i.e., Definition 4) refers to distinguishers that
obtain a single sample from one of the two probability ensembles (i.e., {X,, },en and {Y,, }pen). A
more general definition refers to distinguishers that obtain several independent samples from such
an ensemble.

Definition 5 (indistinguishability by multiple samples): Let s : N—N be polynomially-bounded.
Two probability ensembles, {X,}nen and {Y,}nen, are computationally indistinguishable by s(-)
samples if for every probabilistic polynomial-time algorithm, D, every positive polynomial p(-), and
all sufficiently large n’s

[Pr [D(xXD,..., X)) =1] = Pr DD, ., v D) =1] | < e

where X,gl) through Xr(f(")) and Yn(l) through Yn(s(n)) are independent random variables, with each
XT(J) identical to X,, and each YTEZ) identical to Y,,.

It turns out that in the most interesting cases, computational indistinguishability by a single sample
implies computational indistinguishability by any polynomial number of samples. One such case
is the case of polynomial-time constructible ensembles. We say that the ensemble {Z,},cn is
polynomial-time constructible if there exists a polynomial-time algorithm S so that S(1™) and Z,
are identically distributed.

Proposition 6 Suppose that X def {Xntnen and Y def {Y, }nen are both polynomial-time con-
structible, and s be a polynomial. Then, X and Y are computationally indistinguishable by a single
sample if and only if they are computationally indistinguishable by s(-) samples.

Clearly, for every polynomial s, computational indistinguishability by s(-) samples implies compu-
tational indistinguishability by a single sample. We now prove that, for efficiently constructible
distributions, indistinguishability by a single sample implies indistinguishability by multiple sam-
ples. The proof provides a simple demonstration of a central proof technique, known as the hybrid
technique.

Proof Sketch:® To prove that a sequence of independently drawn samples of one distribution
is indistinguishable from a sequence of independently drawn samples from the other distribution,
we consider hybrid sequences such that the ' hybrid consists of i samples taken from the first
distribution and the rest taken from the second distribution. The “homogeneous” sequences (which
we wish to prove to be computational indistinguishable) are the extreme hybrids (i.e., the first and
last hybrids considered above). The key observation is that distinguishing the extreme hybrids

For more details see [16, Sec. 3.2.3].
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(towards the contradiction hypothesis) means distinguishing neighboring hybrids, which in turn
yields a procedure for distinguishing single samples of the two original distributions (contradicting
the hypothesis that these two distributions are indistinguishable by a single sample). Details follow.

Suppose that D distinguishes s(n) samples of one distribution from s(n) samples of the other,

this means that D distinguishes the extreme hybrids (i.e., HY and Hé(n)) with gap 6(n). Then D
distinguishes a random pair of neighboring hybrids (i.e., D distinguishes the i*" hybrid from the
i 4+ 1°* hybrid, for a randomly selected i) with gap at least §(n)/s(n). The reason being that

Eico,...s(n)-1) |PAD(HL) = 1] = PrD(H}) = 1]]

1 s(n)—1
= = (PrD(H}) =1] - PrD(H}) = 1)) (5)
=0
— L r 0 r s(n) _ 6(”)
o) (P [D(H®) = 1] — Pr[D(H™) = 1]) o

Using D, we obtain a distinguisher D’ of single samples: Given a single sample, D’ selects i €
{0,...,s(n) — 1} at random, generates i samples from the first distribution and s(n) —i — 1 samples
from the second distribution, and invokes D with the s(n)-samples sequence obtained when placing
the input sample in location ¢ + 1. Thus, the construction of D’ relies on the hypothesis that both
proabbility ensembles are polynomial-time constructible. In analyzing D’, observe that when the
single sample (i.e., the input to D’) is taken from the first (resp., second) distribution, algorithm D’
invokes D on the i 4+ 15¢ hybrid (resp., i*! hybrid). Thus, the distinguishing gap of D’ is captured
by Eq. (5), and the claim follows. O

The hybrid technique — a digest: The hybrid technique constitutes a special type of a “re-
ducibility argument” in which the computational indistinguishability of complex ensembles is proven
using the computational indistinguishability of basic ensembles. The actual reduction is in the other
direction: efficiently distinguishing the basic ensembles is reduced to efficiently distinguishing the
complex ensembles, and hybrid distributions are used in the reduction in an essential way. The
following three properties of the construction of the hybrids play an important role in the argument:

1. The extreme hybrids collide with the complex ensembles: this property is essential because
what we want to prove (i.e., the indistinguishability of the complex ensembles) relates to the
complex ensembles.

2. Newghboring hybrids are easily related to the basic ensembles: this property is essential because
what we know (i.e., the indistinguishability of the basic ensembles) relates to the basic ensem-
bles. We need to be able to translate our knowledge (i.e., computational indistinguishability)
of the basic ensembles to knowledge (i.e., computational indistinguishability) of any pair of
neighboring hybrids. Typically, it is required to efficiently transform strings in the range of
a basic distribution into strings in the range of a hybrid, so that the transformation maps
the first basic distribution to one hybrid and the second basic distribution to the neighboring
hybrid. (In the proof of Proposition 6, the hypothesis that both X and Y are polynomial-time
constructible is instrumental for such an efficient transformation.)

3. The number of hybrids is small (i.e., polynomial): this property is essential in order to deduce
the computational indistinguishability of extreme hybrids from the computational indistin-
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guishability of each pair of neighboring hybrids. Typically, the provable “distinguishability
gap” is inversely proportional to the number of hybrids. Indeed, see Eq. (5).

We remark that in the course of an hybrid argument, a distinguishing algorithm referring to the
complex ensembles is being analyzed and even invoked on arbitrary hybrids. The reader may be
annoyed of the fact that the algorithm “was not designed to work on such hybrids” (but rather
only on the extreme hybrids). However, an algorithm is an algorithm: once it exists we can invoke
it on inputs of our choice, and analyze its performance on arbitrary input distributions.

3.4 Amplifying the stretch function

Recall that the definition of pseudorandom generators (i.e., Definition 1) makes a minimal require-
ment regarding their stretch; that is, it is only required that the length of the output of such
generators is longer than their input. Needless to say, we seek pseudorandom generators with a

significant stretch. It turns out (see Construction 7) that pseudorandom generators of any stretch

function and in particular of stretch ¢ (k) ©r+ 1, are easily converted into pseudorandom gener-

ators of any desired (polynomially bounded) stretch function, £. (On the other hand, since pseu-
dorandom generators are required (in Definition 1) to run in polynomial time, their stretch must
be polynomially bounded.) Thus, when talking about the existence of pseudorandom generators,
as in Definition 1, we may ignore the stretch function.

Construction 7 Let Gy be a pseudorandom generator with stretch function ¢1(k) =k + 1, and ¢
be any polynomially bounded stretch function that is polynomial-time computable. Let

G(s) € 109+ o)) (6)

where xy = s and x;0; = Gi(x;—1), for i =1,...,4(]s|). (That is, o; is the last bit of Gy(x;—1) and
x; is the |s|-bit long prefix of Gj(x;—1).)

Needless to say, GG is polynomial-time computable and has stretch /.

Q
-
Q
-Q
Q
(@]

Figure 2: Analysis of stretch amplification — the i*" hybrid.

Proposition 8 Let Gy and G be as in Construction 7. Then G constitutes a pseudorandom gen-
erator.

13



Proof Sketch:® The proposition is proven using the hybrid technique, presented and discussed in
Section 3.3. Here (for i =0,...,£(k)) we consider the hybrid distributions H}, defined by

Hy € UL - Py (UD),

where Ui(l) and U}gz) are independent uniform distributions (over {0, 1} and {0, 1}*, respectively),
and Pj(x) denotes the j-bit long prefix of G(z). (See Figure 2.) The extreme hybrids (i.e., HY
and HF) correspond to G(Uy) and Ug(k), whereas distinguishability of neighboring hybrids can be
worked into distinguishability of G;(Uy) and Ug,1. Details follow.

Suppose that algorithm D distinguishes H}, from H, ' (with some gap 6(k)). Denoting the first
|z|—1 bits (resp., last bit) of x by F(x) (resp., L(x)), we may write P;(s) = (L(G1(s)), Pj—1(F(G1(s))))
and

= (UMY, LG UP)), Pygy—iy1 (F(GLUP)))
ot = Ui(ﬁl-l)'PZ(k)fifl(Ulg))
= (UM, LUE), Pugy—iy-1 (FUE))).

H; = Ugl)'Pe(k)fi(UIEQ))

Then, incorporating the generation of Uz-(l) and the evaluation of Py)_;_; into the distinguisher
D, we distinguish (F(G1(U)), L(GL(UP)) = G1(Uy) from (F(UL)), LU))) = Ugyy, in con-
tradiction to the pseudorandomness of G1. Specifically, on input 2 € {0,1}**+! we uniformly select
r € {0,1} and output D(r - L(x) - Pygy—i—1(F(x))). Thus, the probability we output 1 on input
G1(Uy) (resp., Ugy1) equals Pr[D(H}) = 1] (resp., Pr[D(H,t') = 1]). A final detail refers to the
question which i to use. As usual (when the hybrid technique is used), a random ¢ (in {0, ...,k —1})
willdo. O

3.5 Constructions

The constructions surveyed in this section “transform” computational difficulty, in the form of one-
way functions, into generators of pseudorandomness. Recall that a polynomial-time computable
function is called one-way if any efficient algorithm can invert it only with negligible success proba-
bility (see [16] for further discussion). We will actually use hard-core predicates of such functions,
and refer the reader to their treatment in [16]. Loosely speaking, a polynomial-time computable
predicate b is called a hard-core of a function f if any efficient algorithm, given f(z), can guess
b(x) only with success probability that is negligible better than half. Recall that, for any one-way
function f, the inner-product mod 2 of z and r is a hard-core of f'(z,r7) = (f(z),r). Finally, we
get to the construction of pseudorandom generators.

Proposition 9 (A simple construction of pseudorandom generators): Let b be a hard-core predicate

of a polynomial-time computable 1-1 and length-preserving function f. Then, G(s) def f(s)-b(s) is

a pseudorandom generator.

Proof Sketch:” The |s|-bit long prefix of G(s) is uniformly distributed, because f is 1-1 and
onto {0,1}*l. Hence, the proof boils down to showing that distinguishing f(s)b(s) from f(s) - o,

®For more details see [16, Sec. 3.3.3].
"For more details see [16, Sec. 3.3.4].
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where o is a random bit, yields contradiction to the hypothesis that b is a hard-core of f (i.e., that
b(s) is unpredictable from f(s)). Intuitively, such a distinguisher also distinguishes f(s)b(s) from
f(s) - b(s), where @ = 1 — o, but distinguishing f(s) - b(s) from f(s) - b(s) yields an algorithm for
predicting b(s) based on f(s). Details follow.

We start with any potential distinguisher D, and let

6(k) = PrID(G(Ug)) = 1] — Pr[D(Ugy1) = 1].
We may assume, without loss of generality, that 6(k) is non-negative (for infinitely many £’s). Using

G(Uk) = f(Uk) - b(Ug) and U4y = f(Ug) - Z, where Z = b(Uy) with probability 1/2 and Z = b(Uy,)

otherwise, we have

Pr[D(f(Uk)b(Ux)) = 1] — Pr[D(f(Ux)b(Ux)) = 1] = 26(k).

Consider an algorithm A that, on input y, uniformly selects o € {0, 1}, invokes D(yo), and outputs
o if D(yo) =1 and @ otherwise. Then

PriA(f(Ux)) = b(Ux)] = Pr[D(f
+ Pr[D

Ur)-0) =1Ao=0bUy)]
f(Ux)-0) =0n0=0bUy)

_ % - (Pr[D(f(Uy) - b(T)) = 1]
+1 — PrD(f(Ux) - B(0%)) = 1])

~—~~

which equals (1 + 26(k))/2. The proposition follows. O

Combining Proposition 9 and Construction 7, we obtain the following corollary.

Theorem 10 (A sufficient condition for the exsitemce of pseudorandom generators): If there exists
1-1 and length-preserving one-way function then, for every polynomially bounded stretch function
{, there exists a pseudorandom generator of stretch L.

Digest. The key point in the proof of Proposition 9 is showing that the (rather obvious) unpre-
dictability of the output of G implies its pseudorandomness. The fact that (next bit) unpredictabil-
ity and pseudorandomness are equivalent, in general, is proven explicitly in the alternative proof
of Theorem 10 provided next.

An alternative presentation. Let us take a closer look at the pseudorandom generators ob-
tained by combining Construction 7 and Proposition 9. For a stretch function £: N—N, a 1-1
one-way function f with a hard-core b, we obtain

G(s) & o109+~ oys)) (7)

where z9 = s and z;0; = f(zi_1)b(w;_1) for i = 1,...,£(|s|). Denoting by fi(x) the value of f
iterated i times on z (i.e., f(z) = f*"}(f(x)) and f°(x) = ), we rewrite Eq. (7) as follows

G(s) € b(s) - b(f(s)) - b(fUD=1(s)). (8)
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The pseudorandomness of G is established in two steps, using the notion of (next bit) unpredictabil-
ity. An ensemble {Zj }ren is called unpredictable if any probabilistic polynomial-time machine ob-
taining a (random)® prefix of Zj fails to predict the next bit of Z; with probability non-negligibly
higher than 1/2. Specifically, we need to establish the following two results.

1. A general result asserting that an ensemble is pseudorandom if and only if it is unpre-
dictable. Recall that an ensemble is pseudorandom if it is computationally indistinguishable
from a uniform distribution (over bit strings of adequate length).

Clearly, pseudorandomness implies polynomial-time unpredictability, but here we actually
need the other direction, which is less obvious. Still, using a hybrid argument, one can show
that (next-bit) unpredictability implies indistinguishability from the uniform ensemble. For
details see Exercise 38.

2. A specific result asserting that the ensemble {G(Uy)} e is unpredictable from right to left.
Equivalently, G'(U,,) is polynomial-time unpredictable (from left to right (as usual)), where
G'(s) = b(fXIsD=1(s))-- - b(f(s)) - b(s) is the reverse of G(s).

Using the fact that f induces a permutation over {0,1}", observe that the (j + 1)-bit long
prefix of G'(Uy) is distributed identically to b(f7(Uy)) - -- b(f(Ug))-b(U). Thus, an algorithm
that predicts the j + 15° bit of G’(U,,) based on the j-bit long prefix of G'(U,,) yields an
algorithm that guesses b(U, ) based on f(U,). For details see Exercise 40.

Needless to say, G is a pseudorandom generator if and ounly if G’ is a pseudorandom generator (see
Exercise 39). We mention that Eq. (8) is often referred to as the Blum-Micali Construction.”

