
Texts in Computational Complexity:Pseudorandom GeneratorsOded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Rehovot, Israel.January 28, 2006 Indistinguishable things are identical.1G.W. Leibniz (1646{1714)A fresh view at the question of randomness has been taken in the theory of computing: It hasbeen postulated that a distribution is pseudorandom if it cannot be told apart from the uniformdistribution by any e�cient procedure. The paradigm, originally associating e�cient procedureswith polynomial-time algorithms, has been applied also with respect to a variety of limited classesof such distinguishing procedures.At the extreme, this approach says that the question of whether the world is deterministic orallows for some free choice (which may be viewed as sources of randomness) is irrelevant. Whatmatters is how the world looks to us and to various computationally bounded devices. That is, ifsome phenumenon looks random then we may just treat it as if it were random. Likewise, if wecan generate sequences that cannot be told apart from the uniform distribution by any e�cientprocedure, then we can use these sequences in any e�cient randomized application instead of theideal random bits that are postulated in the design of this application.Summary: A generic formulation of pseudorandom generators consists of specifyingthree fundamental aspects { the stretch measure of the generators; the class of dis-tinguishers that the generators are supposed to fool (i.e., the algorithms with respectto which the computational indistinguishability requirement should hold); and the re-sources that the generators are allowed to use (i.e., their own computational complexity).The archetypical case of pseudorandom generators refers to e�cient generators thatfool any feasible procedure; that is, the potential distinguisher is any probabilisticpolynomial-time algorithm, which may be more complex than the generator itself (which,in turn, has time-complexity bounded by a �xed polynomial). These generators arecalled general-purpose, because their output can be safely used in an e�cient appli-cation. Such (general-purpose) pseudorandom generators exist if and only if one-wayfunctions exist.1This is the Principle of Identity of Indiscernibles. Leibniz admits that counterexamples to this principle areconceivable but will not occur in real life because God is much too benevolent. We thus believe that he would haveagreed to the theme of this text, which asserts that indistinguishable things should be considered as identical.1



For purposes of derandomization one may use pseudorandom generators that are some-what more complex than the potential distinguisher (which represents the algorithm tobe derandomized). Following this approach, suitable pseudorandom generators, whichcan be constructed assuming the existence of problems in E that have no sub-exponentialsize circuits, yield a full derandomization of BPP (i.e., BPP = P).It is also bene�cial to consider pseudorandom generators that fool space-bounded dis-tinguishers and generators that exhibit some limited random behavior (e.g., outputtinga pair-wise independent or a small-bias sequence).Contents1 Introduction 32 The General Paradigm 53 General-Purpose Pseudorandom Generators 73.1 The basic de�nition : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 73.2 The archetypical application : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 83.3 Computational Indistinguishability : : : : : : : : : : : : : : : : : : : : : : : : : : : : 103.4 Amplifying the stretch function : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 133.5 Constructions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 143.6 Non-uniformly strong pseudorandom generators : : : : : : : : : : : : : : : : : : : : : 173.7 Other variants and a conceptual discussion : : : : : : : : : : : : : : : : : : : : : : : 183.7.1 Stronger notions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 183.7.2 Conceptual Discussion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 194 Derandomization of time-complexity classes 204.1 De�nition : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 204.2 Construction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 224.3 Variants and a conceptual discussion : : : : : : : : : : : : : : : : : : : : : : : : : : : 245 Space Pseudorandom Generators 265.1 De�nitional issues : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 265.2 Two constructions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 275.2.1 Overviews of the proofs of Theorems 21 and 22 : : : : : : : : : : : : : : : : : 285.2.2 Derandomization of space-complexity classes : : : : : : : : : : : : : : : : : : 306 Special Purpose Generators 326.1 Pairwise-Independence Generators : : : : : : : : : : : : : : : : : : : : : : : : : : : : 326.1.1 Constructions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 336.1.2 Applications : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 346.2 Small-Bias Generators : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 346.2.1 Constructions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 356.2.2 Applications : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 366.3 Random Walks on Expanders : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 37Notes 382



Exercises 40Bibliography 471 IntroductionThe second half of this century has witnessed the development of three theories of randomness, anotion which has been puzzling thinkers for ages. The �rst theory (cf., [12]), initiated by Shan-non [42], is rooted in probability theory and is focused at distributions that are not perfectlyrandom. Shannon's Information Theory characterizes perfect randomness as the extreme case inwhich the information contents is maximized (i.e., there is no redundancy at all). Thus, perfectrandomness is associated with a unique distribution { the uniform one. In particular, by de�nition,one cannot (deterministically) generate such perfect random strings from shorter random seeds.The second theory (cf., [28, 29]), due to Solomonov [43], Kolmogorov [25] and Chaitin [10],is rooted in computability theory and speci�cally in the notion of a universal language (equiv.,universal machine or computing device). It measures the complexity of objects in terms of theshortest program (for a �xed universal machine) that generates the object. Like Shannon's theory,Kolmogorov Complexity is quantitative and perfect random objects appear as an extreme case.However, in this approach one may say that a single object, rather than a distribution over ob-jects, is perfectly random. Still, Kolmogorov's approach is inherently intractable (i.e., KolmogorovComplexity is uncomputable), and { by de�nition { one cannot (deterministically) generate stringsof high Kolmogorov Complexity from short random seeds.The third theory is rooted in complexity theory and is the focus of this text. This approach isexplicitly aimed at providing a notion of randomness that nevertheless allows for an e�cient (anddeterministic) generation of random strings from shorter random seeds. The heart of this approachis the suggestion to view objects as equal if they cannot be told apart by any e�cient procedure.Consequently, a distribution that cannot be e�ciently distinguished from the uniform distributionwill be considered as being random (or rather called pseudorandom). Thus, randomness is notan \inherent" property of objects (or distributions) but is rather relative to an observer (andits computational abilities). To demonstrate this approach, let us consider the following mentalexperiment.Alice and Bob play \head or tail" in one of the following four ways. In each of themAlice 
ips an unbiased coin and Bob is asked to guess its outcome before the coin hitsthe 
oor. The alternative ways di�er by the knowledge Bob has before making his guess.In the �rst alternative, Bob has to announce his guess before Alice 
ips the coin. Clearly,in this case Bob wins with probability 1=2.In the second alternative, Bob has to announce his guess while the coin is spinning inthe air. Although the outcome is determined in principle by the motion of the coin,Bob does not have accurate information on the motion and thus we believe that also inthis case Bob wins with probability 1=2.The third alternative is similar to the second, except that Bob has at his disposalsophisticated equipment capable of providing accurate information on the coin's motionas well as on the environment e�ecting the outcome. However, Bob cannot process thisinformation in time to improve his guess. 3



In the fourth alternative, Bob's recording equipment is directly connected to a powerfulcomputer programmed to solve the motion equations and output a prediction. It isconceivable that in such a case Bob can improve substantially his guess of the outcomeof the coin.We conclude that the randomness of an event is relative to the information and computing resourcesat our disposal. Thus, a natural concept of pseudorandomness arises { a distribution is pseudo-random if no e�cient procedure can distinguish it from the uniform distribution, where e�cientprocedures are associated with (probabilistic) polynomial-time algorithms. This notion of pseudo-randomness is indeed the most fundamental one, and much of this text is focused on it. Weakernotions of pseudorandomness arise as well { they refer to indistinguishability by weaker proceduressuch as space-bounded algorithms, constant-depth circuits, etc. Stretching this approach even fur-ther one may consider algorithms that are designed on purpose so not to distinguish even weakerforms of \pseudorandom" sequences from random ones (such algorithms arise naturally when tryingto convert some natural randomized algorithm into deterministic ones; see Section 6).The foregoing discussion has focused at one aspect of the pseudorandomness question { theresources or type of the observer (or potential distinguisher). Another important aspect is whethersuch pseudorandom sequences can be generated from much shorter ones, and at what cost (orcomplexity). A natural approach is that the generation process has to be at least as e�cientas the distinguisher (equiv., that the distinguisher is allowed at least as much resources as thegenerator). Coupled with the aforementioned strong notion of pseudorandomness, this yields thearchetypical notion of pseudorandom generators { these operating in polynomial-time and produc-ing sequences that are indistinguishable from uniform ones by any polynomial-time observer. Such(general-purpose) pseudorandom generators allow to reduced the randomness complexity of anye�cient application, and are thus of great relevance to randomized algorithms and cryptography(see Section 3).
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?Figure 1: Pseudorandom generators { an illustration.We stress that there are important reasons for considering also an alternative that seems lessnatural; that is, allowing the pseudorandom generator to use more resources (e.g., time or space)than the observer it tries to fool. This alternative is natural in the context of derandomization (i.e.,converting randomized algorithms to deterministic ones), where the crucial step is replacing therandom input of an algorithm by a pseudorandom input, which in turn can be generated based ona much shorter random seed. In particular, when derandomizing a probabilistic polynomial-timealgorithm, the observer (to be fooled by the genewrator) is a �xed algorithm. In this case employinga more complex generator merely means that the complexity of the derived deterministic algorithmis dominated by the complexity of the generator (rather than by the complexity of the originalrandomized algorithm). Needless to say, allowing the generator to use more resources than the4



observer it tries to fool makes the task of designing pseudorandom generators easier, and enablesderandomization results that are not known when using general-purpose pseudorandom generators.The usefulness of this approach is demonstrated in Sections 4 through 6.We note that the goal of all types of pseudorandom generators is to allow the generationof \su�ciently random" sequences based on much shorter random seeds. Thus, pseudorandomgenerators o�er signi�cant saving in the randomness complexity of various applications. This savingis valuable because many applications are severly limited in their ability to generate or obtain trulyrandom bits. Furthermore, typically generating truly random bits is signi�cantly more expensivethan standard computation steps. Thus, randomness is a computational resource that should beconsidered on top of time complexity (analogously to the consideration of space complexity).Organization. In Section 2 we present the general paradigm underlying the various notions ofpseudorandom generators. The archetypical case of general-purpose pseudorandom generators ispresented in Section 3. We then turn to the alternative notions of pseudorandom generators: Gen-erators that su�ce for the derandomization of complexity classes such as BPP are discussed inSection 4; Pseudorandom generators in the domain of space-bounded computations are discussedin Section 5; and special-purpose generators are discussed in Section 6. (For an alternative presen-tation, which focuses on general-purpose pseudorandom generators and provides more details onit, the reader is referred to [16, Chap. 3].)Teaching note: If you can a�ord teaching only one of the alternative notions of pseudo-random generators, then we suggest teaching the notion of general-purpose pseudoran-dom generators (presented in Section 3). Our reasons being that this notion is relevantto computer science at large and that the technical material is relatively simpler. Thetext is organized to facilitate this option.Prerequisites: We assume a basic familiarity with elementary probability theory and randomizedalgorithms. In particular, standard conventions regarding random variables will be extensively used.2 The General ParadigmTeaching note: We advocate a uni�ed view of various notions of pseudorandom gener-ators. That is, we view these notions as incarnations of a general abstract paradigm, tobe presented in this section. A teacher that wishes to focus on one of the special casesmay still use this section as a general motivation towards the speci�c de�nitions usedlater.A generic formulation of pseudorandom generators consists of specifying three fundamental as-pects { the stretch measure of the generators; the class of distinguishers that the generators aresupposed to fool (i.e., the algorithms with respect to which the computational indistinguishabilityrequirement should hold); and the resources that the generators are allowed to use (i.e., their owncomputational complexity).Stretch function: A necessary requirement from any notion of a pseudorandom generator isthat it is a deterministic algorithm that stretches short strings, called seeds, into longer outputsequences. Speci�cally, it stretches k-bit long seeds into `(k)-bit long outputs, where `(k) > k. Thefunction ` :N! N is called the stretch measure (or stretch function). In some settings the speci�cstretch measure is immaterial (e.g., see Section 3.4).5



Computational Indistinguishability: A necessary requirement from any notion of a pseudo-random generator is that it \fools" some non-trivial algorithms. That is, any algorithm taken fromsome class of interest cannot distinguish the output produced by the generator (when the generatoris fed with a uniformly chosen seed) from a uniformly chosen sequence. Typically, we consider aclass D of distinguishers and a class F of (threshold) functions, and require that the generator Gsatis�es the following: For any D 2 D, any f 2 F , and for all su�ciently large k'sjPr[D(G(Uk)) = 1] � Pr[D(U`(k)) = 1] j < f(k) (1)where Un denotes the uniform distribution over f0; 1gn and the probability is taken over Uk (resp.,U`(k)) as well as over the coin tosses of algorithm D in case it is probabilistic.2 The reader maythink of such a distinguisher, D, as trying to tell whether the \tested string" is a random outputof the generator (i.e., distributed as G(Uk)) or is a truly random string (i.e., distributed as U`(k)).The condition in Eq. (1) requires that D cannot make a meaningful decision; that is, ignoring anegligible di�erence (represented by f(k)), D's verdict is the same in both cases. The archetypicalchoice is that D is the set of all probabilistic polynomial-time algorithms, and F is the set of allfunctions that are the reciprocal of some positive polynomial.Complexity of Generation: The archetypical choice is that the generator has to work inpolynomial-time (in length of its input { the seed). Other choices will be discussed as well. Wenote that placing no computational requirements on the generator (or, alternatively, putting verymild requirements such as a double-exponential running-time upper bound), yields \generators"that can fool any subexponential-size circuit family (see Exercise 30).Notational conventions. We will consistently use k to denote the length of the seed of a pseu-dorandom generator, and `(k) to denote the length of the corresponding output. In some cases, thismakes our presentation a little more cumbersome (as a natural presentation may specify some otherparameters and let the seed-length be a function of these). However, our choice has the advantageof focusing attention on the fundamental parameter of pseudorandom generation { the length ofthe random seed. We note that whenever a pseudorandom generator is used to \derandomize"an algorithm, n will denote the length of the input to this algorithm, and k will be selected as afunction of n.Some instantiations of the general paradigm. Two important instantiations of the notionof pseudorandom generators relate to probabilistic polynomial-time observers.1. General-purpose pseudorandom generators correspond to the case that the generator itselfruns in polynomial time and needs to withstand any probabilistic polynomial-time distin-guisher, including distinguishers that run for more time than the generator. Thus, the samegenerator may be used safely in any e�cient application.2. In contrast, pseudorandom generators intended for derandomization may run more time thanthe distinguisher, which is viewed as a �xed circuit having size that is upper-bounded by a�xed polynomial.2The class of threshold functions F should be viewed as determining the class of noticeable probabilities (as afunction of k). Thus, we require certain functions (i.e., the absolute di�erence between the above probabilities), tobe smaller than any noticeable function on all but �nitely many integers. We call the former functions negligible.Note that a function may be neither noticeable nor negligible (e.g., it may be smaller than any noticeable functionon in�nitely many values and yet larger than some noticeable function on in�nitely many other values).6



In addition, the general paradigm may be instantiated by focusing on the space complexity of thepotential distinguishers (and the generator), rather than on their time complexity. Furthermore,one may also consider distinguishers that merely re
ect probabilistic properties such as pair-wiseindependence, small-bias, and hitting frequency.3 General-Purpose Pseudorandom GeneratorsRandomness is playing an increasingly important role in computation: It is frequently used in thedesign of sequential, parallel and distributed algorithms, and it is of course central to cryptography.Whereas it is convenient to design such algorithms making free use of randomness, it is also desirableto minimize the usage of randomness in real implementations. Thus, general-purpose pseudorandomgenerators (as de�ned next) are a key ingredient in an \algorithmic tool-box" { they provide anautomatic compiler of programs written with free usage of randomness into programs that makean economical use of randomness.3.1 The basic de�nitionLoosely speaking, general-purpose pseudorandom generators are e�cient (i.e., polynomial-time)deterministic programs that expand short randomly selected seeds into longer pseudorandom bitsequences, where the latter are de�ned as computationally indistinguishable from truly random se-quences by any e�cient (i.e., polynomial-time) algorithm. Thus, the distinguisher is more complexthan the generator: The generator is a �xed algorithm working within some �xed polynomial-time,whereas a potential distinguisher is any algorithm that runs in polynomial-time. Thus, for example,the distinguisher may always run in time cubic in the running-time of the generator. Furthermore,to facilitate the development of this theory, we allow the distinguisher to be probabilistic (whereasthe generator remains deterministic as above). We require that such distinguishers cannot tell theoutput of the generator from a truly random string of similar length, or rather that the di�erencethat such distinguishers may detect (or sense) is negligible. Here a negligible function is one thatvanishes faster than the reciprocal of any positive polynomial.De�nition 1 (general-purpose pseudorandom generator): A deterministic polynomial-time algo-rithm G is called a pseudorandom generator if there exists a stretch function, ` :N!N (satisfying`(k) > k for all k), such that for any probabilistic polynomial-time algorithm D, for any positivepolynomial p, and for all su�ciently large k'sjPr[D(G(Uk)) = 1] � Pr[D(U`(k)) = 1] j < 1p(k) (2)where Un denotes the uniform distribution over f0; 1gn and the probability is taken over Uk (resp.,U`(k)) as well as over the internal coin tosses of D.Thus, De�nition 1 is derived from the generic framework (presented in Section 2) by taking theclass of distinguishers to be the set of all probabilistic polynomial-time algorithms, and taking theclass of (noticeable) threshold functions to be the set of all functions that are the reciprocals ofsome positive polynomial.3 The latter choice is naturally coupled with the association of e�cient3De�nition 1 requires that the distinguishing gap of certain algorithms must be smaller than the reciprocal of anypositive polynomial for all but �nitely many k's. Such functions are called negligible; see Footnote 2. The notionof negligible probability is robust in the sense that an event which occurs with negligible probability occurs withnegligible probability also when the experiment is repeated a \feasible" (i.e., polynomial) number of times.7