A general condition for the existence of pseudorandom generators. Recall that given
any one-way 1-1 length-preserving function, we can easily construct a pseudorandom generator.
Actually, the 1-1 (and length-preserving) requirement may be dropped, but the currently known
construction — for the general case — is quite complex.

Theorem 11 (On the existence of pseudorandom generators): Pseudorandom generators exist if
and only if one-way functions exist.

To show that the existence of pseudorandom generators imply the existence of one-way functions,
consider a pseudorandom generator G' with stretch function £(k) = 2k. For z,y € {0,1}*, define

flx,y) def G(z), and so f is polynomial-time computable (and length-preserving). It must be that
f is one-way, or else one can distinguish G(Uy) from Uy by trying to invert and checking the result:
Inverting f on its range distribution refers to the distribution G(Uy), whereas the probability that
Uy has inverse under f is negligible.

The interesting direction of the proof of Theorem 11 is the construction of pseudorandom
generators based on any one-way function. In general (when f may not be 1-1) the ensemble f(Uy)
may not be pseudorandom, and so Construction 9 (i.e., G(s) = f(s)b(s), where b is a hard-core of
f) cannot be used directly. One idea underlying the construction is to hash f(Uy) to an almost
uniform string of length related to its entropy, using Universal Hash Functions. (This is done after
guaranteeing, that the logarithm of the probability mass of a value of f(Uy) is typically close to

8For simplicity, we define unpredictability as referring to prefices of a random length (distributed uniformly in
0, . |Z] - 1}).

9Given the popularity of the term, we deviate from our convention of not specifying credits in the main text.
Indeed, this construction originates in [8].
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the entropy of f(U;).)!? But “hashing f(Uy) down to length comparable to the entropy” means
shrinking the length of the output to, say, ¥’ < k. This foils the entire point of stretching the
k-bit seed. Thus, a second idea underlying the construction is to compensate for the & — k" loss
by extracting these many bits from the seed Uy itself. This is done by hashing U, and the point
is that the (k — &)-bit long hash value does not make the inverting task any easier. Implementing
these ideas turns out to be more difficult than it seems, and indeed an alternative construction
would be most appreciated.

3.6 Non-uniformly strong pseudorandom generators

Recall that we said that truly random sequences can be replaced by pseudorandom ones without
affecting any efficient computation. The specific formulation of this assertion, presented in Proposi-
tion 3, refers to randomized algorithms that take a “primary input” and use a secondary “random
input” in their computation. Proposition 3 asserts that it is infeasible to find a primary input
for which the replacement of a truly random secondary input by a pseudorandom one affects the
final output of the algorithm in a noticeable way. This, however, does not mean that such pri-
mary inputs do not exist (but rather that they are hard to find). Consequently, Proposition 3 falls
short of yielding a (worst-case)!! “derandomization” of a complexity class such as BPP. To obtain
such results, we need a stronger notion of pseudorandom generators, presented next. Specifically,
we need pseudorandom generators that can fool all polynomial-size circuits, and not merely all
probabilistic polynomial-time algorithms.'?

Definition 12 (strong pseudorandom generator — fooling circuits): A deterministic polynomial-
time algorithm G is called a non-uniformly strong pseudorandom generator if there exists a stretch
function, £: N—N, such that for any family {Cy}ren of polynomial-size circuits, for any positive
polynomial p, and for all sufficiently large k’s

b
p(k)

An alternative formulation is obtained by referring to polynomial-time machines that take advice.
Using such pseudorandom generators, we can “derandomize” BPP.

| PriCr(G(Ur)) = 1] = Pr[Cr(Upk)) = 1]| <

Theorem 13 (Derandomization of BPP): If there exists non-uniformly strong pseudorandom gen-
def B
2m .

erators then BPP is contained in Ne>oDTIME(t.), where t.(n) =
Proof Sketch: Given any L € BPP and any € > 0, we let A denote the decision procedure for
L and G denote a non-uniformly strong pseudorandom generator stretching n®-bit long seeds into
poly(n)-long sequences (to be used by A as secondary input when processing a primary input of

0Gpecifically, given an arbitrary one-way function f', one first constructs f by taking a “direct product” of
sufficiently many copies of f’. For example, for z1, ..., z;2/5 € {0, 1}’“1/3, we let f(z1,...,,2/3) def (1), ., [ (zh2r5).

"ndeed, Proposition 3 yields an average-case derandomization of BPP. In particular, for every polynomial-time
constructible ensemble {X,}, N, every L € BPP, and every ¢ > 0, there exists a randomized algorithm A’ of
randomness complexity 7:(n) = n° such that the probability that A'(X,,) # L(X,) is negligible. A corresponding
deterministic (exp(r.)-time) algorithm A" can be obtained, as in the proof of Theorem 13, and again the probability
that A”(X,) # L(X,) is negligible, where here the probability is taken only over the distribution of the primary input
(represented by X,). In contrast, worst-case derandomization, as captured by the assertion BPP C DTIME(2"%),
requires that the probability that A”(X,) # L(X,) is zero.

12Needless to say, strong pseudorandom generators in the sense of Definition 12 satisfy the basic definition of a
pseudorandom generator (i.e., Definition 1); see Exercise 41.
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length n). We thus obtain an algorithm A’ = A (as in Construction 2). We note that A and A’ may
differ in their decision on at most finitely many inputs, because otherwise we can use these inputs
(together with A) to derive a (non-uniform) family of polynomial-size circuits that distinguishes
G(U,:) and Upoly(n), contradicting the the hypothesis regarding G. (Specifically, in terms of the
proof of Proposition 3, the finder F' counsists of a non-uniform family of polynomial-size circuits
that print the “problematic” primary inputs that are hard-wired in them, and the corresponding
distinguisher D’ is thus also non-uniform.) Incorporating the finitely many “bad” inputs into A’, we
derive a probabilistic polynomial-time algorithm that decides L while using randomness complexity
ne.

Finally, emulating A’ on each of the 2"° possible random choices (i.e., seeds to G), we obtain
a deterministic algorithm A" as required. That is, let A’(x,r) denote the output of algorithm A’
on input z when using coins r € {0,1}"". Then A”(x) invokes A'(z,r) on every r € {0,1}"", and
rules by majority. O

We comment that stronger results regarding derandomization of BPP are presented in Section 4.

On constructing non-uniformly strong pseudorandom generators. Non-uniformly strong
pseudorandom generators (as in Definition 12) can be constructed using any one-way function that
is hard to invert by any non-uniform family of polynomial-size circuits, rather than by probabilistic
polynomial-time machines. In fact, the construction in this case is simpler than the one employed
in the uniform case (i.e., the construction underlying the proof of Theorem 11).

3.7 Other variants and a conceptual discussion

We first mention two stronger variants on the definition of pseudorandom generators, and conclude
this section by highlighting various conceptual issues.

3.7.1 Stronger notions

The following two notion represent strengthening of the standard definition of pseudorandom gen-
erators (as presented in Definition 1). Non-uniform versions of these variants (strengthening Defi-
nition 12) are also of interest.

Fooling stronger distinguishers. One strengthening of Definition 1 amounts to explicitly quan-
tifying the resources (and success gaps) of distinguishers. We chose to bound these quantities as
a function of the length of the seed (i.e., k), rather than as a function of the length of the string

that is being examined (i.e., £(k)). For a class of time bounds 7 (e.g., 7 = {t(k) def ZCﬁ}ceN) and

a class of noticeable functions (e.g., F = {f(k) ot 1/t(k) : t € T}), we say that a pseudorandom

generator, G, is (7, F)-strong if for any probabilistic algorithm D having running-time bounded by
a function in 7 (applied to k)'3, for any function f in F, and for all sufficiently large k’s

|PrD(G(U)) = 1] = PrDUgry) =1]| < f(k)

An analogous strengthening may be applied to the definition of one-way functions. Doing so
reveals the weakness of the construction that underlies the proof of Theorem 11: It only implies
that for some € > 0 (¢ = 1/5 will do), for any 7 and F, the existence of “(7,F)-strong one-way

3That is, when examining a sequence of length £(k) algorithm D makes at most t(k) steps, where ¢t € 7.
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functions” implies the existence of (7', F')-strong pseudorandom generators, where 7' = {t'(k) ot
t(k®)/poly(k) : t € T} and F' = {f'(k) o poly(k) - f(k®) : f € F}. What we would like to have is
an analogous result with 7/ = {#(k) % t(k)/poly(k) : t € T} and 7' = {f'(k) % poly(k) - f(k) :
feF}

Pseudorandom Functions. Pseudorandom generators allow to efficiently generate long pseu-
dorandom sequences from short random seeds. Pseudorandom functions (defined in [18]) are even
more powerful: They allow efficient direct access to a huge pseudorandom sequence, which is not
even feasible to scan bit-by-bit. Put in other words, pseudorandom functions can replace truly
random functions in any efficient application (e.g., most notably in cryptography). We mention
that pseudorandom functions can be constructed from any pseudorandom generator (see [18]) and
found many applications in cryptography (see [16, 17]). Pseudorandom functions have been used to

derive negative results in computational learning theory [46] and in complexity theory (cf., Natural
Proofs [38]).

3.7.2 Conceptual Discussion

Whoever does not value preoccupation with thoughts, can skip this chapter.

Robert Musil, The Man without Qualities, Chap. 28

We highlight several conceptual aspects of the foregoing computational approach to randomness.
Some of these aspects are common to other instantiation of the general paradigm (esp., the one
presented in Section 4).

Behavioristic versus Ontological. The behavioristic nature of the computational approach
to randomness is best demonstrated by confronting this approach with the Kolmogorov-Chaitin
approach to randomness. Loosely speaking, a string is Kolmogorov-random if its length equals
the length of the shortest program producing it. This shortest program may be considered the
“true explanation” to the phenomenon described by the string. A Kolmogorov-random string is
thus a string that does not have a substantially simpler (i.e., shorter) explanation than itself.
Considering the simplest explanation of a phenomenon may be viewed as an ontological approach.
In contrast, considering the effect of phenomena on certain objects, as underlying the definition of
pseudorandomness, is a behavioristic approach. Furthermore, there exist probability distributions
that are not uniform (and are not even statistically close to a uniform distribution) and nevertheless
are indistinguishable from a uniform distribution (by any efficient method). Thus, distributions
that are ontologically very different, are considered equivalent by the behavioristic point of view
taken in the definition of computational indistinguishability.

A relativistic view of randomness. We have defined pseudorandomness in terms of its ob-
server. Specifically, we have considered the class of efficient (i.e., polynomial-time) observers and
defined as pseudorandom objects that look random to any observer in that class. In subsequent
sections, we shall consider restricted classes of such observers (e.g., space-bounded polynomial-time
observers and even very restricted observers that merely apply specific tests such as linear tests or
hitting tests). Each such class of observers gives rise to a different notion of pseudorandomness.
Furthermore, the general paradigm (of pseudorandomness) explicitly aims at distributions that are
not uniform and yet are considered as such from the point of view of certain observers. Thus, our
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entire approach to pseudorandomness is relativistic and subjective (i.e., depending on the abilities
of the observer).

Randomness and Computational Difficulty. Pseudorandomness and computational diffi-
culty play dual roles: The general paradigm of pseudorandomness relies on the fact that putting
computational restrictions on the observer gives rise to distributions that are not uniform and still
cannot be distinguished from uniform. Thus, the pivot of the entire approach is the computational
difficulty of distinguishing pseudorandom distributions from truly random ones. Furthermore,
many of the constructions of pseudorandom generators rely on either conjectures or facts regarding
computational difficulty (i.e., that certain computations that are hard for certain classes). For
example, one-way functions were used to construct general-purpose pseudorandom generators (i.e.,
those working in polynomial-time and fooling all polynomial-time observers). Analogously, as we
shall see in Section 4.3, the fact that parity function is hard for polynomial-size constant-depth
circuits can be used to generate (highly non-uniform) sequences that fool such circuits.

Randomness and Predictability. The connection between pseudorandomness and unpredictabil-
ity (by efficient procedures) plays an important role in the analysis of several constructions (cf.
Sections 3.5 and 4.2). We wish to highlight the intuitive appeal of this connection.

4 Derandomization of time-complexity classes

Let us take a second look at the proof of Theorem 13: A pseudorandom generator was used to shrink
the randomness complexity of a BPP-algorithm, and derandomization was achieved by scanning all
possible seeds to the generator. A key observation regarding this process is that there is no point
in insisting that the pseudorandom generator runs in time polynomial in its seed length. Instead,
it suffices to require that the generator runs in time exponential in its seed length, because we are
incurring such an overhead anyhow due to the scanning of all possible seeds. Furthermore, in this
context, the running-time of the generator may be larger than the running time of the algorithm,
which means that the generator need only fool distinguishers that take less steps than the generator.
These considerations motivate the following definition.

4.1 Definition

Recall that in order to “derandomize” a probabilistic polynomial-time algorithm A, we first obtain
a functionally equivalent algorithm Ag (as in Construction 2) that has (significantly) smaller ran-
domness complexity. Algorithm A¢ has to maintain A’s input-output behavior on all (but finitely
many) inputs. Thus, the set of the relevant distinguishers (considered in the proof of Theorem 13)
is the set of all possible circuits obtained from A by hard-wiring each of the possible inputs. Such
a circuit, denoted C,, emulates the execution of algorithm A on input x, when using the circuit’s
input as the algorithm’s internal coin tosses (i.e., A(x,r) = Cy(r)). Furthermore, the size of C,
is polynomial in the running-time of A on input z, and the length of the input to C, is linear in
the running-time of A (on input x).'* For simplicity, let’s say that the size of C, is quadratic in
the running-time of A on input . Thus, the pseudorandom generator in use (i.e., G) needs to fool

MTndeed, if algorithm A is represented as a Turing machine then C, has size that is at most quadratic (and in
fact even almost-linear) in the running-time of A on input x, which in turn means that C, has size that is at most
quadratic (or almost linear) in the length of its own input. We note that most sources use the fictitious convention
by which the circuit size equals the length of its input, which can be justified by considering a suitably padded input.
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each of these possible circuits. Recalling that we may allow the generator to run in exponential
time (in the length of its own input)!®, we arrive at the following definition.

Definition 14 (pseudorandom generator for derandomizing BPTIME(-))®: Let £ :N—N be a 1-1
function. A canonical derandomizer of stretch £ is a deterministic algorithm G of time complexity
upper-bounded by poly(2F - £(k)) such that for every circuit Dy, of size £(k)? it holds that

[PHDL(GU) = 1] = PrDyU) = 11| < ©)
The circuits Dy, are potential distinguishers, which are given inputs of length (k). When seeking to
derandomize an algorithm A of time-complexity ¢, the aforementioned ¢(k)-bit long inputs represent
possible random-inputs of A when invoked on a generic (primary) input of length n = t=(£(k)).
That is, letting Dy(r) = A(z,r) for some choice of z € {0,1}", where |r| = t(n) = {(k), and
Eq. (9) implies that Ag(x) maintains the majority vote of A(x). The straightforward deterministic
emulation of Ag takes time 2% - (poly(2¥ - £(k)) 4+ t(n)), which is upper-bounded by poly(2*-£(k)) =
poly(2z_1(t(”)) -t(n)). The following proposition is easy to establish.

Proposition 15 If there exists a canonical derandomizer of stretch £ then, for every time-constructible
t :N—N, it holds that BPTIME(t) C DTIME(T), where T(n) = poly(2¢ (") . ¢(n)).

Proof Sketch: Just follow the proof of Theorem 13, noting that the adequate value of k (i.e.,
k = (='(t(n))) can be determined easily (e.g., by invoking G(1?) for i = 1,..., k, using the fact that
¢:N—N is 1-1). Note that the complexity of the deterministic procedure is dominated by the 2*
invocations of Ag(z, s) = A(x, G(s)), where s € {0,1}¢ "((=D) and each of these invocations takes
time poly(2¥ - £(k)) + t(n) = poly(2¢ "(t(") . ¢(n)). O

The goal. In light of Proposition 15, we seek canonical derandomizers with stretch that is as
big as possible. The stretch cannot be super-exponential (in fact (k) = O(2¥)), because a circuit
of size O(2% - £(k)) may violate Eq. (9) (see Exercise 42) whereas for £(k) = w(2¥) it holds that
O(2%-0(k)) < £(k)?. Thus, our goal is to construct canonical derandomizer with stretch £(k) = 29%).
Such canonical derandomizers will allow for a “full derandomization of BPP”:

Theorem 16 If there exists a canonical derandomizer of stretch £(k) = 2°%F) for BPTIME(.), then
BPP = P.

Proof: Using Proposition 15, we get BPTIME(t) C DTIME(T), where T(n) = poly(2¢ (€m) .
t(n)) = poly(t(n)). W

Reflections. We stress that a canonical derandomizer G was defined in a way that allows it to
have time complexity ¢ that is larger than the size of the circuits that it fools (i.e., tg(k) > £(k)?
is allowed). Furthermore, (k) > 2* was also allowed. Thus, if indeed tg(k) = 2%*) (as is the
case in Section 4.2) then G(Uy) can be distinguished from Uyyy in time 2k . tq(k) = poly(tg(k))
(greater than £(k)?), by trying all possible seeds. In contrast, for a general-purpose pseudorandom
generator G (as discussed in Section 3) it holds that tg(k) = poly(k), while for every polynomial p
it holds that G(Uy) is indistinguishable from Uy in time p(ta(k)).

15 Actually, in Definition 14 we allow the generator to run in time poly(2¥£(k)), rather than poly(2*). This is done
in order not to rule out trivially generators of super-exponential stretch (i.e., £(k) = 2*)). However (see Exercise 42),
the condition in Eq. (9) does not allow for super-exponential stretch, and so in retrospect the two formulations are
equivalent (because poly(2°4(k)) = poly(2*) for £(k) = 20",

16Pixing a model of computation, we denote by BPTIME(¢) the class of decision problems that are solvable by a
randomized algorithm of time complexity ¢ that has two-sided error 1/3.
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4.2 Construction

The fact that canonical derandomizers are allowed to be more complex than the corresponding
distinguisher makes some of the techniques of Section 3 inapplicable in the current context. On the
other hand, the techniques developed below are inapplicable to Section 3. Amazingly enough, the
pseudorandomness (or rather the next-bit unpredictability) of the following generators hold even
when the “observer” is given the seed (capitalizing on the fact that the observer’s time-complexity
does not allow running the generator).

As in Section 3.5, the construction surveyed below transforms computational difficulty into
pseudorandomness, except that here both computational difficulty and pseudorandomness are of a
somewhat different form than in Section 3.5. Specifically, here we use Boolean predicates that are
computable in exponential-time but are T-inapproximated for some exponential function 7'; that
is, for constants ¢, > 0 and all but finitely many m, the (residual) predicate f : {0,1}" — {0,1}
is computable in time 2" but for any circuit C of size 2°™ it holds that Pr[C(U,,) = f(Un)] <
% + 27, (Needless to say, ¢ < ¢.) Recall that such predicates exist under the assumption that &
has (almost-everywhere) exponential circuit complexity. With these preliminaries, we turn to the
construction of canonical derandomizers with exponential stretch.

Construction 17 (The Nisan-Wigderson Construction):'" Let f:{0,1} — {0,1} and S, ..., S,
be a sequence of m-subsets of {1,....,k}. Then, for s € {0,1}*, we let

def
G(s) = f(ss1) - f(s5,) (10)
where sg denotes the projection of s on the bit locations in S C {1,...,|s|}; that is, for s = o1 --- 0%
and S = {i1,...,im}, we have sg =04, -+ 0;

m °

Letting k vary and £, m:N—N be functions of k, we wish G to be a canonical derandomizer and
(k) = 2°%%). Obvious necessary conditions for this to happen include the requirement that the
sets be distinct and hence m(k) = Q(k); consequently, f must be computable in exponential-time.
Furthermore, the sequence of sets S, ..., Sy) must be constructible in poly(2F) time. Intuitively, it
is desirable to use a set system with small pairwise intersections (because this restricts the overlap
among the various inputs to which f is applied), and a function f that is strongly inapproximable
(i.e., T-inapproximble for some exponential function 7'). Interestingly, these conditions are essen-
tially sufficient.

Theorem 18 (analysis of Construction 17): Let «, 3,7, > 0 be constants satisfying € > (2a/5) +
v, and £,m,T :N—N satisfy {(k) = 2°%, m(k) = Bk, and T(n) = 2°". Suppose that the following
two conditions hold:

1. There exists an exponential-time computable function f:{0,1}* —{0,1} that is T-inapprozimable.'d

2. There exists an exponential-time computable function S:NxN—N such that |S(k,i)| = m(k)
for every k and i = 1,....L(k), and |S(k,i) N S(k,j)| <v-m(k) for every k and i # j.

Then using G as defined in Construction 17, with S; = S(k,i), yields a canonical derandomizer
with stretch £.

"Given the popularity of the term, we deviate from our convention of not specifying credits in the main text. This
construction originates in [33, 36].

¥We say that f : {0,1}* — {0,1} is (S, p)-inapproximable if for every family of S-size circuits {Cr}penN and all
sufficiently large n it holds that Pr[C(U,) # f(Un)] > @. We say that f is T-inapproximable if it is (7,1 — (1/T))-

inapproximable.
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For any v > 0, a function S as in Condition 2 does exist (see Exercise 43), with some m(k) = Q(k)
and £(k) = 2°2(F). Combining such S with the worst-case to average-case reduction of [22] and using
Theorem 18, we obtain a canonical derandomizer with exponential stretch based on the assumption
that € has (almost-everywhere) exponential circuit complexity.!? Combining this with Theorem 16,
we get the first item of the following theorem.

Theorem 19 (Derandomization of BPP, revisited):

1. Suppose that there exists a set S € € having almost-everywhere exponential circuit complexity
(i.e., there exists a constant € > 0 such that, for all but finitely many m’s, any circuit that
correctly decides S on {0,1}™ has size at least 2°). Then, BPP = P.

2. Suppose that for every polynomial p there exists a set S € £ having circuit complexity that is
almost-everywhere greater than p. Then BPP is contained in NgsoDTIME(t:), where t-(n) et

2"
Part 2 is proved (in Exercise 47) by using a generalization of Theorem 18, which in turn is provided
in Exercise 46. We note that Part 2 of Theorem 19 superseeds Theorem 13. The two parts of
Theorem 19 exhibit two extreme cases: Part 1 (often referred to as the “high end”) assumes an
extremely strong circuit lower-bound and yields “full derandomization” (i.e., BPP = P), whereas
Part 2 (often referred to as the “low end”) assumes an extremely weak circuit lower-bound and
yields weak but meaningfull derandomization. Intermediate results (relying on intermediate lower-
bound assumptions) can be obtained analogous to Exercise 47, but tight trade-offs are obtained
differently (cf., [45]).

Proof of Theorem 18: Using the time complexity bounds on f and S, it follows that G can
be computed in exponential time. Out focus is on showing that {G(Uy)} cannot be distinguished
from {Uy)} by circuits of size ((k)?; that is, that G satisfies Eq. (9). In fact, we will prove that
this holds for G'(s) = s - G(s); that is, G fools such circuits even if they are given the seed as
auxiliary input. (Indeed, these circuits are smaller than the running time of G, and so they cannot
just evaluate G on the given seed.)

We start with the intuition underlying the proof. As a warm-up suppose that the sets (i.e.,
S(k,i)’s) used in the construction are disjoint. In such a case (which is indeed impossible becuase
k < L(k)-m(k)), the pseudorandomness of G(Uy) would follow easily from the inapproximablity of
f, because in this case G consists of applying f to non-overlaping parts of the seed (see Exercise 44).
In the actual construction being analyzed here, the sets (i.e., S(k,i)’s) are not disjoint but have
relatively small pairwise intersection, which means that G applies f on parts of the seed that have
relatively small overlap. Intuitively, such small overlaps guarantee that the values of f on the
corresponding inputs are “computationally independent” (i.e., having the value of f at one input
does not help to approximate the value of f at another input). This intuition will be backed by
showing that the former values can be computed at a relatively small computational cost. With
this intuition in mind, we now turn to the actual proof.

The proof that G’ fools circuits of size £(k)? utilizes the relation between pseudorandomness
and unpredictability. Specifically, as detailed in Exercise 45, any circuit that distinguishes G'(Uy,)
from Upy)4p, with gap 1/6, yields a next-bit predictor of similar size that succeeds in predicting the

Y8pecifically, starting with a function having circuit complexity at least exp(epm), we apply the worst-case to
average-case reduction of [22], obtaining a T-inapproximble predicate for T'(m) = 2°™, where the constant ¢ € (0, £o)
depends on the constant 9. Next, we set v = £/2 and invoke Exercise 43, which determines o, 3 > 0 such that
£(k) = 2°* and m(k) = Bk. In fact, 8 = v/2 and a = v6/10, hence (20/8) + v < e.
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next bit with probability at least g + grrgy > 3 + 77y, Where the £'(k) = £(k) + k < (1 +o(1)){(k)
factor is introduced by the hybrid technique (cf. Eq. (5)). Furthermore, given the non-uniform
setting of the current proof, we may fix a bit location 7 + 1 for prediction, rather than analyzing
the prediction at a random bit location. Indeed, i > k must hold, because the first & bits of G'(Uy)
are uniformly distributed. In the rest of the proof, we transform such a predictor into a circuit that
approximates f better than allowed by the hypothesis (regarding the inapproximability of f).

Assuming that a small circuit C’ can predict the 7 + 15 bit of G'(Uy), when given the previous
1 bits, we construct a small circuit C for approximating f(Um(k)) on input Up,x). The point is that
the i+ 1% bit of G'(s) equals f(sg(k,+1)), Where j =i—k >0, and so C" approximates f(sgk j1+1))
based on s, f(ss(k,1)); - f(S5(k,5)), Where s € {0, 1}* is uniformly distributed. This is the type of
thing that we are after, except that the circuit we seek may only get sg( j11) as input.

The first observation is that C’ maintains its advantage when we fix the best choice for the bits
of s that are not at bit locations S;11 = S(k,j+1) (i.e., the bits sj)\s,,,). That is, by an averaging
argument, it holds that

e AP0t [C 5 S 551)s o0 S 55)) = T (55,00 |15, = 1)
> 7L Proco 05, £ (55, £(55))) = Flss,0)]-

Recall that by the hypothesis p’ > 1 + %. Hard-wiring the fixed string s’ into C’, and letting

m(z) denote the (unique) string s satisfying sg;,, = = and sy
that satisfies

—_— : 3 3 "
Sj41 = 55 we obtain a circuit ¢

Procioy=[C" (@, f(m(2)s,), -, f(m(2)s;)) = f(2)] = p'.

The circuit C" is almost what we seek. The only problem is that C” gets as input not only x, but
also f(m(x)s,), -, f(7(x)s,), whereas we seek an appproximator of f(z) that only gets z.

The key observation is that each of the “missing” values f(m(x)s,), ..., f(7(7)s;) depend only on
a relatively small number of the bits of . This fact is due to the hypothesis that |S;NS; 1] < v-m(k)
for t = 1,...,7, which means that 7(z)gs, is an m(k)-bit long string in which my o |S¢ N Sj41| bits
are projected from z and the rest are projected from the fized string s’. Thus, given z, the value
f(m(x)s,) can be computed by a (trivial) circuit of size O(2™); that is, by a circuit implementing
a look-up table on m; bits. Using all these circuits (together with C"), we will obtain the desired
approximator of f. Details follow.

We obtain the desired circuit C, which depends on the index j and the string s’ that are fixed as
in the foregoing analysis. On input x € {0,1}", the circuit computes the values f (7 (z)s, ), ..., f(7(¥)s; ),
invokes C" on input x and these values, and outputs the answer as a guess for f(z). That is,

Clz) = C"(, f(n(@)s,), -, f(n(2)s5;)) = C'(w(), f(7(2)s,), .., f(7(2)5,))-
By the foregoing analysis, Pr.[C(z) = f(z)] > p’ > % + ﬁ, where the second inequality is due
to T'(m(k)) = ij(k) = 2Pk » 920k 5 7/(k). The size of C is upper-bounded by £(k)? + £(k) -
0(27'm(k))~<< O(L(k)? - 27™*)) <« T(m(k)), where the second inequality is due to T'(m(k)) =
2emUk) s O(22k+rm(k)) and ((k) = 2%, Thus, we derived a contradiction to the hypothesis that
f is T-inapproximable. W

4.3 Variants and a conceptual discussion

The Nisan-Wigderson Construction (Construction 17) is actually a general framework, which can be
instantiated in various ways. We start this section by briefly reviewing some of these instantiations
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and end it with a conceptual discussion regarding derandomization.

Derandomization of constant-depth circuits. Using (Construction 17 with) a different set-
ting of parameters and the parity function in the role of the inapproximable predicate (i.e., inap-
proximable by “small” constant-depth circuits), one can obtain pseudorandom generators that fool
“small” constant-depth circuits (see [33]). The analysis of the modified construction proceeds very
much like the proof of Theorem 18. One important observation is that incorporating the (straight-
forward) circuits that compute f(n(z)s,) into the distinguishing circuit only increases its depth
by two levels. The resulting pseudorandom generator, which use a seed of polylogarithmic length
(equiv., £(k) = exp(k'/9(M)), can be used for derandomizing RAC (i.e., random .AC?), analogously
to Theorem 16. In other words, we can deterministically approximate, in quasi-polynomial-time
and up-to an additive error, the fraction of inputs that satisfy a given (constant-depth) circuit.
Specifically, for any constant d, given a depth-d circuit C, one can approximate the fraction of the
inputs that satisfy C (i.e., cause C to evaluate to 1) to within any additive constant error®® in time
exp(poly(log |C|)), where the polynomial depends on d. Providing a deterministic polynomial-time
aproximation, even in the case d = 2 (i.e., CNF/DNF formulae) is an open problem.