computation with polynomial-time algorithms: An event that occurs with noticeable probabilityoccurs almost always when the experiment is repeated a \feasible" (i.e., polynomial) number oftimes.We note that De�nition 1 does not make any requirement regarding the stretch function` :N!N , except for the generic requirement that `(k) > k for all k. Needless to say, the larger `is the more useful is the pseudorandom generator. In Section 3.4 we show how to use any pseudo-random generator (even one with minimal stretch `(k) = k+1) in order to obtain a pseudorandomgenerator of any desired polynomial stretch function. But before going so, we rigorously discuss the\reduction in randomness" o�ered by pseudorandom generators, and the notion of computationalindistinguishability underlying De�nition 1.3.2 The archetypical applicationWe note that \pseudo-random number generators" appeared with the �rst computers. However,typical implementations use generators that are not pseudorandom according to De�nition 1. In-stead, at best, these generators are shown to pass some ad-hoc statistical test (cf., [24]). We warnthat the fact that a \pseudo-random number generator" passes some statistical tests, does notmean that it will pass a new test and that it will be good for a future (untested) application.Furthermore, the approach of subjecting the generator to some ad-hoc tests fails to provide generalresults of the form \for all practical purposes using the output of the generator is as good as usingtruly unbiased coin tosses." In contrast, the approach encompassed in De�nition 1 aims at suchgenerality, and in fact is tailored to obtain it: The notion of computational indistinguishability,which underlines De�nition 1, covers all possible e�cient applications guaranteeing that for all ofthem pseudorandom sequences are as good as truly random ones. Indeed, any e�cient randomizedalgorithm maintains its performance when its internal coin tosses are substituted by a sequencegenerated by a pseudorandom generator. That is:Construction 2 (typical application of pseudorandom generators): Let G be a pseudorandomgenerator with stretch function ` : N!N . Let A be a probabilistic algorithm, and �(n) denote a(polynomial) upper bound on its randomness complexity. Denote by A(x; r) the output of A oninput x and coin tosses sequence r 2 f0; 1g�(jxj). Consider the following randomized algorithm,denoted AG:On input x, set k = k(jxj) to be the smallest integer such that `(k) � �(jxj), uniformlyselect s 2 f0; 1gk, and output A(x; r), where r is the �(jxj)-bit long pre�x of G(s).That is, AG(x; s) = A(x;G0(s)), for jsj = k(jxj) = argminif`(i) � �(jxj)g, where G0(s) is the�(jxj)-bit long pre�x of G(s).Thus, using AG instead of A, the randomness complexity is reduced from � to `�1 � �, while (aswe show next) it is infeasible to �nd inputs (i.e., x's) on which the noticeable behavior of AG isdi�erent from the one of A. For example, if `(k) = k2, then the randomness complexity is reducedfrom � to p�. We stress that the pseudorandom generator G is universal; that is, it can be appliedto reduce the randomness complexity of any probabilistic polynomial-time algorithm A.Proposition 3 Let A, � and G be as in Construction 2, and suppose that � : N ! N is 1-1. Then,for every pair of probabilistic polynomial-time algorithms, a �nder F and a distinguisher D, everypositive polynomial p and all su�ciently long n'sXx2f0;1gn Pr[F (1n) = x] � j�A;D(x) j < 1p(n) (3)8



where �A;D(x) def= Pr[D(x;A(x;U�(jxj))) = 1] � Pr[D(x;AG(x;Uk(jxj))) = 1], and the probabilitiesare taken over the Um's as well as over the coin tosses of F and D.Algorithm F represents a potential attempt to �nd an input x on which the output of AG is distin-guishable from the output of A. This \attempt" may be benign as in the case that a user employsalgorithm AG on inputs that are generated by some probabilistic polynomial-time application.However, the attempt may also be adversarial as in the case that a user employs algorithm AG oninputs that are provided by a potentially malicious party. The potential distinguisher, denoted D,represents the potential use of the output of algorithm AG, and captures the requirement that thisoutput be as good as a corresponding output produced by A. Thus, D is given x as well as thecorresponding output produced either by AG(x) def= A(x;Uk(n)) or by A(x) = A(x;U�(n)), and it isrequired that D cannot tell the di�erence. In the case that A is a probabilistic polynomial-timedecision procedure, this means that it is infeasible to �nd an x on which AG decides incorrectly (i.e.,di�erently than A). In the case that A is a search procedure for some NP-relation, it is infeasibleto �nd an x on which AG outputs a wrong solution. For details, see Exercise 31.Proof: The proposition is proven by showing that any triplet (A;F;D) violating the claim can beconverted into an algorithm D0 that distinguishes the output of G from the uniform distribution, incontradiction to the hypothesis. The key observation is that �A;D(x) equals Pr[D(x;A(x;U�(n))) =1]� Pr[D(x;A(x;G0(Uk(n)))) = 1], where G0(s) is the �(n)-bit long pre�x of G(s). Details follow.On input r (taken from either U`(k(n)) or G(Uk(n))), algorithm D0 �rst obtains x F (1n), wheren can be obtained easily from jrj (because � is 1-1 and 1n 7! �(n) is computable via A). Next, D0obtains y = A(x; r0), where r0 is the �(jxj)-bit long pre�x of r. Finally D0 outputs D(x; y). Notethat D0 is implementable in probabilistic polynomial-time, and thatD0(U�(n)) = D(Xn; A(Xn; U�(n))) ; where Xn def= F (1n)D0(G0(Uk(n))) = D(Xn; A(Xn; G0(Uk(n)))) ; where Xn def= F (1n)It follows that jPr[D0(U`(k(n))) = 1] � Pr[D0(G(Uk(n))) = 1] j equals E[�A;D(F (1n))], which impliesa weaker version of the proposition (referring to E[�A;D(F (1n))] rather than to E[j�A;D(F (1n))j]).In order to prove that E[j�A;D(F (1n))j] (rather than to E[�A;D(F (1n))]) is negligible, we need tomodify D0 a little. We start by assuming, towards the contradiction, that E[j�A;D(F (1n))j] > "(n)for some non-negligible function ". On input r (taken from either U`(k(n)) or G(Uk(n))), the modi�edalgorithm D0 �rst obtains x  F (1n), as before. Next, using a sample of size poly(n="(n)),it approximates pU (x) def= Pr[D(x;A(x;U�(n)) = 1] and pG(x) def= Pr[D(x;A(x;G0(Uk(n))) = 1]such that each probability is approximated to within a deviation of "(n)=8 with negligible errorprobability (say, exp(�n)). (Note that, so far, the actions of D0 only depend on the length of itsinput r, which determines n.) If these approximations indicate that pU (x) � pG(x) (equiv., that�A;D � 0) then D0 outputs D(x;A(x; r0)) else it outputs 1�D(x;A(x; r0)), where r0 is the �(jxj)-bitlong pre�x of r and we assume without loss of generality that the output of D is in f0; 1g. It followsthat Pr[D0(U�(n)) = 1jF (1n) = x] � Pr[D0(G0(Uk(n))) = 1jF (1n) = x]� jpU (x)� pG(x)j � "(n)2 � exp(�n)where the "(n)=2 term is due to the maximal typical deviation (i.e., "(n)=4) of our approximationof pU(x) � pG(x), and the exp(�n) term is due to the rare case that our approximation errs9



by more than "(n)=4. Thus, Pr[D0(U`(k(n))) = 1] � Pr[D0(G(Uk(n))) = 1] is lower-bounded byE[j�A;D(F (1n))j] � ("(n)=2) � exp(�n) > "(n)=3, and the proposition follows.Conclusion. Analogous arguments are applied whenever one wishes to prove that an e�cientrandomized process (be it an algorithm as above or a multi-party computation) preserves its be-havior when one replaces true randomness by pseudorandomness as de�ned above. Thus, given apseudorandom generator with a large stretch function, one can considerably reduce the randomnesscomplexity in any e�cient application.3.3 Computational IndistinguishabilityIn this section we spell-out (and study) the de�nition of computational indistinguishability thatunderlies De�nition 1. The general de�nition of computational indistinguishability refers to arbi-trary probability ensembles, where a probability ensemble is an in�nite sequence of random variablesfZngn2N such that each Zn ranges over strings of length bounded by a polynomial in n. We saythat fXngn2N and fYngn2N are computationally indistinguishable if for every feasible algorithm Athe di�erence dA(n) def= jPr[A(Xn)=1]� Pr[A(Yn)=1]j is a negligible function in n. That is:De�nition 4 (computational indistinguishability): We say that the probability ensembles fXngn2Nand fYngn2N are computationally indistinguishable if for every probabilistic polynomial-time algo-rithm D, every positive polynomial p, and all su�ciently large n,jPr[D(Xn)=1] � Pr[D(Yn)=1]j < 1p(n) (4)where the probabilities are taken over the relevant distribution (i.e., either Xn or Yn) and over theinternal coin tosses of algorithm D. The l.h.s. of Eq. (4), when viewed as a function of n, is oftencalled the distinguishing gap of D where fXngn2N and fYngn2N is understood from the context.That is, we can think of D as somebody who wishes to distinguish two distributions (based on asample given to it), and think of 1 as D's verdict that the sample was drawn according to the �rstdistribution. Saying that the two distributions are computationally indistinguishable means thatif D is a feasible procedure then its verdict is not really meaningful (because the verdict is almostas often 1 when the input is drawn from the �rst distribution as when the input is drawn fromthe second distribution). We comment that the absolute value in Eq. (4) can be omitted withouta�ecting the de�nition (see Exercise 32), and we will often do so without warning.In De�nition 1, we required that the probability ensembles fG(Uk)gk2N and fU`(k)gk2N becomputationally indistinguishable. Indeed, an important special case of De�nition 4 is when oneensemble is uniform, and in such a case we call the other ensemble pseudorandom.Non-triviality of Computational Indistinguishability. Clearly, any two probability ensem-bles that are statistically close4 are computationally indistinguishable. Needless to say, this is atrivial case of computational indistinguishability, which is due to information theoretic reasons. Incontrast, as noted in Section 2, there exist probability ensembles that are statistically far apart andyet are computationally indistinguishable (see Exercise 30). However, at least one of the probability4Two probability ensembles, fXngn2N and fYngn2N, are said to be statistically close if for every positive poly-nomial p and su�cient large n the variation distance between Xn and Yn (i.e., 12 Pz jPr[Xn = z] � Pr[Yn = z]j) isbounded above by 1=p(n). 10



ensembles in Exercise 30 is not polynomial-time constructible. One non-trivial case of computa-tional indistinguishability in which both ensembles are polynomial-time constructible is providedby the de�nition of pseudorandom generators (see Exercise 33). As we shall see (in Theorem 11),the existence of one-way functions implies the existence of pseudorandom generators, which in turnimplies the existence of polynomial-time constructible probability ensembles that are statisticallyfar apart and yet are computationally indistinguishable. We mention that this su�cient conditionis also necessary (see Exercise 34).Indistinguishability by Multiple SamplesThe de�nition of computational indistinguishability (i.e., De�nition 4) refers to distinguishers thatobtain a single sample from one of the two probability ensembles (i.e., fXngn2N and fYngn2N). Amore general de�nition refers to distinguishers that obtain several independent samples from suchan ensemble.De�nition 5 (indistinguishability by multiple samples): Let s : N!N be polynomially-bounded.Two probability ensembles, fXngn2N and fYngn2N, are computationally indistinguishable by s(�)samples if for every probabilistic polynomial-time algorithm, D, every positive polynomial p(�), andall su�ciently large n's���Pr hD(X(1)n ; :::;X(s(n))n )=1i� Pr hD(Y (1)n ; :::; Y (s(n))n )=1i��� < 1p(n)where X(1)n through X(s(n))n and Y (1)n through Y (s(n))n are independent random variables, with eachX(i)n identical to Xn and each Y (i)n identical to Yn.It turns out that in the most interesting cases, computational indistinguishability by a single sampleimplies computational indistinguishability by any polynomial number of samples. One such caseis the case of polynomial-time constructible ensembles. We say that the ensemble fZngn2N ispolynomial-time constructible if there exists a polynomial-time algorithm S so that S(1n) and Znare identically distributed.Proposition 6 Suppose that X def= fXngn2N and Y def= fYngn2N are both polynomial-time con-structible, and s be a polynomial. Then, X and Y are computationally indistinguishable by a singlesample if and only if they are computationally indistinguishable by s(�) samples.Clearly, for every polynomial s, computational indistinguishability by s(�) samples implies compu-tational indistinguishability by a single sample. We now prove that, for e�ciently constructibledistributions, indistinguishability by a single sample implies indistinguishability by multiple sam-ples. The proof provides a simple demonstration of a central proof technique, known as the hybridtechnique.Proof Sketch:5 To prove that a sequence of independently drawn samples of one distributionis indistinguishable from a sequence of independently drawn samples from the other distribution,we consider hybrid sequences such that the ith hybrid consists of i samples taken from the �rstdistribution and the rest taken from the second distribution. The \homogeneous" sequences (whichwe wish to prove to be computational indistinguishable) are the extreme hybrids (i.e., the �rst andlast hybrids considered above). The key observation is that distinguishing the extreme hybrids5For more details see [16, Sec. 3.2.3]. 11



(towards the contradiction hypothesis) means distinguishing neighboring hybrids, which in turnyields a procedure for distinguishing single samples of the two original distributions (contradictingthe hypothesis that these two distributions are indistinguishable by a single sample). Details follow.Suppose that D distinguishes s(n) samples of one distribution from s(n) samples of the other,with a distinguishing gap of �(n). Denoting the ith hybrid byHin (i.e., Hin = (X(1)n ; :::;X(i)n ; Y (i+1)n ; :::; Y (s(n))n )),this means that D distinguishes the extreme hybrids (i.e., H0n and Hs(n)n ) with gap �(n). Then Ddistinguishes a random pair of neighboring hybrids (i.e., D distinguishes the ith hybrid from thei+ 1st hybrid, for a randomly selected i) with gap at least �(n)=s(n). The reason being thatEi2f0;:::;s(n)�1g hPr[D(Hin) = 1]� Pr[D(Hi+1n ) = 1]i= 1s(n) � s(n)�1Xi=0 �Pr[D(Hin) = 1]� Pr[D(Hi+1n ) = 1]� (5)= 1s(n) � �Pr[D(H0n) = 1]� Pr[D(Hs(n)n ) = 1]� = �(n)s(n)Using D, we obtain a distinguisher D0 of single samples: Given a single sample, D0 selects i 2f0; :::; s(n)� 1g at random, generates i samples from the �rst distribution and s(n)� i� 1 samplesfrom the second distribution, and invokes D with the s(n)-samples sequence obtained when placingthe input sample in location i+ 1. Thus, the construction of D0 relies on the hypothesis that bothproabbility ensembles are polynomial-time constructible. In analyzing D0, observe that when thesingle sample (i.e., the input to D0) is taken from the �rst (resp., second) distribution, algorithm D0invokes D on the i + 1st hybrid (resp., ith hybrid). Thus, the distinguishing gap of D0 is capturedby Eq. (5), and the claim follows.The hybrid technique { a digest: The hybrid technique constitutes a special type of a \re-ducibility argument" in which the computational indistinguishability of complex ensembles is provenusing the computational indistinguishability of basic ensembles. The actual reduction is in the otherdirection: e�ciently distinguishing the basic ensembles is reduced to e�ciently distinguishing thecomplex ensembles, and hybrid distributions are used in the reduction in an essential way. Thefollowing three properties of the construction of the hybrids play an important role in the argument:1. The extreme hybrids collide with the complex ensembles: this property is essential becausewhat we want to prove (i.e., the indistinguishability of the complex ensembles) relates to thecomplex ensembles.2. Neighboring hybrids are easily related to the basic ensembles: this property is essential becausewhat we know (i.e., the indistinguishability of the basic ensembles) relates to the basic ensem-bles. We need to be able to translate our knowledge (i.e., computational indistinguishability)of the basic ensembles to knowledge (i.e., computational indistinguishability) of any pair ofneighboring hybrids. Typically, it is required to e�ciently transform strings in the range ofa basic distribution into strings in the range of a hybrid, so that the transformation mapsthe �rst basic distribution to one hybrid and the second basic distribution to the neighboringhybrid. (In the proof of Proposition 6, the hypothesis that both X and Y are polynomial-timeconstructible is instrumental for such an e�cient transformation.)3. The number of hybrids is small (i.e., polynomial): this property is essential in order to deducethe computational indistinguishability of extreme hybrids from the computational indistin-12



guishability of each pair of neighboring hybrids. Typically, the provable \distinguishabilitygap" is inversely proportional to the number of hybrids. Indeed, see Eq. (5).We remark that in the course of an hybrid argument, a distinguishing algorithm referring to thecomplex ensembles is being analyzed and even invoked on arbitrary hybrids. The reader may beannoyed of the fact that the algorithm \was not designed to work on such hybrids" (but ratheronly on the extreme hybrids). However, an algorithm is an algorithm: once it exists we can invokeit on inputs of our choice, and analyze its performance on arbitrary input distributions.3.4 Amplifying the stretch functionRecall that the de�nition of pseudorandom generators (i.e., De�nition 1) makes a minimal require-ment regarding their stretch; that is, it is only required that the length of the output of suchgenerators is longer than their input. Needless to say, we seek pseudorandom generators with asigni�cant stretch. It turns out (see Construction 7) that pseudorandom generators of any stretchfunction and in particular of stretch `1(k) def= k+1, are easily converted into pseudorandom gener-ators of any desired (polynomially bounded) stretch function, `. (On the other hand, since pseu-dorandom generators are required (in De�nition 1) to run in polynomial time, their stretch mustbe polynomially bounded.) Thus, when talking about the existence of pseudorandom generators,as in De�nition 1, we may ignore the stretch function.Construction 7 Let G1 be a pseudorandom generator with stretch function `1(k) = k + 1, and `be any polynomially bounded stretch function that is polynomial-time computable. LetG(s) def= �1�2 � � � �`(jsj) (6)where x0 = s and xi�i = G1(xi�1), for i = 1; :::; `(jsj). (That is, �i is the last bit of G1(xi�1) andxi is the jsj-bit long pre�x of G1(xi�1).)Needless to say, G is polynomial-time computable and has stretch `.
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Figure 2: Analysis of stretch ampli�cation { the ith hybrid.Proposition 8 Let G1 and G be as in Construction 7. Then G constitutes a pseudorandom gen-erator. 13