Derandomization of probabilistic proof systems. A different (and more surprising) instan-
tiation of Construction 17 utilizes predicates that are hard for small circuits having oracle access
to N'P. The result is a pseudorandom generator robust against two-move public-coin interactive
proofs (which are as powerful as constant-round interactive proofs). The key observation is that
the above proof provides a black-box procedure for approximating the underlying predicate when
given oracle access to a distinguisher (and this procedure in valid also in case the distinguisher
is a non-deterministic machine). Thus, under suitably strong (and yet plausible) assumptions,
constant-round interactive proofs collapse to NP. We note that a stronger result, which deviates
from the foregoing framework, has been subsequently obtained (cf. [31]).

An even more radical instantiation of Construction 17 was used to obtain explicit constructions
of randomness extractors (see [41]). In addition to the foregoing observation, one also utilizes the
fact that the generator itself uses the predicate as a black-box.

A conceptual discussion regarding derandomization

Part 1 of Theorem 19 is often summarized by saying that (under some reasonable assumptions)
randomness is useless. We believe that this interpretation is wrong even within the restricted
context of traditional complexity classes, and is bluntly wrong if taken outside of the latter context.
Let us elaborate.

Taking a closer look at the proof of (the underlying) Theorem 16, we note that a randomized
algorithm A of time complexity ¢ is emulated by a deterministic algorithm A’ of time complexity
t'" = poly(t). Further noting that A" = Ay invokes A and the canonical derandomizer G for a
number of times that must exceed ¢, we infer that ¢ > ¢* must hold. Thus, derandomization via
(Part 1 of) Theorem 19 is not really for free.

More importantly, we note that derandomization is not possible in various distributed settings,
when both parties may protect their conflicting interests by employing randomization. Notable

20We mention that in the special case of approximating the number of satisfying assignment of a DNF formula,
relative error approximations can be obtained by employing a deterministic reduction to the case of additive constant
error (see [15, Apdx. B.1.1]). Thus, using a pseudorandom generator that fools DNF formulae, we can deterministically
obtain a relative (rather than additive) error approximation to the number of satisfying assignment in a given DNF
formula.
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examples include most cryptographic primitives (e.g., encryption) as well as most types of proba-
bilistic proof systems (e.g., PCP). Additional settings where randomness makes a difference (either
between impossibility and possibility or between prohibited and affordable cost) include distributed
computing (see [6]), communication complexity (see [26]), parallel architectures (see [27]), sampling
and property testing.

5 Space Pseudorandom Generators

In the previous two sections we have considered generators the output of which is indistinguishable
by any efficient procedures. The latter were modeled by time-bounded computations; specifically,
polynomial-time computations. A finer characterization of time-bounded computations is obtained
by considering their space-complexity (i.e., restricting the space-complexity of time-bounded com-
putations). In contrast to the definitions of pseudorandom generators that were considered in
Sections 3 and 4, the existence of pseudorandom generators that fool space-bounded distinguishers
can be established without relying on computational assumptions.

5.1 Definitional issues

Unfortunately, natural notions of space-bounded computations are quite subtle, especially when
non-determinism or randomization are concerned. Two major issues are time bounds and access to
the random tape.

1. Time bound: The question is whether or not one restricts the space-bounded machines to run
in time-complexity that is at most exponential in the space-complexity.?! Recall that such
an upper-bound follows automatically in the deterministic case, and can be assumed without
loss of generality in the non-deterministic case but not in the randomaized case.

Indeed, we do postulate the aforementioned time-bound.

2. Access to the random tape: The question is whether whether the space-bounded machine has
one-way or two-way access to the randomness tape. (Allowing two-way access means that
the randomness is recorded for free; that is, without being accounted for in the space-bound.)
Recall that one-way access to the randomness tape corresponds to the natural model of on-line
randomized machine (which determines its moves based on its internal coin tosses).

Again, following most work in the area, we consider one-way access.??

In accordance with the resulting definition of randomized space-bounded computation, we consider

space-bounded distinguishers that have a one-way access to the input sequence that they examine.

Since all known constructions remain valid also when these distinguishers are non-uniform (and

since non-uniform distinguishers arise anyhow in derandomization), we use this stronger notion

here.?3

21 Alternatively, one can ask whether these machines must always halt or only halt with probability approaching 1.
It can be shown that the only way to ensure “absolute halting” is to have time-complexity that is at most exponential
in the space-complexity.

22We note that the fact that we restrict our attention to one-way access is instrumental in obtaining space-
robust generators without making intractability assumptions. Analogous generators for two-way space-bounded
computations would imply hardness results of a breakthrough nature in the area.

23We note that these non-uniform space-bounded distinguishers correspond to branching programs of width that
is exponential in the space-bound. Furthermore, these branching programs read their input in a fixed predetermined
order (which is determined by the designer of the generator).
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In the context of non-uniform algorithms that have one-way access to their input, we may
assume, without loss of generality, that the running-time of such algorithms equals the length of
their input, denoted ¢ = ¢(k). Thus, we define a non-uniform machine of space s:N—N as a family,
{Dg}ren, of directed layered graphs such that Dy has at most 25(k) vertices at each layer, and
labeled directed edges from each layer to the next layer.2? Each vertex has two (possibly parallel)
outgoing directed edges, one labeled 0 and the other labeled 1, and there is a single vertex in the first
layer of Dy. The result of the computation of such a machine, on an input of adequate length (i.e.,
length ¢ where Dy has £ + 1 layers), is defined as the vertex (in last layer) reached when following
the sequence of edges that are labelled by the corresponding bits of the input. That is, on input
x=my -2y fori =1,...,{, we move from the vertex reached in the i*® layer by using the outgoing
edge labelled ; (thus reaching a vertex in the i + 15* layer). Using a fixed partition of the vertices
of the last layer, this defines a natural notion of decision (by Dy); that is, we write Dy(z) =1 if on
input z machine Dy, reached a vertex that belongs to the first part of the aforementioned partition.

Definition 20 (Indistinguishability by space-bounded machines):

e For a non-uniform machine, { Dy }ren, and two probability ensembles, { Xi ren and {Yi}ren,
the function d:N—[0,1] defined as

def
d(k) = [Pr[Dy(Xy) = 1] = Pr[Dy,(Yy) = 1]|
is called the distinguishability-gap of {Dy} between the two ensembles.

o A probability ensemble, { X }ren, s called (s,e)-pseudorandom if for any (non-uniform) s(-)-
space-bounded machine, the distinguishability-gap of the machine between {Xi}reny and a
uniform ensemble (of length |Xy|) is at most ().

o A deterministic algorithm G of stretch function ¢ is called a (s,c)-pseudorandom generator if
the ensemble {G(Uy)}ren s (s,e)-pseudorandom.

5.2 Two constructions

In contrast to the case of pseudorandom generators that fool time-bounded distinguishers, pseu-
dorandom generators that fool space-bounded distinguishers can be established without relying on
any computational assumption. The following two constructions exhibit two extreme cases of a
general trade-off between the length of the seed and the stretch function of the generator.?> We
start with an attempt to maximize the stretch.

Theorem 21 (exponential stretch with quadratic length seed): For every space constructible func-
tion s:N—N, there exists a (s,2~°)-pseudorandom generator of stretch function ((k) = 2F/O((k)),
Furthernore, the generator works in space linear in the length of the seed, and in time linear in the
stretch function.

Z4Note that the space bound of the machine is stated in terms of a parameter k, rather than in terms of the length
of its input. In the sequel this parameter will be set to the length of a seed to a pseudorandom generator. We
warn that our presentation here is indeed non-standard for this area. To compensate for this, we will also state the
consequences in the standard format.

*These two results have been “interpolated” in [5]: There exists a parameterized family of space pseudorandom
generators that includes both results as extreme special cases.
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In other words, we have a generator that takes a random seed of length & = O(¢ - m) and produce
sequences of length 2¢ that look random to any m-space-bounded machine. In particular, using a
random seed of length & = O(m?), one can produce sequences of length 2™ that look random to any
m-space bounded machine. Thus, one may replace random sequences used by any space-bounded
computation, by sequences that are efficiently generated from random seeds of length quadratic in the
space bound. The common instantiation is for log-space machines. In §5.2.2, we apply Theorem 21
(and its underlying ideas) for the derandomization of space complexity classes such as BPL (i.e.,
the log-space analogue of BPP).

We now turn to the case where one wishes to minimize the seed length. We warn that The-
orem 22 only guarantees a subexponential distinguishing gap (rather than the exponential dis-
tinguishing gap guaranteed in Theorem 21). This warning is voiced because failing to recall this
limitation has led to errors in the past.

Theorem 22 (polynomial stretch with linear length seed): For any polynomial p and for s(k) =
k/O(1), there exists a (s,2V®)-pseudorandom generator of stretch function p. Furthermore, the
generator works in linear-space and polynomial-time (both stated in terms of the length of the
seed).

In other words, we have a generator that takes a random seed of length k = O(m) and produce
sequences of length poly(m) that look random to any m-space-bounded machine. Thus, one may
convert any randomized computation utilizing polynomial-time and linear-space into a functionally
equivalent randomized computation of similar time and space complexities that uses only a linear
number of coin tosses.

5.2.1 Overviews of the proofs of Theorems 21 and 22

In both cases, we describe the construction by starting with an adequate distinguisher and showing
how the input distribution it examines can be modified (from the uniform one into a pseudorandom
one) without the distinguisher noticing the difference.

Overview of the proof of Theorem 21.2¢ Theorem 21 is proven by using the “mixing property”
of pairwise independent hash functions. A family of functions H, which map {0,1}" to itself is
called mizing if for every pair of subsets A,B C {0,1}" for all but very few (i.e., exp(—(n))
fraction) of the functions h € H,,

Al |B
Pr[UneA/\h(Un)eB]z| 18]

onon (11)

where the approximation is up to an additive term of exp(—£2(n)).

Given a s(k)-space distinguisher Dy, as in Definition 20, we set n def ©(s(k)) and ¢’ o (k)/n <
25(k) " and consider an auxiliary “distinguisher” D) that is a directed layered graph with ¢ layers
and 2°%) vertices in each layer. In Dy, each vertex has directed edges going to each vertex of
the next layer and these edges are labeled with (possibly empty) subsets of {0,1}" such that these
subsets form a partition of {0,1}". The graph D} simulates Dy in the obvious manner; that is,
the computation of Dj, on an input of length ¢(k) = ¢ - n is defined by breaking the input into
consecutive blocks of length n and following the path of edges that are labeled by the subsets
containing the corresponding block. Now, for each pair of neighboring vertices, u and v (in layers ¢
and ¢ + 1, respectively), consider the label, L, , C {0,1}", of the edge going from u to v. Similarly,

%6 A detailed proof appears in [34].
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for a vertex w at layer ¢ + 2, we consider the label L}, , of the edge from v to w. By Eq. (11), for
all but very few few of h € H,,
Pr{U, € Luy AW(U,) € L, )] = Pr[Uy € Ly, - Pr[U, € L,

]

where “very few” and = are as in Eq. (11). Thus, replacing the coins in the second block (i.e.,
used in transitions from layer ¢ + 1 to layer ¢ + 2) with the value of h applied to the outcomes of
the coins used in the first block (i.e., in transitions from layer ¢ to i + 1), approximately maintains
the probability that D), moves from u to w via v. The same (with “few” being 23*(%) . ¢/ times
larger here)?” holds for every triple of vertices in any three layers as in the foregoing discussion.
The point is that we can use the same h in all these approximations. Thus, at the cost of extra |h|
random bits, we can reduce the number of true random coins used in transitions on D, by a factor
of 2, without significantly affecting the final decision of Dj. In other words, at the cost of extra
|h| random bits, we can effectively contract the distinguisher to half its length. That is, fixing a
good h (i.e., one that provides a good approximation to all 235(k) . ¢ relevant pairs of sets), we can
replace the 2-edge paths in D) by edges in a new distinguisher D}/ such that r is in the set that
labels the edge u—w in Dy if and only if, for some v, the string r is in the label of the edge u—v in
.. and h(r) is in the label of the edge v—w (also in Dj,).

Repeating the process for a logarithmic (in D}’s length) number of times we obtain a distin-
guisher that only examines n bits, at which point we stop. In total, we have used log,(¢(k)/O(s(k))) <
log, (k) random hash functions, which means that we can generate a sequence that fools the orig-
inal Dy using a seed of length n + log, £(k) - log, |Hy| (see Exercise 48). Using n = ©O(s(k)) and an
adequate family H,, yields the claimed seed length of O(s(k) - log, 4(k)) =k. O

Overview of the proof of Theorem 22.?® Theorem 22 is proven by using a suitable randomness
extractor (as in [41]), which is indeed a much more powerful tool than hashing functions. The basic
idea is that when Dy is at some distant layer, say at layer ¢, it typically “knows” little about
the random choices that led it there. That is, Dy has only s(k) bits of memory, which leaves
out t — s(k) bits of “uncertainty” (or randomness) regarding the previous moves. Thus, much
of the randomness that led Dy to its current state may be “re-used” (or “recycled”). To re-use
these bits we need to extract almost uniform distribution on strings of sufficient length out of the
aforementioned distribution over {0,1}! that has entropy?® at least ¢ — s(k). Furthermore, such an
extraction requires some — yet relatively few — truly random bits. In particular, using k' = Q(log t)
bits towards this end, the extracted bits are exp(—(%')) away from uniform.

One important point is how to use the foregoing argument repeatedly. Towards this end, we
break the k-bit long seed into two parts, denoted r' € {0,1}*/2 and (r, ..., T3y%)> Where [r;| = VE/6,
and set n = k/3. Intuitively, 7’ will be used for determining the first n steps, and it will be re-used
(or recycled) together with r; for determining the steps i-n+ 1 through (i + 1) -n. Looking at layer
i - n, we consider the information regarding r’ that is known to Dy (at layer i - n). Typically, the
conditional distribution of 7/, given that we reached a specific vertex at layer 7-n has (min-)entropy
greater than 0.99 - (¢t — s(k)). Using r; (as a seed of an extractor applied to '), we can extract
0.9-((k/2) — s(k) —o(k)) > k/3 = n bits that are almost-random with respect to Dy, and use these

Z"Note that “very few” means an exp(—Q(n)) fraction and that n = Q(s(k)) and £ < exp(s(k)).

28 A detailed proof appears in [37].

29 Actually, a stronger technical condition needs and can be imposed on the latter distribution. Specifically, with
overwhlemingly high probability, at layer ¢ machine Dy, is at a vertex that can be reached in more than 2099 (=)
different ways. In this case, the distribution representing a random walk that reaches this vertex has min-entropy
greater than 0.99 - (¢ — s(k)). The reader is referred to [41] for definitions of min-entropy and extractors.
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bits for determining the next n steps. Hence, using k random bits we are produce a sequence’

of length (1 + 3vk) - n > k3/2 that fools machines of space bound, say, s(k) = k/10. That is, we
obtained a (s,2~V*))-pseudorandom generator of stretch function ¢(k) = k3/2.

To obtain an arbitrary polynomial stretch rather than a specific polynomial stretch (i.e., £(k) =
k3/2) we repeatedly apply an adequate composition, to be outlined next. Suppose that G; is a
(s1,€1)-pseudorandom generator of stretch function ¢; that works in linear space, and similarly for
G9 with respect to (s1,£1) and f9. Then, we consider the following construction of a generator G:

1. On input s € {0,1}*, obtain G(s), and parse it into consecuetive blocks, each of length
m = s1(k)/O(1), denoted ry, ..., 7, where t = £1(k)/m.

2. Output the t - l9(m)-bit long sequence Ga(ry)--- Ga(rs).

Note that |G(s)| = ¢1(k) - £2(m)/m, which for s1(k) = ©(k) yields |G(s)| = l1(k) - £2(Q(k))/O(k).
We claim that G is a (s,¢)-pseudorandom generator, for s(k) = min(s1(k)/2,s2(Q2(s1(k))) and
e(k) = e1(k) + £1(k) - e2(2(s1(k)). The proof uses a hybrid argument, which focuses on the in-
termediate distribution GQ(U,%)) e Gz(U,(,f)). The key claim is that the intermediate distribution
is (s1/2,e1)-indistinguishable from G(Uy), and it is proven by converting a potential distinguisher
into a distinguisher of Ul . Ul and G1(Ug) by invoking Gy on the corresponding m-bit long
blocks (of the £(k)-bit long input). For this reason, it crucial that G5 can be evaluate on m-bit long
strings using space at most s;(k)/2, which is guaranteed by our setting of m = s1(k)/O(1) and the
hypothesis that G works in linear space. O

5.2.2 Derandomization of space-complexity classes

As a direct application of Theorem 21, we obtain that BPL C Dsprack(log?), where BPL denotes
the log-space analogue of BPP. (Recall that V'L C DspACE(log?), but it is not known whether or
not BPL C NL.)3 A stronger derandomization result can be obtained by a finer analysis of the
proof of Theorem 21.

Theorem 23 BPL C SC, where SC denotes the class of decision problems that can be solved by a
determainistic machine that runs in polynomaial-time and polylogarithmic-space.

Thus, BPL D RL is placed in a class not known to contain N'L. Another such result was sub-
sequently obtained in [40]: Randomized log-space can be simulated in deterministic space o(log?);

specifically, in space log3/2. We mention that the archetypical problem of RL has been recently
proved to be in £ (see [39]).

Overview of the proof of Theorem 23.3? Looking at the proof of Theorem 21, we note that
the question of whether or not a specific hash function h € H, is good for a specific D} can be
determined in space that is linear in n = |h|/2 and logarithmic in the size of D}.. Indeed, the time
complexity of this decision procedure is exponential in its space complexity. It follows that we can
find a good h € H,, for a given Dj, within these complexities (by scanning through all possible
h € Hy,). Once a good h is found, we can also construct the corresponding graph D}/ (in which

30Gpecifically, using an extractor of the form Ext : {0, 1}‘@/6 x {0,1}*/2 — {0,1}*/3, we map the seed
(r',71, ...y 7y /z) to the output sequence (r', Ext(ry,r"),..., Ext(r, z,7")).

31Tndeed, the log-space analogue of RP, denoted RL, is contained in N'L C DSPACE(log2)7 and thus the fact that
Theorem 21 implies RL C DspacE(log?) is of no interest.

32 A detailed proof appears in [35].
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edges represent 2-edge paths in Dj), again within the same complexity. Actually, it will be more
instructive to note that we can determine a step (i.e., an edge-traversal) in D} by making two steps
(edge-traversals) in Dj.

The key claim is that the entire process of finding a sequence of ¢4 10g2 !'(k) good hash
functions can be performed in space t - O(n + log |Dg|) < O(n + log |Dy|)? and time poly (2" - | Dg|);
that is, the time complexity is sub-exponential in the space complexity (i.e., the time complexity is

significantly smaller than than the generic bound of exp(O(n + log |Dy|)?)). Starting with D,(cl) =

Dy, we find a good (for D,(cl)) hashing function (") € H,, which defines D,(CZ) = Dj/. Having
found (and stored) A1), ... h(Y € H,, which determine D,(;H), we find a good hashing function
h+1) e H,, for D,(CZH) by emulating pairs of edge-traversals on D,(CZH). Indeed, a key point is that

D,(f), - D,(:H), but rather emulate an edge-traversal in

we do not construct the sequence of graphs
D,(:H) by making 2° edge-traversals in D}, using A1), ..., h(): The (edge-traversal) move a € {0,1}"
starting at vertex v of D,(CH_I) translates to a sequence of 2¢ moves starting at vertex v of Dy, where
the moves are determined by

o, B (@), K (), kO (P (@), ..., RO (RP (- B () - - ).

(See Figure 3.) Thus, for n = O(log|Dy}|), given D and a pair (u,v) of source and sink in Dj,
(which reside in the first and last layer, respectively), we can (deterministically) approximate the
probability that a random walk starting at u reaches v in O(log|D}|)?-space and poly(| D} |)-time.
The approximation can be made accurate up to a factor of 1 & (1/poly(|Dy;])). We conclude the
proof by recalling the connection between such an approximation and the derandomization of BPL.

(possible) application of h”

(possible) appllcatlon
of h®

@ (possible)

application

0 1 0 1
of h”

Q.Q

The output of the generator (on seed «) consists of the concatanation of the
strings denoted oy, ..., i, appearing in the leaves of the tree. For every
x € {0,1}* it holds that azy = oy and oy = h(i_‘z‘)(aw). In particular,
for i = 3, we have agy; = h(Y(ag;), which equals k(Y (ag) = B (R (@),
where o = «y,.

Figure 3: Derandomization of BPL — the generator for ¢ = 3.

The computation of a log-space probabilistic machine M, on input x, can be represented by a
directed layer graph G of size poly(|z|). Specifically, the probability that M accepts x equals
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the probability that a random walk starting at the single vertex of the first layer of G/, reaches
some vertex in the last layer that represents an accepting configuration. Setting k& = ©(log|z|)
and n = O(k), the graph Gy, coincides with the graph Dy, referred to at the beginning of the
proof of Theorem 21, and Dj, is obtained from Dy by an “n-layer contraction” (see ibid.). Com-
bining this with the foregoing analysis, we conclude that the probability that M accepts x can be
deterministically approximated in O(log |x|)?-space and poly(|z|)-time. The theorem follows. O

6 Special Purpose Generators

In this section we consider even weaker types of pseudorandom generators, producing sequences that
can fool only very restricted types of distinguishers. Still, such generators have many applications
in complexity theory and in the design of algorithms. (These applications will only be mentioned
briefly.)

Our choice is to start with the simplest of these generators: the pairwise-independent gener-
ator, and its generalization to t-wise independence for any ¢ > 2. Such generators perfectly fool
any distinguisher that only observe ¢ locations in the output sequence. This leads naturally to
almost pairwise (or t-wise) independence generators, which also fool (albeit non-perfectly) such
distinguishers. The latter generators are implied by a stronger class of generators, which is of
independent interest: the small-bias generators. Small-bias generators fool any linear test (i.e., any
distinguisher that merely considers the XOR of some fixed locations in the input sequence). We
then turn to the Expander Random Walk Generator: this generator produces a sequence of strings
that hit any dense subset of strings with probability that is close to the hitting probability of a
truly random sequence. Related notions such as samplers, dispersers, and extractors are treated
elsewhere (e.g., see [15] and [41], respectively).

Comment regarding our parameterization: To maintain consistency with prior sections, we
continue to present the generators in terms of the seed length, denoted k. Since this is not the
common presentation for most results presented in the sequel, we provide (in footnotes) the common
presentation in which the seed length is determined as a function of other parameters.

6.1 Pairwise-Independence Generators

Pairwise (resp., t-wise) independence generators fool tests that inspect only two (resp., t) elements
in the output sequence of the generator. Such loacl tests are indeed very restricted, yet they arise
naturally in many settings. For example, such a test corresponds to a probabilistic analysis (of a
procedure) that only relies on the pairwise independence of certain choices made by the procedure.
We also mention that, in some natural range of parameters, pairwise independent sampling is as
good as sampling by totally independent sample points.

A t-wise independence generator of block-size b: N— N (and stretch function ¢) is an efficient
deterministic algorithm (e.g., one that works in time polynomial in the output length) that expands
a k-bit long random seed into a sequence of £(k)/b(k) strings, each of length b(k), such that any
t blocks are uniformly and independently distributed in {0,1}***). In case t = 2, we call the
generator pairwise independent. We note that this condition holds even if the inspected ¢ blocks are
selected adaptively (see Exercise 49)
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6.1.1 Constructions

In the first construction, we refer to GF(Zb(k)), the finite field of 2%(F) elements, and associate its
elements with {0, 1}%*).

Proposition 24 (t-wise independence generator):3® Let t be a fized integer and b, £,¢':N—N such
that b(k) = k/t, £'(k) = L(k)/b(k) > t and 0'(k) < 2°0), Let Q15 -y Qpr(gy e distinct elements of
this field. For sg,s1,...,s¢_1 € {0,1}°() et

t—1 t—1 t—1
def ' ' ;
G (50,81, 5t-1) = Zsja{, Zsja% ey Zsjaé,(k) (12)
=0 = 7=0

where the arithmetic is that of GF(Zb(k)). Then, G s a t-wise independence generator of block-size
b and stretch (.

That is, given a seed that consists of ¢ elements of GF(2"%)), the generator outputs a sequence of
U'(k) such elements. To make the above generator totally explicit, we need an explicit representation

of GF(2(F)), which requires an irreducible polynomial of degree b(k) over GF(2). For specific values

of b(k), a good representation does exist: Specifically, for d def b(k) = 2-3° (with e being an integer),

the polynomial z¢ + 242 + 1 is irreducible over GF(2). The proof of Proposition 24 is left as an
exercise (see Exercise 50).

An alternative construction for the case of t = 2 is obtained by using (random) affine transfor-
mations (as possible seeds). In fact, better performance (i.e., shorter seed length) is obtained by
using affine transformations defined by Toeplitz matrices. A Toeplitz matrix is a matrix with all
diagonals being homogeneous; that is, T = (¢; ;) is a Toeplitz matrix if ¢; ; = ¢;41 j41, for all 4, j.
Note that a Toeplitz matrix is determined by its first row and first column (i.e., the values of ¢; ;s
and t;1’s).

— m(k)—

b(k) +

Figure 4: An affine transformation defined by a Toeplitz matrix.

Proposition 25 (Alternative pairwise independence generator, see Figure 4):3* Let b,£,(',m :
N—N such that ¢'(k) = (k)/b(k) and m(k) = [logy 0'(k)] = k — 2b(k) + 1. Associate {0,1}"

33The common parameterization of t-wise independence generator is as follows. Given parameters b and ¢ < 2°,
and a uniformly distributed seed of length ¢ - b, one efficiently and deterministically generates a random sequence of
¢’ strings, each of length b, that are t-wise independent.

34The common parameterization of this pairwise independence generator is as follows. Given parameters b and
¢', and a uniformly chosen seed of length 2b + [log, £'] — 1, one efficiently and deterministically generates a random
sequence of ¢' strings, each of length b, that are pairwise independent.
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with the n-dimensional vector space over GF(2), and let vy, ..., vp ) be distinct vectors in the m(k)-
dimensional vector space over GF(2). For s € {0,1}F)+mE) =1 gnd r € {0,1}5*) ] let

G(s,r) def (Tsv1 + 7, Tsva + 7,y Tsvpgy + 1) (13)

where T is an b(k)-by-m(k) Toeplitz matriz specified by the string s. Then G is a pairwise inde-
pendence generator of block-size b and stretch (.

That is, given a seed that represents an affine transformation defined by an b(k)-by-m(k) Toeplitz
matrix, the generator outputs a sequence of #/(k) < 2"*) strings, each of length b(k). Note that
m(k) = k — 2b(k) + 1, and that the stretching property requires ¢'(k) > k/b(k). The proof of
Proposition 25 is left as an exercise (see Exercise 51).

A stronger notion of efficient generator. We note that the aforementioned constructions
satisfy a stronger notion of efficient generation, which is useful in several applications. Specifically,
there exists a polynomial-time algorithm that given a seed, s € {0,1}*, and a block location
i € [('(k)] (in bianry), outputs the i*® block of the corresponding output (i.e., the i*" block of

G(s)).

6.1.2 Applications

Pairwise independence generators do suffice for a variety of applications (cf., [47, 30]). In particu-
lar, we mention the application to sampling, and the celebrated derandomization of the Maximal
Independent Set algorithm. The latter uses the fact that the analysis of the “target” randomized
algorithm only relies on the hypothesis that some objects are selected in pairwise independent
manner. Thus, such weak generators do suffice to fool distinguishers that are derived from some
natural and interesting algorithms.

Referring to Eq. (12), we remark that for constant ¢ > 2, the cost of derandomization (i.e.,
going over all 2F possible seeds) is exponential in the block-size (because b(k) = Q(k)), which in
turn also bounds the number of blocks (because ¢/(k) < 2%*)). Note that if a larger number of
blocks is needed, we can artificially increase the block-length in order to allow for it (i.e., allow
O'(k) = 2°%) = exp(k/t)), and in this case the cost of derandomization will be polynomial in
the number of blocks. Thus, whenever the analysis of a randomized algorithm can be based on
a constant amount of independence between (feasibly-many) random choices, each made inside
a feasible domain, a feasible derandomization is possible.® On the other hand, the relationship
(k) = exp(k/t) is the best possible; that is, one cannot produce from a seed of length k£ an
exp(k/O(1))-long sequence of non-constantly independent random bits. In other words, ¢-wise
independent generators of (any block-length and) stretch ¢ require a seed of length Q(t - log ¢). In
the next subsection we will see that meaningful approximations may be obtained with much shorter
seeds.