Proof Sketch:6 The proposition is proven using the hybrid technique, presented and discussed inSection 3.3. Here (for i = 0; :::; `(k)) we consider the hybrid distributions Hik, de�ned byHik def= U (1)i � P`(k)�i(U (2)k );where U (1)i and U (2)k are independent uniform distributions (over f0; 1gi and f0; 1gk , respectively),and Pj(x) denotes the j-bit long pre�x of G(x). (See Figure 2.) The extreme hybrids (i.e., H0kand Hkk ) correspond to G(Uk) and U`(k), whereas distinguishability of neighboring hybrids can beworked into distinguishability of G1(Uk) and Uk+1. Details follow.Suppose that algorithm D distinguishes Hik from Hi+1k (with some gap �(k)). Denoting the �rstjxj�1 bits (resp., last bit) of x by F (x) (resp., L(x)), we may write Pj(s) � (L(G1(s)); Pj�1(F (G1(s))))and Hik = U (1)i � P`(k)�i(U (2)k )� (U (1)i ; L(G1(U (2)k )); P(`(k)�i)�1(F (G1(U (2)k ))))Hi+1k = U (10)i+1 � P`(k)�i�1(U (2)k )� (U (1)i ; L(U (20)k+1); P(`(k)�i)�1(F (U (20)k+1))):Then, incorporating the generation of U (1)i and the evaluation of P`(k)�i�1 into the distinguisherD, we distinguish (F (G1(U (2)k )); L(G1(U (2)k ))) � G1(Uk) from (F (U (20)k+1); L(U (20)k+1)) � Uk+1, in con-tradiction to the pseudorandomness of G1. Speci�cally, on input x 2 f0; 1gk+1, we uniformly selectr 2 f0; 1gi and output D(r � L(x) � P`(k)�i�1(F (x))). Thus, the probability we output 1 on inputG1(Uk) (resp., Uk+1) equals Pr[D(Hik) = 1] (resp., Pr[D(Hi+1k ) = 1]). A �nal detail refers to thequestion which i to use. As usual (when the hybrid technique is used), a random i (in f0; :::; k�1g)will do.3.5 ConstructionsThe constructions surveyed in this section \transform" computational di�culty, in the form of one-way functions, into generators of pseudorandomness. Recall that a polynomial-time computablefunction is called one-way if any e�cient algorithm can invert it only with negligible success proba-bility (see [16] for further discussion). We will actually use hard-core predicates of such functions,and refer the reader to their treatment in [16]. Loosely speaking, a polynomial-time computablepredicate b is called a hard-core of a function f if any e�cient algorithm, given f(x), can guessb(x) only with success probability that is negligible better than half. Recall that, for any one-wayfunction f , the inner-product mod 2 of x and r is a hard-core of f 0(x; r) = (f(x); r). Finally, weget to the construction of pseudorandom generators.Proposition 9 (A simple construction of pseudorandom generators): Let b be a hard-core predicateof a polynomial-time computable 1-1 and length-preserving function f . Then, G(s) def= f(s) � b(s) isa pseudorandom generator.Proof Sketch:7 The jsj-bit long pre�x of G(s) is uniformly distributed, because f is 1-1 andonto f0; 1gjsj. Hence, the proof boils down to showing that distinguishing f(s)b(s) from f(s) � �,6For more details see [16, Sec. 3.3.3].7For more details see [16, Sec. 3.3.4]. 14



where � is a random bit, yields contradiction to the hypothesis that b is a hard-core of f (i.e., thatb(s) is unpredictable from f(s)). Intuitively, such a distinguisher also distinguishes f(s)b(s) fromf(s) � b(s), where � = 1 � �, but distinguishing f(s) � b(s) from f(s) � b(s) yields an algorithm forpredicting b(s) based on f(s). Details follow.We start with any potential distinguisher D, and let�(k) def= Pr[D(G(Uk)) = 1]� Pr[D(Uk+1) = 1]:We may assume, without loss of generality, that �(k) is non-negative (for in�nitely many k's). UsingG(Uk) = f(Uk) � b(Uk) and Uk+1 � f(Uk) �Z, where Z = b(Uk) with probability 1=2 and Z = b(Uk)otherwise, we have Pr[D(f(Uk)b(Uk)) = 1]� Pr[D(f(Uk)b(Uk)) = 1] = 2�(k):Consider an algorithm A that, on input y, uniformly selects � 2 f0; 1g, invokes D(y�), and outputs� if D(y�) = 1 and � otherwise. ThenPr[A(f(Uk)) = b(Uk)] = Pr[D(f(Uk) � �) = 1 ^ � = b(Uk)]+ Pr[D(f(Uk) � �) = 0 ^ � = b(Uk)]= 12 � (Pr[D(f(Uk) � b(Uk)) = 1]+ 1 � Pr[D(f(Uk) � b(Uk)) = 1]�which equals (1 + 2�(k))=2. The proposition follows.Combining Proposition 9 and Construction 7, we obtain the following corollary.Theorem 10 (A su�cient condition for the exsitemce of pseudorandom generators): If there exists1-1 and length-preserving one-way function then, for every polynomially bounded stretch function`, there exists a pseudorandom generator of stretch `.Digest. The key point in the proof of Proposition 9 is showing that the (rather obvious) unpre-dictability of the output of G implies its pseudorandomness. The fact that (next bit) unpredictabil-ity and pseudorandomness are equivalent, in general, is proven explicitly in the alternative proofof Theorem 10 provided next.An alternative presentation. Let us take a closer look at the pseudorandom generators ob-tained by combining Construction 7 and Proposition 9. For a stretch function ` : N!N , a 1-1one-way function f with a hard-core b, we obtainG(s) def= �1�2 � � � �`(jsj) ; (7)where x0 = s and xi�i = f(xi�1)b(xi�1) for i = 1; :::; `(jsj). Denoting by f i(x) the value of fiterated i times on x (i.e., f i(x) = f i�1(f(x)) and f0(x) = x), we rewrite Eq. (7) as followsG(s) def= b(s) � b(f(s)) � � � b(f `(jsj)�1(s)) : (8)
15



The pseudorandomness of G is established in two steps, using the notion of (next bit) unpredictabil-ity. An ensemble fZkgk2N is called unpredictable if any probabilistic polynomial-time machine ob-taining a (random)8 pre�x of Zk fails to predict the next bit of Zk with probability non-negligiblyhigher than 1=2. Speci�cally, we need to establish the following two results.1. A general result asserting that an ensemble is pseudorandom if and only if it is unpre-dictable. Recall that an ensemble is pseudorandom if it is computationally indistinguishablefrom a uniform distribution (over bit strings of adequate length).Clearly, pseudorandomness implies polynomial-time unpredictability, but here we actuallyneed the other direction, which is less obvious. Still, using a hybrid argument, one can showthat (next-bit) unpredictability implies indistinguishability from the uniform ensemble. Fordetails see Exercise 38.2. A speci�c result asserting that the ensemble fG(Uk)gk2N is unpredictable from right to left.Equivalently, G0(Un) is polynomial-time unpredictable (from left to right (as usual)), whereG0(s) = b(f `(jsj)�1(s)) � � � b(f(s)) � b(s) is the reverse of G(s).Using the fact that f induces a permutation over f0; 1gn, observe that the (j + 1)-bit longpre�x of G0(Uk) is distributed identically to b(f j(Uk)) � � � b(f(Uk)) �b(Uk). Thus, an algorithmthat predicts the j + 1st bit of G0(Un) based on the j-bit long pre�x of G0(Un) yields analgorithm that guesses b(Un) based on f(Un). For details see Exercise 40.Needless to say, G is a pseudorandom generator if and only if G0 is a pseudorandom generator (seeExercise 39). We mention that Eq. (8) is often referred to as the Blum-Micali Construction.9A general condition for the existence of pseudorandom generators. Recall that givenany one-way 1-1 length-preserving function, we can easily construct a pseudorandom generator.Actually, the 1-1 (and length-preserving) requirement may be dropped, but the currently knownconstruction { for the general case { is quite complex.Theorem 11 (On the existence of pseudorandom generators): Pseudorandom generators exist ifand only if one-way functions exist.To show that the existence of pseudorandom generators imply the existence of one-way functions,consider a pseudorandom generator G with stretch function `(k) = 2k. For x; y 2 f0; 1gk , de�nef(x; y) def= G(x), and so f is polynomial-time computable (and length-preserving). It must be thatf is one-way, or else one can distinguish G(Uk) from U2k by trying to invert and checking the result:Inverting f on its range distribution refers to the distribution G(Uk), whereas the probability thatU2k has inverse under f is negligible.The interesting direction of the proof of Theorem 11 is the construction of pseudorandomgenerators based on any one-way function. In general (when f may not be 1-1) the ensemble f(Uk)may not be pseudorandom, and so Construction 9 (i.e., G(s) = f(s)b(s), where b is a hard-core off) cannot be used directly. One idea underlying the construction is to hash f(Uk) to an almostuniform string of length related to its entropy, using Universal Hash Functions. (This is done afterguaranteeing, that the logarithm of the probability mass of a value of f(Uk) is typically close to8For simplicity, we de�ne unpredictability as referring to pre�ces of a random length (distributed uniformly inf0; :::; jZkj � 1g).9Given the popularity of the term, we deviate from our convention of not specifying credits in the main text.Indeed, this construction originates in [8]. 16



the entropy of f(Uk).)10 But \hashing f(Uk) down to length comparable to the entropy" meansshrinking the length of the output to, say, k0 < k. This foils the entire point of stretching thek-bit seed. Thus, a second idea underlying the construction is to compensate for the k � k0 lossby extracting these many bits from the seed Uk itself. This is done by hashing Uk, and the pointis that the (k � k0)-bit long hash value does not make the inverting task any easier. Implementingthese ideas turns out to be more di�cult than it seems, and indeed an alternative constructionwould be most appreciated.3.6 Non-uniformly strong pseudorandom generatorsRecall that we said that truly random sequences can be replaced by pseudorandom ones withouta�ecting any e�cient computation. The speci�c formulation of this assertion, presented in Proposi-tion 3, refers to randomized algorithms that take a \primary input" and use a secondary \randominput" in their computation. Proposition 3 asserts that it is infeasible to �nd a primary inputfor which the replacement of a truly random secondary input by a pseudorandom one a�ects the�nal output of the algorithm in a noticeable way. This, however, does not mean that such pri-mary inputs do not exist (but rather that they are hard to �nd). Consequently, Proposition 3 fallsshort of yielding a (worst-case)11 \derandomization" of a complexity class such as BPP . To obtainsuch results, we need a stronger notion of pseudorandom generators, presented next. Speci�cally,we need pseudorandom generators that can fool all polynomial-size circuits, and not merely allprobabilistic polynomial-time algorithms.12De�nition 12 (strong pseudorandom generator { fooling circuits): A deterministic polynomial-time algorithm G is called a non-uniformly strong pseudorandom generator if there exists a stretchfunction, ` :N!N , such that for any family fCkgk2N of polynomial-size circuits, for any positivepolynomial p, and for all su�ciently large k'sjPr[Ck(G(Uk)) = 1] � Pr[Ck(U`(k)) = 1] j < 1p(k)An alternative formulation is obtained by referring to polynomial-time machines that take advice.Using such pseudorandom generators, we can \derandomize" BPP .Theorem 13 (Derandomization of BPP): If there exists non-uniformly strong pseudorandom gen-erators then BPP is contained in \">0Dtime(t"), where t"(n) def= 2n".Proof Sketch: Given any L 2 BPP and any " > 0, we let A denote the decision procedure forL and G denote a non-uniformly strong pseudorandom generator stretching n"-bit long seeds intopoly(n)-long sequences (to be used by A as secondary input when processing a primary input of10Speci�cally, given an arbitrary one-way function f 0, one �rst constructs f by taking a \direct product" ofsu�ciently many copies of f 0. For example, for x1; :::; xk2=3 2 f0; 1gk1=3 , we let f(x1; :::; xk2=3) def= f 0(x1); :::; f 0(xk2=3).11Indeed, Proposition 3 yields an average-case derandomization of BPP. In particular, for every polynomial-timeconstructible ensemble fXngn2N, every L 2 BPP, and every " > 0, there exists a randomized algorithm A0 ofrandomness complexity r"(n) = n" such that the probability that A0(Xn) 6= L(Xn) is negligible. A correspondingdeterministic (exp(r")-time) algorithm A00 can be obtained, as in the proof of Theorem 13, and again the probabilitythat A00(Xn) 6= L(Xn) is negligible, where here the probability is taken only over the distribution of the primary input(represented by Xn). In contrast, worst-case derandomization, as captured by the assertion BPP � Dtime(2r" ),requires that the probability that A00(Xn) 6= L(Xn) is zero.12Needless to say, strong pseudorandom generators in the sense of De�nition 12 satisfy the basic de�nition of apseudorandom generator (i.e., De�nition 1); see Exercise 41.17



length n). We thus obtain an algorithm A0 = AG (as in Construction 2). We note that A andA0 maydi�er in their decision on at most �nitely many inputs, because otherwise we can use these inputs(together with A) to derive a (non-uniform) family of polynomial-size circuits that distinguishesG(Un") and Upoly(n), contradicting the the hypothesis regarding G. (Speci�cally, in terms of theproof of Proposition 3, the �nder F consists of a non-uniform family of polynomial-size circuitsthat print the \problematic" primary inputs that are hard-wired in them, and the correspondingdistinguisher D0 is thus also non-uniform.) Incorporating the �nitely many \bad" inputs into A0, wederive a probabilistic polynomial-time algorithm that decides L while using randomness complexityn". Finally, emulating A0 on each of the 2n" possible random choices (i.e., seeds to G), we obtaina deterministic algorithm A00 as required. That is, let A0(x; r) denote the output of algorithm A0on input x when using coins r 2 f0; 1gn" . Then A00(x) invokes A0(x; r) on every r 2 f0; 1gn" , andrules by majority.We comment that stronger results regarding derandomization of BPP are presented in Section 4.On constructing non-uniformly strong pseudorandom generators. Non-uniformly strongpseudorandom generators (as in De�nition 12) can be constructed using any one-way function thatis hard to invert by any non-uniform family of polynomial-size circuits, rather than by probabilisticpolynomial-time machines. In fact, the construction in this case is simpler than the one employedin the uniform case (i.e., the construction underlying the proof of Theorem 11).3.7 Other variants and a conceptual discussionWe �rst mention two stronger variants on the de�nition of pseudorandom generators, and concludethis section by highlighting various conceptual issues.3.7.1 Stronger notionsThe following two notion represent strengthening of the standard de�nition of pseudorandom gen-erators (as presented in De�nition 1). Non-uniform versions of these variants (strengthening De�-nition 12) are also of interest.Fooling stronger distinguishers. One strengthening of De�nition 1 amounts to explicitly quan-tifying the resources (and success gaps) of distinguishers. We chose to bound these quantities asa function of the length of the seed (i.e., k), rather than as a function of the length of the stringthat is being examined (i.e., `(k)). For a class of time bounds T (e.g., T = ft(k) def= 2cpkgc2N) anda class of noticeable functions (e.g., F = ff(k) def= 1=t(k) : t 2 T g), we say that a pseudorandomgenerator, G, is (T ;F)-strong if for any probabilistic algorithm D having running-time bounded bya function in T (applied to k)13, for any function f in F , and for all su�ciently large k'sjPr[D(G(Uk)) = 1] � Pr[D(U`(k)) = 1] j < f(k)An analogous strengthening may be applied to the de�nition of one-way functions. Doing soreveals the weakness of the construction that underlies the proof of Theorem 11: It only impliesthat for some " > 0 (" = 1=5 will do), for any T and F , the existence of \(T ;F)-strong one-way13That is, when examining a sequence of length `(k) algorithm D makes at most t(k) steps, where t 2 T .18



functions" implies the existence of (T 0;F 0)-strong pseudorandom generators, where T 0 = ft0(k) def=t(k")=poly(k) : t 2 T g and F 0 = ff 0(k) def= poly(k) � f(k") : f 2 Fg. What we would like to have isan analogous result with T 0 = ft0(k) def= t(k)=poly(k) : t 2 T g and F 0 = ff 0(k) def= poly(k) � f(k) :f 2 Fg.Pseudorandom Functions. Pseudorandom generators allow to e�ciently generate long pseu-dorandom sequences from short random seeds. Pseudorandom functions (de�ned in [18]) are evenmore powerful: They allow e�cient direct access to a huge pseudorandom sequence, which is noteven feasible to scan bit-by-bit. Put in other words, pseudorandom functions can replace trulyrandom functions in any e�cient application (e.g., most notably in cryptography). We mentionthat pseudorandom functions can be constructed from any pseudorandom generator (see [18]) andfound many applications in cryptography (see [16, 17]). Pseudorandom functions have been used toderive negative results in computational learning theory [46] and in complexity theory (cf., NaturalProofs [38]).3.7.2 Conceptual DiscussionWhoever does not value preoccupation with thoughts, can skip this chapter.Robert Musil, The Man without Qualities, Chap. 28We highlight several conceptual aspects of the foregoing computational approach to randomness.Some of these aspects are common to other instantiation of the general paradigm (esp., the onepresented in Section 4).Behavioristic versus Ontological. The behavioristic nature of the computational approachto randomness is best demonstrated by confronting this approach with the Kolmogorov-Chaitinapproach to randomness. Loosely speaking, a string is Kolmogorov-random if its length equalsthe length of the shortest program producing it. This shortest program may be considered the\true explanation" to the phenomenon described by the string. A Kolmogorov-random string isthus a string that does not have a substantially simpler (i.e., shorter) explanation than itself.Considering the simplest explanation of a phenomenon may be viewed as an ontological approach.In contrast, considering the e�ect of phenomena on certain objects, as underlying the de�nition ofpseudorandomness, is a behavioristic approach. Furthermore, there exist probability distributionsthat are not uniform (and are not even statistically close to a uniform distribution) and neverthelessare indistinguishable from a uniform distribution (by any e�cient method). Thus, distributionsthat are ontologically very di�erent, are considered equivalent by the behavioristic point of viewtaken in the de�nition of computational indistinguishability.A relativistic view of randomness. We have de�ned pseudorandomness in terms of its ob-server. Speci�cally, we have considered the class of e�cient (i.e., polynomial-time) observers andde�ned as pseudorandom objects that look random to any observer in that class. In subsequentsections, we shall consider restricted classes of such observers (e.g., space-bounded polynomial-timeobservers and even very restricted observers that merely apply speci�c tests such as linear tests orhitting tests). Each such class of observers gives rise to a di�erent notion of pseudorandomness.Furthermore, the general paradigm (of pseudorandomness) explicitly aims at distributions that arenot uniform and yet are considered as such from the point of view of certain observers. Thus, our19