6.2 Small-Bias Generators

Trying to go beyond constant-independence in derandomizations (while using seeds of length that
is logarithmic in the length of the pseudorandom sequence) was the original motivation (and remain

35We stress that it is important to have the cost of derandomization be polynomial in the length of the produced
pseudorandom sequence, because the latter is typically polynomially-related to the length of the input to the algorithm
we wish to derandomize.
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an important application) of the notion of small-bias generators. Still, small-bias generators are
interesting for their own sake, and in particular they fool “global tests” that look at the entire
output sequence and not merely at a fixed number of positions in it (as the limited independence
generators). Specifically, small-bias generators generate a sequence of bits that fools any linear test
(i.e., a test that computes a fixed linear combination of the bits).

For e:N— [0, 1], an e-bias generator with stretch function £ is an efficient deterministic algorithm
(e.g., working in poly(¢(k)) time) that expands a k-bit long random seed into a sequence of (k)
bits such that for any fixed non-empty set S C {1,...,4(k)} the bias of the output sequence over
S is at most (k). The bias of a sequence of n (possibly dependent) Boolean random variables
Cly-oyCn € {0,1} over aset S C {1,..,n} is defined as

1
2 [Pri@iest = 1] - 5| = IPrioiest; = 1] - Prioest; =0l (14)
The factor of 2 was introduced so to make these biases correspond to the Fourier coefficients of

the distribution (viewed as a function from {0, 1}" to the reals). To see the correspondence replace
{0,1} by {£1}, and substitute XOR by multiplication. The bias with respect to set S is thus written

as r[HCz:“ _Pr [HCiZ_ll ‘ lHCz]

1€S 1€S 1€S

which is merely the (absolute value of the) Fourier coefficient correspondlng to S.

6.2.1 Constructions

Efficient small-bias generators with exponential stretch and exponentially vanishing bias are know.

Theorem 26 (small-bias generators):>6 For some universal constant ¢ > 0, let £ : N—N and
e:N—[0,1] such that (k) < e(k) - exp(k/c). Then, there exists an e-bias generator with stretch
function  operating in time polynomial in the length of its output.

Three simple constructions of small-bias generators that satisfy Theorem 26 are known (see [3]).
One of these constructions is based on Linear Feedback Shift Registers. Loosely speaking, the first
half of the seed, denoted f0f1 - J( (k/2)=1> is interpreted as a (non- degenerate) feedback rule®”, the
other half, denoted sps1 - - - s(1/2)_1, is interpreted as “the start sequence”, and the output sequence,
denoted rgry - -- To(k)—15 is obtained by setting r; = s; for ¢ < k/2 and r; = Z(k/z fi- Tie(k/2)+
for i > k/2. (See Figure 5 and Exercise 55.)

As in Section 6.1.1, we note that the aforementioned constructions satisfy a stronger notion of
efficient generation, which is useful in several applications. Specifically, there exists a polynomial-
time algorithm that given a seed and a bit location i € [((k)] (in bianry), outputs the i*" bit of the
corresponding output.

36Here the common parameterization differs from ours merely in the point of view: Rather than saying that the
functions ¢ and e should satisfy £(k) < e(k) - exp(k/c), one says that given the desired parameters £ and ¢ the seed
length k is set to O(log(¢/e)). We also comment that using [3] the constant in the O-notation is merely 2 (i.e.,
k = 2log,(€/c)), whereas using [32] k = log, £ + 41log,(1/¢).

3TThat is, fo = 1 and f(z) def P Z(k/z) ! f, - 27 is an irreducible polynomial over GF(2).
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Figure 5: The LFSR small-bias generator (for t = k/2).

6.2.2 Applications

An archetypical application of small-bias generators is for generating random checks for fast string
equality. The key obserevation is that checking whether or not « = y is probabilistically reducible
to checking whether the inner product modulo 2 of x and r equals the inner product modulo 2
of y and r, where r is generated by a small-bias generator. One advantage of this reduction is
that only few bits (i.e., the seed of the generator and the result of the inner product) needs to be
“communicated between z and y” (see Exercise 53). A related advantage (i.e., low randomness
complexity) underlies the application of small-bias generators in the construction of PCPs.

Small-bias generators have been used in a variety of areas (e.g., inapproximation, structural
complexity, and applied cryptography; see references in [15, Sec 3.6.2]). In addition, they seem an
important tool in the design of various types of “pseudorandom” objects; see next.

Approximate independence generators. As hinted at the beginning of this section, small-
bias is related to approximate limited independence.?® Actually, even a restricted type of e-bias
(in which only subsets of size ¢(k) are required to have bias upper-bounded by ¢) implies that any
t(k) bits in the said sequence are 21K)/2 . ¢(k)-close to Ui(k), where here we refer to the variation
distance (i.e., Norm-1 distance) between the two distributions. (The max-norm of the difference
is bounded by £(k).)3° Combining Theorem 26 and the foregoing upper-bound, and relying on
the linearity of the construction in Proposition 24, we obtain generators with exp(k) stretch that
are approximately #(k)-independent, for some non-constant ¢(k); see Exercise 58. Specifically, for
k = O(t(k) + log(1/e(k)) + loglog £(k)) (equiv., for £(k) = 22/° #(k) = k/O(1), and e(k) =
Z_k/o(l)), one may obtain generators with stretch function ¢, producing bit sequences in which any
t(k) positions are at most £(k)-away from uniform (in variation distance). In the corresponding
result for the max-norm distance, it suffices to have & = O(log(t(k)/e(k) + loglog ¢(k)). Thus,
whenever the analysis of a randomized algorithm can be based on a logarithmic amount of (almost)
independence between feasibly-many binary random choices, a feasible derandomization is possible
(by using an adequate generator of logarithmic seed length).

Extensions to non-binary choices were considered in various works (see references in [15, Sec
3.6.2]). Some of these works also consider the related problem of constructing small “discrepancy

38We warn that, unlike in the case of perfect independence, here we refer only to the distribution on fixed bit
locations. See Exercise 52 for further discussion.

39Both bounds are derived from the Norm2 bound on the difference vector (i.e., the difference between the two
probability vectors). For details, see Exercise 54.
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sets” for geometric and combinatorial rectangles.

t-universal set generators. Using the aforementioned upper-bound on the max-norm, for € <
27!, any e-bias generator yields a t-universal set generator. The latter generator outputs sequences
such that in every subsequence of length ¢ all possible 2! patterns occur (i.e., each for at least one
possible seed). Such generators have many applications.

6.3 Random Walks on Expanders

In this section we review generators that produce a sequence of values by taking a random walk
on a large graph (called an expander) having small degree but good “mixing” properties. Thus,
producing a sequence of length £ over 2° values, requires a random seed of length b+ (£ —1) - log, d,
where d is the degree of the said graph (of 2° vertices). This should be compared against the
randomness needed for generating a sequence of £ independent samples from {0,1}° (or taking a
random walk on a clique of size 2°). It will turn out that the pseudorandom sequence (generated by
the said random walk on an expander) behaves analogously to a truly random sequence with respect
to hitting any fized subset of {0,1}°. Let us start by defining this property, or rather define the
hitting problem.

Definition 27 (the hitting problem): A distribution on sequences over {0,1}° is (s, 6)-hitting if
for any (target) set T C {0,1}" of cardinality at least ¢ - 2°, with probability at least 1 — 6, at least
one of the elements of a sequence drawn from this distribution hits T'.

Clearly, a truly random sequence of length £ over {0,1}° is (e,6)-hitting for 6 = (1 — £)*. The
aforementioned “expander random walk generator” (to be described next) achieves similar behavior.
Specifically, for arbitrary small ¢ > 0 (which depends on the degree and the mixing property of
the expander), the generator’s output is (e, §)-hitting for 6 = (1 — (1 — ¢) - €)®. To describe this
generator, we need to discuss expanders.

Expanders. By expander graphs (or expanders) of degree d and eigenvalue bound A < d, we
actually mean an infinite family of d-regular graphs, {Gny}nes (S C N), such that Gy is a d-
regular graph over IV vertices and the absolute value of all eigenvalues, save the biggest one, of the
adjacency matrix of Gy is upper-bounded by A\. We will refer to such a family as to a (d, \)-expander
(for S). This technical definition is related to the aforementioned notion of “mixing” (which refers
to the rate at which a random walk starting at a fixed vertex reaches uniform distribution over the
graph’s vertices).

We are interested in explicit constructions of such graphs, by which we mean that there exists a
polynomial-time algorithm that on input N (in binary), a vertex v € G and an index i € {1,...,d},
returns the i*" neighbor of v. (We also require that the set S for which Gx’s exist is sufficiently
“tractable” — say that given any n € N one may efficiently find an s € S such that n < s < 2n.)
Several explicit constructions of expanders are known. Below, we rely on the fact that for every
e > 0, there exist d and A < ¢-d such that there exists an explicit construction of a (d, A)-expander
over {2°: b € N}.*0 The relevant (to us) fact about expanders is stated next.

Theorem 28 (Expander Random Walk Theorem): Let G = (V, E) be an expander graph of degree

d and eigenvalue bound X. Let W be a subset of V' and p o [W/|V|, and consider walks on G

“This can be obtained with d = poly(1/¢). In fact d = O(1/€?), which is optimal, can be obtained too, albeit with
graphs of sizes that are only approximately close to powers of two.
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that start from a uniformly chosen vertex and take £ — 1 additional random steps, where in each
such step one uniformly selects one out of the d edges incident at the current vertex and traverses
it. Then the probability that such a random walk stays in W is at most

p <p+(1—p)-g>z_1 (15)

Thus, a random walk on an expander is “pseudorandom” with respect to the hitting property (i.e.,
when we consider hitting the set V' \ W); that is, a set of density ¢ = 1 — p is hit with probability
1 -6, where 6 = (1 —¢)- (1 —e+ (Ad) )1 < (1—-(1—-(\d))-¢)". A proof of an upper-
bound that is weaker than Eq. (15) is outlined in Exercise 59. Using Theorem 28 and an explicit
(28, X - 21)-expander, we get

Proposition 29 (The Expander Random Walk Generator):!

o For every constant X > 0, consider an explicit construction of (2t, X\-2%)-expanders for {2" : n€
N}, where t €N is a sufficiently latge constant. For v € [2"] = {0,1}" and i € [2¢] = {0,1}¢,
denote by I';(v) the vertex of the corresponding 2™ -vertex graph that is reached from vertex v
when following its i*" edge.

o For b,{':N—N such that k = b(k) + (¢'(k) — 1) -t < (k) - b(k), and for vy € {0,1}*®) and
il, ...,igl(k)_l S [Qt], let

. . def
G(’Uo, L1y eneey Zzl(k),l) = (’UU, Vlyeeeey ,Uzl(k)il), (16)
where v; = [, (vj_1).
Then G has stretch L(k) = U'(k) - b(k), and G(Uy) is (e, 6)-hitting for any e > 0 and 6 = (1 — (1 —
N) )tk

The stretch of G is optimized at b(k) =~ k/2 (and ¢'(k) = k/2t), but optimizing the stretch is
not necessaily the goal in all applications. Expander random-walk generators have been used in
a variety of areas (e.g., PCP and inapproximability (see [7, Sec. 11.1]), cryptography (see [16,
Sec. 2.6]), and the design of various types of “pseudorandom” objects.

Notes

Figure 6 depicts some of the notions of pseudorandom generators discussed in this text. We high-
light a key distinction between the case of general-purpose pseudorandom generators (treated in
Section 3) and the other cases (cf. Sections 4 and 5): in the former case the distinguisher is more
complex than the generator, whereas in the latter cases the generator is more complex than the dis-
tinguisher. Specifically, in the general-purpose case the generator runs in (some fized) polynomial-
time and needs to withstand eny probabilistic polynomial-time distinguisher. In fact, some of the
proofs presented in Section 3 utilize the fact that the distinguisher can invoke the generator on
seeds of its choice. In contrast, the Nisan-Wigderson Generator, analyzed in Theorem 18 (of Sec-
tion 4), runs more time than the distinguishers that it tries to foil, and the proof relies on this fact
in an essential manner. Similarly, the space complexity of the space-resilient generators presented
in Section 5 is higher than the space-bound on the distinguishers that they foil.

“'The common parameterization starts with parameters b and ¢. Given a uniformly chosen seed of length b +
O(¢' — 1), one can efficiently and deterministically generate a random sequence of ¢’ strings, each of length b, which
is (g, 6)-hitting for any € > 0 and 6 = (1 — Q(a))ll.

12By the OW we denote the assumption that one-way functions exists. By EVEC we denote the assumption that
the class £ has (almost-everywhere) exponential circuit complexity.

38



distinguisher’s generator’s stretch comments
TYPE resources resources (i.e., £(k))
| gen.-purpose [ p(k)-time, V poly. p | poly(k)-time | poly(k) | Assumes OW*™ |
| derand. BPP | 2¥/90)_time | 29T -time | 2F/01) | Assumes EvEC™ |
space-bounded | s(k)-space O(k)-space 2Fk/O(s()) runs in time
robustness k/O(1)-space O(k)-space poly(k) poly(k) - £(k)
t-wise indepen. | “t-wise” poly(k) - £(k)-time | 2F/O00) (e.g., pairwise)
small bias “c-bias” poly(k) - £(k)-time | 2F/O0) . (k)
expander “hitting” poly(k) - £(k)-time | ¢'(k) - b(k)
rand. walk (0.5,2=¢®/O0MW ) hitting for {0,1}*®), with ¢'(k) = ((k — b(k))/O(1)) + 1.

Figure 6: Pseudorandom generators at a glance

The general paradigm of pseudorandom generators. Our presentation, which views vastly
different notions of pseudorandom generators as incarnations of a general paradigm, has emerged
mostly in retrospect. We note that, while the historical technical development of the various
notions was mostly unrelated, the case of general-purpose pseudorandom generators served as a
source of inspiration to most of the other cases. In particular, the concept of computational in-
distinguishability, the connection between hardness and pseudorandomness, and the equivalence
between pseudorandomness and unpredictability, appeared first in the context of general-purpose
pseudorandom generators (and inspired the development of “generators for derandomization” and
“generators for space bounded machines”). Indeed, the development of the special-purpose gener-

ators (see Section 6) was unrelated to all of these.

General-purpose pseudorandom generators. The concept of computational indistinguisha-
bility, which underlies the entire computational approach to randomness, was suggested by Gold-
wasser and Micali [20] in the context of defining secure encryption schemes. Indeed, computational
indistinguishability plays a key role in cryptography (see [16, 17]). The general formulation of com-
putational indistinguishability is due to Yao [48]. Yao also observed (using the hybrid technique
of [20]) that defining pseudorandom generators as producing sequences that are computationally
indistinguishable from the corresponding uniform distribution is equivalent to defining such gener-
ators as producing unpredictable sequences. The latter definition originates in the earlier work of
Blum and Micali [8].