entire approach to pseudorandomness is relativistic and subjective (i.e., depending on the abilitiesof the observer).Randomness and Computational Di�culty. Pseudorandomness and computational di�-culty play dual roles: The general paradigm of pseudorandomness relies on the fact that puttingcomputational restrictions on the observer gives rise to distributions that are not uniform and stillcannot be distinguished from uniform. Thus, the pivot of the entire approach is the computationaldi�culty of distinguishing pseudorandom distributions from truly random ones. Furthermore,many of the constructions of pseudorandom generators rely on either conjectures or facts regardingcomputational di�culty (i.e., that certain computations that are hard for certain classes). Forexample, one-way functions were used to construct general-purpose pseudorandom generators (i.e.,those working in polynomial-time and fooling all polynomial-time observers). Analogously, as weshall see in Section 4.3, the fact that parity function is hard for polynomial-size constant-depthcircuits can be used to generate (highly non-uniform) sequences that fool such circuits.Randomness and Predictability. The connection between pseudorandomness and unpredictabil-ity (by e�cient procedures) plays an important role in the analysis of several constructions (cf.Sections 3.5 and 4.2). We wish to highlight the intuitive appeal of this connection.4 Derandomization of time-complexity classesLet us take a second look at the proof of Theorem 13: A pseudorandom generator was used to shrinkthe randomness complexity of a BPP-algorithm, and derandomization was achieved by scanning allpossible seeds to the generator. A key observation regarding this process is that there is no pointin insisting that the pseudorandom generator runs in time polynomial in its seed length. Instead,it su�ces to require that the generator runs in time exponential in its seed length, because we areincurring such an overhead anyhow due to the scanning of all possible seeds. Furthermore, in thiscontext, the running-time of the generator may be larger than the running time of the algorithm,which means that the generator need only fool distinguishers that take less steps than the generator.These considerations motivate the following de�nition.4.1 De�nitionRecall that in order to \derandomize" a probabilistic polynomial-time algorithm A, we �rst obtaina functionally equivalent algorithm AG (as in Construction 2) that has (signi�cantly) smaller ran-domness complexity. Algorithm AG has to maintain A's input-output behavior on all (but �nitelymany) inputs. Thus, the set of the relevant distinguishers (considered in the proof of Theorem 13)is the set of all possible circuits obtained from A by hard-wiring each of the possible inputs. Sucha circuit, denoted Cx, emulates the execution of algorithm A on input x, when using the circuit'sinput as the algorithm's internal coin tosses (i.e., A(x; r) = Cx(r)). Furthermore, the size of Cxis polynomial in the running-time of A on input x, and the length of the input to Cx is linear inthe running-time of A (on input x).14 For simplicity, let's say that the size of Cx is quadratic inthe running-time of A on input x. Thus, the pseudorandom generator in use (i.e., G) needs to fool14Indeed, if algorithm A is represented as a Turing machine then Cx has size that is at most quadratic (and infact even almost-linear) in the running-time of A on input x, which in turn means that Cx has size that is at mostquadratic (or almost linear) in the length of its own input. We note that most sources use the �ctitious conventionby which the circuit size equals the length of its input, which can be justi�ed by considering a suitably padded input.20



each of these possible circuits. Recalling that we may allow the generator to run in exponentialtime (in the length of its own input)15, we arrive at the following de�nition.De�nition 14 (pseudorandom generator for derandomizing BPtime(�))16: Let ` ::N!N be a 1-1function. A canonical derandomizer of stretch ` is a deterministic algorithm G of time complexityupper-bounded by poly(2k � `(k)) such that for every circuit Dk of size `(k)2 it holds thatjPr[Dk(G(Uk)) = 1] � Pr[Dk(U`(k)) = 1] j < 16 (9)The circuits Dk are potential distinguishers, which are given inputs of length `(k). When seeking toderandomize an algorithm A of time-complexity t, the aforementioned `(k)-bit long inputs representpossible random-inputs of A when invoked on a generic (primary) input of length n = t�1(`(k)).That is, letting Dk(r) = A(x; r) for some choice of x 2 f0; 1gn, where jrj = t(n) = `(k), andEq. (9) implies that AG(x) maintains the majority vote of A(x). The straightforward deterministicemulation of AG takes time 2k � (poly(2k � `(k))+ t(n)), which is upper-bounded by poly(2k � `(k)) =poly(2`�1(t(n)) � t(n)). The following proposition is easy to establish.Proposition 15 If there exists a canonical derandomizer of stretch ` then, for every time-constructiblet ::N!N , it holds that BPtime(t) � Dtime(T ), where T (n) = poly(2`�1(t(n)) � t(n)).Proof Sketch: Just follow the proof of Theorem 13, noting that the adequate value of k (i.e.,k = `�1(t(n))) can be determined easily (e.g., by invoking G(1i) for i = 1; :::; k, using the fact that` :N!N is 1-1). Note that the complexity of the deterministic procedure is dominated by the 2kinvocations of AG(x; s) = A(x;G(s)), where s 2 f0; 1g`�1(t(jxj)), and each of these invocations takestime poly(2k � `(k)) + t(n) = poly(2`�1(t(n)) � t(n)).The goal. In light of Proposition 15, we seek canonical derandomizers with stretch that is asbig as possible. The stretch cannot be super-exponential (in fact `(k) = O(2k)), because a circuitof size O(2k � `(k)) may violate Eq. (9) (see Exercise 42) whereas for `(k) = !(2k) it holds thatO(2k �`(k)) < `(k)2. Thus, our goal is to construct canonical derandomizer with stretch `(k) = 2
(k).Such canonical derandomizers will allow for a \full derandomization of BPP":Theorem 16 If there exists a canonical derandomizer of stretch `(k) = 2
(k) for BPtime(�), thenBPP = P.Proof: Using Proposition 15, we get BPtime(t) � Dtime(T ), where T (n) = poly(2`�1(t(n)) �t(n)) = poly(t(n)).Re
ections. We stress that a canonical derandomizer G was de�ned in a way that allows it tohave time complexity tG that is larger than the size of the circuits that it fools (i.e., tG(k) > `(k)2is allowed). Furthermore, tG(k) > 2k was also allowed. Thus, if indeed tG(k) = 2
(k) (as is thecase in Section 4.2) then G(Uk) can be distinguished from U`(k) in time 2k � tG(k) = poly(tG(k))(greater than `(k)2), by trying all possible seeds. In contrast, for a general-purpose pseudorandomgenerator G (as discussed in Section 3) it holds that tG(k) = poly(k), while for every polynomial pit holds that G(Uk) is indistinguishable from U`(k) in time p(tG(k)).15Actually, in De�nition 14 we allow the generator to run in time poly(2k`(k)), rather than poly(2k). This is donein order not to rule out trivially generators of super-exponential stretch (i.e., `(k) = 2!(k)). However (see Exercise 42),the condition in Eq. (9) does not allow for super-exponential stretch, and so in retrospect the two formulations areequivalent (because poly(2k`(k)) = poly(2k) for `(k) = 2O(k)).16Fixing a model of computation, we denote by BPtime(t) the class of decision problems that are solvable by arandomized algorithm of time complexity t that has two-sided error 1=3.21



4.2 ConstructionThe fact that canonical derandomizers are allowed to be more complex than the correspondingdistinguisher makes some of the techniques of Section 3 inapplicable in the current context. On theother hand, the techniques developed below are inapplicable to Section 3. Amazingly enough, thepseudorandomness (or rather the next-bit unpredictability) of the following generators hold evenwhen the \observer" is given the seed (capitalizing on the fact that the observer's time-complexitydoes not allow running the generator).As in Section 3.5, the construction surveyed below transforms computational di�culty intopseudorandomness, except that here both computational di�culty and pseudorandomness are of asomewhat di�erent form than in Section 3.5. Speci�cally, here we use Boolean predicates that arecomputable in exponential-time but are T -inapproximated for some exponential function T ; thatis, for constants c; " > 0 and all but �nitely many m, the (residual) predicate f : f0; 1gm ! f0; 1gis computable in time 2cm but for any circuit C of size 2"m it holds that Pr[C(Um) = f(Um)] <12 + 2�"m. (Needless to say, " < c.) Recall that such predicates exist under the assumption that Ehas (almost-everywhere) exponential circuit complexity. With these preliminaries, we turn to theconstruction of canonical derandomizers with exponential stretch.Construction 17 (The Nisan-Wigderson Construction):17 Let f : f0; 1gm!f0; 1g and S1; :::; S`be a sequence of m-subsets of f1; :::; kg. Then, for s 2 f0; 1gk, we letG(s) def= f(sS1) � � � f(sS`) (10)where sS denotes the projection of s on the bit locations in S � f1; :::; jsjg; that is, for s = �1 � � � �kand S = fi1; :::; img, we have sS = �i1 � � � �im .Letting k vary and `;m :N!N be functions of k, we wish G to be a canonical derandomizer and`(k) = 2
(k). Obvious necessary conditions for this to happen include the requirement that thesets be distinct and hence m(k) = 
(k); consequently, f must be computable in exponential-time.Furthermore, the sequence of sets S1; :::; S`(k) must be constructible in poly(2k) time. Intuitively, itis desirable to use a set system with small pairwise intersections (because this restricts the overlapamong the various inputs to which f is applied), and a function f that is strongly inapproximable(i.e., T -inapproximble for some exponential function T ). Interestingly, these conditions are essen-tially su�cient.Theorem 18 (analysis of Construction 17): Let �; �; 
; " > 0 be constants satisfying " > (2�=�)+
, and `;m; T ::N!N satisfy `(k) = 2�k, m(k) = �k, and T (n) = 2"n. Suppose that the followingtwo conditions hold:1. There exists an exponential-time computable function f :f0; 1g�!f0; 1g that is T -inapproximable.182. There exists an exponential-time computable function S :N�N!N such that jS(k; i)j = m(k)for every k and i = 1; :::; `(k), and jS(k; i) \ S(k; j)j � 
 �m(k) for every k and i 6= j.Then using G as de�ned in Construction 17, with Si = S(k; i), yields a canonical derandomizerwith stretch `.17Given the popularity of the term, we deviate from our convention of not specifying credits in the main text. Thisconstruction originates in [33, 36].18We say that f : f0; 1g� ! f0; 1g is (S; �)-inapproximable if for every family of S-size circuits fCngn2N and allsu�ciently large n it holds that Pr[C(Un) 6= f(Un)] � �(n)2 . We say that f is T -inapproximable if it is (T; 1� (1=T ))-inapproximable. 22



For any 
 > 0, a function S as in Condition 2 does exist (see Exercise 43), with some m(k) = 
(k)and `(k) = 2
(k). Combining such S with the worst-case to average-case reduction of [22] and usingTheorem 18, we obtain a canonical derandomizer with exponential stretch based on the assumptionthat E has (almost-everywhere) exponential circuit complexity.19 Combining this with Theorem 16,we get the �rst item of the following theorem.Theorem 19 (Derandomization of BPP, revisited):1. Suppose that there exists a set S 2 E having almost-everywhere exponential circuit complexity(i.e., there exists a constant " > 0 such that, for all but �nitely many m's, any circuit thatcorrectly decides S on f0; 1gm has size at least 2"m). Then, BPP = P.2. Suppose that for every polynomial p there exists a set S 2 E having circuit complexity that isalmost-everywhere greater than p. Then BPP is contained in \">0Dtime(t"), where t"(n) def=2n" .Part 2 is proved (in Exercise 47) by using a generalization of Theorem 18, which in turn is providedin Exercise 46. We note that Part 2 of Theorem 19 superseeds Theorem 13. The two parts ofTheorem 19 exhibit two extreme cases: Part 1 (often referred to as the \high end") assumes anextremely strong circuit lower-bound and yields \full derandomization" (i.e., BPP = P), whereasPart 2 (often referred to as the \low end") assumes an extremely weak circuit lower-bound andyields weak but meaningfull derandomization. Intermediate results (relying on intermediate lower-bound assumptions) can be obtained analogous to Exercise 47, but tight trade-o�s are obtaineddi�erently (cf., [45]).Proof of Theorem 18: Using the time complexity bounds on f and S, it follows that G canbe computed in exponential time. Out focus is on showing that fG(Uk)g cannot be distinguishedfrom fU`(k)g by circuits of size `(k)2; that is, that G satis�es Eq. (9). In fact, we will prove thatthis holds for G0(s) = s � G(s); that is, G fools such circuits even if they are given the seed asauxiliary input. (Indeed, these circuits are smaller than the running time of G, and so they cannotjust evaluate G on the given seed.)We start with the intuition underlying the proof. As a warm-up suppose that the sets (i.e.,S(k; i)'s) used in the construction are disjoint. In such a case (which is indeed impossible becuasek < `(k) �m(k)), the pseudorandomness of G(Uk) would follow easily from the inapproximablity off , because in this case G consists of applying f to non-overlaping parts of the seed (see Exercise 44).In the actual construction being analyzed here, the sets (i.e., S(k; i)'s) are not disjoint but haverelatively small pairwise intersection, which means that G applies f on parts of the seed that haverelatively small overlap. Intuitively, such small overlaps guarantee that the values of f on thecorresponding inputs are \computationally independent" (i.e., having the value of f at one inputdoes not help to approximate the value of f at another input). This intuition will be backed byshowing that the former values can be computed at a relatively small computational cost. Withthis intuition in mind, we now turn to the actual proof.The proof that G0 fools circuits of size `(k)2 utilizes the relation between pseudorandomnessand unpredictability. Speci�cally, as detailed in Exercise 45, any circuit that distinguishes G0(Uk)from U`(k)+k with gap 1=6, yields a next-bit predictor of similar size that succeeds in predicting the19Speci�cally, starting with a function having circuit complexity at least exp("0m), we apply the worst-case toaverage-case reduction of [22], obtaining a T -inapproximble predicate for T (m) = 2"m, where the constant " 2 (0; "0)depends on the constant "0. Next, we set 
 = "=2 and invoke Exercise 43, which determines �; � > 0 such that`(k) = 2�k and m(k) = �k. In fact, � = 
=2 and � = 
�=10, hence (2�=�) + 
 < ".23



next bit with probability at least 12 + 16`0(k) > 12 + 17`(k) , where the `0(k) = `(k) + k < (1 + o(1))`(k)factor is introduced by the hybrid technique (cf. Eq. (5)). Furthermore, given the non-uniformsetting of the current proof, we may �x a bit location i + 1 for prediction, rather than analyzingthe prediction at a random bit location. Indeed, i � k must hold, because the �rst k bits of G0(Uk)are uniformly distributed. In the rest of the proof, we transform such a predictor into a circuit thatapproximates f better than allowed by the hypothesis (regarding the inapproximability of f).Assuming that a small circuit C 0 can predict the i+ 1st bit of G0(Uk), when given the previousi bits, we construct a small circuit C for approximating f(Um(k)) on input Um(k). The point is thatthe i+1st bit of G0(s) equals f(sS(k;j+1)), where j = i�k � 0, and so C 0 approximates f(sS(k;j+1))based on s; f(sS(k;1)); :::; f(sS(k;j)), where s 2 f0; 1gk is uniformly distributed. This is the type ofthing that we are after, except that the circuit we seek may only get sS(k;j+1) as input.The �rst observation is that C 0 maintains its advantage when we �x the best choice for the bitsof s that are not at bit locations Sj+1 = S(k; j+1) (i.e., the bits s[k]nSj+1). That is, by an averagingargument, it holds thatmaxs02f0;1gk�m(k)fPrs2f0;1gk [C 0(s; f(sS1); :::; f(sSj )) = f(sSj+1) j s[k]nSj+1 = s0]g� p0 def= Prs2f0;1gk [C 0(s; f(sS1); :::; f(sSj )) = f(sSj+1)]:Recall that by the hypothesis p0 > 12 + 17`(k) . Hard-wiring the �xed string s0 into C 0, and letting�(x) denote the (unique) string s satisfying sSj+1 = x and s[k]nSj+1 = s0, we obtain a circuit C 00that satis�es Prx2f0;1gm [C 00(x; f(�(x)S1); :::; f(�(x)Sj )) = f(x)] � p0:The circuit C 00 is almost what we seek. The only problem is that C 00 gets as input not only x, butalso f(�(x)S1); :::; f(�(x)Sj ), whereas we seek an appproximator of f(x) that only gets x.The key observation is that each of the \missing" values f(�(x)S1); :::; f(�(x)Sj ) depend only ona relatively small number of the bits of x. This fact is due to the hypothesis that jSt\Sj+1j � 
�m(k)for t = 1; :::; j, which means that �(x)St is an m(k)-bit long string in which mt def= jSt \ Sj+1j bitsare projected from x and the rest are projected from the �xed string s0. Thus, given x, the valuef(�(x)St) can be computed by a (trivial) circuit of size eO(2mt); that is, by a circuit implementinga look-up table on mt bits. Using all these circuits (together with C 00), we will obtain the desiredapproximator of f . Details follow.We obtain the desired circuit C, which depends on the index j and the string s0 that are �xed asin the foregoing analysis. On input x 2 f0; 1gm, the circuit computes the values f(�(x)S1); :::; f(�(x)Sj ),invokes C 00 on input x and these values, and outputs the answer as a guess for f(x). That is,C(x) = C 00(x; f(�(x)S1); :::; f(�(x)Sj )) = C 0(�(x); f(�(x)S1 ); :::; f(�(x)Sj )):By the foregoing analysis, Prx[C(x) = f(x)] � p0 > 12 + 1T (m) , where the second inequality is dueto T (m(k)) = 2"m(k) = 2"�k � 22�k � 7`(k). The size of C is upper-bounded by `(k)2 + `(k) �eO(2
�m(k)) � eO(`(k)2 � 2
�m(k)) � T (m(k)), where the second inequality is due to T (m(k)) =2"m(k) � eO(22��k+
�m(k)) and `(k) = 2�k. Thus, we derived a contradiction to the hypothesis thatf is T -inapproximable.4.3 Variants and a conceptual discussionThe Nisan{Wigderson Construction (Construction 17) is actually a general framework, which can beinstantiated in various ways. We start this section by brie
y reviewing some of these instantiations24