Blum and Micali [8] pioneered the rigorous study of pseudorandom generators and, in particular,
their construction based on some simple intractability assumption (in their case, the intractability
of Discrete Logarithm problem over prime fields). Their work also introduces basic paradigms that
were used in all subsequent improvements (cf., e.g., [48, 21]). We refer to the trasformation of
computational difficulty into pseudorandomness, the use of hard-core predicates (defined in [8]),
and the iteration paradigm (cf. Eq. (8)).

Theorem 11 (by which pseudorandom generators exist if and only if one-way functions exist)
is due to Hastad, Impagliazzo, Levin and Luby [21], building upon the hard-core predicate of [19].
Unfortunately, the current proof of Theorem 11 is very complicated and unfit for presentation
in a book of the current nature. Presenting a simpler and tighter (cf. §3.7.1) proof is indeed an
important research project.

Derandomization of time-complexity classes. As observed by Yao [48], a non-uniformly

strong notion of pseudorandom generators yields improved derandomization of time-complexity
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classes. A key observation of Nisan [33, 36] is that whenever a pseudorandom generator is used this
way, it suffices to require that the generator runs in time exponential in its seed length, and so the
generator may have running-time greater than the distinguisher (representing the algorithm to be
derandomized). This observation underlines the construction of Nisan and Wigderson [33, 36], and
is the basis for further improvements culminating in [22]. Part 1 of Theorem 19 (i.e., the so-called
“high end” derandomization of BPP) is due to Impagliazzo and Wigderson [22]|, whereas Part 2
(the “low end”) is from [36].

The Nisan-Wigderson Generator [36] was subsequently used in several ways transcending its
original presentation. We mention its application towards fooling non-deterministic machines (and
thus derandomizing constant-round interactive proof systems) and to the construction of random-
ness extractors [44].

Space Pseudorandom Generators. As stated in the first paper on the subject of space-resilient
pseudorandom generators [1]*3, this research direction was inspired by the derandomization result
obtained via use of general-purpose pseudorandom generators. The latter result (necessarily) de-
pends on intractability assumptions, and so the objective was to find classes of algorithms for
which derandomization is possible without relying on intractability assumptions. (This objective
was achieved before for the case of constant-depth circuits.) Fundamentally different constructions
of space pseudorandom generators were given in several works, but are superseeded by the two
incomparable results mentioned in Section 5.2: Theorem 21 (a.k.a Nisan’s Generator [34]) and
Theorem 22 (a.k.a the Nisan—Zuckerman Generator [37]). These two results have been “interpo-
lated” in [5]. Theorem 23 (BPL C SC) was proved by Nisan [35].

Special Purpose Generators. The various generators presented in Section 6 were not inspired
by any of the other types of pseudorandom generator (nor even by the generic notion of pseudo-
randomness). Pairwise-independence generator were explicitly suggested in [11] (and are implicit
in [9]). The generalization to ¢-wise independence (for ¢ > 2) is due to [2]. Small-bias gener-
ators were first defined and constructed by Naor and Naor [32], and three simple constructions
were subsequently given in [3]. The Expander Random Walk Generator was suggested by Ajtai,
Komlos, and Szemerédi [1], who discovered that random walks on expander graphs provide a good
approximation to repeated independent attempts for hitting any arbitrary fixed subset of sufficient
density (within the vertex set). The analysis of the hitting property of such walks was subsequently
improved, culminating in the bound cited in Theorem 28, which is taken from [23, Cor. 6.1].

(The foregoing historical notes do not mention several technical contributions that played an impor-
tant role in the development of the area. For further details, the reader is referred to [15, Chap. 3].
In fact, the current text is a revision of [15, Chap. 3|, providing more details for the main topics,
and omitting [15, Sec. 3.6.4 and 3.6.5].)

Exercises

Exercise 30 Prove that placing no computational requirements on the generator yields “genera-
tors” that can fool any family of subexponential-size circuits. That is, prove that there exist func-
tions G : {0,1}* — {0,1}* such that {G(Ug)}ren is (strongly) pseudorandom, while |G(s)| = 2|s]
for every s € {0,1}*. Furthermore, show that G' can be computed in double-exponential time.

43This paper is more frequently cited for the Expander Random Walk technique which it has introduced.
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Guideline: Use the Probabilistic Method (cf. [4]). First, for any fixed circuit C : {0,1}™ — {0, 1}, upper-
bound the probabity that for a random set S C {0,1}" of size 2"/2 the absolute value of Pr[C(U,) =
1] - ([{z € S: C(z) = 1}|/|S5]) is larger than 2-"/190 Next, using a union bound, prove the existence of a
set S C {0,1}" of size 2"/ such that no circuit of size 2/1°° can distinguish a uniformly distributed element
of S from a uniformly distributed element of {0,1}", where distinguishing means with a probability gap of
at least 2-7/100,

Exercise 31 Let A be a probabilistic polynomial-time algorithm solving the search associated with
the NP-relation R, and let Ag be as in Construction 2. Prove that it is infeasible to find an x on
which A outputs a wrong solution; that is, assuming for simplicity that A has error probability 1/3,
prove that on input 1™ it is infeasible to find an = € {0,1}" NLg such that Pr[(z, Ag(x)) € R] > 0.4,
where Lp & { : Jy (z,y) € R}.

(Hint: For x that violates the claim, it holds that |Pr[(z, A(z)) & R] — Pr|[(z, Ac(z)) & R]| > 0.06.)

Exercise 32 Prove that omitting the absolute value in Eq. (4) keeps Definition 4 intact.

(Hint: consider D'(2) . D(z).)

Exercise 33 Show that the existence of pseudorandom generators implies the existence of polynomial-
time constructible probability ensembles that are statistically far apart and yet are computationally
indistinguishable.

(Hint: lower-bound the statistical distance between G(Uy) and Upys), where G is a pseudorandom generator with
stretch £.)

Exercise 34 Prove that the sufficient condition in Exercise 33 is in fact necessary.** Recall that
{Xn}nen and {Y), }hen are said to be statistically far apart if, for some positive polynomial p and
all sufficiently large n, the variation distance between X, and Y, is greater than 1/p(n). Using
the following three steps, prove that the existence of polynomial-time constructible probability
ensembles that are statistically far apart and yet are computationally indistinguishable implies the
existence of pseudorandom generators.

1. Show that, without loss of generality, we may assume that the variation distance between X,
and Y, is greater than 1 — exp(—n).

(Hint: Consider X,, = (XT(Ll),...,XT(f("))) and Y, = (Y,Sl),...,Y,Et("))), where the X,(,i)’s (resp., Yn(i)’s) are
independent copies of X,, (resp., ¥,,), and t(n) = O(n - p(n)?).)

2. Using { X, }nen and {Y),}nen as in Step 1, prove the existence of a false entropy generator,
where a false entropy generator is a deterministic polynomial-time algorithm G such that G(Uy)
has entropy e(k) but {G(Uk) }ren is computationally indistinguishable from a polynomial-time
constructible ensemble that has entropy greater than e(-) 4+ (1/2).

(Hint: Let So and Si be sampling algorithms such that X, = So(Upely(n)) and Y, = S1(Upoly(n)). Consider
the generator G(o,r) = (0,S5-(r)), and the distribution Z, that equals (Ui, X, ) with probability 1/2 and
(U1,Ys) otherwise. Note that in G'(U1, Upoly(r)) the first bit is almost determined by the rest, whereas in Z,
the first bit is statistically independent of the rest.)

3. Using a false entropy generator, obtain one in which the excess entropy is vk, and using the
latter construct a pseudorandom generator.

(Hint: Use the ideas presented at the end of Section 3.5 (i.e., the discussion of the interesting direction of the
proof of Theorem 11).)

*This exercise follows [14], which in turn builds on [21].
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Exercise 35 Prove that if {X,,},en and {Y,}hen are computationally indistinguishable and A is
a probabilistic polynomial-time algorithm then {A(X,)}nen and {A(Y,)}nen are computationally
indistinguishable.

(Hint: If D distinguishes the latter ensembles then D' such that D'(z) L D(A(z)) distinguishes the former.)

Exercise 36 In continuation to Exercise 35, show that the conclusion may not hold in case A is
not computationally bounded. That is, show that there exists computationally indistinguishable
ensembles, { X, },en and {Y), },.cn, and an exponential-time algorithm A such that {A(X,)}.en
and {A(Y,)}nen are not computationally indistinguishable.

(Hint: For any pair of ensembles {X,}, . and {Y,}, N, consider the Boolean function f such that f(z) =1 if and
only if Pr[X,, = z] > Pr[Y,, = z]. Show that |Pr[f(X,) = 1] — Pr[f(Y.) = 1]| equals the statistical difference between
X and Y. Consider an adequate (approximate) implementation of f (e.g., approximate Pr[X,, = z] and Pr[Y, = z|
up to :|:2_Z|z‘), and use Exercise 30.)

Exercise 37 For G and { as in Construction 7, consider G(s) Aot Gf(‘sD(s), where G¢(z) denotes

G, iterated 7 times on z (ie., Gi(z) = Gy'(G1(z)) and GY(z) = z). Prove that G is a pseu-
dorandom generator of stretch ¢. Reflect on the advantages of Construction 7 over the current
construction.

(Hint: Use a hybrid argument, with the i*" hybrid being G (Uyx)—;). Note that G{H (Ugr)—(i41)) = G1(G1(Uery—i-1))
and G (Upary—i) = Gi(UlGl(Uz(k)_i_M)? and use Exercise 35.)

Exercise 38 (pseudorandom versus unpredictability) Prove that a probability ensemble { Zy } ren
is pseudorandom if and only if it is unpredictable. For simplicity, we say that {Zy }ren is (next-bit)
unpredictable if for every probabilistic polynomial-time algorithm A it holds that Pr;[A(F;(Zy)) =
Bi+1(Zy)] is negligible, where ¢ € {0, ..., |Zx|—1} is uniformly distributed, and F;(z) (resp., Bi+1(z))
denotes the i-bit prefix (resp., 7 + 13 bit) of z.

Guideline: Show that pseudorandomness implies polynomial-time unpredictability; that is, polynomial-
time predictability violates pseudorandomness (because the uniform ensemble is unpredictable regardless
of computing power). Use a hybrid argument to prove that unpredictability implies pseudorandomness.
Specifically, the i'" hybrid consists of the i-bit long prefix of Zj, followed by |Zx| — i uniformly distributed
bits. Thus, distinguishing the extreme hybrids (which correspond to Zy and U|z,|) implies distinguishing
some neighboring hybrids, which in turn implies next-bit predictability. For the last step, use an argument
as in the proof of Proposition 9.

Exercise 39 Prove that a probability ensemble is unpredictable (from left to right) if and only if
it is unpredictable from right to left (or in any other canonical order).

(Hint: use Exercise 38, and note that an ensemble is pseudorandom if and only if its reverse is pseudorandom.)

Exercise 40 Let f be 1-1 and length preserving, and b be a hard-core predicate of f. For any

polynomial ¢, prove that {G'(Uy)} is unpredictable (in the sense of Exercise 38), where G'(s) At

b(FAIN1(s)) - b(f(s)) - b(s)-

Guideline: Suppose towards the contradiction that, for a uniformly distributed j € {0,...,¢(k) — 1},
given the j-bit long prefix of G'(Uy) an algorithm A’ can predict the j + 1%* bit of G'(Uy). That is,
given b(f{F)=1(s)) .- b(f{*)~I(s)), algorithm A’ predicts b(f¥)=U+1)(s)), where s is uniformly distributed
in {0,1}*. Consider an algorithm A that given y = f(z) approximates b(x) by invoking A’ on input
b(f771(y)) - b(y), where j is uniformly selected in {0, ...,£(k) — 1}. Analyze the success probability of A
using the fact that f induces a permutation over {0,1}", and thus b(f7(Uy)) - - - b(f(Ux)) -b(Uy,) is distributed
identically to b(f**)=1(Uy)) - - b(f**)=3(U)) - b(fH R -G ().

42



Exercise 41 Prove that if G is a strong pseudorandom generator in the sense of Definition 12 then
it a pseudorandom generator in the sense of Definition 1.

(Hint: consider a sequence of internal coin tosses that maximizes the probability in Eq. (2).)

Exercise 42 Show that there exists a circuit of size O(2* - £(k)) that violates Eq. (9), provided
(k) > k.

(Hint: The circuit may incorporate all values in the range of G' and deciding by comparing its input to these values.)

Exercise 43 (constructing a set system for Theorem 18) For every v > 0, show a construc-
tion of a set system S as in Condition 2 of Theorem 18, with m(k) = Q(k) and £(k) = 24*),

Guideline: We assume, without loss of generality, that v < 1, and set m(k) = (7/2)-k and £(k) = 27™(k)/10,
We construct the set system S, ..., Sy in iterations, selecting S; as the first m(k)-subset of [k] that has
sufficiently small intersections with each of the previous sets Sy, ...,.5;_1. The existence of such a set S; can
be proved using the Probabilistic Method (cf. [4]). Specifically, for a fixed m(k)-subset S’, the probability
that a random m(k)-subset has intersection greater than ym(k) with S’ is upper-bounded?®® by 2-7m(*)/10/
because the expected intersection size is (y/2) - m(k). Thus, with positive probability a random m(k)-subset
has intersection at most ym (k) with each of the previous i — 1 < £(k) = 27™(¥)/10 syhsets. Note that we
construct S; in time (m'(“k)) (i —1)-m(k) < 2% - £(k) -k, and thus S is computable in time k2% - £(k)? < 22k,
Exercise 44 Suppose that the sets S;’s in Construction 17 are disjoint and that f : {0,1}™ —
{0,1} is T-inapproximable. Prove that for every circuit C of size T—O(1) it holds that |Pr[C(G(Uy)) =

1] — PrlC(Uy) = 1] < ¢/T.

Guideline: Prove the contrapositive using Exercise 45. Note that the values of the 7 + 1%¢ bit of G(Uy) is
statistically independent of the values of the first i bits of G(Uy ), and thus predicting it yields an approximator
for f. Indeed, such an approximator can be obtained by fixing the the first ¢ bits of G(Uy) via an averaging
argument.

Exercise 45 In continuation to Exercise 38, show that if there exists a circuit of size s that
distinguishes Z,, from U, with gap 6, then there exists an ¢ < £ = |Z,| and a circuit of size s + O(1)
that given an i-bit long prefix of Z,, guesses the i 4+ 15 bit with success probability at least % + %.
(Hint: defining hybrids as in Exercise 38, note that, for some 7, the given circuit distinguishes the i*" hybrid from
the i + 1°* hybrid with gap at least &§/¢.)

Exercise 46 (Theorem 18, generalized) Let £, m,m/, T:N— N satisfy £(k)2 + O(¢(k)2™ *)) <
T(m(k)). Suppose that the following two conditions hold:

1. There exists an exponential-time computable function f:{0,1}* — {0, 1} that is T-inapproximable.

2. There exists an exponential-time computable function S:NxN— N such that |S(k,i)| = m(k)
for every k and i =1, ..., {(k), and |S(k,7) N S(k, )| < m'(k) for every k and i # j.