and end it with a conceptual discussion regarding derandomization.Derandomization of constant-depth circuits. Using (Construction 17 with) a di�erent set-ting of parameters and the parity function in the role of the inapproximable predicate (i.e., inap-proximable by \small" constant-depth circuits), one can obtain pseudorandom generators that fool\small" constant-depth circuits (see [33]). The analysis of the modi�ed construction proceeds verymuch like the proof of Theorem 18. One important observation is that incorporating the (straight-forward) circuits that compute f(�(x)Si) into the distinguishing circuit only increases its depthby two levels. The resulting pseudorandom generator, which use a seed of polylogarithmic length(equiv., `(k) = exp(k1=O(1))), can be used for derandomizingRAC0 (i.e., random AC0), analogouslyto Theorem 16. In other words, we can deterministically approximate, in quasi-polynomial-timeand up-to an additive error, the fraction of inputs that satisfy a given (constant-depth) circuit.Speci�cally, for any constant d, given a depth-d circuit C, one can approximate the fraction of theinputs that satisfy C (i.e., cause C to evaluate to 1) to within any additive constant error20 in timeexp(poly(log jCj)), where the polynomial depends on d. Providing a deterministic polynomial-timeaproximation, even in the case d = 2 (i.e., CNF/DNF formulae) is an open problem.Derandomization of probabilistic proof systems. A di�erent (and more surprising) instan-tiation of Construction 17 utilizes predicates that are hard for small circuits having oracle accessto NP . The result is a pseudorandom generator robust against two-move public-coin interactiveproofs (which are as powerful as constant-round interactive proofs). The key observation is thatthe above proof provides a black-box procedure for approximating the underlying predicate whengiven oracle access to a distinguisher (and this procedure in valid also in case the distinguisheris a non-deterministic machine). Thus, under suitably strong (and yet plausible) assumptions,constant-round interactive proofs collapse to NP . We note that a stronger result, which deviatesfrom the foregoing framework, has been subsequently obtained (cf. [31]).An even more radical instantiation of Construction 17 was used to obtain explicit constructionsof randomness extractors (see [41]). In addition to the foregoing observation, one also utilizes thefact that the generator itself uses the predicate as a black-box.A conceptual discussion regarding derandomizationPart 1 of Theorem 19 is often summarized by saying that (under some reasonable assumptions)randomness is useless. We believe that this interpretation is wrong even within the restrictedcontext of traditional complexity classes, and is bluntly wrong if taken outside of the latter context.Let us elaborate.Taking a closer look at the proof of (the underlying) Theorem 16, we note that a randomizedalgorithm A of time complexity t is emulated by a deterministic algorithm A0 of time complexityt0 = poly(t). Further noting that A0 = AG invokes A and the canonical derandomizer G for anumber of times that must exceed t, we infer that t0 > t2 must hold. Thus, derandomization via(Part 1 of) Theorem 19 is not really for free.More importantly, we note that derandomization is not possible in various distributed settings,when both parties may protect their con
icting interests by employing randomization. Notable20We mention that in the special case of approximating the number of satisfying assignment of a DNF formula,relative error approximations can be obtained by employing a deterministic reduction to the case of additive constanterror (see [15, Apdx. B.1.1]). Thus, using a pseudorandom generator that fools DNF formulae, we can deterministicallyobtain a relative (rather than additive) error approximation to the number of satisfying assignment in a given DNFformula. 25



examples include most cryptographic primitives (e.g., encryption) as well as most types of proba-bilistic proof systems (e.g., PCP). Additional settings where randomness makes a di�erence (eitherbetween impossibility and possibility or between prohibited and a�ordable cost) include distributedcomputing (see [6]), communication complexity (see [26]), parallel architectures (see [27]), samplingand property testing.5 Space Pseudorandom GeneratorsIn the previous two sections we have considered generators the output of which is indistinguishableby any e�cient procedures. The latter were modeled by time-bounded computations; speci�cally,polynomial-time computations. A �ner characterization of time-bounded computations is obtainedby considering their space-complexity (i.e., restricting the space-complexity of time-bounded com-putations). In contrast to the de�nitions of pseudorandom generators that were considered inSections 3 and 4, the existence of pseudorandom generators that fool space-bounded distinguisherscan be established without relying on computational assumptions.5.1 De�nitional issuesUnfortunately, natural notions of space-bounded computations are quite subtle, especially whennon-determinism or randomization are concerned. Two major issues are time bounds and access tothe random tape.1. Time bound: The question is whether or not one restricts the space-bounded machines to runin time-complexity that is at most exponential in the space-complexity.21 Recall that suchan upper-bound follows automatically in the deterministic case, and can be assumed withoutloss of generality in the non-deterministic case but not in the randomized case.Indeed, we do postulate the aforementioned time-bound.2. Access to the random tape: The question is whether whether the space-bounded machine hasone-way or two-way access to the randomness tape. (Allowing two-way access means thatthe randomness is recorded for free; that is, without being accounted for in the space-bound.)Recall that one-way access to the randomness tape corresponds to the natural model of on-linerandomized machine (which determines its moves based on its internal coin tosses).Again, following most work in the area, we consider one-way access.22In accordance with the resulting de�nition of randomized space-bounded computation, we considerspace-bounded distinguishers that have a one-way access to the input sequence that they examine.Since all known constructions remain valid also when these distinguishers are non-uniform (andsince non-uniform distinguishers arise anyhow in derandomization), we use this stronger notionhere.2321Alternatively, one can ask whether these machines must always halt or only halt with probability approaching 1.It can be shown that the only way to ensure \absolute halting" is to have time-complexity that is at most exponentialin the space-complexity.22We note that the fact that we restrict our attention to one-way access is instrumental in obtaining space-robust generators without making intractability assumptions. Analogous generators for two-way space-boundedcomputations would imply hardness results of a breakthrough nature in the area.23We note that these non-uniform space-bounded distinguishers correspond to branching programs of width thatis exponential in the space-bound. Furthermore, these branching programs read their input in a �xed predeterminedorder (which is determined by the designer of the generator).26



In the context of non-uniform algorithms that have one-way access to their input, we mayassume, without loss of generality, that the running-time of such algorithms equals the length oftheir input, denoted ` = `(k). Thus, we de�ne a non-uniform machine of space s :N!N as a family,fDkgk2N, of directed layered graphs such that Dk has at most 2s(k) vertices at each layer, andlabeled directed edges from each layer to the next layer.24 Each vertex has two (possibly parallel)outgoing directed edges, one labeled 0 and the other labeled 1, and there is a single vertex in the �rstlayer of Dk. The result of the computation of such a machine, on an input of adequate length (i.e.,length ` where Dk has `+ 1 layers), is de�ned as the vertex (in last layer) reached when followingthe sequence of edges that are labelled by the corresponding bits of the input. That is, on inputx = x1 � � � x`, for i = 1; :::; `, we move from the vertex reached in the ith layer by using the outgoingedge labelled xi (thus reaching a vertex in the i+ 1st layer). Using a �xed partition of the verticesof the last layer, this de�nes a natural notion of decision (by Dk); that is, we write Dk(x) = 1 if oninput x machine Dk reached a vertex that belongs to the �rst part of the aforementioned partition.De�nition 20 (Indistinguishability by space-bounded machines):� For a non-uniform machine, fDkgk2N, and two probability ensembles, fXkgk2N and fYkgk2N,the function d :N! [0; 1] de�ned asd(k) def= jPr[Dk(Xk) = 1]� Pr[Dk(Yk) = 1]jis called the distinguishability-gap of fDkg between the two ensembles.� A probability ensemble, fXkgk2N, is called (s; ")-pseudorandom if for any (non-uniform) s(�)-space-bounded machine, the distinguishability-gap of the machine between fXkgk2N and auniform ensemble (of length jXkj) is at most "(�).� A deterministic algorithm G of stretch function ` is called a (s; ")-pseudorandom generator ifthe ensemble fG(Uk)gk2N is (s; ")-pseudorandom.5.2 Two constructionsIn contrast to the case of pseudorandom generators that fool time-bounded distinguishers, pseu-dorandom generators that fool space-bounded distinguishers can be established without relying onany computational assumption. The following two constructions exhibit two extreme cases of ageneral trade-o� between the length of the seed and the stretch function of the generator.25 Westart with an attempt to maximize the stretch.Theorem 21 (exponential stretch with quadratic length seed): For every space constructible func-tion s :N!N , there exists a (s; 2�s)-pseudorandom generator of stretch function `(k) = 2k=O(s(k)).Furthernore, the generator works in space linear in the length of the seed, and in time linear in thestretch function.24Note that the space bound of the machine is stated in terms of a parameter k, rather than in terms of the lengthof its input. In the sequel this parameter will be set to the length of a seed to a pseudorandom generator. Wewarn that our presentation here is indeed non-standard for this area. To compensate for this, we will also state theconsequences in the standard format.25These two results have been \interpolated" in [5]: There exists a parameterized family of space pseudorandomgenerators that includes both results as extreme special cases.27



In other words, we have a generator that takes a random seed of length k = O(t �m) and producesequences of length 2t that look random to any m-space-bounded machine. In particular, using arandom seed of length k = O(m2), one can produce sequences of length 2m that look random to anym-space bounded machine. Thus, one may replace random sequences used by any space-boundedcomputation, by sequences that are e�ciently generated from random seeds of length quadratic in thespace bound. The common instantiation is for log-space machines. In x5.2.2, we apply Theorem 21(and its underlying ideas) for the derandomization of space complexity classes such as BPL (i.e.,the log-space analogue of BPP).We now turn to the case where one wishes to minimize the seed length. We warn that The-orem 22 only guarantees a subexponential distinguishing gap (rather than the exponential dis-tinguishing gap guaranteed in Theorem 21). This warning is voiced because failing to recall thislimitation has led to errors in the past.Theorem 22 (polynomial stretch with linear length seed): For any polynomial p and for s(k) =k=O(1), there exists a (s; 2�ps)-pseudorandom generator of stretch function p. Furthermore, thegenerator works in linear-space and polynomial-time (both stated in terms of the length of theseed).In other words, we have a generator that takes a random seed of length k = O(m) and producesequences of length poly(m) that look random to any m-space-bounded machine. Thus, one mayconvert any randomized computation utilizing polynomial-time and linear-space into a functionallyequivalent randomized computation of similar time and space complexities that uses only a linearnumber of coin tosses.5.2.1 Overviews of the proofs of Theorems 21 and 22In both cases, we describe the construction by starting with an adequate distinguisher and showinghow the input distribution it examines can be modi�ed (from the uniform one into a pseudorandomone) without the distinguisher noticing the di�erence.Overview of the proof of Theorem 21.26 Theorem 21 is proven by using the \mixing property"of pairwise independent hash functions. A family of functions Hn which map f0; 1gn to itself iscalled mixing if for every pair of subsets A;B � f0; 1gn for all but very few (i.e., exp(�
(n))fraction) of the functions h 2 Hn,Pr[Un 2 A ^ h(Un) 2 B] � jAj2n � jBj2n (11)where the approximation is up to an additive term of exp(�
(n)).Given a s(k)-space distinguisher Dk as in De�nition 20, we set n def= �(s(k)) and `0 def= `(k)=n <2s(k), and consider an auxiliary \distinguisher" D0k that is a directed layered graph with `0 layersand 2s(k) vertices in each layer. In D0k, each vertex has directed edges going to each vertex ofthe next layer and these edges are labeled with (possibly empty) subsets of f0; 1gn such that thesesubsets form a partition of f0; 1gn. The graph D0k simulates Dk in the obvious manner; that is,the computation of D0k on an input of length `(k) = `0 � n is de�ned by breaking the input intoconsecutive blocks of length n and following the path of edges that are labeled by the subsetscontaining the corresponding block. Now, for each pair of neighboring vertices, u and v (in layers iand i+1, respectively), consider the label, Lu;v � f0; 1gn, of the edge going from u to v. Similarly,26A detailed proof appears in [34]. 28



for a vertex w at layer i+ 2, we consider the label L0v;w of the edge from v to w. By Eq. (11), forall but very few few of h 2 Hn,Pr[Un 2 Lu;v ^ h(Un) 2 L0v;w] � Pr[Un 2 Lu;v] � Pr[Un 2 L0v;w]where \very few" and � are as in Eq. (11). Thus, replacing the coins in the second block (i.e.,used in transitions from layer i + 1 to layer i + 2) with the value of h applied to the outcomes ofthe coins used in the �rst block (i.e., in transitions from layer i to i+ 1), approximately maintainsthe probability that D0k moves from u to w via v. The same (with \few" being 23s(k) � `0 timeslarger here)27 holds for every triple of vertices in any three layers as in the foregoing discussion.The point is that we can use the same h in all these approximations. Thus, at the cost of extra jhjrandom bits, we can reduce the number of true random coins used in transitions on D0k by a factorof 2, without signi�cantly a�ecting the �nal decision of D0k. In other words, at the cost of extrajhj random bits, we can e�ectively contract the distinguisher to half its length. That is, �xing agood h (i.e., one that provides a good approximation to all 23s(k) � `0 relevant pairs of sets), we canreplace the 2-edge paths in D0k by edges in a new distinguisher D00k such that r is in the set thatlabels the edge u{w in D00k if and only if, for some v, the string r is in the label of the edge u{v inD0k and h(r) is in the label of the edge v{w (also in D0k).Repeating the process for a logarithmic (in D0k's length) number of times we obtain a distin-guisher that only examines n bits, at which point we stop. In total, we have used log2(`(k)=O(s(k))) <log2 `(k) random hash functions, which means that we can generate a sequence that fools the orig-inal Dk using a seed of length n+ log2 `(k) � log2 jHnj (see Exercise 48). Using n = �(s(k)) and anadequate family Hn yields the claimed seed length of O(s(k) � log2 `(k)) = k.Overview of the proof of Theorem 22.28 Theorem 22 is proven by using a suitable randomnessextractor (as in [41]), which is indeed a much more powerful tool than hashing functions. The basicidea is that when Dk is at some distant layer, say at layer t, it typically \knows" little aboutthe random choices that led it there. That is, Dk has only s(k) bits of memory, which leavesout t � s(k) bits of \uncertainty" (or randomness) regarding the previous moves. Thus, muchof the randomness that led Dk to its current state may be \re-used" (or \recycled"). To re-usethese bits we need to extract almost uniform distribution on strings of su�cient length out of theaforementioned distribution over f0; 1gt that has entropy29 at least t� s(k). Furthermore, such anextraction requires some { yet relatively few { truly random bits. In particular, using k0 = 
(log t)bits towards this end, the extracted bits are exp(�
(k0)) away from uniform.One important point is how to use the foregoing argument repeatedly. Towards this end, webreak the k-bit long seed into two parts, denoted r0 2 f0; 1gk=2 and (r1; :::; r3pk), where jrij = pk=6,and set n = k=3. Intuitively, r0 will be used for determining the �rst n steps, and it will be re-used(or recycled) together with ri for determining the steps i �n+1 through (i+1) �n. Looking at layeri � n, we consider the information regarding r0 that is known to Dk (at layer i � n). Typically, theconditional distribution of r0, given that we reached a speci�c vertex at layer i �n has (min-)entropygreater than 0:99 � (t � s(k)). Using ri (as a seed of an extractor applied to r0), we can extract0:9 � ((k=2)� s(k)� o(k)) > k=3 = n bits that are almost-random with respect to Dk, and use these27Note that \very few" means an exp(�
(n)) fraction and that n = 
(s(k)) and `0 < exp(s(k)).28A detailed proof appears in [37].29Actually, a stronger technical condition needs and can be imposed on the latter distribution. Speci�cally, withoverwhlemingly high probability, at layer t machine Dk is at a vertex that can be reached in more than 20:99�(t�s(k))di�erent ways. In this case, the distribution representing a random walk that reaches this vertex has min-entropygreater than 0:99 � (t� s(k)). The reader is referred to [41] for de�nitions of min-entropy and extractors.29



bits for determining the next n steps. Hence, using k random bits we are produce a sequence30of length (1 + 3pk) � n > k3=2 that fools machines of space bound, say, s(k) = k=10. That is, weobtained a (s; 2�
(ps))-pseudorandom generator of stretch function `(k) = k3=2.To obtain an arbitrary polynomial stretch rather than a speci�c polynomial stretch (i.e., `(k) =k3=2) we repeatedly apply an adequate composition, to be outlined next. Suppose that G1 is a(s1; "1)-pseudorandom generator of stretch function `1 that works in linear space, and similarly forG2 with respect to (s1; "1) and `2. Then, we consider the following construction of a generator G:1. On input s 2 f0; 1gk , obtain G1(s), and parse it into consecuetive blocks, each of lengthm = s1(k)=O(1), denoted r1; :::; rt, where t = `1(k)=m.2. Output the t � `2(m)-bit long sequence G2(r1) � � �G2(rt).Note that jG(s)j = `1(k) � `2(m)=m, which for s1(k) = �(k) yields jG(s)j = `1(k) � `2(
(k))=O(k).We claim that G is a (s; ")-pseudorandom generator, for s(k) = min(s1(k)=2; s2(
(s1(k))) and"(k) = "1(k) + `1(k) � "2(
(s1(k)). The proof uses a hybrid argument, which focuses on the in-termediate distribution G2(U (1)m ) � � �G2(U (t)m ). The key claim is that the intermediate distributionis (s1=2; "1)-indistinguishable from G(Uk), and it is proven by converting a potential distinguisherinto a distinguisher of U (1)m � � �U (t)m and G1(Uk) by invoking G2 on the corresponding m-bit longblocks (of the `(k)-bit long input). For this reason, it crucial that G2 can be evaluate on m-bit longstrings using space at most s1(k)=2, which is guaranteed by our setting of m = s1(k)=O(1) and thehypothesis that G2 works in linear space.5.2.2 Derandomization of space-complexity classesAs a direct application of Theorem 21, we obtain that BPL � Dspace(log2), where BPL denotesthe log-space analogue of BPP . (Recall that NL � Dspace(log2), but it is not known whether ornot BPL � NL.)31 A stronger derandomization result can be obtained by a �ner analysis of theproof of Theorem 21.Theorem 23 BPL � SC, where SC denotes the class of decision problems that can be solved by adeterministic machine that runs in polynomial-time and polylogarithmic-space.Thus, BPL � RL is placed in a class not known to contain NL. Another such result was sub-sequently obtained in [40]: Randomized log-space can be simulated in deterministic space o(log2);speci�cally, in space log3=2. We mention that the archetypical problem of RL has been recentlyproved to be in L (see [39]).Overview of the proof of Theorem 23.32 Looking at the proof of Theorem 21, we note thatthe question of whether or not a speci�c hash function h 2 Hn is good for a speci�c D0k can bedetermined in space that is linear in n = jhj=2 and logarithmic in the size of D0k. Indeed, the timecomplexity of this decision procedure is exponential in its space complexity. It follows that we can�nd a good h 2 Hn, for a given D0k, within these complexities (by scanning through all possibleh 2 Hn). Once a good h is found, we can also construct the corresponding graph D00k (in which30Speci�cally, using an extractor of the form Ext : f0; 1gpk=6 � f0; 1gk=2 ! f0; 1gk=3, we map the seed(r0; r1; :::; r3pk) to the output sequence (r0;Ext(r1; r0); :::;Ext(r3pk; r0)).31Indeed, the log-space analogue of RP, denoted RL, is contained in NL � Dspace(log2), and thus the fact thatTheorem 21 implies RL � Dspace(log2) is of no interest.32A detailed proof appears in [35]. 30



edges represent 2-edge paths in D0k), again within the same complexity. Actually, it will be moreinstructive to note that we can determine a step (i.e., an edge-traversal) in D00k by making two steps(edge-traversals) in D0k.The key claim is that the entire process of �nding a sequence of t def= log2 `0(k) good hashfunctions can be performed in space t �O(n+ log jDkj) < O(n+ log jDkj)2 and time poly(2n � jDkj);that is, the time complexity is sub-exponential in the space complexity (i.e., the time complexity issigni�cantly smaller than than the generic bound of exp(O(n+ log jDkj)2)). Starting with D(1)k =D0k, we �nd a good (for D(1)k ) hashing function h(1) 2 Hn, which de�nes D(2)k = D00k . Havingfound (and stored) h(1); :::; h(i) 2 Hn, which determine D(i+1)k , we �nd a good hashing functionh(i+1) 2 Hn for D(i+1)k by emulating pairs of edge-traversals on D(i+1)k . Indeed, a key point is thatwe do not construct the sequence of graphs D(2)k ; :::;D(i+1)k , but rather emulate an edge-traversal inD(i+1)k by making 2i edge-traversals in D0k, using h(1); :::; h(i): The (edge-traversal) move � 2 f0; 1gnstarting at vertex v of D(i+1)k translates to a sequence of 2i moves starting at vertex v of D0k, wherethe moves are determined by�; h(1)(�); h(2)(�); h(1)(h(2)(�)); :::; h(1)(h(2)(� � � h(i)(�) � � �)):(See Figure 3.) Thus, for n = �(log jD0kj), given D0k and a pair (u; v) of source and sink in D0k(which reside in the �rst and last layer, respectively), we can (deterministically) approximate theprobability that a random walk starting at u reaches v in O(log jD0kj)2-space and poly(jD0kj)-time.The approximation can be made accurate up to a factor of 1 � (1=poly(jD0kj)). We conclude theproof by recalling the connection between such an approximation and the derandomization of BPL.
1

0 1

0 1 0 1

0 0 0 0 1111

α

α0 α1

α10α00 α
01

α11

000
α

001
α 010

α
011

α α100 α
101

α110 α111

application(possible)

h
(3)

(2)
hof

application
(possible)

(1)
hof

 

(possible)  application of   

The output of the generator (on seed �) consists of the concatanation of thestrings denoted �0i ; :::; �1i , appearing in the leaves of the tree. For everyx 2 f0; 1g� it holds that �x0 = �x and �x1 = h(i�jxj)(�x). In particular,for i = 3, we have �011 = h(1)(�01), which equals h(1)(�01) = h(1)(h(2)(�)),where � = ��.Figure 3: Derandomization of BPL { the generator for i = 3.The computation of a log-space probabilistic machine M , on input x, can be represented by adirected layer graph GM;x of size poly(jxj). Speci�cally, the probability that M accepts x equals31



the probability that a random walk starting at the single vertex of the �rst layer of GM;x reachessome vertex in the last layer that represents an accepting con�guration. Setting k = �(log jxj)and n = �(k), the graph GM;x coincides with the graph Dk referred to at the beginning of theproof of Theorem 21, and D0k is obtained from Dk by an \n-layer contraction" (see ibid.). Com-bining this with the foregoing analysis, we conclude that the probability that M accepts x can bedeterministically approximated in O(log jxj)2-space and poly(jxj)-time. The theorem follows.6 Special Purpose GeneratorsIn this section we consider even weaker types of pseudorandom generators, producing sequences thatcan fool only very restricted types of distinguishers. Still, such generators have many applicationsin complexity theory and in the design of algorithms. (These applications will only be mentionedbrie
y.)Our choice is to start with the simplest of these generators: the pairwise-independent gener-ator, and its generalization to t-wise independence for any t � 2. Such generators perfectly foolany distinguisher that only observe t locations in the output sequence. This leads naturally toalmost pairwise (or t-wise) independence generators, which also fool (albeit non-perfectly) suchdistinguishers. The latter generators are implied by a stronger class of generators, which is ofindependent interest: the small-bias generators. Small-bias generators fool any linear test (i.e., anydistinguisher that merely considers the xor of some �xed locations in the input sequence). Wethen turn to the Expander Random Walk Generator: this generator produces a sequence of stringsthat hit any dense subset of strings with probability that is close to the hitting probability of atruly random sequence. Related notions such as samplers, dispersers, and extractors are treatedelsewhere (e.g., see [15] and [41], respectively).Comment regarding our parameterization: To maintain consistency with prior sections, wecontinue to present the generators in terms of the seed length, denoted k. Since this is not thecommon presentation for most results presented in the sequel, we provide (in footnotes) the commonpresentation in which the seed length is determined as a function of other parameters.6.1 Pairwise-Independence GeneratorsPairwise (resp., t-wise) independence generators fool tests that inspect only two (resp., t) elementsin the output sequence of the generator. Such loacl tests are indeed very restricted, yet they arisenaturally in many settings. For example, such a test corresponds to a probabilistic analysis (of aprocedure) that only relies on the pairwise independence of certain choices made by the procedure.We also mention that, in some natural range of parameters, pairwise independent sampling is asgood as sampling by totally independent sample points.A t-wise independence generator of block-size b : N!N (and stretch function `) is an e�cientdeterministic algorithm (e.g., one that works in time polynomial in the output length) that expandsa k-bit long random seed into a sequence of `(k)=b(k) strings, each of length b(k), such that anyt blocks are uniformly and independently distributed in f0; 1gt�b(k). In case t = 2, we call thegenerator pairwise independent. We note that this condition holds even if the inspected t blocks areselected adaptively (see Exercise 49)
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6.1.1 ConstructionsIn the �rst construction, we refer to GF(2b(k)), the �nite �eld of 2b(k) elements, and associate itselements with f0; 1gb(k).Proposition 24 (t-wise independence generator):33 Let t be a �xed integer and b; `; `0 :N!N suchthat b(k) = k=t, `0(k) = `(k)=b(k) > t and `0(k) � 2b(k). Let �1; :::; �`0(k) be distinct elements ofthis �eld. For s0; s1; :::; st�1 2 f0; 1gb(k), letG(s0; s1; :::; st�1) def= 0@t�1Xj=0 sj�j1 ; t�1Xj=0 sj�j2 ; :::; t�1Xj=0 sj�j̀0(k)1A (12)where the arithmetic is that of GF(2b(k)). Then, G is a t-wise independence generator of block-sizeb and stretch `.That is, given a seed that consists of t elements of GF(2b(k)), the generator outputs a sequence of`0(k) such elements. To make the above generator totally explicit, we need an explicit representationof GF(2b(k)), which requires an irreducible polynomial of degree b(k) over GF(2). For speci�c valuesof b(k), a good representation does exist: Speci�cally, for d def= b(k) = 2�3e (with e being an integer),the polynomial xd + xd=2 + 1 is irreducible over GF(2). The proof of Proposition 24 is left as anexercise (see Exercise 50).An alternative construction for the case of t = 2 is obtained by using (random) a�ne transfor-mations (as possible seeds). In fact, better performance (i.e., shorter seed length) is obtained byusing a�ne transformations de�ned by Toeplitz matrices. A Toeplitz matrix is a matrix with alldiagonals being homogeneous; that is, T = (ti;j) is a Toeplitz matrix if ti;j = ti+1;j+1, for all i; j.Note that a Toeplitz matrix is determined by its �rst row and �rst column (i.e., the values of t1;j'sand ti;1's).
+ =

m(k)

b(k)

Figure 4: An a�ne transformation de�ned by a Toeplitz matrix.Proposition 25 (Alternative pairwise independence generator, see Figure 4):34 Let b; `; `0;m :N!N such that `0(k) = `(k)=b(k) and m(k) = dlog2 `0(k)e = k � 2b(k) + 1. Associate f0; 1gn33The common parameterization of t-wise independence generator is as follows. Given parameters b and `0 � 2b,and a uniformly distributed seed of length t � b, one e�ciently and deterministically generates a random sequence of`0 strings, each of length b, that are t-wise independent.34The common parameterization of this pairwise independence generator is as follows. Given parameters b and`0, and a uniformly chosen seed of length 2b+ dlog2 `0e � 1, one e�ciently and deterministically generates a randomsequence of `0 strings, each of length b, that are pairwise independent.33



with the n-dimensional vector space over GF(2), and let v1; :::; v`0(k) be distinct vectors in the m(k)-dimensional vector space over GF(2). For s 2 f0; 1gb(k)+m(k)�1 and r 2 f0; 1gb(k), letG(s; r) def= (Tsv1 + r ; Tsv2 + r ; :::; Tsv`0(k) + r) (13)where Ts is an b(k)-by-m(k) Toeplitz matrix speci�ed by the string s. Then G is a pairwise inde-pendence generator of block-size b and stretch `.That is, given a seed that represents an a�ne transformation de�ned by an b(k)-by-m(k) Toeplitzmatrix, the generator outputs a sequence of `0(k) � 2m(k) strings, each of length b(k). Note thatm(k) = k � 2b(k) + 1, and that the stretching property requires `0(k) > k=b(k). The proof ofProposition 25 is left as an exercise (see Exercise 51).A stronger notion of e�cient generator. We note that the aforementioned constructionssatisfy a stronger notion of e�cient generation, which is useful in several applications. Speci�cally,there exists a polynomial-time algorithm that given a seed, s 2 f0; 1gk , and a block locationi 2 [`0(k)] (in bianry), outputs the ith block of the corresponding output (i.e., the ith block ofG(s)).6.1.2 ApplicationsPairwise independence generators do su�ce for a variety of applications (cf., [47, 30]). In particu-lar, we mention the application to sampling, and the celebrated derandomization of the MaximalIndependent Set algorithm. The latter uses the fact that the analysis of the \target" randomizedalgorithm only relies on the hypothesis that some objects are selected in pairwise independentmanner. Thus, such weak generators do su�ce to fool distinguishers that are derived from somenatural and interesting algorithms.Referring to Eq. (12), we remark that for constant t � 2, the cost of derandomization (i.e.,going over all 2k possible seeds) is exponential in the block-size (because b(k) = 
(k)), which inturn also bounds the number of blocks (because `0(k) � 2b(k)). Note that if a larger number ofblocks is needed, we can arti�cially increase the block-length in order to allow for it (i.e., allow`0(k) = 2b(k) = exp(k=t)), and in this case the cost of derandomization will be polynomial inthe number of blocks. Thus, whenever the analysis of a randomized algorithm can be based ona constant amount of independence between (feasibly-many) random choices, each made insidea feasible domain, a feasible derandomization is possible.35 On the other hand, the relationship`(k) = exp(k=t) is the best possible; that is, one cannot produce from a seed of length k anexp(k=O(1))-long sequence of non-constantly independent random bits. In other words, t-wiseindependent generators of (any block-length and) stretch ` require a seed of length 
(t � log `). Inthe next subsection we will see that meaningful approximations may be obtained with much shorterseeds.6.2 Small-Bias GeneratorsTrying to go beyond constant-independence in derandomizations (while using seeds of length thatis logarithmic in the length of the pseudorandom sequence) was the original motivation (and remain35We stress that it is important to have the cost of derandomization be polynomial in the length of the producedpseudorandom sequence, because the latter is typically polynomially-related to the length of the input to the algorithmwe wish to derandomize. 34



an important application) of the notion of small-bias generators. Still, small-bias generators areinteresting for their own sake, and in particular they fool \global tests" that look at the entireoutput sequence and not merely at a �xed number of positions in it (as the limited independencegenerators). Speci�cally, small-bias generators generate a sequence of bits that fools any linear test(i.e., a test that computes a �xed linear combination of the bits).For " :N! [0; 1], an "-bias generator with stretch function ` is an e�cient deterministic algorithm(e.g., working in poly(`(k)) time) that expands a k-bit long random seed into a sequence of `(k)bits such that for any �xed non-empty set S � f1; :::; `(k)g the bias of the output sequence overS is at most "(k). The bias of a sequence of n (possibly dependent) Boolean random variables�1; :::; �n 2 f0; 1g over a set S � f1; ::; ng is de�ned as2 � ����Pr[�i2S�i = 1]� 12 ���� = jPr[�i2S�i = 1]� Pr[�i2S�i = 0]j: (14)The factor of 2 was introduced so to make these biases correspond to the Fourier coe�cients ofthe distribution (viewed as a function from f0; 1gn to the reals). To see the correspondence replacef0; 1g by f�1g, and substitute xor by multiplication. The bias with respect to set S is thus writtenas �����Pr "Yi2S �i = +1#� Pr "Yi2S �i = �1#����� = �����E "Yi2S �i#�����;which is merely the (absolute value of the) Fourier coe�cient corresponding to S.6.2.1 ConstructionsE�cient small-bias generators with exponential stretch and exponentially vanishing bias are know.Theorem 26 (small-bias generators):36 For some universal constant c > 0, let ` : N!N and" : N ! [0; 1] such that `(k) � "(k) � exp(k=c). Then, there exists an "-bias generator with stretchfunction ` operating in time polynomial in the length of its output.Three simple constructions of small-bias generators that satisfy Theorem 26 are known (see [3]).One of these constructions is based on Linear Feedback Shift Registers. Loosely speaking, the �rsthalf of the seed, denoted f0f1 � � � f(k=2)�1, is interpreted as a (non-degenerate) feedback rule37, theother half, denoted s0s1 � � � s(k=2)�1, is interpreted as \the start sequence", and the output sequence,denoted r0r1 � � � r`(k)�1, is obtained by setting ri = si for i < k=2 and ri = P(k=2)�1j=0 fj � ri�(k=2)+jfor i � k=2. (See Figure 5 and Exercise 55.)As in Section 6.1.1, we note that the aforementioned constructions satisfy a stronger notion ofe�cient generation, which is useful in several applications. Speci�cally, there exists a polynomial-time algorithm that given a seed and a bit location i 2 [`(k)] (in bianry), outputs the ith bit of thecorresponding output.36Here the common parameterization di�ers from ours merely in the point of view: Rather than saying that thefunctions ` and " should satisfy `(k) � "(k) � exp(k=c), one says that given the desired parameters ` and " the seedlength k is set to O(log(`=")). We also comment that using [3] the constant in the O-notation is merely 2 (i.e.,k � 2 log2(`=")), whereas using [32] k � log2 `+ 4 log2(1=").37That is, f0 = 1 and f(z) def= zk=2 +P(k=2)�1j=0 fj � zj is an irreducible polynomial over GF(2).
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Figure 5: The LFSR small-bias generator (for t = k=2).6.2.2 ApplicationsAn archetypical application of small-bias generators is for generating random checks for fast stringequality. The key obserevation is that checking whether or not x = y is probabilistically reducibleto checking whether the inner product modulo 2 of x and r equals the inner product modulo 2of y and r, where r is generated by a small-bias generator. One advantage of this reduction isthat only few bits (i.e., the seed of the generator and the result of the inner product) needs to be\communicated between x and y" (see Exercise 53). A related advantage (i.e., low randomnesscomplexity) underlies the application of small-bias generators in the construction of PCPs.Small-bias generators have been used in a variety of areas (e.g., inapproximation, structuralcomplexity, and applied cryptography; see references in [15, Sec 3.6.2]). In addition, they seem animportant tool in the design of various types of \pseudorandom" objects; see next.Approximate independence generators. As hinted at the beginning of this section, small-bias is related to approximate limited independence.38 Actually, even a restricted type of "-bias(in which only subsets of size t(k) are required to have bias upper-bounded by ") implies that anyt(k) bits in the said sequence are 2t(k)=2 � "(k)-close to Ut(k), where here we refer to the variationdistance (i.e., Norm-1 distance) between the two distributions. (The max-norm of the di�erenceis bounded by "(k).)39 Combining Theorem 26 and the foregoing upper-bound, and relying onthe linearity of the construction in Proposition 24, we obtain generators with exp(k) stretch thatare approximately t(k)-independent, for some non-constant t(k); see Exercise 58. Speci�cally, fork = O(t(k) + log(1="(k)) + log log `(k)) (equiv., for `(k) = 22k=O(1) , t(k) = k=O(1), and "(k) =2�k=O(1)), one may obtain generators with stretch function `, producing bit sequences in which anyt(k) positions are at most "(k)-away from uniform (in variation distance). In the correspondingresult for the max-norm distance, it su�ces to have k = O(log(t(k)="(k) + log log `(k)). Thus,whenever the analysis of a randomized algorithm can be based on a logarithmic amount of (almost)independence between feasibly-many binary random choices, a feasible derandomization is possible(by using an adequate generator of logarithmic seed length).Extensions to non-binary choices were considered in various works (see references in [15, Sec3.6.2]). Some of these works also consider the related problem of constructing small \discrepancy38We warn that, unlike in the case of perfect independence, here we refer only to the distribution on �xed bitlocations. See Exercise 52 for further discussion.39Both bounds are derived from the Norm2 bound on the di�erence vector (i.e., the di�erence between the twoprobability vectors). For details, see Exercise 54. 36



sets" for geometric and combinatorial rectangles.t-universal set generators. Using the aforementioned upper-bound on the max-norm, for " <2�t, any "-bias generator yields a t-universal set generator. The latter generator outputs sequencessuch that in every subsequence of length t all possible 2t patterns occur (i.e., each for at least onepossible seed). Such generators have many applications.6.3 Random Walks on ExpandersIn this section we review generators that produce a sequence of values by taking a random walkon a large graph (called an expander) having small degree but good \mixing" properties. Thus,producing a sequence of length ` over 2b values, requires a random seed of length b+(`� 1) � log2 d,where d is the degree of the said graph (of 2b vertices). This should be compared against therandomness needed for generating a sequence of ` independent samples from f0; 1gb (or taking arandom walk on a clique of size 2b). It will turn out that the pseudorandom sequence (generated bythe said random walk on an expander) behaves analogously to a truly random sequence with respectto hitting any �xed subset of f0; 1gb. Let us start by de�ning this property, or rather de�ne thehitting problem.De�nition 27 (the hitting problem): A distribution on sequences over f0; 1gb is ("; �)-hitting iffor any (target) set T � f0; 1gb of cardinality at least " � 2b, with probability at least 1� �, at leastone of the elements of a sequence drawn from this distribution hits T .Clearly, a truly random sequence of length ` over f0; 1gb is ("; �)-hitting for � = (1 � ")`. Theaforementioned \expander randomwalk generator" (to be described next) achieves similar behavior.Speci�cally, for arbitrary small c > 0 (which depends on the degree and the mixing property ofthe expander), the generator's output is ("; �)-hitting for � = (1 � (1 � c) � ")`. To describe thisgenerator, we need to discuss expanders.Expanders. By expander graphs (or expanders) of degree d and eigenvalue bound � < d, weactually mean an in�nite family of d-regular graphs, fGNgN2S (S � N), such that GN is a d-regular graph over N vertices and the absolute value of all eigenvalues, save the biggest one, of theadjacency matrix of GN is upper-bounded by �. We will refer to such a family as to a (d; �)-expander(for S). This technical de�nition is related to the aforementioned notion of \mixing" (which refersto the rate at which a random walk starting at a �xed vertex reaches uniform distribution over thegraph's vertices).We are interested in explicit constructions of such graphs, by which we mean that there exists apolynomial-time algorithm that on input N (in binary), a vertex v 2 GN and an index i 2 f1; :::; dg,returns the ith neighbor of v. (We also require that the set S for which GN 's exist is su�ciently\tractable" { say that given any n 2 N one may e�ciently �nd an s2S such that n � s < 2n.)Several explicit constructions of expanders are known. Below, we rely on the fact that for every" > 0, there exist d and � < " �d such that there exists an explicit construction of a (d; �)-expanderover f2b : b 2 Ng.40 The relevant (to us) fact about expanders is stated next.Theorem 28 (Expander Random Walk Theorem): Let G = (V;E) be an expander graph of degreed and eigenvalue bound �. Let W be a subset of V and � def= jW j=jV j, and consider walks on G40This can be obtained with d = poly(1="). In fact d = O(1="2), which is optimal, can be obtained too, albeit withgraphs of sizes that are only approximately close to powers of two.37