Prove that using G as defined in Construction 17, with S; = S(k, 7), yields a canonical derandomizer
with stretch 2.

(Hint: following the proof of Theorem 18, just note that the circuit constructed for approximating F(Unm(k)) has size
2(k)? + £(k) -5(2"”(’“)) and success probability at least (1/2) + (1/74(k)).)

5 Applying the standard Chernoff Bound yields an upper-bound of exp(—(y/2)* - m(k)), which suffices for £(k) =
27" m(K)/10 However, using a Multiplicative Chernoff Bound yields an upper-bound of exp(—(v/2) - m(k)/3).
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Exercise 47 (Part 2 of Theorem 19) Prove that if for every polynomial T there exists a T-
. . . . def p¢
inapproximable predicate in £ then BPP C N.~oDTIME(t,), where t.(n) = 2™,
(Hint: For any p-time algorithm, apply Exercise 46 using £(k) = p(k'/¢), m(k) = Vk and m'(k) = O(log k). Revisit
Exercise 43 in order to obtain a set system as required in Exercise 46 (for these parameters), and use an adequate

worst-case to average-case reduction.)

Exercise 48 Provide an explicit description of the generator outlined in the proof of Theorem 21.
(Hint: for r € {0,1}" and h(l), ey R ¢ H,,, the generaor outputs a 2'-long sequence of n-bit strings such that the

i*" block equals h'(r), where h' is a composition of some of the h(j)’s.)

Exercise 49 (adaptive t-wise independence tests) Prove that the output of a ¢-wise indepen-
dence generator is indistinguishable to any test than examines ¢ of the blocks, even if the examined
blocks are selected adaptively (i.e., the location of the i*" block is determined based on the contents
of the previously inspected blocks).

Guideline: First show that, without loss of generality, it suffices to consider deterministic (adaptive) tester.
Next, show that the probability that such a tester sees any fixed sequence of ¢ values at locations selected
adaptively in the generator’s output is 277*(%) where b(k) is the block length.

Exercise 50 (t-wise independence generator) Prove that G as defined in Proposition 24 pro-
duces a t-wise independent sequence over GF(20(¥)),

Guideline: For every ¢ fixed indices iy, ...,4; € [¢'(k)], consider the distribution of G(Uk);,,...;, (i.e., the
projection of G(Uy) on locations i1, ...,4;). Show that for every sequence of ¢ possible values vy, ...,v; €
GF(2"®)), there exists a unique seed s € {0,1}* such that G(s);, .., = (v1, ..., 0¢).

Exercise 51 (pairwise independence generators) Asa warm-up, consider a construction anal-
ogous to the one in Proposition 25, where the seed specifies an affine b(k)-by-m(k) transformation.
That is, for s € {0,1}°®) ™) and r € {0,11%) where k = b(k) - m(k) + b(k), let

G(s,r) def (Asvr + 7, Asv2 + 71,y AsVp(ry +7) (17)

where Ag is an b(k)-by-m(k) matrix specified by the string s. Show that G as in Eq. (17) is a
pairwise independence generator of block-size b and stretch ¢. Next, show that G as in Eq. (13) is
a pairwise independence generator of block-size b and stretch £.

Guideline: The following description applies to both constructions. First note that for every fixed ¢ € [¢'(k)],
the i*" element in the sequence G(Uy) is uniformly distributed in {0, 1}°(*). Actually, show that for every
fixed s € {0,1}*7%(F) it holds that G(s,Up(r))i is uniformly distributed in {0,1}*(®), Next note that it
suffices to show that, for every j # i, conditioned on the value of the i*" element in G(U}), the ;' element
is uniformly distributed in {O,I}b(k). The key technical detail is to show that for any non-zero vector
v € {0,1}™*) it holds that Av,_yy v (vesp., Ty, _,,,v) is uniformly distributed in {0, 1}%(F) | This is easy in
case of a random b(k)-by-m(k) matrix, and can be proven also for a random Toeplitz matrix.

Exercise 52 (adaptive t-wise independence tests, revisited) In contrast to Exercise 49, we
note that almost uniform distribution on any fixed ¢ bit locations does not imply that an adaptive
test that inspects ¢ locations cannot detect “non-uniformity” (i.e., a “non random behavior” of the
inspected sequence). Specifically, present a distribution over 2¢~!-bit long strings in which each
t — 1 fixed bit positions are ¢ - 2~(*~Y_close to uniform, but some test that adaptively inspects ¢
positions can distinguish this distribution from the uniform one with constant gap.

(Hint: Modify the uniform distribution over ((t—1)+2°"!)-bit long strings such that the first ¢ — 1 locations indicate

a bit position (among the rest) that is set to zero.)
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Exercise 53 Suppose that G is an e-bias generator with stretch £. Show that equality between the
((k)-bit strings = and y can be probabilistically checked by comparing the inner product modulo 2
of z and G(s) to the inner product modulo 2 of y and G(s), where s € {0,1}* is selected uniformly.
(Hint: reduce the problem to the special case in which y = Ol(k).)

Exercise 54 (bias versus statistical difference from uniform) Let X be a random variable
assuming values in {0,1}!. Prove that if X has bias at most £ over any non-empty set then the
statistical difference between X and U, is at most 2¢/2 - ¢, and that for every = € {0,1}! it holds
that PrlX = 2] =2""+e.

Guideline: Consider the probability function p : {0,1}* — [0,1] defined by p(z) et Pr[X = z], and let
o(z) = p(z) — 27 denote the deviation of p from the uniform probability function. Viewing the set of real
functions over {0, 1}* as a 2'-dimensional vector space, we consider two orthonormal bases for this space. The
first basis is of the (Kroniker) functions {ka }qe{o,13+ such that ko (z) = 1if = « and k. (2) = 0 otherwise.
The second basis is of the (normalize Fourier) functions {fs}scpy defined by fs(x) el 9—t/2 [Lics(=1)"
(where fy = 27%/2).46 Note that the bias of X over any S # @ equals |3, p(z) - 2//2fs(z)|, which in
turn equals 2¢/2| 3 6(z)fs(z)|. Thus, for every S (including the empty set), we have |3 6(z)fs(z)| <

27%/2¢ which means that the representation of § in the normalize Fourier basis is by coefficients that have

each an absolute value of at most 2~%/2

€. Thus, the Norm-2 of this vector of coefficients is bounded by
2t - (27t/2¢)2 = ¢, and all claims follow by noting that they refer to norms of § according to the Kroniker
basis. In particular, Norm-2 is preserved under orthonormal bases, the max-norm is upper-bounded by

Norm-2, and Norm-1 is upper-bounded by v/2¢ times the value of the Norm-2.

Exercise 55 (The LFSR small-bias generator (following [3])) Using the following guidelines
(and letting ¢ = k/2), analyze the construction outlined following Theorem 26 (and depicted in
Figure 5):

1. Prove that r; = Z;;}) cg-i) -85, where ct) is the coefficient of 27 in the (degree t —1) polynomial

J
obtained by reducing z' modulo the polynomial f(z) (i.e., 2 = t,%) cg )i (mod f(2))).

(Hint: Recall that z* = Z;;é fiz¥ (mod f(z)), and thus z* = Z;;é fiz" 7t (mod f(z)). Note the

t—1
correspondance to r; = Z]’:O fi 'Ti_t+]‘.)

2. For any non-empty S C {0,...,£(k) — 1}, evaluate the bias of the sequence ro, ..., 7x)—1 over
S, where f is a random irreducible polynomial of degree ¢t and s = (sg,...,s¢ 1) € {0,1}" is
uniformly distributed. Specifically:

(a) For a fixed f and random s € {0,1}, prove that } ;g 7; has non-zero bias if and only
if f(z) divides > ;cq 2"
(Hint: Note that DiesTi Z Zzes ; (g, and use Item 1. )

(b) Prove that the probability that a random irreducible polynomial of degree t divides
Sicg 2t is O(L(k)/2Y).

(Hint: A polynomial of degree n can be divided by at most n/d different irreducible polynomials of
degree d. On the other hand, the number of irreducible polynomials of degree d over GF(2) is ©(2%/d).)

Conclude that for random f and s, the sequence ro, ..., 7)1 has bias O(L(k)/2%).

““Verify that both bases are indeed orthogonal (i.e., Y ka(x)ks(z) = 0 for every o # 8 and Y __ fs(x)fr(z) =
for every S # T') and normal (i.e., Zz ko(z)?> =1 and ZI fs(z)? =1).
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Note that an implementation of the LESR generator requires a mapping of random k/2-bit long
seeds to almost random irreducible polynomials of degree k£/2. Such a mapping can be constructed
in exp(k) time, which is poly(4(k)) if (k) = exp(Q2(k)). A more efficient mapping that uses a
O(k)-bit long seek is described in [3, Sec. 8].

Exercise 56 (limitations on small-bias generators) Let G be an e-bias generator with stretch
¢, and view G as a mapping from GF(2)* to GF(2)“*). As such, each bit in the output of G can
be viewed as a polynomial in the k£ input variables (each ranging in GF(2)). Prove that if e(k) < 1
and each of these polynomials has degree at most d then £(k) < Y4, (’f)

Guideline: First note that, without loss of generality, all polynomials have a free term equal to zero. Then,
consider the vector space spanned by all d-monomials over k variables (i.e., monomial having at most d
variables). Since (k) < 1, the polynomials representing the output bits of G must correspond to a sequence
of independent vectors in this space. Derive the following corollaries:

1. If e(k) < 1 then ((k) < 2.

2. If e(k) < 1 and £(k) > k then G cannot be a linear transformation.

Note that G(s) = (s,b(s)), where b(s1,...,s5;) = Zfﬁ 8i8(k/2)+: mod 2, is an e-biased generator
with (k) = exp(—Q(k)).

(Hint: Focusing on bias over sets that include the last output bit, prove that without loss of generality it suffices to
analyze the bias of b(Uy).)

Exercise 57 (a sanity check for pseudorandomness) The following fact is suggested as a san-
ity check for candidate pseudorandom generators with respect to space-bounded machines. The
fact (to be proven as an exercise) is that, for every (-) and s(-) such that s(k) > 1 for every k, if
G is (s,¢e)-pseudorandom (as per Definition 20), then G is an e-bias generator.

Exercise 58 (approximate t-wise independent generators (following [32])) Combining The-
orem 26 and relying on the linearity of the ¢-wise independent generator of Eq. (12), construct a
generator producing ¢-bit long sequences in which any ¢ positions are at most e-away from uniform
(in variation distance), while using a seed of length O(¢ + log(1/e) + loglog ¢). (For max-norm a
seed of length O(log(t/e) + loglog ¢) suffices.)

Guideline: First note that, for any ¢, ¢’ and b, the transformation of Eq. (12) can be implemented by a fixed
linear (over GF(2)) transformation of a ¢ - b-bit seed into an ¢-bit bit sequence, where £ = ¢' - b. It follows
that there exists a fixed GF(2)-linear transformation 7" of a random seed of length ¢ - b, where b = log, ¢,
into a t-wise independent bit sequence of the length ¢ (i.e., T Uy.; is t-wise independent over {0,1}¢). Thus,
every t rows of 1" are linearly independent. The key observation is that when we replace the aforementioned
random seed by an ¢’-biased sequence, every i < t positions in the output sequence have bias at most &’
(because they define a non-zero linear test on the bits of the &’-biased sequence). Note that the length of
the new seed (used to produce &’-biased sequence of length ¢ - b) is O(logtb/c'). Applying Exercise 54, we
conclude that any ¢ positions are at most 2!/ - ¢’-away from uniform (in variation distance). Recall that this
was obtained using a seed of length O(log(t/e') + loglog ), and the claim follows by using &' = 27/2 - ¢.

Exercise 59 (A version of the Expander Random Walk Theorem) Using notations as in
Theorem 28, prove that the probability that a random walk of length ¢ stays in W is at most
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(p+ (A\/d)?)*/?. In fact, prove a more general claim that refers to the probability that a random
walk of length £ intersects Wy x Wy x -+ x Wy_1. The claimed upper-bound is

£—1

Vo [ Ve + (\a), (18)

=1

def
where p; = [W;|/|V].

Guideline: View the random walk as the evolution of a corresponding probability vector under suitable
transformations. The transformations correspond to taking a random step in the graph and to passing
through a “sieve” that keeps only the entries that correspond to the current set W;. The key observation is
that the first trasformation shrinks the component that is orthogonal to the uniform distribution (which is
the first eigenvalue of the adjacency matrix of the expander), whereas the second trasformation shrinks the
component that is in the direction of the uniform distribution. Details follow.

View the random walk as the evolution of a corresponding probability vector under suitable transforma-

tions. Let A be a matrix representing the random walk on G (i.e., A is the adjacency matrix of G divided

by the degree, d). Let A denote the absolute value of the second largest eigenvalue of A (i.e., A def A/d), and

note that u = (|V|™1,...,|V|™!) (which represents the uniform distribution) is the eigenvector of A that is
associated with the largest eigenvalue (which is 1). Let P; be a 0-1 matrix that has 1-entries only on its diag-
onal, and furthermore entry (j,7) is set to 1 if and ounly if j € W;. Then, the probability that a random walk
of length ¢ intersects Wy x Wy x - - - x W,_; is the sum of the entries of the vector v def P_1A---PyAP, APyu.
We are interested in upper-bounding ||v||;, and use |[v||1 < +/|V] - ||v|l, where ||z]|1 and ||z|| denote the Ly
norm and Ly norm of z, respectively (e.g., ||u/ly = 1 and |ju|| = |V|~/?). The key observation is that,
for every z, it holds that |P;Az| < (pi + X2)1/2 - |||, which is proven by decomposing z = z; + 2o such
that z; is the projection of z on w (the “first” eigenvector of A) and z, is the component orthogonal to

u. Facts to be used in the proof of the forgoing observation include ||PAz|| = [|Pz1] < /pillz1] and
|P; Az | < ||Azz|| < Al|z2|| (i.e., P; shrinks any uniform vector by eliminating 1 — p; of its elements, whereas
A shrinks the length of any eigenvector except u by a factor of at least \).4”

Exercise 60 Using notations as in Theorem 28, prove that the probability that a random walk
of length ¢ visits W more than af times is smaller than (%) - (p + (\/d)?)*/2. For example, for
a=1/2 and \/d < /p, we get an upper-bound of (32p)*/*. We comment that much better bounds
can be obtained (cf. [13]).

(Hint: Use a union bound on all possible sequences of m = o/ visits, and upper-bound the probability of visiting W
in steps ji, ..., jm by applying Eq. (18) with W; = W if i € {j1, ..., jm} and W = V otherwise.)
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