that start from a uniformly chosen vertex and take ` � 1 additional random steps, where in eachsuch step one uniformly selects one out of the d edges incident at the current vertex and traversesit. Then the probability that such a random walk stays in W is at most� � ��+ (1� �) � �d�`�1 (15)Thus, a random walk on an expander is \pseudorandom" with respect to the hitting property (i.e.,when we consider hitting the set V nW ); that is, a set of density " = 1� � is hit with probability1 � �, where � = (1 � ") � (1 � " + (�=d) � ")`�1 < (1 � (1 � (�=d)) � ")`. A proof of an upper-bound that is weaker than Eq. (15) is outlined in Exercise 59. Using Theorem 28 and an explicit(2t; � � 2t)-expander, we getProposition 29 (The Expander Random Walk Generator):41� For every constant � > 0, consider an explicit construction of (2t; ��2t)-expanders for f2n : n2Ng, where t2N is a su�ciently latge constant. For v 2 [2n] � f0; 1gn and i 2 [2t] � f0; 1gt,denote by �i(v) the vertex of the corresponding 2n-vertex graph that is reached from vertex vwhen following its ith edge.� For b; `0 :N!N such that k = b(k) + (`0(k) � 1) � t < `0(k) � b(k), and for v0 2 f0; 1gb(k) andi1; :::; i`0(k)�1 2 [2t], let G(v0; i1; ::::; i`0(k)�1) def= (v0; v1; ::::; v`0(k)�1); (16)where vj = �ij (vj�1).Then G has stretch `(k) = `0(k) � b(k), and G(Uk) is ("; �)-hitting for any " > 0 and � = (1 � (1��) � ")`0(k).The stretch of G is optimized at b(k) � k=2 (and `0(k) = k=2t), but optimizing the stretch isnot necessaily the goal in all applications. Expander random-walk generators have been used ina variety of areas (e.g., PCP and inapproximability (see [7, Sec. 11.1]), cryptography (see [16,Sec. 2.6]), and the design of various types of \pseudorandom" objects.NotesFigure 6 depicts some of the notions of pseudorandom generators discussed in this text. We high-light a key distinction between the case of general-purpose pseudorandom generators (treated inSection 3) and the other cases (cf. Sections 4 and 5): in the former case the distinguisher is morecomplex than the generator, whereas in the latter cases the generator is more complex than the dis-tinguisher. Speci�cally, in the general-purpose case the generator runs in (some �xed) polynomial-time and needs to withstand any probabilistic polynomial-time distinguisher. In fact, some of theproofs presented in Section 3 utilize the fact that the distinguisher can invoke the generator onseeds of its choice. In contrast, the Nisan-Wigderson Generator, analyzed in Theorem 18 (of Sec-tion 4), runs more time than the distinguishers that it tries to foil, and the proof relies on this factin an essential manner. Similarly, the space complexity of the space-resilient generators presentedin Section 5 is higher than the space-bound on the distinguishers that they foil.41The common parameterization starts with parameters b and `0. Given a uniformly chosen seed of length b +O(`0 � 1), one can e�ciently and deterministically generate a random sequence of `0 strings, each of length b, whichis ("; �)-hitting for any " > 0 and � = (1� 
("))`0 .42By the OW we denote the assumption that one-way functions exists. By EvEC we denote the assumption thatthe class E has (almost-everywhere) exponential circuit complexity.38



distinguisher's generator's stretch commentstype resources resources (i.e., `(k))gen.-purpose p(k)-time, 8 poly. p poly(k)-time poly(k) Assumes OW42derand. BPP 2k=O(1)-time 2O(k)-time 2k=O(1) Assumes EvEC42space-bounded s(k)-space O(k)-space 2k=O(s(k)) runs in timerobustness k=O(1)-space O(k)-space poly(k) poly(k) � `(k)t-wise indepen. \t-wise" poly(k) � `(k)-time 2k=O(t) (e.g., pairwise)small bias \"-bias" poly(k) � `(k)-time 2k=O(1) � "(k)expander \hitting" poly(k) � `(k)-time `0(k) � b(k)rand. walk (0:5; 2�`0(k)=O(1))-hitting for f0; 1gb(k), with `0(k) = ((k � b(k))=O(1)) + 1.Figure 6: Pseudorandom generators at a glanceThe general paradigm of pseudorandom generators. Our presentation, which views vastlydi�erent notions of pseudorandom generators as incarnations of a general paradigm, has emergedmostly in retrospect. We note that, while the historical technical development of the variousnotions was mostly unrelated, the case of general-purpose pseudorandom generators served as asource of inspiration to most of the other cases. In particular, the concept of computational in-distinguishability, the connection between hardness and pseudorandomness, and the equivalencebetween pseudorandomness and unpredictability, appeared �rst in the context of general-purposepseudorandom generators (and inspired the development of \generators for derandomization" and\generators for space bounded machines"). Indeed, the development of the special-purpose gener-ators (see Section 6) was unrelated to all of these.General-purpose pseudorandom generators. The concept of computational indistinguisha-bility, which underlies the entire computational approach to randomness, was suggested by Gold-wasser and Micali [20] in the context of de�ning secure encryption schemes. Indeed, computationalindistinguishability plays a key role in cryptography (see [16, 17]). The general formulation of com-putational indistinguishability is due to Yao [48]. Yao also observed (using the hybrid techniqueof [20]) that de�ning pseudorandom generators as producing sequences that are computationallyindistinguishable from the corresponding uniform distribution is equivalent to de�ning such gener-ators as producing unpredictable sequences. The latter de�nition originates in the earlier work ofBlum and Micali [8].Blum and Micali [8] pioneered the rigorous study of pseudorandom generators and, in particular,their construction based on some simple intractability assumption (in their case, the intractabilityof Discrete Logarithm problem over prime �elds). Their work also introduces basic paradigms thatwere used in all subsequent improvements (cf., e.g., [48, 21]). We refer to the trasformation ofcomputational di�culty into pseudorandomness, the use of hard-core predicates (de�ned in [8]),and the iteration paradigm (cf. Eq. (8)).Theorem 11 (by which pseudorandom generators exist if and only if one-way functions exist)is due to H�astad, Impagliazzo, Levin and Luby [21], building upon the hard-core predicate of [19].Unfortunately, the current proof of Theorem 11 is very complicated and un�t for presentationin a book of the current nature. Presenting a simpler and tighter (cf. x3.7.1) proof is indeed animportant research project.Derandomization of time-complexity classes. As observed by Yao [48], a non-uniformlystrong notion of pseudorandom generators yields improved derandomization of time-complexity39



classes. A key observation of Nisan [33, 36] is that whenever a pseudorandom generator is used thisway, it su�ces to require that the generator runs in time exponential in its seed length, and so thegenerator may have running-time greater than the distinguisher (representing the algorithm to bederandomized). This observation underlines the construction of Nisan and Wigderson [33, 36], andis the basis for further improvements culminating in [22]. Part 1 of Theorem 19 (i.e., the so-called\high end" derandomization of BPP) is due to Impagliazzo and Wigderson [22], whereas Part 2(the \low end") is from [36].The Nisan{Wigderson Generator [36] was subsequently used in several ways transcending itsoriginal presentation. We mention its application towards fooling non-deterministic machines (andthus derandomizing constant-round interactive proof systems) and to the construction of random-ness extractors [44].Space Pseudorandom Generators. As stated in the �rst paper on the subject of space-resilientpseudorandom generators [1]43, this research direction was inspired by the derandomization resultobtained via use of general-purpose pseudorandom generators. The latter result (necessarily) de-pends on intractability assumptions, and so the objective was to �nd classes of algorithms forwhich derandomization is possible without relying on intractability assumptions. (This objectivewas achieved before for the case of constant-depth circuits.) Fundamentally di�erent constructionsof space pseudorandom generators were given in several works, but are superseeded by the twoincomparable results mentioned in Section 5.2: Theorem 21 (a.k.a Nisan's Generator [34]) andTheorem 22 (a.k.a the Nisan{Zuckerman Generator [37]). These two results have been \interpo-lated" in [5]. Theorem 23 (BPL � SC) was proved by Nisan [35].Special Purpose Generators. The various generators presented in Section 6 were not inspiredby any of the other types of pseudorandom generator (nor even by the generic notion of pseudo-randomness). Pairwise-independence generator were explicitly suggested in [11] (and are implicitin [9]). The generalization to t-wise independence (for t � 2) is due to [2]. Small-bias gener-ators were �rst de�ned and constructed by Naor and Naor [32], and three simple constructionswere subsequently given in [3]. The Expander Random Walk Generator was suggested by Ajtai,Komlos, and Szemer�edi [1], who discovered that random walks on expander graphs provide a goodapproximation to repeated independent attempts for hitting any arbitrary �xed subset of su�cientdensity (within the vertex set). The analysis of the hitting property of such walks was subsequentlyimproved, culminating in the bound cited in Theorem 28, which is taken from [23, Cor. 6.1].(The foregoing historical notes do not mention several technical contributions that played an impor-tant role in the development of the area. For further details, the reader is referred to [15, Chap. 3].In fact, the current text is a revision of [15, Chap. 3], providing more details for the main topics,and omitting [15, Sec. 3.6.4 and 3.6.5].)ExercisesExercise 30 Prove that placing no computational requirements on the generator yields \genera-tors" that can fool any family of subexponential-size circuits. That is, prove that there exist func-tions G : f0; 1g� ! f0; 1g� such that fG(Uk)gk2N is (strongly) pseudorandom, while jG(s)j = 2jsjfor every s 2 f0; 1g�. Furthermore, show that G can be computed in double-exponential time.43This paper is more frequently cited for the Expander Random Walk technique which it has introduced.40



Guideline: Use the Probabilistic Method (cf. [4]). First, for any �xed circuit C : f0; 1gn ! f0; 1g, upper-bound the probabity that for a random set S � f0; 1gn of size 2n=2 the absolute value of Pr[C(Un) =1]� (jfx 2 S : C(x) = 1gj=jSj) is larger than 2�n=100. Next, using a union bound, prove the existence of aset S � f0; 1gn of size 2n=2 such that no circuit of size 2n=100 can distinguish a uniformly distributed elementof S from a uniformly distributed element of f0; 1gn, where distinguishing means with a probability gap ofat least 2�n=100.Exercise 31 Let A be a probabilistic polynomial-time algorithm solving the search associated withthe NP-relation R, and let AG be as in Construction 2. Prove that it is infeasible to �nd an x onwhich AG outputs a wrong solution; that is, assuming for simplicity that A has error probability 1=3,prove that on input 1n it is infeasible to �nd an x 2 f0; 1gn\LR such that Pr[(x;AG(x)) 62 R] > 0:4,where LR def= fx : 9y (x; y)2Rg.(Hint: For x that violates the claim, it holds that jPr[(x;A(x)) 62 R]� Pr[(x;AG(x)) 62 R]j > 0:06.)Exercise 32 Prove that omitting the absolute value in Eq. (4) keeps De�nition 4 intact.(Hint: consider D0(z) def= 1�D(z).)Exercise 33 Show that the existence of pseudorandom generators implies the existence of polynomial-time constructible probability ensembles that are statistically far apart and yet are computationallyindistinguishable.(Hint: lower-bound the statistical distance between G(Uk) and U`(k), where G is a pseudorandom generator withstretch `.)Exercise 34 Prove that the su�cient condition in Exercise 33 is in fact necessary.44 Recall thatfXngn2N and fYngn2N are said to be statistically far apart if, for some positive polynomial p andall su�ciently large n, the variation distance between Xn and Yn is greater than 1=p(n). Usingthe following three steps, prove that the existence of polynomial-time constructible probabilityensembles that are statistically far apart and yet are computationally indistinguishable implies theexistence of pseudorandom generators.1. Show that, without loss of generality, we may assume that the variation distance between Xnand Yn is greater than 1� exp(�n).(Hint: Consider Xn = (X(1)n ; :::; X(t(n))n ) and Y n = (Y (1)n ; :::; Y (t(n))n ), where the X(i)n 's (resp., Y (i)n 's) areindependent copies of Xn (resp., Yn), and t(n) = O(n � p(n)2).)2. Using fXngn2N and fYngn2N as in Step 1, prove the existence of a false entropy generator,where a false entropy generator is a deterministic polynomial-time algorithm G such that G(Uk)has entropy e(k) but fG(Uk)gk2N is computationally indistinguishable from a polynomial-timeconstructible ensemble that has entropy greater than e(�) + (1=2).(Hint: Let S0 and S1 be sampling algorithms such that Xn � S0(Upoly(n)) and Yn � S1(Upoly(n)). Considerthe generator G(�; r) = (�; S�(r)), and the distribution Zn that equals (U1; Xn) with probability 1=2 and(U1; Yn) otherwise. Note that in G(U1; Upoly(n)) the �rst bit is almost determined by the rest, whereas in Znthe �rst bit is statistically independent of the rest.)3. Using a false entropy generator, obtain one in which the excess entropy is pk, and using thelatter construct a pseudorandom generator.(Hint: Use the ideas presented at the end of Section 3.5 (i.e., the discussion of the interesting direction of theproof of Theorem 11).)44This exercise follows [14], which in turn builds on [21].41



Exercise 35 Prove that if fXngn2N and fYngn2N are computationally indistinguishable and A isa probabilistic polynomial-time algorithm then fA(Xn)gn2N and fA(Yn)gn2N are computationallyindistinguishable.(Hint: If D distinguishes the latter ensembles then D0 such that D0(z) def= D(A(z)) distinguishes the former.)Exercise 36 In continuation to Exercise 35, show that the conclusion may not hold in case A isnot computationally bounded. That is, show that there exists computationally indistinguishableensembles, fXngn2N and fYngn2N, and an exponential-time algorithm A such that fA(Xn)gn2Nand fA(Yn)gn2N are not computationally indistinguishable.(Hint: For any pair of ensembles fXngn2N and fYngn2N, consider the Boolean function f such that f(z) = 1 if andonly if Pr[Xn = z] > Pr[Yn = z]. Show that jPr[f(Xn) = 1]� Pr[f(Yn) = 1]j equals the statistical di�erence betweenXn and Yn. Consider an adequate (approximate) implementation of f (e.g., approximate Pr[Xn = z] and Pr[Yn = z]up to �2�2jzj), and use Exercise 30.)Exercise 37 For G1 and ` as in Construction 7, consider G(s) def= G`(jsj)1 (s), where Gi1(x) denotesG1 iterated i times on x (i.e., Gi1(x) = Gi�11 (G1(x)) and G01(x) = x). Prove that G is a pseu-dorandom generator of stretch `. Re
ect on the advantages of Construction 7 over the currentconstruction.(Hint: Use a hybrid argument, with the ith hybrid beingGi1(U`(k)�i). Note thatGi+11 (U`(k)�(i+1)) = Gi1(G1(U`(k)�i�1))and Gi1(U`(k)�i) = Gi1(UjG1(U`(k)�i�1)j), and use Exercise 35.)Exercise 38 (pseudorandom versus unpredictability) Prove that a probability ensemble fZkgk2Nis pseudorandom if and only if it is unpredictable. For simplicity, we say that fZkgk2N is (next-bit)unpredictable if for every probabilistic polynomial-time algorithm A it holds that Pri[A(Fi(Zk)) =Bi+1(Zk)] is negligible, where i 2 f0; :::; jZk j�1g is uniformly distributed, and Fi(z) (resp., Bi+1(z))denotes the i-bit pre�x (resp., i+ 1st bit) of z.Guideline: Show that pseudorandomness implies polynomial-time unpredictability; that is, polynomial-time predictability violates pseudorandomness (because the uniform ensemble is unpredictable regardlessof computing power). Use a hybrid argument to prove that unpredictability implies pseudorandomness.Speci�cally, the ith hybrid consists of the i-bit long pre�x of Zk followed by jZkj � i uniformly distributedbits. Thus, distinguishing the extreme hybrids (which correspond to Zk and UjZkj) implies distinguishingsome neighboring hybrids, which in turn implies next-bit predictability. For the last step, use an argumentas in the proof of Proposition 9.Exercise 39 Prove that a probability ensemble is unpredictable (from left to right) if and only ifit is unpredictable from right to left (or in any other canonical order).(Hint: use Exercise 38, and note that an ensemble is pseudorandom if and only if its reverse is pseudorandom.)Exercise 40 Let f be 1-1 and length preserving, and b be a hard-core predicate of f . For anypolynomial `, prove that fG0(Uk)g is unpredictable (in the sense of Exercise 38), where G0(s) def=b(f `(jsj)�1(s)) � � � b(f(s)) � b(s).Guideline: Suppose towards the contradiction that, for a uniformly distributed j 2 f0; :::; `(k) � 1g,given the j-bit long pre�x of G0(Uk) an algorithm A0 can predict the j + 1st bit of G0(Uk). That is,given b(f `(k)�1(s)) � � � b(f `(k)�j(s)), algorithm A0 predicts b(f `(k)�(j+1)(s)), where s is uniformly distributedin f0; 1gk. Consider an algorithm A that given y = f(x) approximates b(x) by invoking A0 on inputb(f j�1(y)) � � � b(y), where j is uniformly selected in f0; :::; `(k) � 1g. Analyze the success probability of Ausing the fact that f induces a permutation over f0; 1gn, and thus b(f j(Uk)) � � � b(f(Uk)) �b(Uk) is distributedidentically to b(f `(k)�1(Uk)) � � � b(f `(k)�j(Uk)) � b(f `(k)�(j+1)(Uk)).42



Exercise 41 Prove that if G is a strong pseudorandom generator in the sense of De�nition 12 thenit a pseudorandom generator in the sense of De�nition 1.(Hint: consider a sequence of internal coin tosses that maximizes the probability in Eq. (2).)Exercise 42 Show that there exists a circuit of size O(2k � `(k)) that violates Eq. (9), provided`(k) > k.(Hint: The circuit may incorporate all values in the range of G and deciding by comparing its input to these values.)Exercise 43 (constructing a set system for Theorem 18) For every 
 > 0, show a construc-tion of a set system S as in Condition 2 of Theorem 18, with m(k) = 
(k) and `(k) = 2
(k).Guideline: We assume, without loss of generality, that 
 < 1, and set m(k) = (
=2) �k and `(k) = 2
m(k)=10.We construct the set system S1; :::; S`(k) in iterations, selecting Si as the �rst m(k)-subset of [k] that hassu�ciently small intersections with each of the previous sets S1; :::; Si�1. The existence of such a set Si canbe proved using the Probabilistic Method (cf. [4]). Speci�cally, for a �xed m(k)-subset S0, the probabilitythat a random m(k)-subset has intersection greater than 
m(k) with S0 is upper-bounded45 by 2�
m(k)=10,because the expected intersection size is (
=2) �m(k). Thus, with positive probability a random m(k)-subsethas intersection at most 
m(k) with each of the previous i � 1 < `(k) = 2
m(k)=10 subsets. Note that weconstruct Si in time � km(k)� � (i� 1) �m(k) < 2k � `(k) � k, and thus S is computable in time k2k � `(k)2 < 22k.Exercise 44 Suppose that the sets Si's in Construction 17 are disjoint and that f : f0; 1gm !f0; 1g is T -inapproximable. Prove that for every circuit C of size T�O(1) it holds that jPr[C(G(Uk)) =1]� Pr[C(U`) = 1]j < `=T .Guideline: Prove the contrapositive using Exercise 45. Note that the values of the i+ 1st bit of G(Uk) isstatistically independent of the values of the �rst i bits ofG(Uk), and thus predicting it yields an approximatorfor f . Indeed, such an approximator can be obtained by �xing the the �rst i bits of G(Uk) via an averagingargument.Exercise 45 In continuation to Exercise 38, show that if there exists a circuit of size s thatdistinguishes Zn from U` with gap �, then there exists an i < ` = jZnj and a circuit of size s+O(1)that given an i-bit long pre�x of Zn guesses the i+ 1st bit with success probability at least 12 + �̀ .(Hint: de�ning hybrids as in Exercise 38, note that, for some i, the given circuit distinguishes the ith hybrid fromthe i + 1st hybrid with gap at least �=`.)Exercise 46 (Theorem 18, generalized) Let `;m;m0; T :N!N satisfy `(k)2+ eO(`(k)2m0(k)) <T (m(k)). Suppose that the following two conditions hold:1. There exists an exponential-time computable function f :f0; 1g�!f0; 1g that is T -inapproximable.2. There exists an exponential-time computable function S :N�N!N such that jS(k; i)j = m(k)for every k and i = 1; :::; `(k), and jS(k; i) \ S(k; j)j � m0(k) for every k and i 6= j.Prove that using G as de�ned in Construction 17, with Si = S(k; i), yields a canonical derandomizerwith stretch `.(Hint: following the proof of Theorem 18, just note that the circuit constructed for approximating f(Um(k)) has size`(k)2 + `(k) � eO(2m0(k)) and success probability at least (1=2) + (1=7`(k)).)45Applying the standard Cherno� Bound yields an upper-bound of exp(�(
=2)2 �m(k)), which su�ces for `(k) =2
2m(k)=10. However, using a Multiplicative Cherno� Bound yields an upper-bound of exp(�(
=2) �m(k)=3).43



Exercise 47 (Part 2 of Theorem 19) Prove that if for every polynomial T there exists a T -inapproximable predicate in E then BPP � \">0Dtime(t"), where t"(n) def= 2n" .(Hint: For any p-time algorithm, apply Exercise 46 using `(k) = p(k1="), m(k) = pk and m0(k) = O(log k). RevisitExercise 43 in order to obtain a set system as required in Exercise 46 (for these parameters), and use an adequateworst-case to average-case reduction.)Exercise 48 Provide an explicit description of the generator outlined in the proof of Theorem 21.(Hint: for r 2 f0; 1gn and h(1); :::; h(t) 2 Hn, the generaor outputs a 2t-long sequence of n-bit strings such that theith block equals h0(r), where h0 is a composition of some of the h(j)'s.)Exercise 49 (adaptive t-wise independence tests) Prove that the output of a t-wise indepen-dence generator is indistinguishable to any test than examines t of the blocks, even if the examinedblocks are selected adaptively (i.e., the location of the ith block is determined based on the contentsof the previously inspected blocks).Guideline: First show that, without loss of generality, it su�ces to consider deterministic (adaptive) tester.Next, show that the probability that such a tester sees any �xed sequence of t values at locations selectedadaptively in the generator's output is 2�t�b(k), where b(k) is the block length.Exercise 50 (t-wise independence generator) Prove that G as de�ned in Proposition 24 pro-duces a t-wise independent sequence over GF(2b(k)).Guideline: For every t �xed indices i1; :::; it 2 [`0(k)], consider the distribution of G(Uk)i1;:::;it (i.e., theprojection of G(Uk) on locations i1; :::; it). Show that for every sequence of t possible values v1; :::; vt 2GF(2b(k)), there exists a unique seed s 2 f0; 1gk such that G(s)i1 ;:::;it = (v1; :::; vt).Exercise 51 (pairwise independence generators) As a warm-up, consider a construction anal-ogous to the one in Proposition 25, where the seed speci�es an a�ne b(k)-by-m(k) transformation.That is, for s 2 f0; 1gb(k)�m(k) and r 2 f0; 1gb(k), where k = b(k) �m(k) + b(k), letG(s; r) def= (Asv1 + r ; Asv2 + r ; :::; Asv`0(k) + r) (17)where As is an b(k)-by-m(k) matrix speci�ed by the string s. Show that G as in Eq. (17) is apairwise independence generator of block-size b and stretch `. Next, show that G as in Eq. (13) isa pairwise independence generator of block-size b and stretch `.Guideline: The following description applies to both constructions. First note that for every �xed i 2 [`0(k)],the ith element in the sequence G(Uk) is uniformly distributed in f0; 1gb(k). Actually, show that for every�xed s 2 f0; 1gk�b(k), it holds that G(s; Ub(k))i is uniformly distributed in f0; 1gb(k). Next note that itsu�ces to show that, for every j 6= i, conditioned on the value of the ith element in G(Uk), the jth elementis uniformly distributed in f0; 1gb(k). The key technical detail is to show that for any non-zero vectorv 2 f0; 1gm(k) it holds that AUk�b(k)v (resp., TUk�b(k)v) is uniformly distributed in f0; 1gb(k). This is easy incase of a random b(k)-by-m(k) matrix, and can be proven also for a random Toeplitz matrix.Exercise 52 (adaptive t-wise independence tests, revisited) In contrast to Exercise 49, wenote that almost uniform distribution on any �xed t bit locations does not imply that an adaptivetest that inspects t locations cannot detect \non-uniformity" (i.e., a \non random behavior" of theinspected sequence). Speci�cally, present a distribution over 2t�1-bit long strings in which eacht � 1 �xed bit positions are t � 2�(t�1)-close to uniform, but some test that adaptively inspects tpositions can distinguish this distribution from the uniform one with constant gap.(Hint: Modify the uniform distribution over ((t�1)+2t�1)-bit long strings such that the �rst t�1 locations indicatea bit position (among the rest) that is set to zero.) 44



Exercise 53 Suppose that G is an "-bias generator with stretch `. Show that equality between the`(k)-bit strings x and y can be probabilistically checked by comparing the inner product modulo 2of x and G(s) to the inner product modulo 2 of y and G(s), where s 2 f0; 1gk is selected uniformly.(Hint: reduce the problem to the special case in which y = 0`(k).)Exercise 54 (bias versus statistical di�erence from uniform) Let X be a random variableassuming values in f0; 1gt. Prove that if X has bias at most " over any non-empty set then thestatistical di�erence between X and Ut is at most 2t=2 � ", and that for every x 2 f0; 1gt it holdsthat Pr[X = x] = 2�t � ".Guideline: Consider the probability function p : f0; 1gt ! [0; 1] de�ned by p(x) def= Pr[X = x], and let�(x) def= p(x)� 2�t denote the deviation of p from the uniform probability function. Viewing the set of realfunctions over f0; 1gt as a 2t-dimensional vector space, we consider two orthonormal bases for this space. The�rst basis is of the (Kroniker) functions fk�g�2f0;1gt such that k�(x) = 1 if x = � and k�(x) = 0 otherwise.The second basis is of the (normalize Fourier) functions ffSgS�[t] de�ned by fS(x) def= 2�t=2Qi2S(�1)xi(where f; � 2�t=2).46 Note that the bias of X over any S 6= ; equals jPx p(x) � 2t=2fS(x)j, which inturn equals 2t=2jPx �(x)fS(x)j. Thus, for every S (including the empty set), we have jPx �(x)fS(x)j �2�t=2", which means that the representation of � in the normalize Fourier basis is by coe�cients that haveeach an absolute value of at most 2�t=2". Thus, the Norm-2 of this vector of coe�cients is bounded byp2t � (2�t=2")2 = ", and all claims follow by noting that they refer to norms of � according to the Kronikerbasis. In particular, Norm-2 is preserved under orthonormal bases, the max-norm is upper-bounded byNorm-2, and Norm-1 is upper-bounded by p2t times the value of the Norm-2.Exercise 55 (The LFSR small-bias generator (following [3])) Using the following guidelines(and letting t = k=2), analyze the construction outlined following Theorem 26 (and depicted inFigure 5):1. Prove that ri =Pt�1j=0 c(i)j �sj, where c(i)j is the coe�cient of zj in the (degree t�1) polynomialobtained by reducing zi modulo the polynomial f(z) (i.e., zi �Pt�1j=0 c(i)j zj (mod f(z))).(Hint: Recall that zt � Pt�1j=0 fjzj (mod f(z)), and thus zi � Pt�1j=0 fjzi�t+j (mod f(z)). Note thecorrespondance to ri =Pt�1j=0 fj � ri�t+j .)2. For any non-empty S � f0; :::; `(k) � 1g, evaluate the bias of the sequence r0; :::; r`(k)�1 overS, where f is a random irreducible polynomial of degree t and s = (s0; :::; st�1) 2 f0; 1gt isuniformly distributed. Speci�cally:(a) For a �xed f and random s 2 f0; 1gt, prove that Pi2S ri has non-zero bias if and onlyif f(z) divides Pi2S zi.(Hint: Note thatPi2S ri =Pt�1j=0Pi2S c(i)j sj , and use Item 1.)(b) Prove that the probability that a random irreducible polynomial of degree t dividesPi2S zi is �(`(k)=2t).(Hint: A polynomial of degree n can be divided by at most n=d di�erent irreducible polynomials ofdegree d. On the other hand, the number of irreducible polynomials of degree d over GF(2) is �(2d=d).)Conclude that for random f and s, the sequence r0; :::; r`(k)�1 has bias O(`(k)=2t).46Verify that both bases are indeed orthogonal (i.e., Px k�(x)k�(x) = 0 for every � 6= � andPx fS(x)fT (x) = 0for every S 6= T ) and normal (i.e., Px k�(x)2 = 1 andPx fS(x)2 = 1).45



Note that an implementation of the LFSR generator requires a mapping of random k=2-bit longseeds to almost random irreducible polynomials of degree k=2. Such a mapping can be constructedin exp(k) time, which is poly(`(k)) if `(k) = exp(
(k)). A more e�cient mapping that uses aO(k)-bit long seek is described in [3, Sec. 8].Exercise 56 (limitations on small-bias generators) LetG be an "-bias generator with stretch`, and view G as a mapping from GF(2)k to GF(2)`(k). As such, each bit in the output of G canbe viewed as a polynomial in the k input variables (each ranging in GF(2)). Prove that if "(k) < 1and each of these polynomials has degree at most d then `(k) �Pdi=1 �ki�.Guideline: First note that, without loss of generality, all polynomials have a free term equal to zero. Then,consider the vector space spanned by all d-monomials over k variables (i.e., monomial having at most dvariables). Since "(k) < 1, the polynomials representing the output bits of G must correspond to a sequenceof independent vectors in this space. Derive the following corollaries:1. If "(k) < 1 then `(k) < 2k.2. If "(k) < 1 and `(k) > k then G cannot be a linear transformation.Note that G(s) = (s; b(s)), where b(s1; :::; sk) = Pk=2i=1 sis(k=2)+i mod 2, is an "-biased generatorwith "(k) = exp(�
(k)).(Hint: Focusing on bias over sets that include the last output bit, prove that without loss of generality it su�ces toanalyze the bias of b(Uk).)Exercise 57 (a sanity check for pseudorandomness) The following fact is suggested as a san-ity check for candidate pseudorandom generators with respect to space-bounded machines. Thefact (to be proven as an exercise) is that, for every "(�) and s(�) such that s(k) � 1 for every k, ifG is (s; ")-pseudorandom (as per De�nition 20), then G is an "-bias generator.Exercise 58 (approximate t-wise independent generators (following [32])) Combining The-orem 26 and relying on the linearity of the t-wise independent generator of Eq. (12), construct agenerator producing `-bit long sequences in which any t positions are at most "-away from uniform(in variation distance), while using a seed of length O(t + log(1=") + log log `). (For max-norm aseed of length O(log(t=") + log log `) su�ces.)Guideline: First note that, for any t; `0 and b, the transformation of Eq. (12) can be implemented by a �xedlinear (over GF(2)) transformation of a t � b-bit seed into an `-bit bit sequence, where ` = `0 � b. It followsthat there exists a �xed GF(2)-linear transformation T of a random seed of length t � b, where b = log2 `,into a t-wise independent bit sequence of the length ` (i.e., T Ut�b is t-wise independent over f0; 1g`). Thus,every t rows of T are linearly independent. The key observation is that when we replace the aforementionedrandom seed by an "0-biased sequence, every i � t positions in the output sequence have bias at most "0(because they de�ne a non-zero linear test on the bits of the "0-biased sequence). Note that the length ofthe new seed (used to produce "0-biased sequence of length t � b) is O(log tb="0). Applying Exercise 54, weconclude that any t positions are at most 2t=2 � "0-away from uniform (in variation distance). Recall that thiswas obtained using a seed of length O(log(t="0) + log log `), and the claim follows by using "0 = 2�t=2 � ".Exercise 59 (A version of the Expander Random Walk Theorem) Using notations as inTheorem 28, prove that the probability that a random walk of length ` stays in W is at most46



(� + (�=d)2)`=2. In fact, prove a more general claim that refers to the probability that a randomwalk of length ` intersects W0 �W1 � � � � �W`�1. The claimed upper-bound isp�0 � `�1Yi=1q�i + (�=d)2; (18)where �i def= jWij=jV j.Guideline: View the random walk as the evolution of a corresponding probability vector under suitabletransformations. The transformations correspond to taking a random step in the graph and to passingthrough a \sieve" that keeps only the entries that correspond to the current set Wi. The key observation isthat the �rst trasformation shrinks the component that is orthogonal to the uniform distribution (which isthe �rst eigenvalue of the adjacency matrix of the expander), whereas the second trasformation shrinks thecomponent that is in the direction of the uniform distribution. Details follow.View the random walk as the evolution of a corresponding probability vector under suitable transforma-tions. Let A be a matrix representing the random walk on G (i.e., A is the adjacency matrix of G dividedby the degree, d). Let � denote the absolute value of the second largest eigenvalue of A (i.e., � def= �=d), andnote that u = (jV j�1; :::; jV j�1) (which represents the uniform distribution) is the eigenvector of A that isassociated with the largest eigenvalue (which is 1). Let Pi be a 0-1 matrix that has 1-entries only on its diag-onal, and furthermore entry (j; j) is set to 1 if and only if j 2Wi. Then, the probability that a random walkof length ` intersectsW0�W1�� � ��W`�1 is the sum of the entries of the vector v def= P`�1A � � �P2AP1AP0u.We are interested in upper-bounding kvk1, and use kvk1 � pjV j � kvk, where kzk1 and kzk denote the L1norm and L2 norm of z, respectively (e.g., kuk1 = 1 and kuk = jV j�1=2). The key observation is that,for every z, it holds that kPiAzk � (�i + �2)1=2 � kzk, which is proven by decomposing z = z1 + z2 suchthat z1 is the projection of z on u (the \�rst" eigenvector of A) and z2 is the component orthogonal tou. Facts to be used in the proof of the forgoing observation include kPiAz1k = kPiz1k � p�ikz1k andkPiAz2k � kAz2k � �kz2k (i.e., Pi shrinks any uniform vector by eliminating 1� �i of its elements, whereasA shrinks the length of any eigenvector except u by a factor of at least �).47Exercise 60 Using notations as in Theorem 28, prove that the probability that a random walkof length ` visits W more than �` times is smaller than ��̀`� � (� + (�=d)2)�`=2. For example, for� = 1=2 and �=d < p�, we get an upper-bound of (32�)`=4. We comment that much better boundscan be obtained (cf. [13]).(Hint: Use a union bound on all possible sequences of m = �` visits, and upper-bound the probability of visiting Win steps j1; :::; jm by applying Eq. (18) with Wi =W if i 2 fj1; :::; jmg and W = V otherwise.)References[1] M. Ajtai, J. Komlos, E. Szemer�edi. Deterministic Simulation in LogSpace. In 19th ACMSymposium on the Theory of Computing, pages 132{140, 1987.[2] N. Alon, L. Babai and A. Itai. A fast and Simple Randomized Algorithm for the MaximalIndependent Set Problem. J. of Algorithms, Vol. 7, pages 567{583, 1986.47Also use the triangle inequality (for kPiAz1 + PiAz2k � kPiAz1k + kPiAz2k), the Cauchy-Schwartz inequality(for p�ikz1k+ �kz2k �q�i + �2 �pkz1k2 + kz2k2), and pkz1k2 + kz2k2 = kz1 + z2k = kzk.47
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